
HAL Id: hal-00704398
https://hal.science/hal-00704398v1

Submitted on 25 Jun 2012 (v1), last revised 19 Oct 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Computational Trade-Off of Inexact Proximal
Methods

Pierre Machart, Sandrine Anthoine, Luca Baldassarre

To cite this version:
Pierre Machart, Sandrine Anthoine, Luca Baldassarre. Optimal Computational Trade-Off of Inexact
Proximal Methods. 2012. �hal-00704398v1�

https://hal.science/hal-00704398v1
https://hal.archives-ouvertes.fr

Optimal Computational Trade-Off of Inexact Proximal Methods

Pierre Machart
LIF, LSIS, CNRS

Aix-Marseille University
pierre.machart@lif.univ-mrs.fr

Sandrine Anthoine
LATP, CNRS, Aix-Marseille University

anthoine@cmi.univ-mrs.fr

Luca Baldassarre
Department of Computer Science, University College London

l.baldassarre@cs.ucl.ac.uk

July 12, 2012

Abstract

In this paper, we investigate the trade-off between convergence rate and computational cost when min-
imizing a composite functional with proximal-gradient methods, which are a popular optimization tool
in machine learning. We consider the case when the proximity operator is approximated via an iterative
procedure, which leads to an algorithm with two nested loops. We show that the computationally optimal
strategy to reach a desired accuracy in finite time is to set the number of inner iterations to a constant,
which differs from the strategy indicated by a convergence rate analysis. In the process, we also present
a new procedure called SIP that is both computationally and practically efficient. Our numerical experi-
ments confirm the theoretical findings and suggest that SIP can be a very competitive alternative to the
standard procedure.

1 Introduction

Recent advances in machine learning and signal processing have led to more involved optimisation prob-
lems, while abundance of data calls for more efficient optimisation algorithms. First-order methods are
now extensively employed to tackle these issues and, among them, proximal-gradient algorithms [12, 21, 4]
are becoming increasingly popular. They allow to solve very general convex non-smooth problems with a
remarkably simple, but effective, iterative algorithm which is guaranteed [4] to achieve the optimal conver-
gence rate for a first order method in the sense of [20]. They have been applied to a wide range of problems,
from supervised learning with sparsity-inducing norm [1, 9, 2, 19], imaging problems [22, 7, 3, 13], matrix
completion [6, 17], sparse coding [15] and multi-task learning [10].

One issue with these methods is that a certain function, namely the proximity operator, must be
computed either exactly or to a very high precision [23, 25]. For many recent problems, such as TV
denoising and deblurring [8], non-linear variable selection [19], structured sparsity [15, 2], trace norm
minimisation [6, 17], matrix factorisation problems such as the one described in [23], the proximity operator
can only be computed numerically. For these cases, [23, 25] give conditions on the approximations of the
proximity operator such that the optimal rate is still guaranteed. However, the optimal rate does not take
into account the complexity of computing the proximity operator and no attempts have yet been made to
assess the global complexity of the inexact proximal-gradient algorithms. It is worth mentioning that for
some specific cases, other types of proximal-gradient algorithms have been proposed that allow to avoid
computing complex proximity operator [18, 8].

In Section 2, we start from the results in [23] that link the overall accuracy with the errors in the
approximations of the proximity operator. We consider iterative methods for computing the proximity
operator and, in Section 3, show that if one is interested in minimizing the computational cost (defined
in Section 3.3) for achieving a desired accuracy, other strategies than the ones proposed in [23] and [25]
might lead to significant computational savings.

The main contribution of our work is showing, in Section 4, that for both accelerated and non-
accelerated proximal-gradient methods, the best cost-effective strategy to achieve a desired accuracy is to

1

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

keep the number of internal iterations constant. This constant depends on the desired accuracy and the
convergence rate of the algorithm used to compute the proximity operator. Discussing the applicability
of those strategies, we also propose a more practical strategy motivated by our analysis.

In Section 5, we numerically assess the different strategies on two problems, confirming the theoretical
analysis and suggesting that the proposed new strategy can be very effective. This leads to a final
discussion about the relevance and potential limits of our approach along with some hints on how to
overcome them.

2 Setting

2.1 Inexact Proximal Methods

We address the classical composite optimization problem.

min
x
f(x) := g(x) + h(x), (1)

where g : Rn → R is convex and smooth with a L-Lipschitz continuous gradient and h : Rn → R only is
lower semi-continuous proper convex.

To solve this problem, one may use the so-called proximal -gradient methods [21]. Those iterative
methods consist in generating a sequence {xk}, where

xk = proxh/L
[
yk−1 − 1

L∇g(yk−1)
]
,

with the proximity operator defined as

proxh/L(z) = argmin
x

L
2 ‖x− z‖

2 + h(x),

and yk = xk in the basic method, while an accelerated version [21, 24, 4] can be achieved using yk =
xk + βk(xk − xk−1), for a well-chosen sequence βk.

In the most classical setting, the proximity operator is computed exactly. The sequence {xk} then
converges to the optimal of problem (1). However, in many situations no closed-form solution is known
and one can only provide an approximation of the proximal point. Let us denote by εk an upper bound
on the error induced in the proximal objective function by this approximation, at the k-th iteration:

L

2
‖xk − z‖2 + h(xk) ≤ εk + min

x

{
L

2
‖x− z‖2 + h(x)

}
. (2)

For the basic method, the convergence of {xk} to the optimal of Problem (1) has been studied in [12]
and is verified under fairly mild conditions on the sequence {εk}.

2.2 Convergence Rates

The authors of [23] go beyond the study of the convergence of approximate proximal methods: they
established their convergence rates. (This is actually done in the more general case where the gradient of
g is also approximated. In this study, we restrict ourselves to error in the proximal part.)

Let us denote by x∗ the optimal of problem (1). The convergence rates of the basic (non-accelerated)
proximal method (e.g. yk = xk) thus reads:

Proposition 1 (Basic proximal-gradient method (Proposition 1 in [23])). For all k ≥ 1,

f(xk)− f(x∗) ≤ L

2k

‖x0 − x∗‖+ 2

k∑
i=1

√
2εi
L

+

√√√√ k∑
i=1

2εi
L

2

. (3)

Remark 1. In [23], this bound actually holds on the average of the iterates xi. (3) thus holds for the iterate
that achieve the lowest function value. It also trivially holds all the time for non-increasing algorithms.

The convergence rate of accelerated schemes (e.g. yk = xk + k−1
k+2xk−1) reads:

Proposition 2 (Accelerated proximal-gradient method (Proposition 2 in [23])). For all k ≥ 1,

f (xk)− f(x∗) ≤ 2L

(k + 1)2

‖x0 − x∗‖+ 2

k∑
i=1

i

√
2εi
L

+

√√√√ k∑
i=1

2i2εi
L

2

. (4)

Technical Report V 1.0 2

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

2.3 Approximation Trade-off

One direct consequence of these bounds (in the basic and accelerated schemes respectively) is that the
optimal convergence rates in the error-free setting, O

(
1
k

)
(resp. O

(
1
k2

)
), are achieved as long as {εk}

converges at least as fast as O
(

1
k(2+δ)

)
(resp. O

(
1

k(4+δ)

)
), for any δ > 0. Improving the convergence rate of

{εk} further leads to smaller constants in the convergence rate (hence faster convergence). However, [23]
empirically notices that imposing a too fast decrease rate on {εk} is computationally counter-productive,
as the precision required on the proximal approximation becomes computationally intensive. In other
words, there is a subtle trade-off between the number of iterations needed and the cost of those iterations,
which is the object of study of the present paper.

3 Defining the Problem

The main contribution of this paper is to define a computationally optimal way of setting this trade-off
in various situations. We consider the case where the proximity operator is approximated via an iterative
procedure. The global algorithm thus consists in an iterative proximal method, where at each (outer-
)iteration, one performs (inner-)iterations. If the convergence rate of the procedure used in the inner-loops
is known, we provide a strategy to set the number of inner iterations that leads to a computationally
optimal global procedure.

3.1 Parameterizing the Error

Classical methods to approximate the proximity operator achieve either sublinear rates of the form O
(

1
kα

)
(α = 1

2 for sub-gradient or stochastic gradient descent; α = 1 for gradient or proximal descent or α = 2
for accelerated descent/proximal schemes) or linear rates O

(
(1− γ)k

)
(for strongly convex objectives or

second-order methods). Let li denote the number of inner iterations at the i-th iteration of the outer-loop.
We thus consider two types of upper bounds on the error defined in (2):

εi =
Ai
lαi

(sublinear rate) or εi = Ai(1− γ)li (linear rate). (5)

3.2 Parameterized Bounds

Plugging (5) into (3) or (4), we can get four different global bounds:

f (xk)− f(x∗) ≤ Bi(k, {li}ki=1), i = 1, .., 4,

depending on whether we are using a basic or accelerated scheme on the one hand, and on whether we
have sub-linear or linear convergence rate in the inner-loops on the other hand:

1. basic out, sub-linear in: B1(k, {li}ki=1) = L
2k

(
‖x0 − x∗‖+ 3

∑k
i=1

√
2Ai
Llαi

)2
2. basic out, linear in: B2(k, {li}ki=1) = L

2k

(
‖x0 − x∗‖+ 3

∑k
i=1

√
2Ai(1−γ)li

L

)2

3. accelerated out, sub-linear in: B3(k, {li}ki=1) = 2L
(k+1)2

(
‖x0 − x∗‖+ 3

∑k
i=1 i

√
2Ai
Llαi

)2
4. accelerated out, linear in: B4(k, {li}ki=1) = 2L

(k+1)2

(
‖x0 − x∗‖+ 3

∑k
i=1 i

√
2Ai(1−γ)li

L

)2

3.3 Towards a Computationally Optimal Tradeoff

Those bounds highlight the aforementioned trade-off. To achieve some fixed global error, there is a
natural trade-off between the number k of outer-iterations and the numbers of inner-iterations {li}ki=1,
which can be seen as hyper-parameters of the global algorithms that need to be set by the user. As
mentioned earlier, and witnessed in [23] the choice of those parameters will have a crucial impact on the
computational efficiency of the algorithm. In order to study that impact, let us assume that each inner-
iteration has a constant computational cost Cin and that, besides the cost induced by the inner-iterations,

Technical Report V 1.0 3

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

each outer-iteration has a constant computational cost Cout. It immediately follows that the global cost
of the algorithm is:

Cglob(k, {li}ki=1) = Cin

k∑
i=1

li + kCout. (6)

In order to “optimally” set those hyper-parameters, we consider the following optimization problem.
For some fixed accuracy ρ, we want to minimize the global cost of the algorithm Cglob, under the constraint
that our bound on the error B is smaller than ρ:

min
k,{li}ki=1

Cin

k∑
i=1

li + kCout s.t. B(k, {li}ki=1) ≤ ρ. (7)

4 Results

Problem (7) is an integer optimization problem as the variables of interest are number of iterations. One
cannot find a closed form for the integer solution, but if we relax our problem to a continuous one - i.e.
we look for minimizers li in [1,∞) - it is possible to find an analytic expression of the optimal {li}ki=1 and
numerically find the optimal k.

4.1 Optimal Strategies

The next four propositions describe the solution of this relaxed version of Problem (7) in the four different
scenarii defined in Section 3.2 and for a constant value Ai = A.

Scenarii 1 and 2: basic out

Let C(k) =
√
L

3
√
2A

(√
2kρ
L − ‖x0 − x

∗‖
)

. Solving the continuous relaxation of problem (7) with the bounds

B1 and B2 leads to the following propositions:

Proposition 3 (Basic out, sub-linear in). If ρ < 6
√

2LA‖x0−x∗‖, the solution of problem (7) for B = B1

is:

∀ i, l∗i =

(
C(k∗)

k∗

)− 2
α

, with k∗ = argmin
k∈N∗

kCin

(C(k)

k

)− 2
α

+ kCout. (8)

Proposition 4 (Basic out, linear in). If ρ < 6
√

2LA(1− γ)‖x0 − x∗‖, the solution of problem (7) for
B = B2 is:

∀ i, l∗i =
2 ln C(k∗)

k∗

ln(1− γ)
, with k∗ = argmin

k∈N∗

2kCin

ln(1− γ)
ln
(C(k)

k

)
+ kCout. (9)

Scenarii 3 and 4: accelerated out

Let D(k) =
√
L

3
√
2A

(√
ρ
2L (k + 1)− ‖x0 − x∗‖

)
. Solving the continuous relaxation of problem (7) with the

bound B3 leads to the following proposition:

Proposition 5 (Accelerated out, sub-linear in). If ρ <

(√
12
√

2LA‖x0 − x∗‖ − 3
√
A

)2

, the solution of

problem (7) for B = B3 is:

∀i, l∗i =

(
2D(k∗)

k∗(k∗ + 1)

)− 2
α

, with k∗ = argmin
k∈N∗

kCin

(2D(k)

k(k + 1)

)− 2
α

+ kCout. (10)

A similar result holds for the last scenario: B = B4 (see the appendix 7 for details). However in this
case, the optimal li are equal to 1 up to î (1 ≤ î < k∗) and then increase with i.

Technical Report V 1.0 4

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Sketch of proof. First note that:

min
k,{li}ki=1

Cin

k∑
i=1

li + kCout = min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout.

We can solve problem (7) by first solving, for any k, the minimization problem over {li}ki=1. This is
done using standard nonlinear programming with the Karush-Kuhn-Tucker approach [16]. Plugging the
analytic expression of those optimal {l∗i }ki=1 into our functional, we get our problem in k. (For a complete
proof, please see the appendix 7.)

Remark 2. Notice that the propositions hold for ρ smaller than a threshold. If not, the analysis and
results are different. By lack of space and because a small accuracy ρ is what is aimed for in practice, we
do not present the complete results which are provided in the appendix 7.

4.2 Comments and Interpretation of the Results

An Integer Optimization Problem

In none of the scenarii can we provide an analytical expression of k∗. The expressions given in the
propositions allow to solve numerically for a real k∗ and retrieve the integer solution by rounding.

The impact of the continuous relaxation of the problem in {li}k
∗

i=1 is subtle. In practice, we need to
set the constant number on inner iterations l to an integer number. Setting l = dl∗e ensures that the
final error is smaller than ρ. This provides us with an approximate (but feasible) solution to the integer
problem. One may want to refine this solution by sequentially setting li to bl∗c, starting from i = 1, while
the constraint is met, i.e. the final error remains smaller than ρ..

Computationally-Optimal vs. Optimal Convergence Rates Strategies

The original motivation of this study is to show how, in this inexact proximal methods setting, optimization
strategies that are the most computationally efficient, given some desired accuracy ρ, are fundamentally
different from those that achieve optimal convergence rates. The following mild analysis of the main
results of this paper proves us so.

For the first three scenarii (Propositions 3, 4 and 5), the computationally-optimal strategy imposes
constant number of inner iterations along the outer loop. Given our parameterization, Eq. (5), this also
means that the errors εi on the proximal computation remains constant. On the opposite, the optimal
convergence rates can only be achieved for sequences of εi decreasing strictly faster than 1

i2 for the basic
schemes and 1

i4 for the accelerated ones. Obviously, the optimal convergence rates strategies also yield a
bound on the minimal number of outer iterations needed to reach precision ρ by inverting the bounds (3)
or (4). However, this strategy is not computationally optimal hence less efficient.

In fact, the pivotal difference between “optimal convergence rates” and “computationally optimal”
strategies lies in the fact that the former ones arise from an asymptotic analysis while the latter arise
from a finite-time analysis. While the former ensure that the optimization procedure will converge to
the optimum of the problem (with optimal rates in the worst case), the latter only ensures that after k∗

iterations, the solution found by the algorithm is not further than ρ from the optimum.
To highlight this decisive point, let us fix some arbitrary precision ρ. Propositions 3 to 5 give us the

optimal values k∗ and {l∗i }k
∗

i=1 depending on the inner and outer algorithms we use. Now, if one wanted
to optimize further by continuing the same strategy for k′ > k∗ iterations (i.e. still running l∗i inner

iterations), we would have the following bound: B(k′, {l∗i }k
′

i=1) > B(k∗, {l∗i }k
∗

i=1) = ρ. In other words, if
one runs more than k∗ iterations of our optimal strategy, with the same li, we can not guarantee that the
error still decreases. In a nutshell, our strategy is precisely computationally optimal because it does not
ensure more than what we ask for.

4.3 On the Usability of the Optimal Strategies

Designing computationally efficient algorithms or optimization strategies is motivated by practical con-
siderations. The strategies we proposed are provably the best that ensure a desired precision. Yet, in a
setting that covers a very broad range of problems, their practical usability is somewhat limited. We point
out those limitations and propose a solution to overcome them.

Technical Report V 1.0 5

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

First, these strategies require the desired (absolute) precision to be known. In most situations, it is
actually difficult, if not impossible, to know in advance which precision will ensure that the solution found
has desired properties (e.g. reaching some specific SNR ratio for image deblurring). More critically, if it
turned out that the user-defined precision was not sufficient, we showed that “optimizing further” with
the same number of inner iterations does not guarantee to improve the solution. For a sharper precision,
one would technically have to compute the new optimal strategy and run it all over again.

Although it is numerically possible, evaluating the optimal number of iterations k∗ still requires to
solve an optimization problem. More importantly, the optimal values for the numbers of inner and outer
iterations depend on quantities like ‖x0 − x∗‖ which are unknown and very difficult to estimate. Those
remarks undermine the usability of the presented computationally optimal strategies.

To overcome these problems, we propose a new strategy called Speedy Inexact Proximal-gradient al-
gorithm (SIP) , described in Algorithm 1, which is motivated by our theoretical study and very simple
to implement. In a nutshell, it starts using only one inner iteration. When the outer objective stops
decreasing fast enough, the algorithm increases the number of internal iterations used for computing the
subsequent proximal steps, until the objective starts decreasing fast enough again.

Algorithm 1 Speedy Inexact Proximal-gradient strategy (SIP)

Require: An initial point x0, an update rule Aout, an iterative algorithm Ain for computing the proximity
operator, a tolerance tol > 0, a stopping criterion STOP.
x← x0, l← 1
repeat
x̂ = x− 1

L∇g(x) Gradient Step
z0 ← 0
for i = 1 to l do
zi = Ain(x̂, zi−1) Proximal Step

end for
x̂ = zl

if f(x)− f(x̂) < tolf(x) then
l← l + 1 Increase proximal iterations

end if
x = Aout(x, x̂) Basic or accelerated update

until STOP is met

5 Numerical Simulations

The objective of this section is to empirically investigate the behaviour of proximal-gradient methods when
the proximity operator is computed via a fixed number of iterations. We also assess the performance of
the proposed SIP algorithm. Our expectation is that a strategy with just one internal iteration will be
computationally optimal only up to a certain accuracy, after which using two internal iterations will be
more efficient and so on. We consider an image deblurring problem with total variation regularization and
a semi-supervised learning problem using two sublinear methods for computing the proximity operator.

5.1 TV-regularization for image deblurring

Regularization with the Total Variation [22, 7, 3] is a widely used technique for deblurring and denoising
images that preserves sharp edges. The (discrete) total variation regularizer is defined as

g(x) = λ

N∑
i,j=1

‖(∇x)i,j‖2

where λ > 0 is a regularization parameter and ∇ is the (discrete) gradient operator (see [7] for the precise
definition). We use the smooth quadratic data fit term f(x) = ‖Ax − y‖22, where A is a linear blurring
operator and y is the image to be deblurred. We considered the 256 × 256 Lena test image, blurred by
a 9× 9 Gaussian filter with standard deviation 4, followed by additive normal noise with zero mean and
standard deviation 10−3. The regularization parameter λ was set to 10−4. We run the basic proximal-
gradient method up to a total computational cost of C = 106 (where we set Cin = Cout = 1) and the

Technical Report V 1.0 6

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Computational Cost

F
k −

F
*

1
2
5
10
25

ε
k
 = 1/K2+δ

SIP (tol = 1e−8)

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Computational Cost

F
k −

F
*

1
2
5
15

ε
k
 = 1/k4+δ

SIP (tol = 1e−8)

Figure 1: Deblurring with Total Variation - Basic method (left) and Accelerated method (right)

10
4

10
5

10
6

10
−15

10
−10

10
−5

Computational Cost

F
k −

F
*

1
2
5
10
25
50

SIP (tol = 1o−8)

ε
k
 = 1/k2 + δ

10
3

10
4

10
5

10
−15

10
−10

10
−5

Computational Cost

F
k −

F
*

1
2
5
10
25
50

SIP (tol = 10−8)

ε
k
 = 1/k4 + δ

Figure 2: Graph learning - Basic method (left) and Accelerated method (right)

accelerated method up to a cost of 5∗104. We computed we proximity operator using the algorithm of [3],
which is a basic proximal-gradient method applied to the dual of the proximity operator problem. We
used a fixed number of iterations and compared with the convergent strategy proposed in [23] and the SIP
algorithm with tolerance 10−8. As a reference for the optimal value of the objective function, we used the
minimum value achieved by any method (i.e. the SIP algorithm in all cases) and reported the results in
Fig. 1.

5.2 Graph prediction

The second simulation is on the graph prediction setting of [14] in the limit of p = 1, which corresponds
to the minimization of the following problem (composite `1 norm)

min
x
‖Ax− y‖2 + λ‖Bx‖1,

where A is a linear operator that selects only the vertices for which we have labels y, B is the edge map
of the graph and λ > 0 is a regularization parameter (set to 10−4). We constructed a synthetic graph of
d = 100 vertices, with two clusters of equal size. The edges in each cluster were selected from a uniform
draw with probability 1

2 and we explicitly connected d/25 pairs of vertices between the clusters. The
labelled data y were the cluster labels (+1 or −1) of s = 10 randomly drawn vertices. We compute
the proximity operator of λ‖Bx‖1 via the method proposed in [11], which essentially is a basic proximal
method on the dual of the proximity operator problem. We follow the same experimental protocol as in
the total variation problem and report the results in Fig. 2.

Technical Report V 1.0 7

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

5.3 Why the “computationally optimal” strategies are good but not that
optimal

On all the displayed results and as the theory predicted, we can see that for almost any given accuracy ρ,
there exists some constant value for li that yields a strategy that is potentially orders of magnitude more
efficient than the strategy that ensures the fastest global convergence rate. The results also highlight the
fact that smaller constant values of li lead to faster algorithms at the cost of a worse global precision. On
the other hand, the SIP strategy seems to be the most computationally efficient strategy. This may look
surprising as the constant li’s strategies are supposed to be optimal for a specific precision and obviously
are not.

In fact, there is no contradiction with the theory: keeping li constant leads to the optimal strategies
for minimizing a bound on the real error, which can be significantly different than directly minimizing the
error.

This remark raises crucial issues. If the bound we use for the error was a perfect description of the
real error, the strategies with constant li would be the best also in practice. Intuitively, the tighter the
bounds, the closest our theoretical optimal strategy will be from the actual optimal one. This intuition
is corroborated by our numerical experiments. In our parametrization of εi, in a first approximation,
we decided to consider constant Ai (see equation (5)). When not using warm restarts between two
consecutive outer iterations, our model of εi does describe the actual behaviour much more accurately and
our theoretical optimal strategy seems much closer to the real optimal one. To take warm restarts into
account into the model, one would need to consider decreasing sequences of Ai’s.

These ideas urge for a finer understanding on how optimization algorithms behave in practice. Our
claim is that one pivotal key to design practically efficient algorithms is to have new tools such as warm-
start analysis and, perhaps more importantly, convergence bounds that are tighter for specific problems
(i.e. “specific-case” analysis rather than the usual “worst-case” ones).

6 Conclusion and future work

We analysed proximal-gradient methods when the proximity operator is computed numerically. Building
upon the results in [23], we proved that there exist optimization strategies that can have very significant
impacts on computational efficiency, at the cost of obtaining only a suboptimal solution. Our numerical
experiments showed that these strategies do exist in practice, albeit it might difficult to access them.
We also proposed a novel optimization strategy, the SIP algorithm, that can bring large computational
savings in practice and whose theoretical analysis calls for compelling future studies. Throughout the
paper, we highlighted the fact that finite-time analysis, such as ours, urges for a better understanding
of (even standard) optimization procedures. There is a need for sharper and problem-dependent error
bounds, as well as a better theoretical analysis of warm-restart, for instance.

Finally, although we focused on inexact proximal-gradient methods, the present work was inspired
by the paper “The Trade-offs of Large-Scale Learning” [5]. Bottou and Bousquet studied the trade-offs
between computational accuracy and statistical performance of machine learning methods and advocate
for sacrificing the rate of convergence in favour of lighter computational costs. At a higher-level, future
work naturally includes finding other situations where such trade-offs appear and analyze them using a
similar methodology.

7 Appendix

Proof of Proposition 3

In this scenario, we use non-accelerated outer iterations and sublinear inner iterations. Our optimisation
problem thus reads:

min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
L

2k

(
‖x0 − x∗‖+ 3

k∑
i=1

√
2Ai
Llαi

)2

≤ ρ.

Technical Report V 1.0 8

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Let us first examine the constraint.

L

2k

(
‖x0 − x∗‖+ 3

k∑
i=1

√
2Ai
Llαi

)2

≤ ρ

⇔‖x0 − x∗‖+ 3

k∑
i=1

√
2Ai
Llαi
≤
√

2kρ

L

⇔
k∑
i=1

√
Ai
lαi
≤
√
L

3
√

2

(√
2kρ

L
− ‖x0 − x∗‖

)

As a first remark, this constraint can be satisfied only if k ≥ L
2ρ‖x0 − x

∗‖2. However this trivially holds
as this only implies that the number of outer iterations k is larger than the amount we would need if the
proximity operator could be computed exactly.

First assumption: ∀i, Ai = A
Let us recall that for any i, Ai are such that εi ≤ Ai

lαi
. For most iterative optimization methods, the

tightest bounds (of this form) on the error are obtained for constants Ai depending on: a) properties of
the objective function at hand, b) the initialization. To mention an example we have already introduced,
for basic proximal methods, one can choose Ai = L

2li
‖(xk)0 − x∗k‖ where (xk)0 is the initialization for our

inner-problem at outer-iteration k and x∗k the optimal of this problem. As the problem seems intractable
in the most general case, we will first assume that ∀i, Ai = A. This only implies that we don’t introduce
any prior knowledge on ‖(xk)0 − x∗k‖ at each iteration. This is reasonable if, at each outer-iteration, we
randomly initialize (xk)0 but may lead to looser bounds if we use wiser strategies such as warm starts.

With that new assumption on Ai, one can state that the former constraint will hold if and only if:

k∑
i=1

√
1

lαi
≤
√
L

3
√

2A

(√
2kρ

L
− ‖x0 − x∗‖

)
.

Let us first solve the problem of finding the {li}ki=1 for some fixed k. We need to solve:

argmin
{li}ki=1∈N∗k

Cin

k∑
i=1

li + kCout s.t.

k∑
i=1

√
1

lαi
≤
√
L

3
√

2A

(√
2kρ

L
− ‖x0 − x∗‖

)
:= Ck,

which is equivalent to solving:

argmin
{li}ki=1∈N∗k

k∑
i=1

li s.t.

k∑
i=1

√
1

lαi
≤ Ck.

Remark 3. li ∈ N∗k ⇒
√

1
lαi
∈]0, 1]⇒

∑k
i=1

√
1
lαi
≤ k. So, if Ck ≥ k, then the solution of the constrained

problem is the solution of the unconstrained problem. In that case, the trivial solution is li = 1,∀i.
Moreover, if li = 1,∀i is the solution of the constrained problem, then

∑k
i=1

√
1
lαi

= k ≤ Ck. As a

consequence, the solution of the unconstrained problem is the solution of the constrained problem if and
only if Ck ≥ k.

We then have two cases to consider:

Case 1: Ck ≥ k As stated before, the optimum will be trivially reached for li = 1,∀i. Now, we need to
find the optimal over k. It consists in finding:

min
k∈N∗

k(Cin + Cout) s.t. Ck ≥ k.

Technical Report V 1.0 9

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Let us have a look at this constraint.

Ck ≥ k ⇔
√
L

3
√

2A

(√
2kρ

L
− ‖x0 − x∗‖

)
≥ k

⇔
√

2kρ

L
≥ 3
√

2A√
L

k + ‖x0 − x∗‖

⇔
(√

k −
√
ρ

6
√
A

)2

≤ ρ

36A
−
√
L‖x0 − x∗‖

3
√

2A

Then:

• if ρ
36A <

√
L‖x0−x∗‖
3
√
2A

then there is no solution (i.e. Ck < k, ∀k).

• if ρ
36A ≥

√
L‖x0−x∗‖
3
√
2A

then, the constraint holds for k ∈
[(√

ρ

6
√
A
−
√

ρ
36A −

√
L‖x0−x∗‖
3
√
2A

)2
,
(√

ρ

6
√
A

+
√

ρ
36A −

√
L‖x0−x∗‖
3
√
2A

)2]
.

The optimum will then be achieved for the smallest integer (if exists) larger than
(√

ρ

6
√
A
−
√

ρ
36A −

√
L‖x0−x∗‖
3
√
2A

)2
and smaller than

(√
ρ

6
√
A

+
√

ρ
36A −

√
L‖x0−x∗‖
3
√
2A

)2
.

Case 2: Ck ≤ k As remark 3 shows, the solution of the constrained problem is different from the
unconstrained one. The real solution of this integer optimization problem is hard to achieve. In a first
step, we will relax the problem and solve it as if {li}ki=1 where continuous variables taking values into
[1,+∞[k. As a consequence, the optimal (over {li}ki=1) of our problem will precisely lie on the constraint.
Our problem now is:

argmin
{li}ki=1∈[1,+∞[k

k∑
i=1

li s.t.

k∑
i=1

l
−α2
i = Ck.

For any i ∈ [1, k], let ni := l
−α2
i . Our problem becomes:

argmin
{ni}ki=1∈]0,1]k

k∑
i=1

n
− 2
α

i s.t.

k∑
i=1

ni = Ck.

Introducing the Lagrange multiplier λ, the Lagrangian of this problem writes:

L({ni}ki=1, λ) :=

k∑
i=1

n
− 2
α

i + λ

(
k∑
i=1

ni − Ck

)
.

And it follows that, ∀i ∈ [1, k], when the optimum {n∗i }ki=1 is reached:

∂L

∂ni
= 0⇔ n∗i =

(
αλ

2

) 1

− 2
α
−1

And now, plugging into our constraint:

k∑
i=1

n∗i = Ck ⇒ λ =
2

α

(
Ck
k

)− 2
α−1

.

Hence, for any i ∈ [1, k], n∗i = Ck
k .

As Ck ≤ k, it is clear that ∀p, n∗p ∈]0, 1] and we have, ∀i, l∗i =
(
Ck
k

)− 2
α .

Technical Report V 1.0 10

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

We can now plug the optimal l∗i in our first problem and we now need to find the optimal k∗ such that:

k∗ = argmin
k∈N∗

Cglob(k, {l∗i }ki=1)

= argmin
k∈N∗

Cin

k∑
i=1

l∗i + kCout

= argmin
k∈N∗

Cin

k∑
i=1

(
Ck
k

)− 2
α

+ kCout

= argmin
k∈N∗

k

(
Cin

(Ck
k

)− 2
α

+ Cout

)
.

Once again, we can relax this integer optimization problem into a continuous one, assuming k ∈ R+.
It directly follows that the solution of that relaxed problem is reached when the derivative (w.r.t. k) of
Cglob(k, {l∗i }ki=1) equals 0. The derivative can be easily computed:

∂Cglob(k, {l∗i }ki=1)

∂k
= Cin

((2

α
+ 1
)
k

2
αC
− 2
α

k − 2

α
C ′kC

− 2
α−1

k k
2
α+1

)
+ Cout,

where C ′k is the derivative of Ck w.r.t. k:

C ′k =

√
ρ

3
√
A
k−

1
2 .

However, giving an analytic form of that zero is difficult. But using any numeric solver, it is very easy to
find a very good approximation of k∗.

Proof of Proposition 4

In this scenario, we use non-accelerated outer iterations and linear inner iterations. Our optimisation
problem thus reads:

min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
L

2k

(
‖x0 − x∗‖+ 3

k∑
i=1

√
2Ai(1− γ)li

L

)2

≤ ρ.

We consider Ai = A. The error in the ith inner iteration reads:

εi = A(1− γ)li . (11)

ρk ≤
L

2k

(
‖x0 − x∗‖+ 3

k∑
i=1

√
2A(1− γ)li

L

)2

. (12)

Problem in {li} boils down to:

argmin
{li}ki=1∈N∗k

k∑
i=1

li s.t.

k∑
i=1

(1− γ)
li
2 ≤ Ck,

still with Ck =
√
L

3
√
2A

(√
2kρ
L − ‖x0 − x

∗‖
)

.

Case 1: Ck ≥ k
√

1− γ identical except for the threshold, which will also impact the interval for k∗.

Technical Report V 1.0 11

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Case 2: Ck ≤ k
√

1− γ For any i ∈ [1, k], let ni := (1− γ)
li
2 . Our problem becomes:

argmin
{ni}ki=1∈]0,

√
1−γ]k

−
k∑
i=1

lnni s.t.

k∑
i=1

ni = Ck.

Casting again the Lagrangian of this new problem, we obtain the same result: for any i ∈ [1, k],

n∗i = Ck
k . This leads to l∗i =

2 ln
(
Ck
k

)
ln(1−γ) .

Following the same reasonning, we now plug this analytic solution of the first optimization problem
into the second one. This leads to:

k∗ = argmin
k∈N∗

k

(
2Cin

ln(1− γ)
ln
(Ck
k

)
+ Cout

)

This time, the derivative writes:

∂Cglob(k, {l∗i }ki=1)

∂k
=

2Cin

ln(1− γ)

(
ln
Ck
k

+
kC ′k
Ck
− 1

)
+ Cout,

where C ′k is the derivative of Ck w.r.t. k:

C ′k =

√
ρ

3
√
A
k−

1
2 .

The optimum k∗ of our problem is the (unique) zero of that derivative.

Proof of Proposition 5

In this scenario, we use accelerated outer iterations and sublinear inner iterations. Our optimisation
problem thus reads:

min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

≤ ρ.

We consider Ai = A. The error in the ith inner iteration reads:

εi =
A

lαi
. (13)

Similarly, for the accelerated case, we have:

ρk ≤
2L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

. (14)

Those problems can naturally extended with the use of accelerated schemes and we get this “error-
oriented” problem:

min
k,{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
2L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

≤ ρ.

The “budget-oriented” problem also naturally translates into:

min
k,{li}ki=1

2L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

s.t. Cin

k∑
i=1

li + kCout ≤ B.

We’ll follow the same reasonning as for the non-accelerated case. We will consider this optimization
problem:

min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
2L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

≤ ρ.

Technical Report V 1.0 12

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Let us first have a look at the constraint.

2L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi

)2

≤ ρ

⇔‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai
Llαi
≤
√

ρ

2L
(k + 1)

⇔
k∑
i=1

i

√
Ai
lαi
≤
√
L

3
√

2

(√
ρ

2L
(k + 1)− ‖x0 − x∗‖

)

As in the former case, this can only hold if (k + 1) ≥
√

2L
ρ ‖x0 − x

∗‖ which is trivial.

We will now assume again that Ai = A for any i. As earlier, we first solve the following problem in
{li}ki=1:

argmin
{li}ki=1∈N∗k

k∑
i=1

li s.t.

k∑
i=1

i

√
1

lαi
≤
√
L

3
√

2A

(√
ρ

2L
(k + 1)− ‖x0 − x∗‖

)
:= Dk.

Remark 4. li ∈ N∗k ⇒
√

1
lαi
∈]0, 1] ⇒

∑k
i=1 i

√
1
lαi
≤ k(k+1)

2 . So, if Dk ≥ k(k+1)
2 , then the solution of the

constrained problem is the solution of the unconstrained problem. In that case, the trivial solution is li =

1,∀i. Moreover, if li = 1,∀i is the solution of the constrained problem, then
∑k
i=1 i

√
1
lαi

= k(k+1)
2 ≤ Dk.

As a consequence, the solution of the unconstrained problem is the solution of the constrained problem if

and only if Dk ≥ k(k+1)
2 .

Case 1: Dk ≥ k(k+1)
2 As stated before, the optimum will be trivially reached for li = 1,∀i. Now, we

need to find the optimal over k. It consists in finding:

min
k∈N∗

k(Cin + Cout) s.t. Dk ≥
k(k + 1)

2
.

Let us have a look at this constraint.

Dk ≥
k(k + 1)

2
⇔
√
L

3
√

2A

(√
ρ

2L
(k + 1)− ‖x0 − x∗‖

)
≥ k(k + 1)

2

⇔ k2 + k

(
1−

√
ρ

3
√
A

)
≤
√
ρ

3
√
A
−
√

2L

3
√
A
‖x0 − x∗‖

⇔
(
k +

1

2

(
1−

√
ρ

3
√
A

))2

≤ −
√

2L

3
√
A
‖x0 − x∗‖+

1

4

(
1 +

√
ρ

3
√
A

)2
:= K.

Then:

• if K < 0 then there is no solution (i.e. Dk <
k(k+1)

2 ,∀k).

• if K ≥ 0 then, the constraint holds for k ∈
[
1
2

(√
ρ

3
√
A
− 1
)
−
√
K, 12

(√
ρ

3
√
A
− 1
)

+
√
K
]
. The optimum

will then be achieved for the smallest integer (if exists) larger than 1
2

(√
ρ

3
√
A
− 1
)
−
√
K and smaller

than 1
2

(√
ρ

3
√
A
− 1
)

+
√
K.

Case 2: Dk ≤ k(k+1)
2 Once again, we fall in the same scenario as in the non-accelerated case. The solu-

tion of our problem is different from the unconstrained one and we need to relax our discrete optimization
problem to a continuous one. The optimal then precisely lies again on the constraint. We now have:

min
{li}ki=1

k∑
i=1

li s.t.

k∑
i=1

i

√
1

lαi
= Dk.

Technical Report V 1.0 13

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

For any i ∈ [1, k], let ni := il
−α2
i . Our problem becomes:

min
{ni}ki=1

k∑
i=1

(ni
i

)− 2
α

s.t.

k∑
i=1

ni = Dk.

The Lagrangian writes:

L({ni}ki=1, λ) :=

k∑
i=1

(ni
i

)− 2
α

+ λ

(
k∑
i=1

ni −Dk

)
.

And it follows that, ∀i ∈ [1, k], when the optimum {n∗i }ki=1 is reached:

∂L

∂ni
= 0⇔ n∗i = i

(
αλ

2

) 1

− 2
α
−1

And now, plugging into our constraint:

k∑
i=1

n∗i = Dk ⇒ λ =
2

α

(
2Dk

k(k + 1)

)− 2
α−1

.

Hence, for any i ∈ [1, k], n∗i = 2Dk
k(k+1) i, giving the corresponding l∗i =

(
2Dk
k(k+1)

)− 2
α

.

We can now plug the optimal l∗i in our first problem and we now need to find the optimal k∗ such that:

k∗ = argmin
k∈N∗

Cglob(k, {l∗i }ki=1).

= argmin
k∈N∗

k

(
Cin

(2Dk

k(k + 1)

)− 2
α

+ Cout

)
.

Once again, we can relax this integer optimization problem into a continuous one, assuming k ∈ R+.It
directly follows that the solution of that relaxed problem is reached when the derivative (w.r.t. k) of
Cglob(k, {l∗i }ki=1) equals 0.

Scenario 4: Accelerated out, linear in

In this scenario, we use accelerated outer iterations and linear inner iterations. Our optimisation problem
thus reads:

min
k

min
{li}ki=1

Cin

k∑
i=1

li + kCout s.t.
L

(k + 1)2

(
‖x0 − x∗‖+ 3

k∑
i=1

i

√
2Ai(1− γ)li

L

)2

≤ ρ.

We consider Ai = A. The error in the ith inner iteration reads:

εi = A(1− γ)
l
i. (15)

We have the following proposition:

Proposition 6 (Accelerated out, linear in). If ρ <

(√
12
√

2LA(1− γ)‖x0 − x∗‖ − 3
√
A

)2

, the solution

of problem (6) for B = B4 is:

l∗i =


1 for 1 ≤ i ≤ n(k∗)− 1

2
ln(1−γ)

(
ln

(
D(k)−

n(k)(n(k)−1)
2

√
1−γ

k+1−n(k)

))
for n(k∗) ≤ i ≤ k∗

with k∗ = argmin
k∈N∗

{
kCout + Cin(n(k)− 1)− 2Cin

ln(1−γ) ln
(

k!
n(k)!

)
− 2Cin(k−n(k)+1)

ln(1−γ) ln

(
k+1−n(k)

D(k)−
n(k)(n(k)−1)

2
√
1−γ

)}
, (16)

and n(k) is defined as the only integer such that:(
n(k)− 1

)(
2k + 2− n(k)

)√
1− γ ≤ 2D(k) < n(k)

(
2k + 1− n(k)

)√
1− γ.

Technical Report V 1.0 14

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

The proof of which follows.
The problem in {li} boils down to:

argmin
{li}ki=1∈N∗k

k∑
i=1

li s.t.

k∑
i=1

i(1− γ)
li
2 ≤ Dk, (17)

with Dk =
√
L

3
√
2A

(√
ρ
2L (k + 1)− ‖x0 − x∗‖

)
.

Case 1: Dk ≥ k(k+1)
2

√
1− γ identical except for the threshold, which will also impact the interval for

k∗.

Case 2: Dk ≤ k(k+1)
2

√
1− γ

Relaxing Problem (17) to real numbers, we want to solve:

argmin
{li}ki=1∈R+k

k∑
i=1

li s.t.

k∑
i=1

i(1− γ)
li
2 −Dk ≤ 0 (18)

1− li ≤ 0,∀i. (19)

According to the KKT conditions, there exist {µi}, i = 1, .., k and λ, such that the optimum {l∗i }
verify:

(stationarity) 1 + λi(1− γ)
l∗
i
2 ln(

√
1− γ)− µi = 0, ∀i = 1, .., k (20)

(primal feasibility)

k∑
i=1

i(1− γ)
l∗
i
2 −Dk ≤ 0, (21)

1− l∗i ≤ 0, ∀i = 1, .., k, (22)

(dual feasibility) λ ≥ 0, (23)

µi ≥ 0, ∀i = 1, .., k, (24)

(complementary slackness) λ(

k∑
i=1

i(1− γ)
l∗
i
2 −Dk) = 0, (25)

µi(1− l∗i) = 0, ∀i = 1, .., k. (26)

Eq. (23) yields two cases: λ = 0 or λ > 0.

λ = 0 Then Eq. (20) yields µi = 1,∀i thus Eq.(26) implies l∗i = 1. All the KKT conditions are thus
fulfilled ifEq.(21) is, i.e. if

Dk ≥
k(k + 1)

2

√
1− γ.

We work here in the case where Dk ≤ k(k+1)
2

√
1− γ thus this solution is valid if and only if Dk =

k(k+1)
2

√
1− γ.

λ > 0 Again, Eq. (23) yields two cases: µi = 0 or µi > 0.

Case 1: µi > 0
Then by Eq. (26), we have l∗i = 1 and by (20) µi = 1 + λi

√
1− γ ln(

√
1− γ). Then µi > 0 implies:

i <
1

λ
√

1− γ ln(
√

1
1−γ)

.

Technical Report V 1.0 15

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

Case 2: µi = 0

Then by Eq. (20) we have 1 + λi(1− γ)
l∗
i
2 ln(

√
1− γ) = 0, i.e:

l∗i =
ln
(
iλ ln(

√
1

1−γ)
)

ln(
√

1
1−γ)

.

Since Eq. (22) enforces l∗i ≤ 1, we have:

i ≥ 1

λ
√

1− γ ln(
√

1
1−γ)

.

Conclusion: For λ > 0, Eq. (20), (22), (23), (24) and (26) are fullfilled all at once if we set:

For i = 1..d 1

λ
√
1−γ ln(

√
1

1−γ)

e − 1 : li = 1 µi = 1 + λi
√

1− γ ln(
√

1− γ)

For i = d 1

λ
√
1−γ ln(

√
1

1−γ)

e, .., k : li =
ln

(
iλ ln(

√
1

1−γ)

)
ln(

√
1

1−γ)

µi = 0.
(27)

With these values set for µi and l∗i , let us now find the value of λ.

Computing λ
We need to fulfill Eq. (21) and (25).

Let us define M(λ) = d 1

λ
√
1−γ ln(

√
1

1−γ)

e.

Note that for λ > 1

(k+1)λ
√
1−γ ln(

√
1

1−γ)

, we have: 0 < M(λ) ≤ k + 1, and:

• M(λ) = 1⇔ λ ≥ 1

λ
√
1−γ ln(

√
1

1−γ)

• M(λ) = n⇔ 1

nλ
√
1−γ ln(

√
1

1−γ)

< λ < 1

(n−1)λ
√
1−γ ln(

√
1

1−γ)

for n = 2, .., k + 1.

Eq. (21) and (25) are true if and only if

Dk =

k∑
i=1

i(1− γ)
l∗
i
2

Dk =
M(λ)(M(λ)− 1)

2

√
1− γ +

k −M(λ) + 1

λ ln(
√

1
1−γ)

.

We define F : R+∗ → R by F (λ) = M(λ)(M(λ)−1)
2

√
1− γ + k−M(λ)+1

λ ln(

√
1

1−γ)

.

Examining F on each interval where M is constant, it is easy to see that F is continuous and non-
increasing. Moreover F decreases strictly on [1

kλ
√
1−γ ln(

√
1

1−γ)

,∞), limλ→∞ F = 0 and F reaches its

highest value maxF = k(k+1)
2

√
1− γ on [1

(k+1)λ
√
1−γ ln(

√
1

1−γ)

, 1

kλ
√
1−γ ln(

√
1

1−γ)

].

We thus have for all Dk such that 0 < Dk <
k(k+1)

2

√
1− γ, there exists a unique λ such that F (λ) = Dk

and thus all KKT conditions are fullfilled.
To find this value of λ as a function of Dk, we first find M(λ) from Dk. Notice that

F

 1

nλ
√

1− γ ln(
√

1
1−γ)

 =
n(2k + 1− n)

2

√
1− γ.

Technical Report V 1.0 16

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

As Dk <
k(k+1)

2

√
1− γ, there exists a unique integer n in 1, .., k such that

(n− 1)(2k + 2− n)

2

√
1− γ ≤ Dk <

n(2k + 1− n)

2

√
1− γ. (28)

Then M(λ) = n and the KKT conditions are all fulfilled for:

λ =
k + 1− n

(Dk − n(n−1)
2

√
1− γ) ln(

√
1

1−γ)
.

In particular:
For i = 1, .., n− 1 : li = 1.

For i = n, .., k : li =
ln

(
k+1−n

Dk−
n(n−1)

2

√
1−γ

)
ln(
√

1
1−γ)

(29)

Back to the global problem We now seek to find the the value k∗ that minimizes the global problem.
Outisde of the interval defined in Case 1, the global cost is defined by the following. Let us define n(k)
as the integer verifying Eq. (28). Then

Cglob(k) = kCout+Cin(n(k)−1)+
Cin(k − n(k) + 1)

ln(
√

1
1−γ)

ln

(
k + 1− n(k)

Dk − n(k)(n(k)−1)
2

√
1− γ

)
+

Cin

ln(
√

1
1−γ)

ln

(
k!

n(k)!

)
.

References

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization for Machine Learning, chapter
Convex optimization with sparsity-inducing norms, pages 19–54. MIT Press, 2011.

[2] L. Baldassarre, J. Morales, A. Argyriou, and M. Pontil. A general framework for structured sparsity
via proximal optimization. In AISTATS, 2012.

[3] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Trans. on Im. Proc., 18(11):2419–2434, 2009.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[5] L. Bottou and O. Bousquet. The trade-offs of large scale learning. In Adv. in Neural Information
Processing Systems (NIPS), 2007.

[6] J.F. Cai, E.J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20:1956, 2010.

[7] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging
Vis., 20:89–97, 2004.

[8] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications
to imaging. Journal of Mathematical Imaging and Vision, 40:120–145, 2011.

[9] X. Chen, Q. Lin, S. Kim, J.G. Carbonell, and E. P. Xing. Smoothing proximal gradient method for
general structured sparse learning. In UAI’11, pages 105–114, 2011.

[10] X. Chen, W. Pan, J.T. Kwok, and J.G. Carbonell. Accelerated gradient method for multi-task sparse
learning problem. In Ninth IEEE Intern. Conf. on Data Mining (ICDM ’09)., dec. 2009.

[11] P.L. Combettes, D. Dũng, and B.C. Vũ. Dualization of signal recovery problems. Set-Valued and
Variational Analysis, pages 1–32, 2010.

[12] P.L. Combettes and V.R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Modeling and Simulation, 4(4):1168–1200, 2005.

Technical Report V 1.0 17

P.Machart, S.Anthoine, L.Baldassarre Optimal Computational Trade-Off of Inexact Proximal Methods

[13] J.M. Fadili and G. Peyré. Total variation projection with first order schemes. Image Processing,
IEEE Transactions on, 20(3):657–669, 2011.

[14] M. Herbster and G. Lever. Predicting the labelling of a graph via minimum p-seminorm interpolation.
In Proc. of the 22nd Conference on Learning Theory, 2009.

[15] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding.
Journal of Machine Learning Reasearch, 12:2297–2334, 2011.

[16] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proc. of the Second Berkeley Symposium
on Mathematical Statistics and Probability, 1950, pages 481–492. University of California Press, 1951.

[17] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization algorithms for
exact recovery of a corrupted low-rank matrix. Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2009.

[18] I. Loris and C. Verhoeven. On a generalization of the iterative soft-thresholding algorithm for the
case of non-separable penalty. Inverse Problems, 27:125007, 2011.

[19] S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Solving structured sparsity regularization
with proximal methods. In Machine Learning and Knowledge Discovery in Databases, volume 6322
of Lecture Notes in Computer Science, pages 418–433. Springer, 2010.

[20] A.S. Nemirovsky and D.B. Yudin. Problem complexity and method efficiency in optimization. Wiley-
Interscience Series in Discrete Mathematics. Johon Wiley & Sons, New York, 1983.

[21] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, CORE
Discussion Papers, 2007.

[22] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[23] M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for
convex optimization. In Adv. in Neural Information Processing Systems (NIPS), 2011.

[24] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Submitted to
SIAM Journals on Optimization, 2008.

[25] S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact forward-backward algorithms.
Technical report, Optimization Online, 2011.

Technical Report V 1.0 18

	Introduction
	Setting
	Inexact Proximal Methods
	Convergence Rates
	Approximation Trade-off

	Defining the Problem
	Parameterizing the Error
	Parameterized Bounds
	Towards a Computationally Optimal Tradeoff

	Results
	Optimal Strategies
	Comments and Interpretation of the Results
	On the Usability of the Optimal Strategies

	Numerical Simulations
	TV-regularization for image deblurring
	Graph prediction
	Why the ``computationally optimal'' strategies are good but not that optimal

	Conclusion and future work
	Appendix

