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1. Introduction 

Human face recognition is an active area of research spanning several disciplines such as 
image processing, pattern recognition, and computer vision. Different techniques can be 
used to track and process faces (Yang et al, 2001), e.g., neural networks approaches (Férand 
et al., 2001, Rowley et al., 1998), eigenfaces (Turk & Pentland, 1991), and the Markov chain 
(Slimane et al., 1999). Most researches have concentrated on the algorithms of segmentation, 
feature extraction, and recognition of human faces, which are generally realized by software 
implementation on standard computers. However, many applications of human face 
recognition such as human-computer interfaces, model-based video coding, and security 
control (Kobayashi, 2001, Yeh & Lee, 1999) need to be high-speed and real-time, for 
example, passing through customs quickly while ensuring security. 
Liu (1998) realized an automatic human face recognition system using the optical correlation 
technique after necessary preprocessing steps. Buhmann et al. (1994) corrected changes in 
lighting conditions with an analog VLSI silicon retina in order to increase the face 
recognition rate. Matsumoto & Zelinsky (2000) implemented in real time a head pose and 
gaze direction measurement system on the vision processing board Hitachi IP5000.  
For the last years, our laboratory has focused on face processing and obtained interesting 
results concerning face tracking and recognition by implementing original dedicated 
hardware systems. Our aim is to implement on embedded systems efficient models of 
unconstrained face tracking and identity verification in arbitrary scenes. The main goal of 
these various systems is to provide efficient robustness algorithms that only require 
moderated computation in order 1) to obtain high success rates of face tracking and identity 
verification and 2) to cope with the drastic real-time constraints. 
The goal of this chapter is to describe three different hardware platforms dedicated to face 
recognition. Each of them has been designed, implemented and evaluated in our laboratory. 
In a first part, we describe a real time vision system that allows the localization of faces and 
the verification of their identity. This embedded system is based on image processing 
techniques and the radial basis function (RBF) neural network approach. The robustness of 
this system has been evaluated quantitatively on real video sequences. We also describe 
three hardware implementations of our model on embedded systems based, respectively, on 
field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and 
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digital signal processor (DSP) TMS320C62.We analyze the algorithm complexity and present 
results of hardware implementations in terms of resources used and processing speed. 
In a second part, we describe the main principles of a full-custom vision system designed in 
a classical 0.6 μm CMOS Process. The development of this specific vision chip is motivated 
by the fact that preliminary works have shown that simplified RBF networks gave 
interesting results but imposed a fast feature extraction to reduce the size of the input 
vectors of the RBF network. So, in order to unload a consequent calculation part of FPGA, 
we have decided to design an artificial retina embedding the extraction of input vectors of 
RBF network. For this purpose, a VLSI sensor is proposed to realize the image acquisition, to 
extract a window of interest in the whole image, to evaluate the RBF vectors as means 
values of consecutive pixels on lines and columns. A prototype based on this principle, has 
been designed, simulated and evaluated. 
In a third part, we describe a new promising approach based on a simple and efficient 
hardware platform that performs mosaicking of panoramic faces. Our objective is to study 
the panoramic face construction in real time. So, we built an original acquisition system 
composed of five standard cameras, which can take simultaneously five views of a face at 
different angles. Then, we chose an easily hardware-achievable algorithm, based on 
successive linear transformations, in order to compose a panoramic face from the five views. 
The method has been tested on a large number of faces. In order to validate our system, we 
also conducted a preliminary study on panoramic face recognition, based on the principal-
component method. Experimental results show the feasibility and viability of our system. 
This rest of the chapter is organized as follows. Section II, III and IV describe the three 
systems designed by our team. In each of these sections, we present the principles of the 
system, the description of the hardware platform and the main simulated and experimental 
results. Finally, the last section presents conclusion and future works. 

2. Real-time face tracking based on a RBF Neural Network 

Face recognition is a very challenging research problem due to variations in illumination, 
facial expression and pose. It has received extensive attention during the past 20 years, not 
only because of the potential applications in fields such as Human Computer Interaction, 
biometrics and security, but also because it is a typical pattern recognition problem whose 
solution would help in solving other classification problems. 
The recognition technique used in this first embedded system is based on Radial Basis 
Function (RBF) networks. The RBF neural networks have been successfully applied to face 
recognition. Rosenblum et al. (1996) developed a system of human expressions recognition 
from motion based on RBF neural network architecture. Koh et al. (2002) performed an 
integrated automatic face detection and recognition system using the RBF networks 
approach. Howell & Buxton (1998) compared RBF networks with other neural network 
techniques on a face recognition task for applications involving identification of individuals 
using low-resolution video information. The RBF networks give performance errors of only 
5%–9% on generalization under changes of orientation, scale, pose. Their main advantages 
are computational simplicity and robust generalization. Howell and Buxton showed that the 
RBF network provides a solution which can process test images in interframe periods on a 
low-cost processor. The simplicity and the robust generalization of the RBF networks 
approach, with its advantages due to the fact that it can be mapped directly into the existing 
neural networks chips lead us to elaborate our model using a RBF classifier. 
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We chose three commercial embedded systems for hardware implementations of face 
tracking and identity verification. These systems are based, respectively, on most common 
electronic devices: FPGA, zero instruction set computer (ZISC) chips, and digital signal 
processor (DSP) TMS320C62. We obtained processing speeds of, respectively, for three 
implementations: 14 images/s, 25 images/s, and 4.8 images/s. 

Figure 1. Radial basis function neural network 

2.1 Description of the RBF model 

The RBF neural network (Park & Sandberg, 1991) has a feedforward architecture with an 
input layer, a hidden layer, and an output layer as shown in Figure 1. The input layer of this 
network has N units for an N-dimensional input vector. The input units are fully connected 
to the hidden layer units, which are in turn connected to the J output layer units, where J is 
the number of output classes. RBF networks belong to the category of kernel networks. Each 
hidden node computes a kernel function on input data, and the output layer achieves a 
weighted summation of the kernel functions. Each node is characterized by two important 
associated parameters: 1), its center and 2) the width of the radial function. A hidden node 
provides the highest output value when the input vector is close to its center and this output 
value decreases as the distance from the center increases. Several distances can be used to 
estimate the distance from a center but the most common is the Euclidean distance d(x). The 
activation function of the hidden node is often a Gaussian function such that each hidden 
node is defined by two parameters: its center ci and the width of the radial function i.
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The training procedure undergoes a two-step decomposition: estimating ci and i and 
estimating the weights between the hidden layer and output layer. The estimation of these 
parameters is largely detailed in Yang & Paindavoine (2003). 

2.2 Description and test of our model 

Many face recognition algorithms require segmenting the face from the background, and 
subsequently extracting features such as eyes, nose, and mouth for further processing. We 
propose an integrated automatic face localization and identification model only using a 
classifier which responds to the question, “Does the input vector correspond or not the 
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person to be verified?” The idea behind this is to simplify the model and reduce 
computation complexity in order to facilitate hardware implementations.  

Figure 2. Structure of the face tracking and identity verification model 

Figure 2 represents the structure of our model. The size of faces in the scene varies from 
40 x 32 pixels to 135 x 108 pixels with four scales. The ratio between any two scales is fixed 
to 1.5 (Howel & Buxton, 1998).We first subsample the original scene and extract only the 
40 x 32 windows in the 4 subsampled images. Each pre-processed 40 x 32 window is then 
fed to RBF network as an input vector. After the training procedure, the hidden nodes 
obtained are partially connected to the output layer. In fact, the hidden nodes associated 
with one person are only connected to the output node representing this class. This 
technique reduces data dependencies and is computationally more efficient 
(Koh et al., 2002). The decision stage yields the presence, position, identity and scale of the 
faces using the maximal output values of the RBF neural network. 
In order to evaluate and validate our model, we made experiments based on video 
sequences of 256 images. In all sequences, the scene size is 288 x 352 pixels and they are 
zero, one, two, or three different faces presented (see. Figure 4). We have decided to verify 
two persons in these sequences. The 12 same training faces (see Figure 3) are used in order 
to compare the different configurations of the model. 

Figure 3. 2x12 learning faces 

First, in order to simplify future hardware implementations, the first phase has consisted in 
reducing the input vectors length of the RBF network. In the preprocessing stage, we use 
first all pixels of each 40 x 32 window to compose the feature vectors. Each pixel represents 
one component of the vector. So, the input vectors of RBF neural network have 
40 x 32 components. Second, we minimize the number of components in order to reduce the 
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computing time. We realize a subsampling preprocessing: sample one pixel out of 4, 8, and 
16 on each row of each window. We display some tested images (see Figure 4).  

Figure 4. Some results of face tracking and identity verification 

Results of face tracking and identity verification reveal that performances decreases quickly 
when the input vectors have 80 components. In fact, incorrect detection regularly appears 
when we use only one pixel out of 16 on each row of a window. The best results are 
obtained with one pixel out of four using the Euclidean distance d2(x) to compute the 
difference between an input vector and the centers (kernels) for each hidden node of the 
RBF neural network (see Eq. 2). The distance d1(x) is usually better when we use some noisy 
images (Sim et al., 2000). Another distance considers only the components whose difference 
between xn and cn is greater than a threshold δ. Here, the threshold δ has been regulated to 
10. The experiments show that we have the best result with the d0(x) distance. 
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Finally, we have evaluated some variations of the RBF kernel activation functions. The 
Gaussian function is usually taken as the kernel activation function (see. Eq. 1) where d(x) is 
the measured distance between the input vector x and the center c. Another approach is the 
use of a simplified activation, for example the replacement of the Gaussian function in the 
RBF network by a Heaviside function leading to a simplified hardware implementation. The 
width of this function is the width  associated to the corresponding center. 
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The number of no-detections has increased with the Heaviside function. The rate of correct 
results decreases from 98.2% to 93.4%. In fact, the RBF neural network using the Heaviside 
function restrains the capacity of generalization by lack of interactions between centers of a 
same class: the model only detects faces that are sufficiently close to training examples. 
Among all configurations of the model, the best performance has been obtained with 320 
components of input vectors (subsampling 1 pixel/4 on each row of a window), using 
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measured distance d0(x) and the Gaussian activation function: the success rate is 98.2%. 
Almost all the faces are well detected, localized, and identified in sequences of images. 

2.3 Hardware Implementations 

Hardware implementations of the RBF approach have been realized for different 
applications, on either FPGA (Pérez-Uribe & Sanchez, 1996), or neurochip (Skrbek, 1999). 
Commercial RBF products include the IBM ZISC chip and the Nestor Ni 1000 chip 
(Lindbalad et al., 1995). Here, our aim is to elaborate in real time an efficient model of 
unconstrained face tracking and identity verification in arbitrary scenes. Thus, hardware 
implementations have been realized on three embedded systems based on FPGA, ZISC chip, 
and DSP. We use industrial electronic systems: a MEMEC board, a General Vision 
Neurosight board, and a board based on DSP TMS320c6x developed in our laboratory. We 
discuss first for each case the architecture of the system. Then results are presented in terms 
of hardware resources used and processing speed. 

2.3.1 First Implementation based on FPGA 

This implementation is realized on a MEMEC industrial board comprising a FPGA Xilinx 
SpartanII-300, which contains 3072 slices and 16 memory blocks of 512 bytes each. We have 
implanted on the FPGA our model of face tracking and identity verification. This 
implementation creates an RBF neural network with 15 hidden nodes. Each hidden node 
stores a center vector of 320 components. The used measured distance is the distance d1(x). 
The activation function of each center is a Heaviside function whose associated width 
delimits the influence area of the center. Figure 5 shows the organization’s tasks and the 
coding of these tasks using VHDL description. The original video image is stored in an 
image memory bank with each pixel coded on a byte; the input vector extraction consists of 
calculating averages of four successive pixels on rows of the image. Each vector is fed to the 
15 hidden nodes of the RBF network which gives their respective responses in parallel. 

Figure 5. Organization’s tasks and coding in VHDL for the first implementation 

The Table 1 presents information on FPGA resources. The input vectors extraction needs 57 
slices in order to define the image memory access and the interaction logic with centers. A 
memory block (FIFO) is necessary to store input vectors to be tested. Each trained center 
needs one memory block and 29 slices for calculation (distance, activation function, 
decision). This implementation uses 827 “slices” (27% of total resources). Note that the 
number of centers is limited by the number of independent internal memory blocks. 
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 extraction 15 centers Interfaces & controls Total 

Number of slices used 57 435 335 827 

Slices used rate 2% 14.1% 10.9% 27% 

Number of Blocks RAM used 1 15 0 16 

Blocks Ram used rate 6% 94% 0% 100% 

Table 1. Results of the first implementation on the Memec Board 

The complete implementation is realized in parallel using the pipeline technique for each 
stage of the processing. The images size is 288 x 352 and contains 161 x 63 = 10 143 windows 
of 40 x 32 pixels each with a displacement scan step along the row and the column of 2. We 
realized, respectively, 49.65M additions, 48.8M subtractions, 370 944 divisions, and 142 002 
comparisons. The processing speed of this first implementation is 14 images per second with 
a success rate of 92% for face tracking and identity verification. 

Figure 6. Neurosight block diagram and board picture 

2.3.2 Second Implementation based on ZISC Chip 

We also made hardware implementation of our model using a commercial board linked to 
pattern recognition applications. This General Vision Neurosight board contains a CMOS 
sensor (288 x 352 pixels), a FPGA Xilinx SpartanII-50, two memory banks of 512KB each, as 
well as two specific ZISC chips (see Figure 6).  One ZISC chip contains 78 RBF-link nodes 
with a maximal length of input vectors N=64. The used measured distance and the 
activation function of each node are, respectively, the distance d1(x) and the Heaviside 
function. We adapt the complexity of the model to this embedded system. At first, we 
reduce the size of the original image by keeping only one line out four. This new image 
obtained (size 72 x 352) is then analyzed with a slippery window of 8 x 32. On each row of 
each window, we compute averages of eight consecutive four pixels blocks. Each window 
yields an input vector of 64 components to be analyzed by the ZISC chip. A total number of 
10 465 windows are tested which implies 10.16 M additions, 10.05 M subtractions, 92 736 
divisions, and 146 510 comparisons to be computed. We implement the input vectors 
extraction and all interfaces (memory access, ZISC access) on the FPGA Xilinx SpartanII. 
Figure 7 shows the  tasks on the Neurosight board and the different levels of control coded 
in VHDL. 
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Table 2 presents information on hardware resources used for this second implementation. 
The input vectors extraction implementation requires the same resources as those used with 
the MEMEC board. Here, we use only one ZISC chip (78 nodes maximum). The processing 
speed of this second implementation is 25 images/s with a success rate of 85.3% for face 
tracking and identity verification. 

Figure 7. Organization’s tasks and coding in VHDL for the second implementation 

 Extraction Interfaces & controls Total 

Total number of slices 768 768 768 

Number of slices used 57 235 292 

Slices used rate 7.4% 30.6% 38% 

Total number of Blocks RAM 8 8 8 

Number of Blocks RAM used 1 0 1 

Blocks Ram used rate 12.5% 0% 12.5% 

Table 2. Results of the second implementation on the Neurosight Board 

2.3.3 Third Implementation based on DSP 

DSPs are specific processors destined for signal and image processing. The C6x family is the 
last generation Texas Instruments DSP. They are available in fixed point (C62x and C64x) 
and floating point (C67x) versions, with CPU frequencies from 150 MHz to 1000 MHz. Our 
laboratory has developed a system based on a DSP TMS320 C6201B (see Figure 8). A CCD 
sensor sends 16-bit data to the DSP via a complex programmable logic device (CPLD). The 
DSP performs different processing and sends the resulting images to a PC via an USB bus. 
Two SDRAM memories are available to store images between the different processings.  
The hardware implementation of our model for face tracking is realized on this embedded 
system. The goal of the implementation has been to optimize in Assembler each stage of 
processing using, in parallel, the maximum number of DSP functional units.  
The used measured distance and the activation function of each node are, respectively, the 
distance d0(x) and a Gaussian function. Each vector of 320 components is fed to the 15 
hidden nodes of the RBF network. The number of windows to be analyzed and the numbers 
of additions and divisions for input vectors extraction are the same than in the first 
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implementation. A correct rate of 98.2% is obtained for face tracking and identity 
verification. 

Figure 8. Block diagram and board picture of the third embedded system 

Table 3 respectively shows experimental implementation results obtained using the DSP 
C6201 and simulation results obtained using the DSP C64x with the development tools, 
Code Composer Studio (Texas Instruments). 

Hardware Implementation on C6201 Simulation on C64x 

Langage C Assembler C Assembler 

Input vectors Extraction 4.14 ms 1.8 ms 1.2 ms 0.14 ms 

Distance calculation 211 ms 144 ms 58.8 ms 13.3 ms 

Gaussian function + Decision 67 ms  22.2  

Processing speed 3.5 im. /s 4.8 im. /s 12.1 im. /s 28.6 im. /s 

Table 3. Results of the third implementation on DSP 

2.4 Discussion on the three Hardware implementations 

We created a model that allows us to detect the presence of faces, to follow them, and to 
verify their identities in video sequences using a RBF neural network. The model’s 
robustness has been tested using video sequences. The best performance has been obtained 
with one subsampling of a pixel/4 for each row, the measured distance d0(x) and the 
Gaussian activation function. In fact, the subsampling preprocessing and the application of 
the d0(x) distance render the model less sensitive to face details and to the small differences 
between training examples and test windows, thus, we have the better generalization. 
We have demonstrated the feasibility of face tracking and identity verification in real time 
using existing commercial boards. We have implanted our model on three embedded 
systems. The success rate of face tracking and identity verification is, respectively, 92% 
(FPGA), 85% (ZISC), and 98.2% (DSP). Processing speeds obtained for images of size 
288 x 352 are, respectively, 14 images/s, 25 images/s, and 4.8 images/s.  
Our model integrating 15 hidden nodes allows us to distinguish two faces with a good 
performance (> 90% of success rate). Extending this model to recognition of more faces 
(> 10) necessitates a calculation power superior to 10 Giga flops and thus, new architectures 
must be developed. They can be developed using more effective components, for example, 
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FPGA Virtex 5 series or DSP TMS320C64, thus allowing a very rapid processing speed and 
better performance of face tracking and identity verification. 

3. Design of a CMOS sensor dedicated to the extraction of input vectors 

A system capable of doing face localization and recognition in real time has many 
applications in intelligent man-machine interfaces and in other domains such as very low 
bandwidth video conferencing, and video e-mail.  
This section describes the main principles of a vision system, allowing to detect 
automatically the faces presence, to localize and to follow them in video sequences. The 
preliminary works, described in the previous section, have shown that RBF networks gave 
interesting results (Yang & Paindavoine, 2003) but imposed a fast feature extraction to 
reduce the size of the input vectors of the RBF network. So, the main goal of the current 
project is the development and the characterisation of a specific CMOS sensor able to realize 
the image acquisition, to extract a window of interest in the whole image and to evaluate 
means values of consecutive pixels on lines and columns. 
A first image sensor with electronic shutter has been integrated in a 0.6 μm digital CMOS 
technology. The pixel cell consists of four transistors and a photodiode. Each pixel measures 
30 μm by 30 μm and has a fill factor of about 40%. Each selected pixel produces a current 
which is transferred to the column readout amplifiers and converted by a pipeline ADC to 
produce a digital output. The two analog and digital values are then multiplexed to the 
output of the sensor. This retina also includes a logic command in order to realize 
acquisition of subwindows with random size and position.  

3.1 Overview of the Chip Architecture 

An active pixel sensor (APS) is a detector array that has at least one active transistor within 
the pixel unit cell (Nakamura et al., 1997). Currently, active pixel sensor technology 
integrates electronic signal processing and control with smart camera function onto the 
same single chip as a high performance image sensor (Kemeny et al., 1997). CMOS image 
sensors with integrated signal processing have been implemented for a number of 
applications (Aw & Wooley, 1996). Most current CMOS sensors have been designed for 
video applications, and digital photography. Improvement continues to be made because 
current mode image sensors have several advantages for example, low power supply, 
smaller place, higher operation speed (Huang & Horsney, 2003, Tabet & Horsney, 2001). 
The following subsections describe the design of the image sensor using a standard 0.6 μm 
CMOS process. The design is based on the integration of four MOS transistors for each pixel, 
a column readout amplifier, a sequential control unit which includes variable input 
counters, decoders, multiplexers and finally an analog to digital converter. Results based on 
design and simulations are presented for each part of the circuit.  
The architecture of the proposed image sensor is shown in Figure 9. This figure first 
describes the core of the system represented by the m x m array of transistors active pixels. 
On the left, the second block, the row decoder is charged to send to each line of pixels the 
control signals allowing pixel resetting, shutter opening or closing, pixel readout, ... On the 
bottom of the circuit, the third block is made up of amplifiers, multiplexers and column 
decoders whose purpose is to detect, amplify and route the signal resulting from readout 
column to the output of the circuit. The automatic scan of the whole array of pixels or a 
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subwindow of pixels is implemented by a sequential control unit which generates the 
internal signals to the row and column decoders. Finally, the analog output voltages are 
proportional to the grey scale intensity of the image. They are passed to an analog to digital 
converter (ADC) (as seen on the right of the block diagram). This ADC allows the 
conversion of analog values in digitals values which will be later processed by a DSP or a 
FPGA outside the chip. 

Figure 9. Image Sensor Architecture 

3.2 Design of the Active Pixel Sensor 

We used a standard pixel as described in the left part of Figure 2 because it is a simple and 
stable design (Aw & Wooley, 1996, Coulombe et al., 2000). It consists of 3 PMOS transistors, 
a NMOS transistor for row access and a photodiode. m_1 is the shutter transistor, m_2 is the 
reset transistor, and the transistor m_3 acts as a transconductance buffer that converts the 
voltage at VPix into a current. The vertical column lines in the array are implemented using 
second-layer metal. First layer metal is used for the horizontal row lines. Third-layer metal is 
connected to Vss and covers all active areas of the pixel except the photodiodes. 

Figure 10. Pixel circuit schematic and results of simulation 

Prior to the image acquisition, m_1 and m_2 are on, resetting node VPhoto and VPix to the VReset

value. After reset, when m_1 is on and m_2 turned off, the charges generated by absorption 
of light are integrated onto the parasitic capacitances of the photodiode and the transistor 
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m_3. So, during the exposure period, voltage is accumulated at node VPhoto and Vpix. At the 
end of the exposure period, the shutter is closed by turning off m_1. Consequently, the 
photosignal is stored as a voltage on node Vpix. Finally, during readout, the row access 
transistor m_4 is turned on, and the drain current of m_3 is fed via the column line to the 
column readout amplifier. The right part of Figure 10 shows the main waveforms (VPix,
VPhoto, VShutter, VReset, VRow and VCol) obtained during the simulation of one pixel. The pixels in 
a row are reseted by holding both reset and shutter low, turning on m_1 and m_2. The 
voltages at nodes VPhoto and VPix are thereby reseted close to VReset.
During exposure, reset goes high (m_2 turns off) while shutter is unchanged at a low value 
(m_1 remains on). So, the photocurrent can be integrated onto the parasitic capacitances at 
VPhoto and VPix. At the end of the exposure period, shutter is closed by turning off m_1 and it 
is cutting off the photocurrent into the node VPix. ICol can be read on the column bus when 
m_4 is turned on (row is high). The voltage at the drain of m_3 falls from Vdd to the bias 
voltage of the column line, and this change couples a small negative offset into node VPix.
The drain current of m_3 is fed via the column line to the column readout amplifier. 

Figure 11. Column amplifier schematic and simulation results 

3.3 Design of the Column Amplifier 

The Fig 11 represents the electronic schematic of the column amplifier. The design of this 
amplifier provides a low impedance for the column lines, converts the readout current from 
the selected pixel into a voltage that is proportional to the integrated photovoltage in the 
pixel. The concept of using current mirror amplifier column is to amplify signal by 
duplication at the column level. Amplification is achieved by designing a current mirror 
m_20 and m_24 with ratio W/Lm_20 = n x W/Lm_24. The transistors m_22 and m_23 are added 
to enhance the output impedance of the current mirror. The circuit including m_17, m_18,
m_20 operates almost identically to a diode connected transistor, it is used to ensure that all 
the transistors bias voltages are matched to the output side (m_22, m_23, m_24). The 
transistors m_17, m_21 are used to bias the feedback circuit. The transistors m_26, m_27,
m_28, m_29, and m_30 make up a differential unity gain amplifier. Once the current signal 
has been amplified by column current miroir amplifier, its output is suitable for any 
subsequent current mode image processing, either in continuous time or integration mode. 
In our case, these outputs will be used as inputs for the feature extracting architecture 
dedicated to the mean evaluation of consecutive pixels. 
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The pixel with its column amplifier has been simulated for a large range of photodiode 
currents as seen on Figure 11. The output voltages are plotted as a function of input 
photocurrents. Good output linearity is observed, even at very low photocurrent. 

3.4 Design of the Sequential Control Unit 

A framework dedicated to the sequential readout of successive rows and columns has been 
designed. The system offers the availability to program the location and the size of any 
window of interest in the whole image. Advantages of a such technology are large: random 
access of any pixel or subwindow, increase of acquisition frequency, ... In our main goal of 
face tracking, these aspects are crucial because only windows of interest will be scanned by 
the sensor. Each line of pixels included in the subwindow follows the same sequence of 
reading but at different moments in order to multiplex the outputs. As seen previously, each 
pixel is controlled by 3 signals: reset, shutter, and select. The Figure 12 shows the readout 
sequence of 2 successive rows.  

Figure 12. Timing diagram of the rows control signals 

To implement the sequential control, we need counters with variable inputs: the first one for 
the starting position of the subwindow and the second one for its ending position. Our 
design is inspired by a 74HC163 counter from Philips Semiconductors. This circuit starts 
counting from a value which can be freely selected. It has been modified in order to add the 
second input corresponding to the stop value of the counting process. 
Associated with the counters, the control unit uses row decoders to active the pixels rows. 
The row decoder is adopted from (Baker et al., 1998). A long L MOS transistor is used to pull 
low the output of the decoder when that particular output is not selected. The result is that 
all decoder outputs are zero except for the output that is selected by the input address. Two 
inverters are used to drive the word line capacitance. Finally, a multiplexer is used to select 
and pass output voltages from the column amplifiers. We use a simple design based on 
pairs of transistors Nmos and Pmos. 

3.5 Design of the Analog to Digital Converter 

Most designs of video-rate analog to digital converters (ADC's) of 8 bit resolution are 
implemented through flash architectures and bipolar technologies (Lewis et al., 1992). In 
recent years, pipelined switched capacitor topologies have emerged as an approach to 
implement power efficient nyquist-rate ADCs that have medium-to-high resolution (10-13 
bits) at medium-to high conversion rates (Thomson & Wooley, 2001). Here, we present a 8 
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bit ADC operating at a 5 V supply that achieves a sample rate of about 20 Msamples/s. An 
experimental prototype of this converter has been implemented in a 0.6 μm CMOS process. 

Figure 13. Pipeline ADC Architecture and Associated Circuit 

Figure 13 shows the block diagram of a 1-bit per stage pipelined A/D converter. The 
pipelined ADC consists of N stages connected in series; two stages are only shown on the 
Figure 13. Each stage contains a sample and hold (S/H), a comparator, a subtractor and an 
amplifier with a gain of two. The pipelined ADC is an N-step converter, with 1 bit being 
converted per stage. The most significant bits are resolved by the first stages in the pipeline. 
The result of each stage is passed to the next stage in which the cycle is repeated. A pipeline 
stage is implemented by the conventional switched capacitor (Sonkusale et al., 2001) as 
shown in the Figure 13. Each stage consists of two capacitors C1 and C2 for which the values 
are nominally identical, an operational amplifier and a comparator. Each stage operates in 
two phases: a sampling phase and a multiplying phase. During the sampling phase φ1, the 
comparator produces a digital output Di. Di is equal to 1 if Vin > Vth and Di is 0 if Vin < Vth,
where Vth is the threshold voltage defined as the mean value between Vrefp and Vrefn. Vrefp is 
defined as the positive reference voltage and Vrefn as a negative reference voltage. During 
the multiplying phase, C2 is connected to the output of the operational amplifier and C1 is 
connected to either the reference voltage Vrefp or Vrefn, depending on the bit value Di. If Di = 
1, C1 is connected to Vrefp, resulting in the following remainder Vout(i) = 2 Vin (i) - DiVrefp.
Otherwise, C1 is connected to Vrefn, giving an output voltage Vout(i) = 2 Vin (i) - 

iD Vrefn.

Figure 14. Simulation of one stage A/D converter 
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The simulation of one stage A/D converter can be seen on the Figure 14 on which the 
computed bit, the remainder, the input value and the clock are presented from top to 
bottom. The input value is Vin = 3V involving the output bit Di obtains a high value. The 
remainder is then evaluated as the difference between 2Vin and Vrefp (ie 2 * 3 - 5 = 1V). 

Figure 15. Layout of the test chip 

3.6 Preliminary results 

We have presented here results from simulations intended to evaluate and validate the 
efficiency of our approach. Every element described in these sections has been designed on a 
standard 0.6 μm CMOS Process. Two test circuits have been sent in foundry to be fabricated 
in 2004 and 2005. Unfortunately, the first circuit has some bugs in the design of analog 
output multiplexer preventing any measure. The second circuit (see Figure 15) includes any 
of the individual structures depicted in the previous sections of this chapter, except the 
ADC. So, every structure has been validated by experimental measures, showing the 
validity of the concepts embedded in the chip design. 
Actual work focuses on the last part of the sensor ie the development of the feature 
extracting architecture dedicated to the mean evaluation of consecutive pixels. For this 
purpose, two main approaches are envisaged. First, the mean values of 4 consecutive pixels 
can be digitally computed and takes place after the ADC in the chip. This can be done by an 
adder of four 8-bit words producing a 10-bit result. The average of the four values can be 
easily extracted on the 8 MSB (Most Significant Bits) of the results. Second, the evaluation of 
the mean values can be made with the analog signals going out the column amplifiers. A 
dedicated circuit must take place between the column amplifiers and the ADC. Our main 
short-term perspective is to explore these two potential solutions, to design the 
corresponding chips and to evaluate their performances. 



Face Recognition 138

The next effort will be the fabrication of a real chip in a modern process such as a 130 nm 
CMOS technology. The main objective will be the design of a 256 x 256 pixel array with a 
pixel size of less than 10 μm x 10 μm. This chip will include all the necessary electronics 
allowing the extraction of parameters which can serve as inputs of a RBF neural network 
dedicated to face recognition. 

4. Development of a fast panoramic face mosaicking and recognition system 

Biometry is currently a very active area of research, which comprises several subdisciplines 
such as image processing, pattern recognition, and computer vision (Kung et al., 2005). The 
main goal of biometry is to build systems that can identify people from some observable 
characteristics such as their faces, fingerprints. Faces seem to have a particularly strong 
appeal for human users, in part because we routinely use facial information to recognize 
each other. Different techniques have been used to process faces such as neural network 
approaches (Howel & Buxton, 1998) eigenfaces (Turk & Pentland, 1991) and Markov chains 
(Slimane et al., 1999) As the recent DARPA-sponsored vendor test showed, most systems 
use frontal facial images as their input patterns (Phillips et al., 2003) As a consequence, most 
of these methods are sensitive to pose and lighting conditions. One way to override these 
limitations is to combine modalities (color, depth, 3-D facial surface, etc.) (Tsalakanidou et 
al., 2003, Hehser et al., 2003, Bowyer et al., 2004). 
Most 3-D acquisition systems use professional devices such as a travelling camera or a 3-D 
scanner (Hehser et al., 2003, Lu et al., 2004). Typically, these systems require that the subject 
remain immobile during several seconds in order to obtain a 3-D scan, and therefore these 
systems may not be appropriate for some applications, such as human-expression 
categorization using movement estimation, or real-time applications. Also, their cost can 
easily make these systems prohibitive for routine applications. In order to avoid using 
expensive and time-intensive 3-D acquisition devices, some face recognition systems 
generate 3-D information from stereo vision (Wang et al., 2003). Complex calculations, 
however, are needed in order to perform the required self-calibration and 2-D projective 
transformation (Hartly et al., 2003). Another possible approach is to derive some 3-D 
information from a set of face images, but without trying to reconstitute the complete 3-D 
structure of the face (Tsalakanidou et al., 2003). 
For the last ten years, our laboratory has worked on face processing and obtained results for 
2-D face tracking and recognition. The goal of the present section is to describe a system that 
is simple and efficient and that also can potentially process 3-D faces in real time. Our 
method creates panoramic face mosaics, which give some 3-D surface information. The 
acquisition system is composed of five cameras, which together can obtain simultaneously 
five different views of a given face. One of its main advantages is easy setup and very low 
cost. This section is organized as follows. First, we describe our acquisition system. Then, we 
describe the method for creating panoramic face mosaics using successive linear 
transformations. Next, we present experimental results on panoramic face recognition. 
Finally, we conclude and explore possible follow-ups and improvements. 

4.1 Acquisition system 

Our acquisition system is composed of five Logitech 4000 USB cameras with a maximal 
resolution of 640 x 480 pixels. The parameters of each camera can be adjusted 
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independently. Each camera is fixed on a height adjustable sliding support in order to adapt 
the camera position to each individual (see Figure 16). The acquisition program grabs 
images from the five cameras simultaneous (see Figure 16). These five images are stored in 
the PC with a frame data rate of 20 x 5 = 100 images per second. 

Figure 16. Acquisition system with 5 cameras and example of 5 images collected from a 
subject 

The human subject sits in front of the acquisition system, directly facing the central camera 
(camera 3). Different color markers are placed on the subject’s face. These markers are used 
later on to define common points between different face views. The positions of these color 
markers correspond roughly to the face fiduciary points. There are ten markers on each face, 
with at least three markers in common between each pair of face views. 

4.2 Panoramic Face Construction 

Several panoramic image construction algorithms have been already introduced. For 
example, Jain & Ross (2002) have developed an image-mosaicking technique that constructs 
a more complete fingerprint template using two impressions of the same finger. In their 
algorithm, they initially aligned the two impressions using the corresponding minutiae 
points. Then, this alignment was used by a modified version of the iterative closest point 
(ICP) algorithm in order to compute a transformation matrix that defines the spatial 
relationship between the two impressions. A resulting composite image is generated using 
the transformation matrix, which has six independent parameters: three rotation angles and 
three translation components about the x, y, and z axes.  
For faces, Liu & Chen (2003) have proposed using facial geometry in order to improve the 
face mosaicking result. They used a spherical projection because it works better with the 
head motion in both horizontal and vertical directions. They developed a geometric 
matching algorithm in order to describe the correspondences between the 2-D image plane 
space QUV and the spherical surface space Oαβ.
In general, the methods using nonlinear transformations and iterative algorithms obtain 
very correct results in terms of geometric precision. However, these methods require a large 
number of computations and therefore cannot be easily implemented in real time. Because 
ultimately we want to be able to build a real-time system, we decided to use simple (and 
therefore fast) linear methods. Our panoramic face construction algorithm is performed in 
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three stages: (1) marker detection and marker coordinate calculation, (2) transformation 
matrix estimation and image linear transformation, and (3) creation of panoramic face 
mosaics. 

4.2.1 Marker Detection and Marker Coordinate Calculation 

The first step of the algorithm corresponds to the detection of the markers put on the 
subject’s face. The markers were made of adhesive paper (so that they would stick to the 
subject’s face). We used three colors to create ten markers (four blue, three yellow, and three 
violet ones). In order to detect the markers, we used color segmentation based on the hue 
and saturation components of each image. This procedure allows strong color selectivity 
and small sensitivity to luminosity variation. First, color segmentation gives, from the 
original image a binary image that contains the detected markers. Then, in order to find the 
marker coordinates, we used a logical AND operation, which was performed between the 
binary image and a grid including white pixels separated by a fixed distance. This distance 
was chosen in relation to the marker area. A distance of 3 pixels allows us to capture all 
white zones (detected markers). Finally, we computed the centers of the detected zones. 
These centers give the coordinates of the markers in the image. 

4.2.2 Transformation-Matrix Estimation and Image Linear Transformation 

We decided to represent each face as a mosaic. A mosaic face is a face made by 
concatenation of the different views pasted together as if they were on a flat surface. So, in 
order to create a panoramic face we combine the five different views. We start with the 
central view and paste the lateral views one at a time. Our method consists of transforming 
the image to be pasted in order to link common points between it and the target image. We 
obtain this transformed image by multiplying it by a linear transformation matrix T. This 
matrix is calculated as a function of the coordinates of three common markers between the 
two images. C1 and C2 represent, respectively, the coordinates of the first and second 
images: 
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Then, we generalize this transformation to the whole image: x = a1x’ + b1y’ + c1 and 
y = a2x’ + b2y’ + c2. This linear transformation corresponds to a combination of image 
rotation, image translation, and image dilation. The two first images on Figure 17 represent 
an example of the linear transformation on the image 4. The right part of the figure depicts 
the superposition of image 3 (not transformed) and image 4 (transformed). 

4.2.3 Creation of Panoramic Face Mosaics 

We begin the panoramic face construction with the central view (image 3). From the 
superposition of the original image 3 and transformed image 4 (see Figure 17), we remove 
redundant pixels in order to obtain a temporary panoramic image 3-4 (see Figure 18, first 
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image). In order to eliminate redundant pixels, we create a cutting line that goes through 
two yellow markers. This panoramic image 3-4 temporarily becomes our target image. We 
repeat this operation for each view. First, image 2 is pasted on the temporary panoramic 
image 3-4 in order to obtain a new temporary panoramic image 2-3-4 (see Figure 18, second 
image). The corresponding transformation matrix is generated using three common violet 
markers. Then, we compute the transformation matrix that constructs image 2-3-4-5 (see 
Figure 18, third image) using two blue markers and one yellow marker. Finally, image 1 is 
pasted to the temporary panoramic image 2-3-4-5 with the help of two blue markers and one 
violet marker (see Figure 18, fourth image). 

Figure 17. From left to right, Image 4 before and after the linear transformation, original 
image 3 and superposition of transformed image 4 and original image 3 

Figure 18. Mosaicking results:  image 3-4, image 2-3-4, image 2-3-4-5, and , image 1-2-3-4-5 

Figure 19 displays some examples of the final panoramic face composition from five views. 
This composition preserves some of the face shape. For example, the chin of a human face 
possesses more curvature than other parts; therefore the bottom part of the panoramic face 
is composed of five views: 1, 2, 3, 4, and 5. On the other hand, three views (1, 3, and 5) 
suffice to compose the top part. Figure 19 shows final mosaic faces obtained after automatic 
contour cutting. For this, we first surround the panoramic face with a circle that passes by 
the extreme points of the ears in order to eliminate the background. Then, we replace 
segments of this circle by polynomial curves using extreme-point coordinates located with 
the help of the marker positions. Note that these ten markers allow us to link common 
points between five views. The coordinates of the markers are computed in the marker 
detection process and arranged in a table. Then, all ten markers are erased from all five 
views, using a simple image-processing technique (local smoothing). This table of marker 
coordinates is regenerated for each temporary panoramic image construction. The goal of 
marker elimination is to use panoramic faces for face recognition or 3-D face reconstruction. 
As compared to the method proposed by Liu & Chen (2003) panoramic faces obtained using 
our model are less precise in geometry. For example, Liu and Chen used a triangle mesh in 
order to represent a face. Each triangle possesses its own transformation parameters. In our 
system, a single transformation matrix is generated for a complete image. Liu and Chen 
have also established a statistical modeling containing the mean image and a number of 
“eigenimages” in order to represent the face mosaic. Our objective is to study an efficient 
and simple algorithm for later hardware implantations. Methods necessitating a large 
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calculation volume and a large memory space are not adapted to embedded systems. In 
order to test and validate our panoramic face mosaicking algorithm, we propose, in the next 
sections, a study of face recognition based on the eigenface model proposed by Turk & 
Pentland (1991). With our method, we created a panoramic face database composed of 12 
persons x 4 expressions x 2 sessions = 96 panoramic faces. The two acquisition sessions were 
performed over an interval of one month. The four expressions were: neutral, smile, 
deepened eyebrows, and eyes closed (see Figure 19). We implemented a face recognition 
procedure using this database. 

Figure 19. Examples of panoramic faces 

4.3 Face Recognition Description 

Over the past 25 years, several face recognition techniques have been proposed, motivated 
by the increasing number of real-world applications and also by the interest in modelling 
human cognition. One of the most versatile approaches is derived from the statistical 
technique called principal component analysis (PCA) adapted to face images 
(Valentin et al., 1994). Such a approach has been used, for example, by Abdi (1988) and 
Turk & Pentland (1991) for face detection and identification. PCA is based on the idea that 
face recognition can be accomplished with a small set of features that best approximates the 
set of known facial images. Application of PCA for face recognition proceeds by first 
performing a PCA on a well-defined set of images of known human faces. From this 
analysis, a set of K principal components is obtained, and the projection of the new faces on 
these components is used to compute distances between new faces and old faces. These 
distances, in turn, are used to make predictions about the new faces. Technically, PCA on 
face images proceeds as follows. The K face images to be learned are represented by K 
vectors ak, where k is the image number.  Each vector ak is obtained by concatenating the 
rows of the matrix storing the pixel values (here, gray levels) of the k’th face image. This 
operation is performed using the vec operation, which transforms a matrix into a vector (see 
Abdi et al. (1995) for more details). 
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The complete set of patterns is represented by a I x K matrix noted A, where I represents the 
number of pixels of the face images and K the total number of images under consideration. 
Specifically, the learned matrix A can be expressed as A = P Δ QT where P is the matrix of 
eigenvectors of AAT, Q is the matrix of eigenvectors of ATA, and Δ is the diagonal matrix of 
singular values of A, that is, Δ=Λ1/2, with Λ, the matrix of eigenvalues of AAT and ATA. The 
left singular eigenvectors P can be rearranged in order to be displayed as images. In general, 
these images are somewhat facelike (Abdi, 1988) and they are often called eigenfaces. Given 
the singular vectors P, every face in the database can be represented as a weight vector in 
the principal component space. The weights are obtained by projecting the face image onto 
the left singular vectors, and this is achieved by a simple inner product operation: 
PROJx=XTPΔ-1 where x is a facial vector, corresponding to an example face in the training 
process or a test face in the recognition process. Therefore, when a new test image whose 
identification is required is given, its vector of weights also represents the new image. 
Identification of the test image is done by locating the image in the known face database 
whose weights have the smallest Euclidean distance from the weight of the test image. This 
algorithm, employed by Turk and Pentland is called the nearest neighbor classification rule. 

4.4 Experimental results on Panoramic Face Recognition 

For these first tests, panoramic faces were analyzed using the original 240x320-pixel image 
(spatial representation) without preprocessing. The database consisted of 12 
persons x 4 expressions x 2 1sessions = 96 panoramic faces, and was divided into two 
subsets. One subset served as the training set, and the other subset as the testing set. As 
illustrated in Figure 19, all these panoramic faces possess a uniform background, and the 
ambient lighting varied according to the daylight. 
From the panoramic face database, one, two, three, or four images were randomly chosen 
for each individual in order to create the training set (number of patterns for learning per 
individual, p=1, 2, 3, 4). The rest of the panoramic faces were used in order to test the face 
recognition method. For example, when p=1, the total number of training examples is equal 
to 1 x 12 persons = 12, and the number of test samples for recognition is equal to 96 12=84. 
Therefore, for each individual, only one panoramic face is learned in order to recognize 
seven other images of this person. Several executions of our MATLAB program were run for 
each value of p, using randomly chosen training and testing sets. Then we computed the 
mean performance. Using the nearest neighbour classification rule, the panoramic face 
identity test is done by locating the closest image in the known face database. Therefore, the 
system can make only confusion errors (i.e., associating the face of one person with a test 
face of another). Correct panoramic face recognition rates go from 70 % when p=1 to 93.2% 
when p=4. 
We added a discriminant analysis stage in the face recognition process so as to determine 
the number of necessary eigenvectors. This analysis, called the jackknife 
(Yang & Robinson, 2001) reorders eigenvectors, not according to their eigenvalues, but 
according to their importance for identification. Specifically, we computed the ratio of the 
between-group inertia to the within-group inertia for each eigenvector. This ratio expresses 
the quality of the separation of the identity of the subject performed by this eigenvector. The 
eigenvector with the largest ratio performs the best identity separation, the eigenvector with 
the second largest ratio performs second best, etc. We observe that it suffices to use only 23 
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eigenvectors to reach the maximum recognition rate (93.2%). Additional eigenvectors do not 
add to the quality of the identification. 
We also tested the frequential behavior of our recognition system. We can observe that the 
frequential spectra of a panoramic face are well centered at low frequencies. This allows us 
to apply a lowpass filter in order to reduce the size of the data set to process. Only 
80 x 80 FFT amplitude values of low frequencies were used for the recognition system. 

Figure 20. (a) original image, (b) original image with added Gaussian noise, (c) FFT image 
using the spectrum amplitude of (b) and the phase of (a) and (d) FFT image using the 
spectrum amplitude of (a) and the phase of (b) 

We applied the same training and testing process as used in spatial representation. We 
obtain a better recognition rate with the frequential representation (97.5%) than with the 
spatial representation (93.2%). This advantage of the frequential representation is due to the 
fact that for face images, the spectrum amplitude is less sensitive to noise than the spectrum 
phase. We confirmed this interpretation by using a panoramic face image to which noise 
was added. Figure 20(a) shows a original panoramic face. Figure 20 (b) displays the same 
panoramic face image with added noise. We first obtained the FFTs of these two images and 
then their inverse FFTs in the two following manners: (1) using the spectrum amplitude of 
the noised image and the spectrum phase of the original image (see Figure 20-c) and (2) 
using the spectrum phase of the noised image and the spectrum amplitude of the original 
image (see Figure 20-d). 
These results show that the face obtained with the first configuration is closer to the original 
face than the face obtained with the second configuration. This confirms that the spectrum 
amplitude is less sensitive to noise than the spectrum phase. 

4.5 Panoramic face recognition with negative samples 

In order to evaluate the behavior of our system for unknown people, we added four people 
to the test database. These panoramic faces were obtained as described in Sec. 4.2. Table 4 
displays the performance of different tests. In order to reject these unknown faces, we 
established a threshold of Euclidean distance. Because we are working on applications of 
typical access control, where confusion is more harmful than nonrecognition, we decided to 
use a severe acceptance threshold in order to reject intruders. Note that the acceptance 
threshold is constant for all tests. Efficiency is defined as follows: 
• Recognition: Correct recognition of a panoramic face. 
• Nonrecognition: A panoramic face has not been recognized. 
• Confusion: A panoramic face is confused with an intruder. 
These performance results are obtained using the frequential representation and show that 
performance declines in comparison with tests without negative samples. 
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1 12 8 116 25.4 5.85 68.75 
2 24 13 104 12.74 4 83.26 
3 36 18 92 7.58 3.5 88.92 
4 48 24 80 4.82 2.8 92.38 

Table 4. Results of panoramic face recognition with negative samples  

4.6 Discussion 

In this section, we have proposed a fast and simple method for panoramic face mosaicking. 
The acquisition system consists of several cameras followed by a series of fast linear 
transformations of the images. The simplicity of the computations makes it possible to 
envisage real-time applications.  
In order to test the recognition performance of our system, we used the panoramic faces as 
input to a recognition system based on PCA. We tested two panoramic face representations: 
spatial and frequential. We found that a frequential representation gives the better 
performance, with a correct recognition rate of 97.46%, versus 93.21% for spatial 
representation. An additional advantage of the frequential representation is that it reduces 
the data volume to be processed and this further accelerates the calculation speed. We used 
negative samples for the panoramic face recognition system, and the correct recognition rate 
was 92.38%.Experimental results show that our fast mosaicking system provides relevant 3-
D facial surface information for recognition application. The obtained performance is very 
close or superior to published levels (Howell & Buxton, 1998, Slimane et al., 1999, 
Tsalakanidou et al., 2003). 
In the future, we plan to simplify our acquisition system by replacing the markers with a 
structured light. We also hope to use our system without markers. For this, we will detect 
control points on faces (corners, points of maximum curvature, etc.). Another line of 
development is to improve the geometry quality of our panoramic face mosaic construction 
(Liu & Chen, 2003, Puech et al., 2001). For this, we will use realistic human face models. We 
are also exploring processing panoramic face recognition using other classifiers with more 
variable conditions. 

5. Conclusions 

In this chapter, we have presented three dedicated systems to face recognition developed by 
our research team since 2002. Our main objective was motivated by the implementation on 
embedded systems of efficient models of unconstrained face tracking and identity 
verification in arbitrary scenes. The main goal of these various systems is to provide efficient 
algorithms that only require few hardware in order to obtain high success rates of face 
recognition with high real time constraints. 
The first system is a real time vision system that allows us to localize faces in video 
sequences and verify their identity. These processes are image processing techniques and 
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the radial basis function (RBF) neural network approach. The robustness of this system has 
been evaluated quantitatively on eight video sequences. We have also described three 
hardware implementations of our model on embedded systems based, respectively, on field 
programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital 
signal processor (DSP). For each configuration, we have analyzed the algorithm complexity 
and present results of implementations in terms of resources and processing speed. 
The main results of these first implementations have highlighted the need of a dedicated 
hardware such as an artificial retina embedding low level image processing in order to 
extract input vectors of the RBF neural network. Such a system could unload a consequent 
calculation part of FPGA. So, the second part of the chapter was devoted to the description 
of the principles of an adequate CMOS sensor. For this purpose, a current mode CMOS 
active sensor has been designed using an array of pixels that are amplified by using current 
mirrors of column amplifiers. This circuit is simulated using Mentor GraphicsTMsoftware 
with parameters of a 0.6 μm CMOS process. The circuit is able to realise captures of 
subwindows at any location and any size in the whole image and computes mean values of 
adjacent pixels which can serve as inputs of the RBF network. 
In the last section of this chapter, we present some new results on a system that performs 
mosaicking of panoramic faces. Our objective was to study the feasibility of panoramic face 
construction in real time. We built a simple acquisition system composed of five standard 
cameras, which together can take simultaneously five views of a face at different angles. 
Then, we chose an easily hardware-achievable algorithm, consisting of successive linear 
transformations, in order to compose a panoramic face from these five views. In order to 
validate our system, we also conducted a preliminary study on panoramic face recognition, 
based on the principal-component method. Experimental results show the feasibility and 
viability of our system and allow us to envisage later a hardware implementation. 
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