Jocelyn S Erot
email: jocelyn.serot@lasmea.univ-bpclermont.fr

Dominique Ginhac

Jean-Pierre D Erutin

Keywords: Parallelism, skeleton, Caml, image processing, fast prototyping, vehicle tracking

This paper presents SKiPPER, a programming environment dedicated to the fast prototyping of parallel vision algorithms on MIMD-DM platforms. SKiPPER is based upon the concept of algorithmic skeletons, i.e. higher order program constructs encapsulating recurring forms of parallel computations and hiding their low-level implementation details. Each s k eleton is given an architecture-independent functional (but executable) speci cation and a portable implementation as a generic process template. The source program is a purely functional speci cation of the algorithm in which all parallelism is made explicit by means of composing instances of selected skeletons, each instance taking as parameters the application speci c sequential functions written in C. SKiPPER compiles this speci cation down to a process graph in which nodes correspond to sequential functions and/or skeleton control processes and edges to communications. This graph is then mapped onto the target topology using a third-party CAD software (SynDEx). The result is a dead-lock free, optimized (but still portable) distributed executive, which SKiPPER nally turns into executable code for the target platform. The initial speci cation, written in ML language, can also be executed on any sequential platform to check the correctness of the parallel algorithm. The applicability of SKiPPER concepts and tools has been demonstrated by parallelising several realistic real-time vision applications both on a multi-DSP platform and a network of workstations. It is here illustrated with a real-time vehicle detection and tracking application.

Introduction

In recent y ears, there has been a growing interest in so-called skeleton-based parallel programming models 1] 11] in which the programmer's task is to select and compose instances of pre-de ned templates, c hosen from a xed repertoire, rather than to deal with low-level parallel constructs such as message-passing calls or shared-memory access. The idea is that recurring patterns of parallel computations can be encapsulated into higher-order program constructs which c a n V. Malyshkin (Ed.): PaCT-99, LNCS 1662, pp. 296-305, 1999.

c Springer-Verlag Berlin Heidelberg 1999 SKiPPER: A Skeleton-Based Parallel Programming Environment for Real-Time Image Processing Applications be parameterized to suit a given parallel application, thus hiding all low-level, error-prone implementation details to the application programmer. Skeletonbased programming models are simple, abstract and make it possible to conciliate portability and e ciency: s k eletons can be de ned in a target-independent manner but their implementation o n a g i v en platform | being done once | can be carefully handcrafted 12]. However, their applicability t o general-purpose parallel programming remains an open question, because it seems very di cult (impossible ?) to exhibit a fully generic repertoire of skeletons, i.e one su cient to express every parallel algorithm. This limitation does not hold if the class of encompassed algorithms is deliberately restricted to a given application domain.

In this case, the de nition of the skeleton repertoire can be made in a bottomup manner, starting from an identi able corpus of applications and/or expert knowledge. This paper assesses this approach b y taking our primary application domain as target, namely real-time image processing. In this context, we h a ve found skeletons to be a very e ective programming paradigm for encapsulating the expertise gradually gained by parallel programmers and making it readily available for the rapid prototyping of subsequent applications. The paper is organized as follows: section 2 brie y recalls the most salient features of the parallel skeleton concept and presents a repertoire of such s k eletons speci cally dedicated to real-time image processing applications. Section 3 presents SKiPPER, a complete parallel programming environment built on this skeleton basis. Section 4 demonstrates the e ectiveness of the presented concepts and tools, both in terms of code performance and programmability, through a realistic case study. Section 5 is a brief survey of related work. Section 6 concludes this paper by summerizing the main results of this work and giving hints for further investigations.

2 Skeletons for parallel image processing Within our application domain | low a n d i n termediate level image processing | a retrospective analysis of legacy implementations on MIMD-DM platforms (especially the transvision 8] platforms, for which w e had a large corpus of working, hand-coded parallel applications) showed that most of parallel applications were actually built upon a limited number of recurring patterns. Three broad classes of patterns could readily be identi ed: { Patterns devoted to \geometric" processing of iconic data. These are all instances of an elementary form of data parallelism in which the input image is decomposed into sub-domains, each sub-domain is processed independently with the same function, and the nal result is obtained by merging those computed on each sub-domain. { Patterns encapsulating generic parallel control structures such a s data farms or task farms. These typically involve processing lists of features when the size of the list and/or its elements depends on the input data and thus requires some form of dynamic load-balancing to achieve g o o d e c i e n c y .

{ Patterns re ecting the iterative nature of the vision algorithms, i.e. the fact that an embedded vision system does not process single images but continuous streams of images.

From the implementation point of view, each pattern can be be viewed as a xed, generic communication harness embedding a set of application-speci c sequential functions. Following the skeleton approach, it will therefore be abstracted into a reusable parallel construct, i.e. a higher-order function encapsulating all its parallel behaviour and accepting as parameters the sequential functions. This led to the following four \elementary" skeletons making the basis of our programming environment:

{ The scm skeleton (Split, Compute and Merge) encompasses the rst class of patterns, i.e. those dedicated to regular, data-parallel processing. The scm skeleton has been illustrated for example in 7]. { The df (Data Farming) skeleton is an abstraction of the processor farm model, devoted to irregular data-parallelism. Its implementation relies on a master process dynamically dispatching data packets to a pool of worker processes and accumulating partial results until each input data is processed. { The tf (Task Farming) skeleton is a generalisation of the df one, in which each w orker can recursively generates new packets to be processed. Its main use is for implementing the so-called divide-and-conquer algorithms. It will not be discussed here. { The itermem skeletons is used whenever the stream-based model of computation has to be made explicit, in particular when computations on the n th image depends on results computed on the n + 1 th . S u c h \looping" patterns are very commonin tracking algorithms, based upon system-state prediction, such a s t h e o n e p r e s e n ted in section 4.

Practically, e a c h s k eleton is given two de nitions: a declarative one and an operational one.

The goal of the declarative de nition, which is written once, is to give t h e skeleton an architecture-independent, purely applicative interpretation. Because of its higher-orderness, this de nition is classically and elegantly written using a functional language. For example, here's a declarative de nition of the df skeleton in caml, a w ell-known dialect of the ML functional language 2]: let df n comp acc z xs = fold_left acc z (map comp xs) This de nition states the skeleton semantics as a simple combination of calls to its functional arguments 1 . Here, it says that the result of applying (df n comp acc z) (i.e the parameterized skeleton) to a list xs is obtained by rst applying the comp function to each element of the list 2 and then accumulating all the resulting values 3 . Note that the rst argument (n), actually related to the oper-ational de nition, is not used here. The caml de nition classically comes with a type signature, the goal of which is to express all the generic type constraints that the arguments of the df skeleton will have to meet in order to build consistent programs. Here's the signature for the df skeleton: Being real caml code, the applicative de nition can be viewed as an executable speci cation, which can be used to assign a target independent semantics to skeleton-based programs. Practically, this gives the programmer the opportunity t o sequentially emulate a parallel program on \traditional" stock hardware before trying it out on a dedicated parallel target (by supplying relevant i n p u t data, observing results and, if a problem arises, using sequential debugging tools to overcome it, for example).

The goal of the operational de nition is to make explicit the parallel behaviour of the skeleton by specifying its actual implementation o n a g i v en platform. For this a classical representation of skeletons as process network templates (PNTs) is used. PNTs are incomplete graph descriptions, which are parametric in the degree of parallelism (for example, in the number of comp nodes for the df skeleton), in the sequential function computed by some of their nodes and in the data types attached to their edges. Figure 1 is a representation of a PNT for the df skeleton on a ring-connected architecture. Rectangular boxes represent processors (numbered 0 to n), ellipsis sequential processes and arrows communications. Four types of processes are involved: Master for dispatching data items and accumulating results, Worker for applying the comp function and two auxiliary processes (W->M and M->W) for routing data

The operational de nition must be written for each target architecture. It is of course the implementor's responsibility t o p r o ve its equivalence with the declarative o n e (i.e. the compatibility of the sequential and parallel semantics). For the df skeleton, for example, this requires that the acc function is commutative and associative, since the accumulation order in the parallel case is intrinsically unpredictable. [START_REF] Danelutto | Skeletons for data parallelism in p3l[END_REF] The software environment

The components of SKiPPER programming environment are depicted in gure 2. The source program is a functional speci cation of the algorithm, in which a l l parallelism is explicited by means of composing instances of the aforementioned skeletons. Each instance takes as parameters application-speci c sequential functions written in C.

SKiPPER starts from this speci cation for deriving both a parallel implementation on target hardware and an sequential emulated version on a workstation. Only the rst possibility will be described further in this paper.

First a custom caml compiler performs parsing and polymorphic type-checking. The resulting annotated abstract syntax tree is then expanded into a (targetindependent) parallel process network by i n s t a n tiating each s k eleton PNT.

This process graph | whose nodes are associated to user computing functions and/or skeleton control processes and edges indicates communication | is then mapped onto the target architecture, which is also described as a graph, with nodes associated to processors and edges representing communication channels. This task is handled by a third-party CAD software called SynDEx 13] which performs a static distribution of processes onto processors and a mixed static/dynamic scheduling of communications onto channels. This tool generates a dead-lock free distributed executive with optional real-time performance measurement. This executive takes the form of processor-independent programs (m4 macro-code, one per processor) which are nally transformed into compilable code by simply inlining a set of kernel primitives. The code of these primitives | which basically support thread creation, communication and synchronisation and sequentialisation of user supplied computation functions and of inter-processor communications | is the only platform-dependant p a r t o f t h e programming environment, making it highly portable.

A realistic case study

SKiPPER has used to parallelize several algorithms for real-time vision applications including connected-component labelling 7], road-following by white line detection 6] and vehicle tracking 9]. The latter is illustrated in this section.

A video camera, installed in a car, provides a gray l e v el image of several lead vehicle (one to three, in practice). Each l e a d v ehicle is equipped with three visual marks, placed on the top and at the back of it (see gure 3). Algorithmically, the application can be divided into two main parts: { First, detection of the marks in the image. Marks are detected as connected groups of pixels with values above a g i v en threshold. Each mark is then characterized by computing its center of gravity and an englobing frame.

{ Second, tracking each l e a d v ehicles by a classical predict-then-verify method.

The englobing frames of marks detected at iteration i are used to predict the position and size of the windows of interest in which the detection process will search for marks at iteration i+1. This is done using a 3D-modelling of each vehicle trajectory, coupled to a set of rigidity criteria to resolve a m biguous cases (occultations, etc). If less than three marks were detected at iteration i, it is assumed that the prediction failed, and windows of interests are obtained by dividing up the whole image into n equally-sized sub-windows, where n is typically taken equal to the total number of processors. Two s k eletons can be put into operation in this application: { The input of the detection process is a list of windows. This list may v ary in length (from 3,6 or 9 in normal tracking to n for the reinitialization phase) and each w i n d o w m a y itself vary widely in size (its size depends on the apparent size of the marks, which in turn depends in the distance to the lead vehicle). Such dynamic behaviour, involving a very uneven work load, calls for a df skeleton. { The top-level prediction exhibits iterative b e h a viour, in which results computed at iteration i are used at iteration i+1. This is exactly what the itermem, whose de nition is given on gure 4, is designed for. The functional speci cation of the application can then be expressed as follows in Caml: let nproc = 8 let s0 = init_state () let loop (state, im) = let ws = get_windows nproc state im in let marks = df nproc detect_mark accum_marks empty_list ws in predict marks let main = itermem read_img loop display_marks s0 (512,512) where { init state returns the initial state value for initiating the prediction algorithm (this state contains all the information required for positioning the windows), { get windows extracts the windows of the current image, { detect mark and accum marks respectively detects and accumulates the position and size of marks in the selected windows { predict returns both the position of the detected marks at the current iteration for display and the updated state value for the next iteration. Starting from the above caml speci cation and C code, SKiPPER has been used both to check the correctness of the parallelisation process (by using the sequential emulation facilities mentioned in section 3) and to derive a parallel implementations on a parallel vision machine with real-time video i/o facilities, the transvision platform 8]. This architecture is built upon Transputer processors and can be con gured according to various physical topologies. The experiment here has been conducted using a ring-topology.

With a ring of 8 Transputers (T9000, 20MHz) operating on a 25 Hz 512 512 video stream, the minimal latencies obtained is 30ms for the tracking phase and 110 ms for the reinitialization phase, with the application processing each image of the video stream in rst case, and one image out of 3 in the second. These performances are similar to the ones obtained by an existing hand-crafted parallel version of the algorithm and satisfy the timing constraints of the target application.

The main lesson drawn from this testbench, however was not on raw performances but on the e ectiveness of the skeleton approach for writing complex portable parallel applications:

First, the programmer's work here reduced to writing 6 sequential C functions and the caml speci cation given above. All underlying parallel implementation details (including process placement, communication s c heduling, bu er allocation, provision for deadlock a voidance, etc.) were transparently handled by t h e e n vironment. The result is that it took less than one day t o g e t a r s t working implementation on the target platform and that it was then almost instantaneous to get variant v ersions with di erent n umbers of processors. The previously hand-crafted parallel version had required at least ten times longer to implement. Moreover, it could not be scaled in a straightforward way (m o d ifying the number of processors, for instance required signi cant c hanges in the C c o d e) .

Second, thanks to the SynDEx retargetable back-end, it would be straightforward to port the application to another parallel platform, provided an executive kernel is available for this platform.

Third, the possibility t o e m ulate the parallel code on a sequential workstation, though not described here has proven to be a very useful approach for debugging the application functionality without having to deal with a complex parallel environment. Several bugs in the sequential C functions have b e e n u ncovered this way. T racking them down in the parallel version would have been much more di cult (if not impossible, given the very limited debugging support o ered by our machine).

Related work

The concept of algorithmic skeletons is not new and many researchers have worked (and are still working) to demonstrate their usefulness for portable parallel programming. Darlington's group at Imperial College 5] shares our view of skeletons as coordinating constructs for sequential functions written in C or Fortran, but mainly targets numerical applications with no real-time constraints. Michaelson's group at Heriot-Watt University 1 0] use skeleton in ML programs to denote sites of potential parallelism, leaving the responsibility of expanding them into parallel constructs to the compiler, on the basis of pro ling information collected by a n instrumentation phase. The P3L project at Pisa University 3] h a s d e v eloped a complete skeleton-based parallel programming language, in which sequential functions are written in C and skeletons are introduced as special constructs. Recently, Danelutto et al. 4] h a ve proposed an integration of the P3L skeletons within the caml language. Their work is very similar to ours. It is more general both in terms of the target application domain and expressibility (their skeletons can be freely nested ours not, in particular) but the provided implementation requires either a good OS-level support (Unix sockets) or a generic message passing library (mpi), thus precluding their use on embedded an/or dedicated vision platforms.

Conclusion

This paper has presented a methodology dedicated to the rapid prototyping of image processing applications on dedicated MIMD-DM architectures, based upon the concept of algorithmic skeletons. This methodology provides a tractable solution to the parallelisation problem, by restricting the expression of parallelism to a few forms admitting both a well-de ned abstract semantics and one or more e cient implementations. A prototype system level software has been developed to support this methodology. It uses both a custom ML to process network compiler and an existing distributing/scheduling tool to turn a highlevel skeletal speci cation into executable code. Preliminary results of this system | illustrated here with a realistic vision application | are encouraging, showing a dramatic reduction in development time while keeping satisfactory performances. Further developments are needed, however, rst to see whether the approach can be extended to higher levels of image processing | for which the higher irregularity of algorithms may require more complex skeletons, and second to study inter-skeleton transformational rules, which are needed when applications are built by composing and/or nesting a large number of skeletons.

 val df : int (* Number of workers *) -> ('a -> 'b) (* Compute function *) -> ('c -> 'b -> 'c) (* Accumulating (folding) function *) -> 'c (* Initial accumulator value *) -> 'a list (* Input list *) -> 'c (* Result *)

Fig. 1 .

 1 Fig. 1. A process network template for the df skeleton

Fig. 2 .

 2 Fig. 2. The skeleton-based programming environment

 Fig. 3. Tracking algorithm

Fig. 4 .

 4 Fig. 4. The itermem skeleton

 Type variables (denoted by l e t t e r s 'a,...,'c) i n troduce polymorphism, i.e the ability for the skeleton to accommodate arguments with various (but related) types. For example, if the second argument (comp) o f df has type 'a->'b (i.e.

function from any t ype 'a to any t ype 'b) then its fth argument (xs) m ust have t ype 'a list (i.e list of 'a), its fourth argument (z) t ype 'c and its third argument (acc) t ype 'c->'b->'c (i.e. function from types 'c and 'b to type 'c).

In (ca)ml function application associates to the right and is denoted without parenthesis, so that f a b reads (f a)(b) or, more simply, f(a,b)

2 map is the caml builtin higher-order function de ned by map f x1 x2 ...xn] = f x1 f x2 ... f xn] where a b ...] is the caml notation for

lists 3 fold left is the caml builtin higher-order function de ned by fold left f z x1 x2 ... xn] = f (... (f (f z x1) x2) ... xn)

Jocelyn Sérot et al.

SKiPPER