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Abstract. The incredible rising of on-line social networks gives a new
and very strong interest to the set of techniques developed since several
decades to mining graphs and social networks. In particularly community
detection methods can bring very valuable informations about the struc-
ture of an existing social network in the Business Intelligence framework.
In this chapter we give a large view, firstly of what could be a commu-
nity in a social network, and then we list he most popular techniques
to detect such communities. Some of these techniques were particularly
developed in the SNA context, while other are adaptations of classical
clustering techniques. We have sorted them in following an increasing
complexity order, because with very big graphs the complexity can be
decisive for the choice of an algorithm.

1 Introduction

In the actual interconnected world, and the rising of online social net-
works the graph mining and the community detection become completely
up-to-date. If the interest for social networks analysis exists, even in
germ, from the beginning of sociology, in the works of Emile Durkheim
or Auguste Comte, a more systematic study started in the 30’s with the
work of Moreno, Davis and Mayo (see [1] and [2] for a more complete
state of the art of the social network analysis). And this systematic study
includes the use of graph theory. The theory of graphs exists since Eu-
ler’s solution of the Knigsberg’s bridges problem in 1736, but networks,
treated in the pioneer times of Euler (for graph theory) and Moreno
(for social network analysis), contained only some dozens nodes at most,
while the rising of computer science and one of its fields, the data anal-
ysis (see [3] or [4] for a good introduction this latter), allow to analyze
graphs of big sizes, and permit to develop one of the task of social net-
work analysis: finding groups with high concentrations of relations within
the group and low concentration between these groups, which is called
community detection [5], [6] [7].
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This overview of the community detection algorithms is organized as fol-
low : in section 2 we introduce the basics of social network and network
theory. In section 3 we give a review of the definition of a cluster or
community in social network analysis. Then in section 4 we take a look
to the set of measures which can be used in clustering of social networks.
Section 5, 6, 7 and 8 give a review of the most important clustering meth-
ods. The order chosen for this review is directly linked to the complexity
: we begin with the “cheapest”, and then more scalable (partitional and
hierarchical methods), then we continue with a more greedy but very
efficient technique : the spectral clustering, and we end with the Galois
lattices which are costly methods, but with very rich results. Then we
close this part with a discussion.

2 Social Networks

Even if Moreno [8] was the first to use points and lines to represent so-
cial configurations, it was Cartwright and Harary [9] which made the link
with the graph theory, and thus introduced the actual graph represen-
tation of social network (see [10] for a review of the evolution of social
networks representation): individuals are represented using points, called
nodes or wertices, and social relationships are represented using lines,
called edges or links, between nodes. In figure 1 we show an example of

Zachary's Karate Club Network

Fig. 1. A classical example of social network : the Zachary’s Karate Club.

social networks using this graph representation: The first one (fig. 1) is
a the well-known graph [11]: the Zachary’s Karate Club, it consists in 34
vertices, the members of a karate club in the United States, who were
observed during a period of three years. Edges connect individuals who
were observed to interact outside the activities of the club.
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Let use introduce here the basic concepts of graph theory. A graph G
is defined as a pair of sets: G = (V, E), where V is the set of vertices
or nodes, and FE the set of edges or links which connect vertices. The
two vertices connected by an edge are called endpoints of this latter.
Conversely the edges connecting a vertice to the other vertices are called
incident edges of the node. The number of vertices |V| = n is called the
order the graph, while the number of edges |E| = m is called the size of
the graph. If |E| = n(n — 1)/2, i.e. if any pair of vertices are connected,
then the graph is called complete .
A graph can be directed or undirected. In the first case, also called digraph,
an edge is denoted as pair (v, w), where v is the origin and w the target,
and in the social networks framework it means: “v is in relation with w”,
the opposite being true if and only if there exists an edge (w,v). If the
graph G is undirected, then an edge is denoted as the set of its vertices :
{v,w}. For the sake of simplification, when we will give a definition valid
in both cases, we will use this last notation.
Most of the times, vertices are labeled, but it can also be the case for
edges, then G is called a labeled graph. Moreover, if exists a function
w : E — R that assigns a weight for each edge, then G is a weighted
graph.
Two vertices v and w are called neighbors or adjacent, if they are con-
nected by an edge. The set of neighbors of a node v, denoted I'(v), is
called its neighborhood.
The topology of the graph can be captured in the adjacency matrizx A =
(as,7): where
1if (vi,vj) € E,

%ig = {O otl(wrwijs)e. (1)
If G is a weighted graph, then a; ; = w(v;,v;) and in this case we prefer
to use the notation W = (w; ;) = (w(vs, v;)). Of course in an unweighted
graph w(vi, v;) € {0,1}. For an unweighted graph, the degree of a vertice
v, denoted deg(v), is defined as the number of incident edges, but a more
general definition is given using the weights matrix W:

deg(v;) = Z'U)i’j. (2)

A subgraph G' = (V',E') of a graph G = (V,E) issuch V' CV, E' C E
and {v,u} € E' implies v,u € V'. The graph G is a supergraph of G'. A
subset C of V' can define an induced subgraph G(C) = (C, E(C)), where

E(C)={(v,u) € Elv,u e C} (3)

A complete subgraph is called a clique.
The density of a subgraph C(V(C), E(C)) is the ratio between |E(C')|
and the maximum possible number of edges:

E©)|
VONV(©)—1)/2 )

5(G(C) =

this definition still being valid for the whole graph G.
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A partition of the vertices set V in two subsets C and V' \ C is called a
cut. The cut size, denoted ¢(C, V'\ C) is the number of edges of G joining
vertices of C' with vertices of V'\ C:

c(C,V\C) =|{{u,v} € Elue C,v e V\C}| (5)

Both set C and V' \ C define the cut, but usually the cut is identified by
the smaller one.

A path between two vertices v and v in a graph G is a sequence of edges
starting with vo = v an such the last one is v = w:

{U’Ul}v{'ul:v?}v"' 7{Uk*17u}' (6)

A path P is also a subgraph of G: P = (V(P), E(P)) with V(P) =
{vo, -+ ,vp1} and E(P) = {{vo,v1},{vi,v2}, -+, {vk—1,vk}}. The length
of a path is the number of edge in this path, k in expression (6). A shortest
path or geodesic between two vertices is a path of minimal length, and
the distance between two vertices is the length of a geodesic between
these two vertices. The diameter of a graph is the maximal distance that
can be found between two nodes.

If no vertice is repeated, then the path is simple. If there exists a path
between two vertices v and u, they are connected. The graph is also called
a connected graph if for any pair of vertices v and wu, there is, at least,
one path connecting v and u. Otherwise, i.e. if there is some vertices
which cannot be reached from other, then the graph is disconnected. If
there is two nodes without path between them, then there is, at least
two connected subgraphs, and a maximal connected subgraph is called a
connected component. The edge connectivity of a graph G is the minimal
number of nodes to be removed so that G is disconnected, and is denoted
k(G).

A cycle is a path such the first and the last node are equal, i.e. vo = vi. A
graph without cycle is called a forest or an acyclic graph, and a connected
forest is a tree. The edge connectivity k(T of a tree T is equal to one,
because, if the tree contains n vertices, it had n — 1 edges, and if any of
these is removed, the tree is divided in two disconnected trees.

A connected acyclic subgraph G’ = (V', E’) such V' = V| i.e. all the
vertices of G are also in G, is called a spanning tree. Every connected
graph contains a least a spanning tree. For weighted graphs, a minimum
spanning tree is the spanning tree such the sum of the weights of the
edges is minimal. We can define a maximum spanning tree similarly.

3 Community Definitions

In the clustering framework a community is a cluster of nodes in a graph
[12], but a very important question is what is a cluster? Even in the
clustering literature there is non complete agreement between all authors
(see [13] for a review), but most of the time, the objects in a cluster
must be more similar than objects out of this cluster: the objects are
clustered or grouped based on the principle of maximizing the intra-class
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similarity and minimizing the inter-class similarity. Let us remark that,
this definition implies the necessity to define the notions of similarity
measure and/or cluster fitness measure.

In the graph framework, we can agree that the goal of clustering is to
divide the data set into clusters, such nodes of a cluster must be more
connected with nodes of this cluster, than with nodes outside of the
cluster 7] and [6]. It implies that it must exists at least a path between
two nodes of a cluster, and this path must be internal to the cluster.
Then the transposition of the above definition of a cluster into the graph
context could be the following: the vertices are clustered or grouped based
on the principle of maximizing the intra-class connections and minimiz-
ing the inter-class connections.

There is several manner to quantify these internal and external connec-
tions of a cluster C. A first one is to divide the degree of a vertice in two
parts: the internal degree deg;(v,C) and the external degree deg. (v, C):

degi(v,C) = |I'(v) N C]| (7)

dege(v,C) = |[I'(v) N (V\ O)]. (®)
And, as I'(v) ={I'(v)NC}U{I'(v)N(V\C)}

deg(v) = deg; (v, C) + dege(v, C). 9)

Of course, if dege(v,C) = 0, then v € C is surely a good assignation for
v, and conversely if deg;(v,C') = 0, then we must have v ¢ C.

The internal and external degrees, can be seen as the “vertice’s point of
view” of indicators of the belonging to a cluster. For a “cluster’s point
of view”, we must take a look at the notion of graph density. The intra-
cluster density 0;(C) and the inter-cluster density 6.(C') are adapted
versions of the density of a subgraph defined by expression (4), the first
one being the quotient of the number of internal edges of C and the
maximal possible number of internal nodes:

| {{uwv}luv e CY |
MO = e

(10)

and the second one being the result of the number of edges with one
vertice inside C', and the other outside of C, divided by the maximal
possible number of edges in this configuration:

_ |{{woHueCug Y|
O ="eer—ey (D

Of course for a given cluster C' we expect §;(C) and 6.(C) to be sub-
stantially, respectively, larger and smaller than the average density §(G).
And, in a “partition’s point of view”, the internal density of the partition,
given by the sum of densities over all the clusters, must be appreciably
higher than the density of the graph §(G).

The comparison of the density of inner ties versus the average density of
the graph, leads to define a community in comparison to the rest of the
graph, but a community can be considered independently of the graph as
a whole. Local definitions of communities [6], focus only on the cohesion
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of the studied subgraph, including possibly its direct neighborhood, but
ignoring the rest of the graph. In [2] Wasserman identify four criteria to
define a cohesive subgroup: complete mutuality, reachability, nodal degree,
internal versus external cohesion.

The concept of complete mutuality states that, in a very strict sense,
in a community, all member of a subgroup must be “friends” with all
members of the subgroup. In graph theory, it corresponds to a clique
[14].

But the definition of a community as a clique is very too strict that is
why relaxed definitions of the notion of clique leads to the reachability.
An n-clique (or k-clique) [15] is a maximal subgraph such, for any pair
of vertices, there exists at least a geodesic no larger than n (or k). The
classical clique is then a 1l-clique. But a geodesic path of an n-clique
could run outside of this latter, and then the diameter of the subgraph
can exceed n. That is why the notion of n-club and n-clan was suggested
[16]. An n-clan is an n-cliqgue with diameter not larger than n, while an
n-club is a maximal subgraph of diameter n.

The use of the nodal degree to define a community imposes a constraint
on the number of adjacent vertices. A k-plex [17] is a maximal subgraph
such each vertice is adjacent to all other vertices of the subgraph except
for k of them. Conversely a k-core is a maximal subgraph such each
vertice is adjacent to, at least, k other vertices of the subgraph [18].
Finally, comparing internal versus external cohesion, an LS-set [19], or
strong community [20] is a subgraph C such for each node v € C we have
degi(v,C) > dege(v,C).

Another point of view to define a community is to say that the number
of ties with the outside of the community must be low. That leads to
use the notion cut size to define a cluster, and to try to minimize it.
Rather than using directly the cut size, the conductance [21] ¢(C) of a
community C' is defined to taking into account the order of the cluster
and the outside of the cluster:

_dev\o)
*(C) = min{deg(C), deg(V \ C)}

(12)

where deg(C) and deg(V \ C) are the total degrees of C' and of the rest
of the graph. The minimum of the conductance is obtained when a C
community have a low cut size and when the total degree of the cluster
and its complement are equal [22].
The cut size is sometime also called the external degree of a community
C

dege(C) = |{{u,v} € Elu € S,v e V\ S} (13)

while the internal degree is defined by
degi(C) = [{{u, v} € Elu,v € S} (14)

and then deg(C) = deg;(C) + dege(C). Internal and external degrees are
used to define the relative density [23]:

plc) = G, (15)
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A community with strong inner ties must have a higher p.

Another idea to define a community, is given using the possible flow
of information. In a group, given two nodes, at least one shortest path
between these nodes, passing through the edges of the group must exist.
Conversely if an edge is on many shortest path between several nodes,
we can suppose that it is a connection edge between two communities.
Finding the connecting edges permits to find the connected communities.
It is the idea of the betweenness, and more precisely the edge (or site)
betweenness introduced by [24]. The figure 2 gives an illustration of a
node with a maximum edge betweenness.

Edge Betweenness

® e
@
Ne @ o
® o,
®

Fig. 2. An example of maximum edge betweenness (edge between nodes 2 and 6).

Finally, the notion of edge connectivity k is also used to define a com-
munity: an highly connected subgraph (HCS) [25] is a subgraph C € G

such
n

KO) > 5. (16)

4 Measure for Clusters

Most of the clustering algorithms are based on one or several measures, to
be optimized and/or to be used to compare different cluster affectations.
We are going to give here the most popular ones.

If we can embed the graph into a n-dimensional Euclidean space, then
we can use the classical distances like Fuclidean distance, Manhattan
distance or cosine similarity, but this embedding into a n-dimensional
space can be seen as an artificial construction, and then a distance defined
in such a space, used on a graph, is subject to the same criticism. It
can be more suitable to work directly with informations included in the
adjacency matrix, defining a distance based on this latter [26],[2]:



124 Etienne Cuvelier and Marie-Aude Aufaure

d@j = Z (ai’k — ajyk)Q. (17)

k#i,j

This dissimilarity measures the structural equivalence [27]: two vertices
are structurally equivalent if they have the same neighbors, which is the
case when d; ; = 0.
Another measure directly defined on the adjacency matrix is the Pearson
correlation matrix computed on rows or columns of A:

e = 2 e @ik = i) (@, — 1) (18)

no;o;

with i = 3", aie/n and o; = />, (aik — k) /n.
Another popular seed to build (dis)similarity measure is the Jaccard
index which measures similarity between sets:

_|AnB|

JAB) = 15 p)

(19)
A first use of the Jaccard index in the graph theory context is to measure
the overlap of the neighborhoods of two nodes v and u:

_ L) NI (u)]

= [F(0) UT(w) (20)

w(v,u)
which is equal to zero when there is no common neighbors, and one when
v and wu are structurally equivalent.

5 Partitional Clustering

Partitional algorithms try to find a partition of a set of data, with a
given number of cluster equal to k. The “best” partition is searched
using jointly, most of the times, a distance or dissimilarity measure and
a quality criterion of the found partition.

The most popular partitional algorithm (with several variants) is the k-
means clustering [28]. We give here its most general form. The algorithm

try to find a partition C = (C4,---,Ck) of a set of n objects denoted
{x1,-- ,zn} , which minimize the sum-of-square (SSQ) criterion:
k
gn(C) =) > d(w,ci) (21)
i=1zeC;

where d(z, c;) measures the dissimilarity between the object x and the
centroid of the class C;. Expression (21) is called SSQ, because initially
d(z,c;) was computed in the following way : ||z — ¢;||?.

The general algorithm is the following :

Starting step: Determine an initial vector (c§°’ e (0)),

» C

! The SSQ is also termed inertia, squared error function, variance criterion, or trace
criterion.
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Repeat until stationarity: t <t +1
Assignment step: Assign each observation to the cluster with the
closest centroid:

cit) = {x cd(z, V) < d(x,c§t)) forall j=1,..., lc} (22)

Update step: Compute the new centroids (cgtﬂ)7 e ,ch)) of the
clusters.

Originally centroids of the clusters were computed as the means of the

clusters but a more robust version can use the median of the cluster,

and [29] have proposed to use as “centroid” (then called prototypes) the
most typical subset (pair, triple,...) of objects from this class. Most of
the times the starting partition is chosen randomly.

Even if k-means algorithms are efficient, they have several drawbacks

— the choice of k: the number of clusters k is an important input pa-
rameter, and an inappropriate choice may leads too non significant
results,

— spherical clusters: the algorithm tends to output spherical data, and
then works well only when spherical clusters are naturally available in
data,

— instability: the random starting partition can leads to a local opti-
mum for the criterion function, and this local optimum can change
significantly with another initial partition; to decrease the effect of
this instability, a solution it to execute the algorithm several times
with different random starting partitions and to retain the solution
with the best criterion value.

The complexity of such partitional algorithms is given by O(m2 xmnXk)

[4] where m is the number of attributes, n the number of objects to

cluster and k the number of clusters.

6 Hierarchical Algorithms

Hierarchical clustering algorithms are divided into two types, depending

on whether the partition is refined or coarsened during each iteration:

— agglomerative algorithms which start with a set of small initial clusters
and iteratively merging these clusters into larger ones,

— divisive algorithms which split the dataset iteratively or recursively
into smaller and smaller clusters.

At each step, the clustering algorithm musts select the clusters to merge

or split by optimizing a quality criterion.

6.1 Agglomerative Algorithms

The idea agglomerative algorithms is simple: at the starting point, the n
objects to cluster {z1, - ,z,} are their own classes: {{z1}, -+ ,{zn}},
then at each stage we merged the two more similar clusters.

A dissimilarity measure D between two clusters A and B is mandatory,
and for a given dissimilarity measure d between objects, several D exist,
we give here the most popular:
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— the single linkage: D(A, B) = min{d(z,y): x € A, y € B},

— the complete linkage: D(A, B) = max{d(z,y) :x € A, y € B},

— the average linkage: D(A, B) = IAEW Y wea 2oyen AT, Y).

In [30] the Lance formula was given to compute D(C,A U B) given
D(C,A),D(C, B) and D(A, B). The result of the clustering process is
shown in a dendrogram, like in figure 3. In this kind of graph, mergers of
communities are drawn like horizontal lines, and the height of this line
represents the dissimilarity between the merged clusters (or objects).
Thus, in figure 3, individuals 24 and 25 are closest than individuals 23
and 27. For a given k it is easy to find a partition of objects, because
an horizontal cut of the dendrogram gives one single partition, we have
only to choose the corresponding height. In figure 3 cuts A, B and C,
give respectively 4, 7 and 10 clusters. The dendrogram is a hierarchical
structure because each community is fully included in a community of
higher level.

Dendrogram for the Zachary Karate Club network

Fig. 3. A dendrogram for the Zachary Karate club network.

The drawbacks of agglomerative hierarchical methods are the following:
firstly, vertices of a community may be not correctly classified, and some
nodes could be missed even if they have a central role in their cluster [31];
secondly the computational complexity is O(n?) for the single linkage and
O(n2 logn) for complete and average linkages, then very big datasets are
to avoid. A solution to decrease this computing time is to apply a k-means
with a relatively high k, but with £ << n, and apply the hierarchical
clustering on the previous results.

6.2 Divisive Algorithms

Betweenness Using the notion of betweenness [24], it is possible to use
a divisive approach to detect communities. The algorithm given in [12]
and [5] splits the network into clusters by removing, step after step, edges
with the higher betweenness value. In the algorithm, the two following
steps are repeated:
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1. compute the edge betweenness for all edges of the running graph,
2. remove the edge with the largest value (which gives the new running
graph).

Of course, the immediate question is: when to stop this iterative algo-
rithm? Having a criterion to improve at each step should permit to stop
when no improvement is gained with an iteration. Such a criterion is pro-
posed in [31]: the modularity. Modularity is normally defined for weighted
graphs, but can be applied on unweighted graph using w(u,v) = 1 for all
edges. There is many formulation of the modularity, but we give the one
found in [7]. The modularity of a partition (C4,- - ,C}) is defined by

k
M(Ch,--- ,Ck):Z&',i—ZEi,j (23)
i=1 i#j
with
eig=p  wvu) (24)
veC;,ueCy

where each edge is included at most once in the computation.
Let us remark that the modularity is directly linked to internal and
external degrees (cf. expressions (14) and (13)):

degi(Ci) = E&i,i & dege(C’i) = Zai’j' (25)
i#]
®
®
® ¢
L
®
PY |
®
L X
[
°«® o b o
[

Fig. 4. A simple example of clustering based on betweenness.

The quickest algorithms can compute the edge betwneenness on a graph
in O(n - m) for unweighted graphs and in O(n - m + n?logn) for the
weighted version [32], using for each vertice a single source shortest path
problem using a modified version of Dijkstra’s solution or a breadth-first
search.

Figure 4 gives an illustration of communities found using the edge be-
tweenness.
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Cuts Several community detection’s algorithms are based on the mini-
mization of the number of edges which link the clusters. These algorithms
are, more or less, based on the minimization for each cluster of the cut
size between the cluster and the outside of this latter. The Kernighan-Lin
algorithm is one the first algorithm [33] in this way. These authors worked
on the problem of partitioning electronic circuits onto boards, and the
need of minimizing the number of connections between the cards. The
motivation comes from the fact that there is a limit to the number of
components on a card and, connections between cards have an high cost.
They use, as quality criterion for the partition, the difference between
the internal and the external degree of a cluster:

Q(C) = degi(C) — dege(C) (26)

and they try to find the bi-partition of the graph which maximizes Q.
To find the best subdivision in two clusters, they start with an arbitrary
subdivision, compute @, and then, subsets consisting of equal numbers of
vertices are swapped between the two clusters to find when @ increases.
The time execution is in O(n?logn). If we want to find k clusters, the
procedure is repeated k — 1 times on the whole set.

Rather than using directly the cut size, another popular criterion for
hierarchical divisive clustering on graph is the conductance (12), because
it take into account the order of the sets that are being cut apart [7].
The two main problems with these divisive algorithms, is firstly the fact
that find the bisection of the graph with the minimal cut size is an NP-
complete problem [34] and find a cut wit the minimal conductance is
NP-hard [35]. The second problem is shared by most hierarchical divisive
algorithms: when to stop splitting the graph? One can fix the number
of clusters at the beginning of the process, but other approaches exist
like in [25], where authors propose to use the edge connectivity and the
notion of highly connected subgraph (HCS) (see (16)): they do not split
a subgraph which is also an HCS.

7 Spectral methods

Spectral algorithms constitute a very particular class of techniques. And
this particularity is to perform the classification based on eigenvectors
of matrix build upon the adjacency (or weight) matrix.
In this part of the document, we suppose that G is an undirected,
weighted graph, with positive symmetric weights matrix W (cf. expres-
sion (2)): ws,; = w;s > 0. Moreover we need to define the degree matriz
D:

D=W-T (27)

where 7 is the identity matrix. D is such that we found the degrees
deg(v;) on the diagonal. Now, we are able to define the spectral cluster-
ing: the Laplacian matriz:

L=D-W. (28)
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The more interesting property of L is directly linked to the notion of con-
nected component, which is a connected subgraph A without connection
with V'\ A. Let us suppose that there is exactly k& connected components
in G, which form a partition of G : Cy,-- -, Ck, with ¢; = |C;|. Without
loss of generality, we can assume that the vertices can be ordered accord-
ing to their connected component. Then, the adjacency matrix W has a
block diagonal form, and L too:

Ly
Lo
L= _ (29)
Ly,

where each of the blocks L; is a square matrix, of order ¢;, which is
the Laplacian of the connected component C;. As for all block diagonal
matrix, we know that the spectrum of L, e.g. the list of its eigenvalues
denoted o(L), is equal to the union of the spectrum of the L;. More-
over it can be shown [36] that the smallest eigenvalue of L is 0 and its
multiplicity is exactly equal to k, the number of connected components.
Let us recall the classical similarity relation L = QAQ~*. And as L is a
block diagonal matrix, @ and A too.
Now, let us suppose, that in each spectrum matrix A;, eigenvalues are
sorted in the decreasing order: A\;; > Ay, > -+ > )‘icﬂ where the last
eigenvalue \;. is 0. Using expression (27) it is easy to show that the
constant one vector 1., = (1,---,1)" of dimension ¢; is an eigenvector of
this last eigenvalue:

d1 Zwl,j
Li-le;, =D; - 1c, —Wi-1e,=| 1 | = : =0-1.. (30)
dci chi,j

As a direct consequence of this, the last vector column of @Q; is the
constant one vector 1., and then the corresponding column in ) has
the following form:

(0"“70317“'71707"'30)t' (31)
—_———— ——
Z;;i cj ¢ Shitic

These last column vectors of each block of @) are indicator vectors of the
k connected components: there is a one only on the rows corresponding
to indices of the nodes of the concerned connected component. Then if we
denote uy - - - , ux these indicator vectors and build U € R™** with these
latter, and denote Y = U? the transposition of U, for which columns
vectors y; belong to R*, then y; contains only zeros except a one for
the dimension corresponding to its connected component, i.e. if v; € Cy,
then y;,; = 1if j = k, and y;,; = 0 otherwise.

But define a community as a connected component is rather strict, and
the introduction of one edges between two connected components causes
some eigenvalues that were zero become slightly larger than zero but the
underlying structure can be seen using the eigenvectors of the Laplacian
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and easily retrieved using a simple k-means on Y. In the general case, it
remains to know k, but it is a problem shared with almost all clustering
algorithms. Then, given a Laplacian L and a number of cluster k, the
general algorithm for spectral clustering is the following:

1. compute the eigenvalues and sort them such A1 > Ao > -+ > Ay,

2. compute the last k eigenvectors un—k - - , Un,

3. form matrix U € R™* with Un_k--- ,un as columns, and matrix
Y =U",

4. cluster the pointsy; using the k-means into clusters A1, --- , Ak,

5. build the communities C1,--- ,Cx such C; = {v;|y; € Ai}.
For efficiency reasons it is preferable to use a normalized version of the
Laplacian.
Shi and Malik [37] propose to use the following normalization

Lw=D"'L=I-D"'W. (32)

The notation L,y is due to the fact that it is closely related to random
walk. Ng, Jordan and Weiss [38] propose to use the following normaliza-
tion

Lom=D""?LD™? =1 - D '/?wD'/? (33)

and furthermore impose to normalize U to have a norm equal to one.
The notation Lgsym is used because it is a symmetric matrix (see [39]
for a complete review of the properties of the both normalizations). In
practice it is preferable to use L., = D~ 'L because its eigenvectors
are directly the cluster indicators 1¢,, while the eigenvectors of Lgym
are additionally multiplied by DY 2 which might leads to undesirable
effects. And moreover using Lgym also does not have any computational
advantage [36].

Let us end on the complexity issue: spectral clustering requires the com-
putation of the k eigenvectors of the Laplacian matrix, and if the graph
is large, an exact computation require a time O(n3), which is penalizing
for large graphs.

8 Galois Lattices

All the previous clustering methods are conceived to build non over-
lapping clusters, and are non exhaustive (i.e. one execution gives one
solution), but there exists more informative methods. One of these inter-
esting methods, is the Formal Concept Analysis (FCA) and the Galois
Lattices [40] [41], which can be used for the conceptual clustering [42]
[43]. A Galois Lattice clusters the data (called objects) in classes (called
concepts) using their shared properties. The concepts found using Ga-
lois Lattices can be communities of people sharing connections, but also
shared informations or opinions in an online network.

We introduce these lattices with a classical example, let us suppose that
we have a description of some animal species (see table 1) : Lion, Finch,
Eagle, Hare and Ostrich. This description is based of a list of properties
such these species have or not: Ddo hey preying? Do they flying? Are they
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‘ HPreying‘Flying‘Bird‘Mammal

Lion X X
Finch X b'e

Eagle X X b'q

Hare X
Ostrich X

Bee X

Bat X X

Table 1. A very simple incidence table description for a few animal species.

birds? Are they mammals? It is easy to compute a matrix of similarity
counting the number of shared properties. As explained in section 4 we
can turn these similarities in distances and then apply an ascendant
hierarchical clustering. But in this case for each clustering one and only
“point of view” will be shown. Figure 5 show a “multi-point of view”
representation of the same informations, where species are labeled in
red, while properties are labeled in blue. In this graph we see that Lions
are the only ones (in our table) to be mammal and to prey, while Bats
are the only ones to be mammal and to fly. In the same way, we see that
Eagles are the only birds which both fly and prey, while it shares the two
first properties with Finches. And these two flying birds, share this only
property with Ostriches. We see in the graph that the concept “birds” is
not the same that the concept “flying”, because in the first one we have
the “non-flying” Ostriches, and in the second one the “non-birds” Bats,
which are mammals.

The reading rule of this kind of graph is the following: there is a down-
ward path from a node v; with a property p to a node vj;, only if v; has
also the property p. A consequence is the following: if there is two down-
ward different paths from a node v; with a property p to two different
nodes v; and vg, then v; and vy share this property p.

This kind of graph is called a Galois lattice. The first use of lattices for
observed structure data back to the attempt of formalize the logic of
Quantum mechanics in [44]

We give now the formal definition of Galois lattices. Let us suppose that
we have a set of objects O, and a set of possible attributes A for these
objects. The possession of a property a € A by an object o € O is fulfilled
when there is a relation I between them: alo. Relations I between O and
A are captured in a binary incidence matrix. The triplet K = (O, A, I)
is called a formal context or simply a context.

A concept is any couple C = (X,Y) C O x A, which can forms a closed
rectangle in the incidence matrix, i.e. we must have:

f(X)={a€ AVoe X,0ola} =Y (34)

9(Y)={o€ OVa €eY,ola} = X. (35)
Functions f and g defined in (34) and (35) are called respectively the
intension and the extension of the concept C'. The intention is the set of
the defining properties of the concept, while the extension is the set of
the objects which forms the concept. The couple (f, g) is called a Galois
connection.
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Fig. 5. Species Galois Lattice.

For the sake of illustration, in the table 1 the set X = {Finch, Eagle}
gives a concept, because f(X) = {Flying, Bird} =Y and g(Y) = X,
and this concept is ({ Finch, Fagle}, { Flying, Bird}). On the contrary X’ =
{Lion, Hare} do not gives a concept because f(X') = {Mammal} =Y’
and g(Y') = {Lion, Hare, Bat}, but this latter set gives the concept
({Lion, Hare, Bat}, {Mammal}).

Finally the Galois lattice is the set of concepts L with the following
partial order <:

(Xl,Yl) < (XQ,YQ)@Xl ng( or Yy QYQ) (36)

The Galois lattice is denoted T' = (L, <) and its representation, as in
figure 5, is called its Hasse diagram. As seen in the above example find
a concept is not difficult:

1. pick a set of obects X,

2. compute Y = f(X),

3. compute X’ = g(Y),

4. (X',Y) is a formal concept .
The dual approach can be taken starting with a set of attributes.
A more difficult task is, given a formal context table, to generate all the
existing concepts and build the Hasse diagram of the Galois lattice. We
detail here one of the simplest methods to build a Galois lattice, the
Bordat’s algorithm [45], which build L and its Hasse diagram.
Let us, firstly, define the cover of a concept C' = (X,Y’), denoted C

C={C'|C'<Cand3C":C"<C" < C}. (37)
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The algorithm starts with the set of concept given by the single objects
(0, f(0)) and then find all their children nodes which are added to L
and linked to their parent. This child generation process is iteratively
repeated for every new pair:
~ L < —{(o, f(o)lo € O},
— for each concept C € L:

— build C,

— for each C' € C:

o ifC’'¢L,then L<—-LU{C'},
e add the edge between C and C’.

— end for.
— end for.
Several other algorithms were proposed and the reader can take a look
at [46] for a review and a comparison of performances.
The first use of Galois lattices in social network data analysis is owed
to Freeman in [47], where he use the belonging to a clique as attribute.
Another direct use of Galois lattices in the social network analysis is to
use the adjacency matrix as incidence matrix. In the figure 6 we give an
simple example of a graph containing three maximal cliques : {3,5,6},
{0,2,7} and {0,5,6,7}. In figure 7 we give the Galois lattice of this
network, and even if it is look more complicated than the network, it is
very easy to retrieve the cliques : it suffice to find concepts where both
objects and attributes sets are equal. We surely could find concept like
k-plex or k-core in the same way.

Fig. 6. A simple graph example.

Now, let us take a look to the complexity issue. If we denote |O| the
number of objects, |A| the number of attributes and |L| the size of the
lattices (i.e. the number of concepts), then the different algorithms have
a complexity time in O(|O|?|A||L|) or O(|O||A|?|L]) (see [46] for details).
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Fig. 7. The Galois Lattice of Social Network shown in the figure 6.

The Galois lattice based clustering is then costly, and moreover not sim-
ple to read but , but has several advantages in comparison with similarity
clustering (see [48] for a good comparison). First, the notion of similarity
is more strict in Galois lattices than in similarity based clustering: two
objects in a Galois lattice are similar if they share identical properties,
while they are alike to a degree quantified by a proximity measure in the
other case. Secondly, given a dataset the Galois lattice turns a context
into a unique and complete lattice of concepts, while classical clustering
produces a result over all possible classes, depending of several choices
(methods, parameters,...). Moreover, the resulting classes are, in most of
the methods, disjoint whereas concepts in the lattice may overlap.

9 Discussion

As already pointed out forward the essential starting point in community
detection, the definition of a community or cluster, is not an easy task
[13]. Already in 1964, Bonner [49] argued that there could not be a
universal definition of a cluster. In fact, what is a cluster is in the eyes
of the beholder, and one person’s noise could be another person’s signal
[3]. That is why we can write that cluster analysis is structure seeking
although its operation is structure imposing [50].

Even with a given single and clear definition of a cluster, we expect from
an adapted clustering that it gives a good clustering, but, again, what is a
good clustering? Knowing that clustering algorithms transform clusters’s
research into optimization problem whose computational complexity is
typically intractable and which are solved by approximation algorithms
[13]. And in data clustering many choices must be done before any analy-
sis (cluster definition , algorithms, measures, ...) which influence strongly
the result. And the crucial choice of the algorithm will be influenced by
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the sizes (number of vertices and/or number of edges) of the network,
which has a direct impact on the time of execution.

But, in spite of all these warnings, clustering algorithms allow us to re-
trieve valuable pieces of information in social networks, by finding com-
munities. But in the future, the community detection is not the only
classification task in social networks analysis.
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