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Abstract

In the context of a complete financial model, we study the portfolio optimization
problem when the objective function may have a change of concavity at a given positive
constant level. This typically includes utility maximization of terminal wealth when
the agent modifies her preferences structure from a certain level of wealth. This also
allows to consider the portfolio management problem of an investor willing to achieve
a given level of performance by penalizing net loss and maximizing net gain. We finally
compare some of our results with the classical portfolio choice problem of Merton by
doing some numerical experiments.
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1 Introduction

Portfolio optimization problems in finance usually assume concave (or convex) objective
functions which are specified independently from the wealth process. The main examples are
utility maximization from consumption and terminal wealth and hedging problems (mean-
variance, shortfall risk, ...), see Karatzas and Shreve (1998) and references therein.

In this paper, we consider a continuous objective function U on (0, 0o) of the form :

_ Ul(fL'), O<z<h
V) = { Ua(z), 2> h,

where h > 0, and Ui, U, are C!, and strictly concave functions. Function U is in general
only piecewise C? and piecewise concave. We study the problem of maximizing the expected
objective function U of terminal wealth in the context of complete It6 processes model. Such
a problem typically arises in utility maximization when the preferences structure of the agent
changes from U; to U; at h. The constant A is then interpreted as a level of wealth at which
the risk-aversion of the agent is modified. For example, the agent may be less risk-averse
when her wealth is large enough and may be more risk-averse when her wealth decreases a
lot. Hence, such a piecewise concave utility function allows to take into account an effect
of the agent’s wealth on her risk behavior. On the other hand, consider an investor who
wants to achieve a given level of performance h by adopting the following criterion : She
penalizes net loss, i.e. when terminal wealth is below h, and maximizes net gain, i.e. when
terminal wealth is above h. We call this criterion the portfolio gain/loss management. This
is embedded in our optimization problem by choosing Ui(z) = —l(h — z) and Uz(z) =
g(z — h), where [ is a convex C? loss function and g is a concave C! gain function.

We solve our piecewise concave optimization problem by using a martingale duality
approach. We consider the conjugate function U of U, i.e. U(y) = sup,.o(U(z) — zy) and
we provide an explicit expression of a function x that attains the supremum in the definition
of U. In general, function x is not continuous. In a second step, we prove continuity of the
function H(y) = E[Z3x(yZ3)] under a certain condition, namely that the drift process of the
asset is nonzero. Actually, by means of Malliavin calculus, this last condition ensures that
the density of the unique martingale measure, Z2, is absolutely continuous with respect to
the Lebesgue measure. This continuity result is essential to state the budget constraint and
then to adapt the standard martingale approach of Cox and Huang (1989) or Karatzas et
al. (1987). In the case where the drift process of the asset is zero, we derive directly, by the
dynamic programming methods, the value function of our optimization problem. It appears
that when U is not concave, the control problem is singular and there is no optimal portfolio.
We also show that duality relation between the value functions of the primal optimization
problem and of the dual problem holds, even in the case where the objective function U is not
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concave. Finally, we analyze the qualitative behavior of the optimal strategy and compare
with the classical Merton’s portfolio strategy by doing some numerical experiments.

The paper is organized as follows. Section 2 describes the financial model and Section 3
formulates the portfolio optimization problem. In Section 4, we solve the problem by using
a martingale duality approach. We also derive the solution by a dynamic programming
approach when the drift process of the asset is zero. Section 5 presents some examples and
we derive in Section 6 closed-form expressions for the optimal portfolio in the Black-Scholes
model. Finally, Section 7 presents some numerical results.

2 The ﬁnancial model

- We consider the sta.ncfa.rd setup of a complete Ité6 processes model for a financial market,
as described for example in Karatzas and Shreve (1998). There are one bank account, with
constant price process S° normalized to unity, and d risky assets of price process S =
(S%,...,8%) governed by :

dS;, = pdt+ o, dW,, S;=s e R%

Here W = (W?,...,W?) is a standard d-dimensional Brownian motion on a complete
probability space (£, F, P) equipped with a filtration F = {F;,0 < t < T}; this is the
P-augmentation of the filtration generated by W. The R%valued process u and the R%*d-
valued process o are assumed to be progressively measurable with respect to F. We shall
also assume that the matrix o is invertible for all t € [0,T}], P a.s.

We define then the ‘market price of risk’ process :

At = o't—ly'ta OStSTy

which is assumed to satisfy fOT |A¢e]*dt < co. We consider then the exponential P-local
martingale :

t t
Z? = exp (—/ A dW,, — %/ I)\u|2du) , 0<t<T. (2.1)
0 0

We shall assume Z° is a P-martingale, i.e. E[Z$] = 1, so that one can define a probability
measure P? equivalent to P on (2, Fr) by :

PY(A) = E[Z01,], A€ Fr.

Recall that a well-known sufficient condition ensuring that E[Z2] = 1 is the Novikov crite-
rion : F [exp (% fOT lAtlzdt)] < 00, which is obviously satisfied if A is bounded in (¢, w).
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By Girsanov’s theorem, the process
¢
w2 = Wt—l—/ ddu, 0<t<T,
0

is a P°-Brownian motion, and the dynamics of S under the so-called risk-neutral equivalent
martingale measure P is :

dS; = o dW?, 0<t<T. (2.2)

A portfolio is an R%-valued F-adapted process § = (6%, ..., 69%) such that :
T
/ |36, 12dt < oo, a.s.
0

Here, 6 describes the number of shares invested in the i-th risky asset at time ¢. The (self-

financed) wealth process X corresponding to an initial capital z > 0 and a portfolio  is
defined by :

dth'o = GQdSt
= 0,0 dW?, X3°=1z. (2.3)

A portfolio @ is called admissible for the initial capital z > 0, and we write § € A(z), if :
X > 0, as,0<t<T. (2.4)

Remark 2.1 From (2.3), the process X% is a PC-local martingale, and from (2.4), it is
nonnegative, thus also a P%-supermartingale. We deduce that :

E[ng;':"] < z, V0e A). (2.5)

3 The portfolio optimization problem

We consider a continuous function U : (0, 00) — R defined by :

_ Ui(z), O<z<h
Uie) = { Us(z), z>h,

where h > 0, U, is strictly concave, of class C! on (0, k], and U, is strictly concave, of class
C! on (h,00). Notice that continuity of U means that Us(h) := lim,, Us(z) = Uy(h). We
shall assume

Uj(o0) := Jlim Uy(z) = 0. (3.1)
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This last condition is an Inada type condition on the behaviour at infinity of U’. Notice that
we do not impose an Inada type condition on the behaviour at zero of U’. In particular, we
can choose an exponential utility function U;(z) = —e™®. We denote Uj(h) := lim, s Uj(2).
Notice that when Uj(h) # Uj(h), the function U is not differentiable. Moreover, function U
is concave on (0, 0o) iff U{(h) > Uj(h). In the general case, the function U is only piecewise
C' and piecewise concave. In the limiting case, h = 0, we recover the usual case of concave
and C? utility function U = U,.
Our interest is on the optimization problem :

J(x) = sup E [U(X;’G)] , =>0. (3.2)
6cA(z)

Application 1
When U; and U; are standard utility functions, problem (3.2) is an utility maximization

problem from terminal wealth. The constant h is interpreted as a level of wealth at which
risk aversion of the agent may change.

Application 2

Consider the case where U;(z) = —I(h — ) and Ua(z) = g(z — h), with [, a C? strictly
convex function on [0, 00) and g, a C* strictly concave function on [0, 00), such that {(0) =
g(0) = 0. Then problem (3.2) is written equivalently as :

J(z) = sup E [—l(h — X7 + g(XF° - h)+] , >0
0cA(x)

This is a portfolio management problem for an investor who wishes to achieve a level of
performance h, by penalizing net loss and maximizing net gain.

4 Solution to the optimization problem
We define the conjugate function of U :
Uly) = sup (U(z) - ay), y>0,

which is a nonincreasing and convex function from (0, co) into RU{oco}. Notice that function
U is not necessarily smooth CI.
We also define the dual value function :

J(y) = EU (yZ3), y>O0.

In a first step, we provide an explicit characterization of a function x that attains the
supremum in definition of UU. We need to introduce some notations. We denote by I;



86

the inverse of the derivative of U;, ¢ = 1,2; I; is a continuous strictly decreasing function
from [U](h), U:(0)) into (0, h] and is extended by continuity on [U](h), U;(0)] when Uj(0) :=
lim,_o Uj(z) < oo, by setting I;(U{(0)) = 0. Notice that when U;j(0) < oo, U; is also
extended by continuity in 0 by setting U;(0) = 0; Iz is a continuous strictly decressing
function from (0, U4(h)) into (h,o0) and is extended by continuity by h on [Uj(h),00). In
the case where Uj(h) < Uj(h), we define the function ¢ : [Uj(h),Uj(h)] = Rby ! :

sy { Uro ()~ Uzo h(s) =y = )@, Ui(W) Sy < GO ATHR)

U1(0) — Uz o I(y) + yla(y), U1(0) AU3(h) <y < Uz(h).
Proposition 4.1 There eTists a nonnegative function x defined on (0,00) such that :

U) = Ux®)—-yx), y>0.

Function x is explicitly characterized as follows :
When Uj(h) > Uj(h), we get :

L(y), 0<y<Ujh)

_ h, Uj(h) < y < Uj(h)
X® =\ L), Ul <y < Ui0) 42)
0, y > Uj(0).

When Uj(h) < Uj(h), we have :

I(y), 0<y<y(h)
x() = ¢ hLy), wyh) <y<y(h)VvU(0) (4.3)
0, y > y(h) Vv U(0).

where y(h) is the unique element in (Ui(h), Uj(h)) such that ¢(y(h)) = 0.
Proof. See Appendix. O

Remark 4.1 In the case where Uj(h) < Uj(h), function x of Proposition 4.1 may be not
continuous on (0, c0); from (4.3), there is a discontinuity at point y = y(h) whenever I;(y(h))
# Ia(y(h)) or y(h) > U1(0).

Remark 4.2 By definition of U, it is clear that :

U(x) < (zf(x):;-lilx;g([}(y)—%-xy), z > 0.

1For any real numbers a and b, we denote by a A b (resp. a V b) , the minimum (resp. maximum) of a
and b.
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It is well-known that when U is concave, we have equality U = U , see e.g Ekeland and Temam
(1976). In our context, in the case where Uj(h) < Uj(h), so that U is not concave, one can

check that U # U. For example, when U!(0) < Uj(h) and y(h) > Ui(0), i.e. ¢(Uj(0)) <0,
a straightforward calculation shows that for z < I(y(h)) :

U) = min[l; o L(y(h)) — y(h) Lx(y(h)), U1(0)] + zy(h),
and so l:} differs from U.
Remark 4.3 By definition of x and U, we have for all y,2>0:

Uy) — x(v)(z — v)

It

Ux(y)) — x(v)z
< U(z).

This shows that for all y > 0, —x(y) € 8U(y), the subgradient of the convex function U.
When U is concave, the converse is true : any element # € —9U(y) attains the supremum
in U(y), i.e. U(y) = U(2) — %y (see e.g Ekeland and Temam (1976)). This property is
crucial in the dual formulation when the set of martingale measures is not a singleton, see
Cvitani¢ (2000) or Deelstra, Pham and Touzi (2001). This last property is no more valid in
our context. We shall give some examples in Section 5.

Remark 4.4 In the case of Example 2, when U, and U, are on the form U;(z) = ~Ii(h—x)
and U(z) = g(z ~ h), with {(0) = ¢g(0) = 0, function ¢ defined in (4.1) reduces to :

o(y) = i(y) - 3(y), '0)<y< g’(o) AU(R)
~U(h) = §u) +yh, g (0) AV(h) <y < g(0),

where, I(y) = max,so[—I(z) + zy] and §(y) = max,>o[g(z) — .
We shall make the following assumption :
Assumption 4.1
E [Z21,(yZ})] < oo, Vye€ (0,00).

Remark 4.5 Suppose that there exists o € (0,1) and v € (1,00) such that aUi(z) >
Us(vz), Vz € (h,00). Then, by similar arguments as in Remark 6.9, p. 107 of Karatzas
and Shreve (1998), Assumption 4.1 holds whenever E [Z3I;(yoZ2)] < oo for some yp in
(0, Uz(h))-
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Remark 4.6 Suppose that there exist C > 0, m,n > 0 such that :
L) < Cl+y"+y™), Vy>0.

Then the boundedness of the process A in (¢,w) is a sufficient condition for Assumption 4.1
to hold.

From expression of function x in Proposition 4.1 and recalling the nonincreasing feature
of I, and I, we easily see that :

x(y) £ Ix(y), Yy>0. (44)

Under Assumption 4.1, one can then define the real-valued function on (0, 00) by :

Hy) = E[Z3x(yZ3)], y>0.

The second step is to state continuity of function H and then to prove that the budget
constraint is satisfied : Given z > 0, one can find j(z) > 0, such that X = x(§(z)Z2) is a
terminal wealth satisfying EF°[X] = H(j(z)) = =.

We need to make some assumptions on the market price of risk A. We denote by H the
Cameron-Martin space formed by the functions of the form (t) = fot ¥(s)ds, t € [0, T,

1
with 4 € L2([0,T),R?%) equipped with the norm || ¢ ||g = (fOT Iz/}(s)lzds)i. We denote
by D the Malliavin derivative operator defined on the domain ID'? of L?(Q); D : ID'?
— L%*(9,H). We refer to Nualart (1995) for all unexplained notations. Given a random
variable F € D'?, DF(w) = (D'F(w),..., D*F(w))’ is valued in H for w € Q, and D;F(w)
= (D}F(w),...,D¢F(w))’, 0 <t < T, is defined by :

DF = / 'D,Fdt, a.s.
0
(CL) For all t € [0,T], X\i € D'?,i=1,...,d, and satisfy :

T 2
EF° [ / |Dt)\,,|2ds:| < oo, (4.5)
o ;
where Di)\, = (DAL, ..., D:A%). Moreover,
M(w) # 0, dtxdP a.s. (4.6)

Remark 4.7 Notice that when )\ is a bounded deterministic process, we have D\, = 0,
and the last condition reduces to A; # 0 dt a.e.
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Lemma 4.1 Suppose that condition (CL) holds. Then, for all 2 > 0, P°[Z9 = z] = 0.

Proof. The case z = 0 is obvious since P® and P are equivalent. Fix now z> 0. The
distribution law of In Z2 under P is given by :

T 1 T
Iz} = —/ A;dW,,——/ | As|?ds.
0 2 Jo

From standard calculations on Malliavin derivative (see e.g. Proposition 2.3 in Ocone and
Karatzas 1991), we then have for al 0 <t < T :

T T
DilnZd = -\ - / DX, dW, — / Di)s Aods
t t

T
= =X- / DA, dW?, (4.7)
t

The integrability condition (4.5) ensures that for all ¢ € [0,T], the Ito stochastic integral
process { fot DA, dW?, 0 < t < T} is a P-martingale, see e.g. Jacod (1979). We deduce
from (4.7) that :

EP’ID,InZ%|F] = =X, 0<t<T.

Under condition (4.6) and recalling that P° is equivalent to P, this implies that :
T
| DInZ2 |2, = / D InZ22dt > 0, PP as.
0

From Theorem 3.1.1 in Nualart (1995), we deduce that the distribution law of In Z2 under
PP admits a density with respect to the Lebesgue measure on R, and so the required result.
O

Proposition 4.2 Let Assumption 4.1 hold and suppose that one of the two following con-
ditions holds :

(i) Ul(h) 2 Uj(h),

(i) Ui(h) < Uz(h) and condition (CL) holds.

Then the function H is continuous on (0,00) and for all x > 0, there erists §(z) > 0 (not
necessarily unique) such that H(j(z)) = z.

Proof. First, notice that from (4.4), we have :
Zrx(vZr) < Zrl(yZp), Vy>O. (4.8)

1) We suppose that condition (i) holds. Then by Proposition 4.1 (4.2), function x is
continuous on (0, 00). From Assumption 4.1, (4.8) and the dominated convergence theorem,
we obtain the continuity of H on (0, 00).
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2) We now suppose that condition (ii) holds. From Proposition 4.1 (4.3), function x
is right continuous. The right-continuity of H is then stated from Assumption 4.1, (4.8),
the nondecreasing feature of function I, and dominated convergence theorem. To prove the
left-continuity of H in y > 0, take a nondecreasing sequence of positive real (y,), such that

¥n /Y-
We then see from (4.3) that :

X(%Zg) - x(yZ%) + (-1 1y(h)<U{(0))(y(h))1yzg=y(h)-

Observe that for n large enough, y, > y/2. Then, by the nondecreasing property of
function I, we have :

BxwZ9) < 285 (428), vy>0
We deduce by the dominated convergence theorem that :

H(yn) — H(y)+ (I2 — hlym<vio)(y(h))PlyZr = y(h)]. (4.9)

Using Lemma 4.1, this proves the left-continuity and then the continuity of H in y.

3) In all cases, by noting that x(y) — oo when y — 0, we see, by Fatou’s Lemma,
that H(y) — oo when y — 0. By noting that x(y) — 0 when y — 0o, we obtain, by the
dominated convergence theorem that H(y) — 0 when y — 0. This property combined with
the continuity of H proves the existence of §(z) > 0 such that H(j(z)) = z, for all z > 0.

O

Remark 4.8 The nonrandomness of the critical value A is only required in this last propo-
sition, see (4.9). Indeed, in this case, y(h) is nonrandom and by Lemma 4.1, P°[yZ% = y(h))
= 0, for all y > 0, which implies the continuity of function H.

Adapting arguments of conjugate duality in complete markets, we characterize the solu-
tion to problem (3.2) and prove the duality relation between value functions J and J.

Theorem 4.1 Suppose that conditions of Proposition 4.2 hold. Then for all z > 0, there
exists an optimal portfolio O for problem (3.2) whose terminal wealth is given by :

X = x(9(z)22), (4.10)

where x is defined in Proposition 4.1 and y(x) given by Proposition 4.2. The associated
optimal wealth is given by :

X = pP [XIJ-}] 0<t<T. (4.11)
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Moreover, we have the duality relation :
J(x) = min (J(y) + xy) , ©>0.

Proof. From definition of §(z), the nonnegative Fr-measurable random variable X given
in (4.10) lies in L*(P%) and

EP’[X] = =z (4.12)

Consider then the nonnegative (PP F)-martingale M, = EF°[X|F,], 0 < t < T. By the
martingale representation property under P° (see e.g. Lemma 6.7 p.25 in Karatzas and
Shreve 1998) and relation (2.2), we obtain the existence of a portfolio § € A(z) such that :

M, = m+/0t(§;d5u =X 0<t<T (4.13)
Now, by definition of x in Proposition 4.1, we have for all 8 € A(zx) :
U(X7") - 9(2)23X7° < U(§(2)29) = U(X) - ()22 X.
Taking expectation and using (2.5), (4.12), we obtain that :
EU(X%%) < EU(X), V6e€ A(x).

Since X = X;’é by (4.13), this proves that 6 is solution to (3.2) and J(z) = EU(X). Relation
(4.11) is simply relation (4.13). By definition of U and from (2.5), we have for all z > 0, §
€ A(z),y>0:
EU (X;:") < EU (y22) +yE [zgx;»"]
< J(y) + =y,

and so J(z) < infy>o(j (y) + zy). On the other hand, given x > 0, we have by definition of
x and by (4.10), (4.12) :
J(z) = EU (x) = EU (§(z)22) + §(z)E [zg;z]
= J(§(2)) + zj(a),

which proves the last assertion of the theorem. O

Conditions of the previous theorem does not include the case where A = 0 and Uj(h) <
Us(h). In such a context, recall that U is not concave, and function H is equal to x, which
may be discontinuous. One can then not apply the martingale approach. However, it is
possible to derive directly the value function of problem (3.2).
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Theorem 4.2 Suppose that A = 0 and U is bounded from below. Then the value function J
of problem (3.2) s equal to U™, the concave envelope of U (i.e. the least concave majorant
function of U) and we have the duality relation :

J(z) = ;I;f(; (j(y) +a:y) , >0. (4.14)

Proof. In the case A = 0, the dynamics of S is governed by dS, = o,dW,. It is convenient
to change of control variable by defining m; = 0;6;. We introduce then the dynamic value
function associated to problem (3.2) by :

J(t,z) = sup E [U(X:‘,:z‘")] , t€l0,T], z >0, (4.15)
n€MN(t,x)

where I1(t, x) is the set of adapted processes (7,):<s<T satisfying ftT |ms]?ds < oo and such
that :

8

Xbom = :z:+/ mdW, >0, t<s<T,
t

X5 = g

Notice that with these notations, we have J(z) = J(0,z). From dynamic programming
principle (see e.g. Fleming and Soner 1993), the value function 7 is a lower-semicontinuous
viscosity supersolution of :

aw+inf( 122233) = 0. (4.16)

"Bt per\ 20 Oa2

By using similar arguments as in Lemma 5.1 in Cvitanic, Pham and Touzi (1999), we deduce
from this last relation that function 7 is concave in z and nonincreasing in ¢ (this is formally
proved by sending p respectively to infinity and zero in (4.16)). Moreover, we clearly have
from (4.15) and Fatou’s lemma (recall that U is bounded from below) that J(T~,z) >
U(z).

By definition of the concave envelope, this implies that :

J(t,x) > U”(z), te€[0,T), z>0.

On the other hand, since U(o0) > —o0, it is clear that U®" is nondecreasing. We then have
forallt € [0,T), z >0, n € lI(t,z) :

E[UXyM)] < E[Ue(X3m)]
< U™ (BIXF")
<

U (z),
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where the second relation follows from Jensen’s inequality and the third from the fact that
E[X3™"] < z and the nondecreasing feature of U°". This proves that J(t,z) < U en(z) and
so the required equality. Finally, by noting that J(y) = U(y) (since Z% = 1), the duality
relation (4.14) follows from Proposition 1.4.1. in Ekeland and Temam (1976). a

Remark 4.9 In the case where U is concave and so J = U, the optimal control is given by
7 = 0. This means that the optimal portfolio is to invest nothing in the stocks. When U is
not concave, the control problem (4.15) is singular : there is no optimal control in the class
A(z) (an optimal one would be obtained for a process @ taking only values 0 and infinity).

Remark 4.10 Theorems 4.1 and 4.2 show that, although duality relation between U and
U does not hold (see Remark 4.2), we have duality relation between value functions J and

J.

5 Examples

5.1 Power-Power utility function

We consider the example where U;, 7 = 1,2, are power utility function with constant relative
risk aversion 1 — o4, a; € (0,1) :

A
Ui(z) = o

3}
Uae) = —+C,

2

where C = %’:—11- - L‘a‘;—z is a constant added in order to ensure continuity of the utility function
U, ie. Ui(h) = Us(h). Notice that Uj(0) = oo and Uj(h) > Uj(h) iff k> > ho2,
Case : h*t > ho2

We have :

yTE, 0< y < he2—!
x(y) = § h he=t <y < hom?
y e,y > ket

Case : ht < h*™
We have :

-8 B2
) () -1 az~—1
= ___...._..__._C’ € hal_’h2 ,
o(y) A N y€ [ ]
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where 3; = @;/(1 — o;). Then y(h) is the unique solution in (h* ™! h*2~1) of

y-ﬁl —Er_l_ _ y~ﬂ2 he?

Jo) o B ag

Function yx is explicitly expressed in :

1
TT-ag, O<y<uylh
X(y) = {y,_l._ Y y()
y s,y >y(h).

Notice that x is discontinuous in y(h).
A straightforward computation leads to :

~ 24, 0<y<y(h)
v = {“i—?l y > y(h).

Function U is differentiable on (0, 00) except in y(h). For y # y(h), we have U'(y) = —x(y).
For y = y(h), the subgradient of U is given by

_oU(y(h)) = [y(h)‘f"l‘“’y(h)_ﬁ]'

We easily check that any element Z in the interior of —8U (y(h)) does not attain the maximum
in U(y(h)), i.e. U(z) — zy(h) < U(y(h)).

5.2 Exponential-Logarithm utility function

We consider the example where U; is an exponential utility function with absolute risk
aversion 7} and U, is a logarithm utility function :

Ui(z) = -—exp(—nz),

Ux(z) = Inz+C,
where C = — exp(—nh) —In h is a constant added in order to ensure continuity of the utility
function U, i.e. Uy(h) = Uz(h).

We see that Uj(h) = ne”™ < Uj(h) = + and function U is non concave. We have Uj{(0) = n
and

—Y4lny—Enki4+1-C, neh<y<nAl
¢(y) = " 711'7 1 h
Iny—-C, nAz <y<3.

We have to distinguish two cases depending on the sign of ¢(Uj(0)) = Innh + e,
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Case : Inh+e™ ™ > 0
Then y(k) is the unique solution in (e~ 7 A 1) of —%4+Iny-%n¥=C-1and

i, 0<y<y(h)
x(y) = § —;lnk  yh)<y<nq
o, y=n.

Case : Innh+e ™ <0
Notice that this implies nh < 1. We then have y(h) = € and

() = %, O<y<e®
XY 0, y=e°

Notice that y is discontinuous in €.

A straightforward computation leads to :

~ —lny+C-1, O<y<e®
Uly) = { -1, y > €C.

Function U is differentiable on (0, 00) except in €C. For y # €€, we have U’ () = —x(v).
For y = €€, the subgradient of U is given by

-8U(e®) = [0,e7°].

We easily see that any element £ in the interior of —8U(e€) does not attain the maximum
in U (). '

5.3 Power Loss function-Power Utility function

We consider the case where :

_ y4
Ui(z) = -¥, 0<z<h,

Us(z) = (_x_%@_, x> h,

where p > 1 and 0 < a < 1. Then, Uj(h) = 0 and Uj(h) = oo, and so Uj(h) < Uj(0) < Us(h).
We easily see that I(y) = ”qi, where ¢ = ;E—l and g(y) = ”—;, where 3 = 2-. Moreover,

11"_3’ 0<y< hr!
p3 SV

¥ _
= a
) {~%—v7,-+yh, y> 1.
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Then ¢(U{(0)) = !’qﬁ — "'(';1)5 and we have to distinguish two cases depending on the sign
of ¢(U1(0)).
Case : hP+(P-1F < 4

Then y(h) is the solution of —% - ”;,—p + hy = 0 in (K", 00), and we get :

_ JRr4+yP 0<y<y(h)
x(y) = 0 y > y(h)

Case : pPH-1)8 > 4

Then y(h) € (0, ") and is equal to y(h) = (

1
)m

2 , and we have :

1
h+y' 8, O0<y< (1)”5

x(y) = h—yt1, (‘%)‘7ﬁ <y < hrl
0, y > hr!

A straightforward computation leads to :

i
yz—ﬂ—yh, 0<y<(%)m
~ 1
Uly) = Y yh, (% "<y < hp?
_h yZh"l

p I
_ 1 N )
Function [ is differentiable on (0, 00) except in (%) “?  For y # (%) *# we have U'(y)

_l— ~
= —x(y). Fory = (%) “*? the subgradient of U is given by

@ ((3)7) - =67 ()7]

1
We easily check that any element Z in the interior of -80 ((%)m) does not attain the
1
maximum in U ((%)m .

Notice that in both cases, hP*®=18 > 4 and hP+®-18 < £ function x is discontinuous in
y(h).

6 Case of constant market price of risk

In this section, we consider the case where the market price of risk A is a nonzero con-
stant; this is essentially the Black-Scholes model. The density of the risk-neutral martingale
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measure is then given by :
Z? = exp (—,\'Wt0 + %w%) , 0<t<T. (6.1)
It follows that Z9/Z} is independent of F; and has same distribution law under P° as Z3_,.
We deduce from (4.11) that the optimal wealth process is given by :
X2 = M@ 9(x)2°), 0<t<T, (6.2)
where
M(t,y) = ET [x(y22-)], (ty)€[0,T] x (0,00),

and §(z) > 0 is solution of H(0,y(z)) = H(j(z)) = x. Moreover, when function H is
smooth C'2, the optimal portfolio is simply obtained by applying It6’s formula on (6.2) and
identifying diffusion terms :

b = ~F U@ 2NN, 0SLST (6.3)

In the sequel, we provide some explicit examples where we compute function H. We
introduce the following notations : for all 7 € (0,7, ¢ € (0,00), v € R, we denote

' Inc— A2r(y+3)
d(T1 C) 7) = lAl\/; 2

We also denote by ® the distribution function of the standard normal law :

d(d) = /d o(z)dz, dER,

where ¢(z) = —\7%; exp(—22/2).

Lemma 6.1 For all 7 € (0,T], c € (0,00), v € R, we have :

2
B [(29Mme] = e (TEDRTY ogatr, o))
2
E™ [In(2?) 1z9<d] = ——_"\'2 La(d(r,c,0)) — ¢ (d (T, c, %))
Proof. See Appendix. ]

We now provide explicit expressions of function H for the examples of the previous
section.

Power-power utility function
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We consider the example of paragraph 5.1. By using Lemma 6.1, a straightforward calcula-
tion leads to :

e For h*r > ho3 :

1 M2(T - ho2—1 1
e = e (2T oo )

1—0(2

+ h [(I) (d (T—t, ——ha;—l,O)) -® (d (T—t, ———ha;_l,O))]
- B AT —¢) hoa-1 1
+y 1exp(1_at1 5 )[1—®(d(T—t, ” ’—l—al))}'

o For hot < A% ;

e ) o2

Exponential-logarithm utility function

We consider the example of paragraph 5.2. By using Lemma 6.1, we get :
e Forinnh+e™ "™ >0:

H(ty) = i@(d(T—t_ﬁi(_h_)_))
S (e B o (a(rmeipe)) e (a(r-e 5 0))
Ae(e(r-+33) -s(elr- )]

eForlnnh+e ™ < 0:

ww = Lo(a(r-uS.0)).

Power loss function-power utility function

We consider the example of paragraph 5.3. Again, by using Lemma 6.1, we obtain :
e For hP+(P-1)8 < K

ey = ne(a(7-6%00))

+y 1 Pexp (,8(1 + ﬁ)l—)‘—lz—gg——i)—) i (d (T t y—(g)— -1 - ﬁ)) ,
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e For ppt(»-1)8 ~ % :

1

a+B
H(ty) = hd|d|[T -1t (‘%Z/+ 0

ART 1) (3)™
+y“1’ﬁexp(,3(l+,8)-———-§——-)<b d| T -t ,—~1-0
Fe=cl
p—1 1
+h @(d(T——t,L—,O))~® a| T -t (") 0
Yy Yy
2 _ [ p—1
-vew (a- DEHE=) o (o (-0 22 - 1))
1 |
B
(3)° )
—o|d|T-t,2L 1

/

In all those examples, function H is smooth C'? and the optimal portfolio is given by
(6.3).

7 Numerical results

In this section, we consider an agent in a Black-Scholes-Merton model :
2
Sy = Spexp ((p - %)t + ch't) , (7.1)

with power nonconcave utility functions, who modifies her risk aversion from 1 —a; to 1 —ay
at a level of wealth h. This is the example of paragraph 5.1 with h® < ho2,
We provide numerical results for the optimal wealth-proportion invested in the risky
asset S starting from initial wealth z, and which is given by :
A 0. S;

e = Xf’é = p(ta St)7

. p (% - s\ 7+ 3 (43 -mt
) = L () (wi@)(5) " edEr),

from (2.1), (6.3) and (7.1). We compare our results with the constant optimal wealth-
proportion in the Merton model for power utility function with risk aversion 1 — q; :

©1
021 —a;

where :

71'me‘l'-ton.(ai)
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We focus first on an agent whose risk aversion decreases when she reaches a high level
of wealth : Graphicss 1 illustrate this case for the values a; = 0.2, oy = 0.7 and h = 10z
= 900. We have also set u = 0.15, 0 = 0.1 and Sy, = 90. Given a trajectory of the asset
price S; (Figure 1b), Figure 1.a gives the evolution of the optimal portfolio t — #; = p(t, S;).
Graphics 1.c and 1.d. provide the graph of the optimal proportion function p(t, .) for a long
and short maturity.

Graphics 1 show that the agent starts with a strategy close to the Merton’s optimal
strategy Tmerton(2) corresponding to the lower risk aversion 1 — a;. When the time to
maturity decreases, she switchs to the Merton’s optimal strategy mmerton(@1) corresponding
to the higher risk aversion 1 — «;. Notice that the size of this switch of strategy is more
important as the range between a; and a, is large. For large time to maturity, the agent
adopts the behavior of the Merton’s agent with the lower risk aversion 1 — ay since she
expects a higher objective value function. However, for short time to maturity, she must
take into account her actual wealth which shall remain with large probability under the level
h, and so she adopts the behavior of the Merton’s agent with risk aversion 1 — a;.

Similarly, Graphics 2 illustrate the case of an agent whose risk aversion increases when
her wealth decreases largely. We choose the values a; = 0.7, az = 0.2 and h = z/100 = 0.9.
We have also set © = —0.15, 0 = 0.1 and Sy = 90. Again, for large time to maturity, the
agent follows the strategy of the Merton’s agent with lower risk aversion 1 — a;. For short
time to maturity, she must take into account her actual wealth which shall remain with large
probability above the level A, and so she follows the strategy of the Merton’s agent wity risk
aversion 1 — ao.
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8.1 Proof of Proposition 4.1

We introduce the Fenchel-Legendre transform U; of the convex function —U;(—), fori =1,2:
Ur(y) = supo<z<nU1(z) — zy] and Ua(y) = sup,»n[Uz(z) — zy] for y > 0, so that :

0(:’/) = ma‘x[ﬁl(y)7ﬁ2(y)]) y>0'

The functions U; are convex and we easily see that Ui(y) = Ui(xi(¥)) — xi(@)y, i = 1,2,
where x; is a continuous nonincreasing function valued in (0, h], defined by :

xi(y) =

h, 0<y<Ujh)
L(y), Ui(h) <y < Ui(0)
0, y = Uj(0)

(8.1)
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(where the third domain is empty when Uj(0) = oo) and x» is a continuous nonincreasing
function valued in [k, 00) and defined by

. I2(y)s 0< y < Ué(h)
x2(y) = { h y > UL(h), (8.2)

We then have U(y) = U(x(y)) — x(y)y, where :

x(¥) = x1(9),4)20:) + X2 )<taty) (8.3)

In order to compute explicitly x, we have to characterize the domain {y > 0 : Uy(y) <
172(3;')}-

Let us define the following functions :

Uwy) = UioL(y)—y(li(y) —h), for Uj(h) <y < Uj(0),
Ua(y) = Uzola(y) —y(L(y) — k), for0<y < Uj(h).

These two functions are continuously differentiable and we have :

Uiy) = h—IL(y) > 0, forUj(h) <y < Uj(0)
Ui(y) = h—1I(y) <0, for0<y< Uh).

Therefore, function U is strictly increasing and function U, is strictly decreasing. Noting
that for ¢ = 1,2, we have U;(U!(h)) = U;(h), we deduce that :

Ui(y) = Ui(h) > 0, for Uj(h) <y < Ui(0) (8.4)
| Us(y) — U2(h) > 0, for0 <y < Uj(h). (8.5)

We first compute x on the two following domains :

a) For y € (0,U;(h) AU}(h)), we have x1(y) = h and x2(y) = I2(y). Hence, U, (y) — Ua(y)
= Ui(h) — Uz(y) = Uz(h) — Ta(y) < 0, by (8.5). Therefore, by (8.3), x(y) = ().

d) For y € [U1(0) v Us(h), 00), (notice that when U!(h) > Uj(k), Ui(0) v Us(h) = Ui(0)),
we have x1(y) = 0 and x2(y) = h. If U{(0) = oo, this case is vacuous. Otherwise,
U1(y) ~ Ua(y) = Us(0) - Uz(h) + hy = U1(0) — Uy (k) + hy > U1(0) — Us(h) +hU;(0) > 0,
since U] is strictly concave on (0, h]. Therefore, by (8.3), x(y) = 0.

For the other domains, we now distinguish two cases :

First case : Uj(h) > Uj(h).

b1) For y € [Uj(h), Ui(h)], we have x1(y) = x2(y) = h. Hence, by (8.3), x(y) = h.
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c1) For y € (Ui(h), Uj(0)), we have x1(y) = Li(y) and x2(y) = h. Hence, Uy(y) — Ua(y) =
Ui(y) — Ua(h) = Us(y) — Ur(h) > 0, by (8.4). Therefore, by (8.3), x(¥) = Ii(y).

Relation (4.2) is then stated by combining a), b1), c1) and d).

Second case : Uj(h) < Uj(h).

We shall see below that U, — U, is actually equal to the function ¢ introduced in (4.1) on
[Uj(h), Us(h)). We first prove that there exists a unique y(h) € (Uj(h), U3(h)) such that
#(y(kh)) = 0. For all y € [U{(h), Us(h)], we have :

o) = Uh(y) - Ua(v), for Uj(h) <y < Ui(0) A Uz(h),
Ur(0) — Da(y) + hy, for Uj(0) A Uz(h) <y < Uz(h).
Function ¢ is continuous on [U!(h), Us(h)]. Since ¢ is differentiable for y € (U{(k), U1(0) A

UL(R)U(UL(0)AUS(R), Us(R)), and ¢'(y) > 0, we get that ¢ is a continuous strictly increasing
function on [Uj(h), Uj(h)]. Recalling that U,(h) = Uz(h), we have :

S(UL(R)) = Us(h) ~ Ua(Ui(h)) = Ua(Us(h)) — Ua(Ui (h)),
S(UL(R)) U;(0) — Uz(Ué(h)) + hU3(h) > Ui(0) — U1 (h) + RU;(0), for Uj(0) < Us(h)
2 01(Uy(hy) — T (U3 (R)), for U} (0) > Uj(h).

From the strictly monotonicity of U, and Ui, and the strict concavity of U;, we obtain that,
o(U}(h)) < 0 and ¢(Uj(h)) > 0. We deduce the existence of an unique y(h) € (Ui(h), U3(h))
such that ¢(y(h)) = 0, and :

#(y) < 0, forUj(h) <y <y(h) (8.6)
#(y) > 0, fory(h) <y < Us(h). (8.7)
Notice that y(h) < Uj(0) iff ¢(U;(0) A Us(h)) > 0.

To compute x, we have to distinguish several cases.

b2) For y €~[U{(h),U{(0) A U4(h)), we have x1(y) = L(y) and x2(y) = I>(y). Hence,
U1(y)—Ua(y) = ¢(y), and from (8.6)-(8.7) and (8.3), x(y) = L2(¥) 1y<yn) + T1(¥)1yzy(n)-

c2) For y € [Uj(0) A Uz(h), Ui(0) v U(h)),

e If U{(0) < Uj(h), we have x1(y) = 0 and x2(y) = Ix(y). Hence, U1(y) — Ua(y) =
#(y), and again from (8.6)-(8.7) and (8.3), x(v) = L2(¥)ly<yn)-

o If Ui(0) > Uj(h), we have x1(y) = I1(y) and x2(y) = h. Hence, by same argu-
ments as in c¢1), we have x(y) = I1(y).
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Finally, we obtain the expression (4.3) of x by noting the following points. When U{(0) >
Uz(h), we have ¢(U;(h) A U(0)) > 0 and so y(h) < U4(0). When U}(0) < Uh(h), we have
either [y(h), (k) VU{(0)) = 0 and x(y) = Lx(y) on [U](k), U{(0)), whenever ¢(U;(0)) < 0; or
[w(h), y(k) V U{(0)) = [y(h), U}(0)) and x(y) = 0 on [U}(0), U(h)), whenever ¢(U{(0)) > 0.
The proof is ended by combining a), 52), c2) and d).

8.2 Proof of Lemma 6.1

Consider the probability measure Q7 with density with respect to P given by :

Qv _ o _ TIAP
P = exp(—'y/\WT— 5 T].

Then, from (6.1) and Bayes formula, we have :

y(y + 1)|A]2r

EP (2] = eXP( 5

) Q27 < .
By noting that
Z° = exp (—A'W,.m + [ AP (y + %)) ,

where W’tm = W2 + 4At is a Q-brownian motion by Girsanov’s theorem, we obtain the
first relation of the Lemma.

On the other hand, from (6.1), we have :

A%
2

E” [In(20) 1<) = E® [N]'Ngd(c,r,%)] + PO[z? < d,

where N = ~XW?/(]A|\/7) is a standard normal random variable under P°. Finally, using
the first relation of the Lemma for ¥ = 0, we obtain the required result.
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