
HAL Id: hal-00704336
https://hal.science/hal-00704336v1

Submitted on 6 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Skeletons for parallel image processing: an overview of
the SKiPPER project

Jocelyn Serot, Dominique Ginhac

To cite this version:
Jocelyn Serot, Dominique Ginhac. Skeletons for parallel image processing: an overview of the SKiP-
PER project. Parallel Computing, 2002, 28 (12), pp.1685-1708. �10.1016/S0167-8191(02)00189-8�.
�hal-00704336�

https://hal.science/hal-00704336v1
https://hal.archives-ouvertes.fr

Skeletons for parallel image processing : an

overview of the SKiPPER project

Jocelyn Sérot a,∗ Dominique Ginhac b

aLASMEA, UMR 6602 CNRS, University Blaise Pascal de Clermont-Ferrand,
Campus des Cézeaux, F-63177 Aubière, France. E-mail:

Jocelyn.Serot@lasmea.univ-bpclermont.fr
bLE2I, FRE 2309 CNRS, University of Burgundy, F-21078 Dijon, France. E-mail:

dginhac@u-bourgogne.fr

Abstract

This paper is a general overview of the Skipper project, led at Blaise Pascal Univer-
sity between 1997 and 2002. The main goal of the Skipper project was to demon-
strate the applicability of skeleton-based parallel programming techniques to the fast
prototyping of reactive vision applications. This project has produced several ver-
sions of a full-fledged integrated parallel programming environment (PPE). These
PPEs have been used to implement realistic vision applications, such as road follow-
ing or vehicle tracking for assisted driving, on embedded parallel platforms embarked
on semi-autonomous vehicles. All versions of Skipper PPEs share a common front-
end and repertoire of skeletons – presented in previous papers – but essentially
differ in the techniques used for implementing skeletons. This paper focuses on
these implementation issues, by making a comparative survey, according to a set
of four criteria (efficiency, expressivity, portability, predictability), of these imple-
mentation techniques. It also gives an account of the lessons we have learned, both
when dealing with these implementation issues and when using the resulting tools
for prototyping vision applications.

Key words: Parallelism, skeleton, computer vision, fast prototyping, data-flow

1 Introduction

The general context of the Skipper project is the development of realistic
vision applications for embedded platforms. These applications may be found

∗ Correspondance to J. Sérot

Preprint submitted to Elsevier Science 17 February 2002

for instance in remote inspecting robots or vehicle equipped with assisted-
driving systems, as presented in [25], [27] or in Fig. 1 (an assisted-driving
application based upon vehicle tracking and road following). Although relying
on algorithms and programming paradigms encountered in the mainstream of
computer vision, these applications raise two specific issues. First, they im-
plement reactive systems, operating “on the fly” on digital streams of images.
This means that they must be able to absorb input data and output results
at a minimum frequency and produce responses with a maximal latency. For
assisted-driving applications, for instance, the typical frequencies are in the
range of 10-30 frame/s and the maximal latency rarely exceeds 50 ms. Sec-
ond, they must meet stringent operational constraints in terms of volume or
power consumption, which often rules out implementations based upon stock-
hardware.

Fig. 1. A reactive vision application for assisted driving

For these applications, the problem of maximizing the performances while cop-
ing with the operational constraints can be solved either by relying on dedi-
cated hardware – such as digital signal processors (DSP), Field Programmable
Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) – or
by using a multi-processor (parallel) architecture. The Transvision platforms
[19,15], built at LASMEA between 1992 and 1998, are examples of the second
approach. These MIMD architectures built upon Transputer and Alpha pro-
cessors could deliver significant computing power, provided built-in facilities
for video i/o and could be embarked in a vehicle (Fig. 2).

DS−Link, 100Mb/s

PCI bus

T9000

Digital Video Bus

AXP 21066

Video Source (DIGIMAX)

High−speed
communication link

Fig. 2. The Transvision parallel platform

2

But relying on parallel machines place severe strains on programmers : in the
absence of high-level parallel programming models and environments, they
have to explicitly take into account every aspects of parallelism such as task
partitioning and mapping, data distribution, communication scheduling or
load-balancing. Having to deal with these low-level details results in long, te-
dious and error-prone development cycles – especially when the persons in
charge of developing the algorithms are image processing, not parallel pro-
gramming, specialists –, thus hindering a true experimental approach. For
reactive applications, the problem is reinforced by the fact that the need to
evaluate the dynamic properties of the algorithm at realistic frame-rate effec-
tively rules out any prototyping phase solely based upon off-line, sequential
simulation on stock hardware. Parallel programming at a low level of abstrac-
tion also limits code reusability and portability.

The Skipper project was developed in response of the aforementioned prob-
lems. Basically, its goal was to “capture” – in a efficient and portable way –
the expertise gained by programmers when implementing reactive vision ap-
plications using low level parallel constructs, to make it readily available to
algorithmicians and image processing specialists.

The Skipper programming methodology is based upon the concept of algo-
rithmic skeletons [7,8]. Skeletons are high-level program constructs that ab-
stract common patterns of parallel computation in a parametric way. Common
examples of skeletons are process farms, pipelines and divide-and-conquer trees.
With this approach, the structure of a parallel application is expressed only
as combination/nesting of the skeletons provided. The programmer only spec-
ifies the qualitative aspects of parallelism. All quantitative aspects are dealt
with by the compiler and/or the run-time system. The repertoire of skeletons
therefore acts as a sort of “parallel toolbox” from which parallel programs can
be built with a minimal concern for low-level details. In the case of Skipper,
this repertoire was built “bottom-up”, from a careful analysis of a large corpus
of existing low-to-mid level vision applications hand-coded in parallel C. This
retrospective abstraction process drew out four skeletons, called scm (Split-
Compute-and-Merge), df (Data Farming), tf (Task Farming) and itermem

(ITERate with MEMory). A detailed description of these skeletons can be
found in previous papers such as [27].

Between 1996 and 2001, four skeleton-based PPEs were built: SKiPPER-0,
SkiPPER-1, SKiPPER-2 and SKiPPER-D. All these realizations share a com-
mon general architecture, sketched in Fig. 3. They use the same repertoire of
skeletons 1 , rely on a similar front-end and therefore look similar to the ap-
plication programmer. They differ in the intermediate representation used for
implementing the skeletons. The common features, shared by all realizations,

1 The only noticeable exception is Skipper-0, for reasons given in Section 4.

3

will be recalled in Section 2. The discriminating features will be highlighted
in Section 3 and each version of Skipper will be presented in turn in Sec-
tions 4, 5, 6 and 7.

.ml

representation

FRONT−END

BACK−END

Executable parallel code Sequential parallel code

Intermediate

CAML
COMPILER

let im = .. g ..
let xs = .. f ..
...
let main = df .. h ..

void f(..)
void g (..)
void h(..)

.c,.h

Prototype and code of
sequential functions

P0 P1

P2 P3

Target architecture
description

let scm = ...
let df = ...
let tf = ...

.ml

Declarative semantics
of skeletons

Operational semantics
of skeletons

Skeletal specification
of programs

Fig. 3. Generic overview of Skipper PPEs

2 Common features in Skipper

Most of these features have been presented in previous papers, such as [27].
The following is therefore only a brief recall of the most salient ones.

Menu-driven approach. Within Skipper, like in P3L [3], Anacleto [6] or
SkIE [4], skeletons are viewed as explicit indications to the compiler of where
and which parallelism will be deployed. This approach can be contrasted, for
instance, to the one used by Michaelson et al. [20,23,21], in which skeletons
are viewed as possible realizations of common higher-order functions.

Program specification. The skeletal structure of parallel programs – ie.
which skeletons are used, with which arguments and in what order – is ex-
plicited textually using a subset of the Caml language. Skeletons are repre-
sented as higher-order, polymorphic functions and programs are just sequences
of value definitions expressing the data dependencies of the algorithm. Fig. 4,
for example, shows a program making use of two scm skeletons to binarize an
image.

Here row block, histo, merge histo, get img,bimod, binar and display img

are the application specific, sequential functions (written in C in our case).
row block decomposes an image into horizontal sub-images, histo computes
the histogram of a (sub)image and merge histo sums the partial histograms

4

let src = get_img 256;;

let h = scm 4 row_block histo merge_histo src;;

let th = bimod h;;

let res = scm row_block (binar th) block_row src;;

let main = display_img res;;

Fig. 4. A small program making use of the scm skeleton

computed on each subimage into the final one. bimod and binar respectively
computes and applies an optimal binarization threshold. The get img and
display img functions respectively retrieves the next image from the video
input stream and displays the binarized image on the screen.

Declarative semantics of skeletons. This declarative semantics is used
to convey the “meaning” of a skeleton in a target-independent manner. It is
also given in Caml. For the df (Data Farming) skeleton, for example, this
definition can be written as follows:

let df comp acc xs = foldl1 acc (map comp xs)

where xs is the list of data items to process, comp is the function applied to each
item and acc performs the accumulation of partial results. map and foldl1 are
built-in higher-order functions for applying a function and iterating a binary
operator over a list of elements, respectively. This definition states the skeleton
declarative semantics in a purely applicative manner (as a combination of calls
to its functional arguments), without any reference to an underlying execution
model.

Application-specific, sequential functions are written in C. The possi-
bility of using sequential functions written in C – although the parallel program
specification makes use of a higher-order formalism (Caml) – is essential, since
we don’t want programmers to recode their algorithms from scratch (and espe-
cially in Caml). We share this (very pragmatic) concern with the P3L project
for example.

Sequential emulation of parallel programs. This possibility results from the
fact that, insofar as the declarative semantics of skeletons is given in Caml, it
automatically confers a default sequential semantics to these skeletons. This
default sequential semantics can be used to debug parallel programs on se-
quential stock-hardware before running them on the parallel target, thereby
offering a means of separating “algorithmical” debug from ‘implementational”
debug. The idea is to first debug the sequential code on a sequential platform
(with all the smart debugging tools available) so that runs on the parallel
target platform are only used to test/assess (not debug) the influence of real
environmental parameters on the application behavior. The merits of this ap-
proach have already be underlined by Danelutto et al. in [11], under the name
“logical debugging”.

5

3 Discriminating features

The discriminative features of Skipper successive versions lie in the oper-
ational semantics of the skeletons, ie. in the way these skeletons are imple-
mented on the parallel target. This is obviously related to the intermediate rep-
resentation, as suggested in Fig. 3. Four types of intermediate representation
have been used: Synchronous Data Flow Graphs (SDFG), Process Network
Templates (PNT), Hierarchical Task Graphs (HTG) and Dynamic Data Flow
Graphs (DDFG). In the sequel, each of these representation we will surveyed,
according to five criteria:

Run-time vs compile-time support. Some approaches (like those based
on SDFG) rely on a sophisticated compile-time support to take most (if not
all) decisions regarding the mapping and scheduling of the application-specific
sequential functions, whereas for others these decisions are taken at run-time
by a specialized piece of software (interpreter, kernel).

Efficiency of the target code. This can be assessed by comparing the run-
time performances of the “skeletized” application with the ones obtained with
a carefully hand-crafted parallel version (using C+MPI for instance). When
the skeleton implementation relies on a specific run-time support, the efficiency
depends on the overhead introduced by this support.

Portability. Skeleton-based parallel programs have often been claimed to be
more portable than their counterparts built upon low-level parallel constructs.
This is because the porting effort, when targeting a new parallel architecture, is
reduced to redefining the intermediate representation of a small set of skeletons
instead of rewriting the whole program. In the context of embedded vision
applications, this portability issue must also take into account the possibility
to target architectures with little or no OS-level support 2 , such as machines
built from specialized or digital signal processors (DSPs).

Predictability of performances. For most of existing skeleton-based PPEs
[3,6,4,23,21] this takes the form of analytical cost models, from which the av-
erage timing behavior can be predicted on the basis of application-specific
parameters (such as the estimated duration of the sequential functions) and
architecture-specific parameters (such as communication latency). In the con-
text of reactive applications, one may wish to replace this statistical approach
by a deterministic one, in which strict temporal bounds can be computed at
compile-time.

2 By OS-level support, we mean the facilities typically provided by multi-tasking,
Unix-like, operating systems: multi-processing, inter-process communication and
synchronization, virtual memory, etc.

6

Expressivity. By expressivity we mean the ability to implement an applica-
tion expressed as an arbitrary combination of skeletons. In practice, experience
has shown that the critical point here is whether the intermediate represen-
tation supports nesting or not, ie. the ability for a skeleton to take another
skeleton as argument. Although it is still unclear whether realistic applica-
tions really need nesting (see [8]), its support has always been perceived has
a challenge by skeletons’ implementors.

In practice, the above issues are closely related and often in tension one with
each other. Relying on run-time level mechanisms for implementing skeletons,
for instance, increases expressivity – it makes the implementation of nesting
a much more tractable problem in particular – but complicates performance
prediction (who must rely, ultimately, on stochastic models). The amount and
the complexity of the run-time support may also be a concern when porting
to architectures with small memory and/or limited OS-level support. By con-
trast, implementation models relying on compile-time mechanisms for solving
the mapping and scheduling problems generally require smaller (if not no)
run-time support, make performance prediction easier, but may lack expres-
sivity. In this view, the development of the successive versions of Skipper

may be viewed as a search – constrained by the operational context sketched
in Section 1 – for an acceptable trade-off between efficiency, predictability,
portability and expressivity.

4 Static data-flow. Skipper-0

The first version of Skipper used an intermediate representation of skele-
tal programs as synchronous data-flow graphs (SDFG) [5]. This representa-
tion was obtained from the textual description of the application in Caml

thanks to a front-end tool called Camlflow. An in-depth description of
this tool (which is based upon abstract interpretation) can be found in [26].
With this approach, skeletons were viewed as means of denoting recurrent
data-flow graph patterns and were encoded directly in Caml as higher-order
functions. The mapping of the SDFG onto the target architecture was han-
dled by a third party software called Syndex [17]. This involved finding a
(static) distribution of the sequential functions associated with nodes on pro-
cessors and a (also static) scheduling of communications on inter-processor
channels. The SDFG/Syndex approach is illustrated in Fig. 5. The left win-
dow shows the data-flow graph of a simple application making use of the scm

(split, compute then merge) skeleton along with the target architecture (four
ring-interconnected processors) on which it must be implemented. The right
window illustrates the mapping of operations onto processors computed by
Syndex, ie. the distribution of operations onto processors (one per column)
and the scheduling of operations (oval boxes) and communications (diagonal

7

lines) on each processor. From this mapping, Syndex could finally generates
parallel C code for the target architecture. This code took the form of a set of
processor-independent programs (m4 macro-code, one per processor), in which
a main function contained direct calls to the sequential functions attached to
the scheduled operations, interleaved with the communication instructions for
exchanging data between processors. The macro-code was built from a small
kernel of processor-independent primitives, which were finally inlined in C (or
assembler) to get the final code.

Fig. 5. SDFG representation of a skeletal program as handled by the Syndex tool

4.1 Assessment

With Skipper-0, no run-time support was necessary and the generated exec-
utives were very efficient (with an almost zero overhead compared to hand-
crafted implementation). Accurate performance predictions were obtained by
using a two passes process: in a first pass, rough estimates of the durations
of the sequential functions were given to Syndex, which generated a first,
sub-optimal, parallel program but with automatic profiling instructions in-
serted in it. This program could then be run on typical data to extract the
real durations. These durations were used in turn to get the final program by
means of a mapping and scheduling heuristic based upon minimization of the
total latency. One could also use upper bounds for function durations in order
to predict worst case behavior, in order to satisfy hard real time constraints
for instance 3 . Portability was also good: because the output macro-code was
built on a small set of kernel primitives, re-targeting an application on an
architecture built from a new processor type only required (re)writing this set
of kernel primitives. This proved to be a straightforward task for the platform

3 To our knowledge, Skipper-0 is the only realization of a skeleton-based PPE
capable of handling such hard real-time timing constraints.

8

we had to deal with 4 .

The main problem with the SDFG/Syndex approach was expressivity. Dy-
namic skeletons, based on data farming in particular, could not directly be
expressed. Data farming is useful for applying a function to a list of data items
when the size of the list is unknown and/or the time to process one item can
vary significantly 5 . In this case, a static allocation of items to processors is
not always possible and would result, anyway, to a uneven work-load between
processors (which in turn results in a poor efficiency). Data farming solves this
problem by having a master process dynamically doling out items to a pool
of worker processes and collecting results back, on a “first done, first served”
basis. This model, however, makes it impossible to schedule the communica-
tions between the master and the workers at compile-time. It therefore cannot
be described as a synchronous data-flow graph construct and could not be
implemented within the Skipper-0 framework.

5 Template-based implementation. Skipper-1

In Skipper-1, the limitations of Skipper-0 are overcome by relying on pro-
cess networks for the intermediate representation of skeletal programs and
on implementation templates for skeletons. This approach is the most widely
used for existing skeleton-based PPEs ([3,6,23,21]). Implementation templates
are “ known parametric parallel process networks that efficiently implements a
skeleton on a particular parallel target architecture at hand” [13]. They gen-
erally take of the form of process graphs that can be parameterized in the
parallelism degree (the number of the worker nodes for instance) and the
sequential function(s) associated with each node. The intermediate represen-
tation of the application as a process network is then obtained by instantiating
the skeleton templates 6 . The most often claimed advantage of template-based
approaches lies in the fact that, being written once and for all for a given ar-
chitecture, they can be carefully hand-crafted to make them both reliable and
highly efficient.

The Camlflow front-end of Skipper was therefore modified to produce pro-

4 The kernel definition for the Transputer processor was less than 300 lines of m4
code. Kernels have been written for several well-know DSPs and also for clusters of
Unix machines running TCP/IP communication layers.
5 This situation is frequent is reactive vision, where a varying number of region of
interest, of varying size, often have to be processed in each frame.
6 This instantiation is done on the basis of the provided application-specific se-
quential functions. It can also take into account some architectural parameters, to
adjust the declared parallelism degree of the skeleton to the one actually offered by
the architecture for instance.

9

cess networks out of Caml skeletal descriptions instead of data-flow graphs.
For this, each skeleton was described (in Caml, again) as a parametric pro-
cess network 7 . Fig. 6a gives a parametric process network (PPN) for the df

(Data Farming) skeleton 8 . This graph is parametric in the number of worker
nodes, in the type of data items exchanged between nodes (denoted with type
variables ’a . . . ’b) and in the sequential functions run on the nodes farmer

and worker (this “parameterization” being denoted with brackets).

’b
worker<f> worker<f>

farmer<acc>

’a list

...

’a ’b’b’a
worker<f>

sync signal

result

enddf

data items

initdf

sync signal results

farmer<acc>

worker<f> worker<f> worker<f>

(a) Simplified form (b) Actual form

Fig. 6. The parametric process network of the df skeleton

The behavior of the farmer and worker processes was stored separately as
a parametric process template (PPT). A PPT is a piece of sequential code
whose behavior can be specialized by providing numeric parameters, data
types and/or functional parameters 9 .

The compilation path in Skipper-1 could then be decomposed into four steps:
parametric process network generation, parametric process template instanti-
ation, mapping/scheduling and code generation. It is illustrated on Fig. 7. The
two last steps (mapping/scheduling and code generation) were still handled
by the Syndex software. This may seem contradictory since, as stated in Sec-
tion 4, Syndex can only handle synchronous data flow graphs and not process
graphs. The solution adopted in Skipper-1 was in fact an hybrid one: process
graphs were “viewed” by Syndex as data-flow graphs and mapped/scheduled
as data-flow graphs. In particular, Syndex only scheduled (at compile-time)
“static” communications (the ones that mark the start and the end of a farm-
ing skeleton for instance). The “dynamic” communications (the ones occurring
between the master and the workers during the activity of a farming skeleton)
were handled by ad-hoc processes “hidden” in the data-flow nodes. This tech-
nique – which amounts to tolerating some “critical sections” of dynamically
scheduled code within a globally statically scheduled application – is detailed

7 To facilitate cross-referencing, we use here the terms introduced in [27]. Concep-
tually, parametric process networks are implementation templates.
8 This graph is a simplified one. The PPN actually used in Skipper-1 appears in
Fig. 6b (see later).
9 Specialization is carried out using macro substitution.

10

in [15]. It is illustrated in Fig. 6b, where “static” communications are denoted
with plain lines and “dynamic” ones with dashed lines. Synchronization bar-
riers were used to ensure that the dynamic communications did not interfere,
at run time, with the static ones.

F1

F1

g F2f

MAPPING/SCHEDULING

let scm = ...
let df = ...
let tf = ...
let itermem = ...

.caml

let x=..
let y=..
...

.caml

PROCESS NETWORK
GENERATION

_thread
{
...
}

macro-code

.m4

CODE GENERATION

TARGET-SPECIFIC
BACK_END

INSTANTIATION
PROCESS TEMPLATES

F2

"Skeletal" program specification

F1

F1

.m4

main()
{
...
}

Target C code

F1() {..
F2() {..

.c, .h

Application-specific
sequential functions

Executable
parallel
code

P0 P1

P2 P3

Architecture
description

Skeleton operational semantics

Fig. 7. Compilation path in the Skipper-1 parallel programming environment

5.1 Assessment

The Skipper-1 version was the first to be used for implementing realistic
reactive vision applications, most noticeably those described in [16] (segmen-
tation by connected component labeling), [25] (vehicle tracking) and [27] (road
tracking). Thanks to the Syndex back-end, efficiency remained high (with an
overhead never exceeding 25 % for the applications implemented). For appli-
cations making use only of “static” skeletons (such as scm), this overhead
was almost zero, as for Skipper-0. Predictability of performances relied on
a set of analytical cost models [15] that provided an accuracy in the range
of 10-20 %. But, unlike Skipper-0, strict timing bounds could not always be
exhibited: this is clearly the price to pay for accepting dynamically scheduled
skeletons such as df. The main problem with Skipper-1 lied in the hybrid
nature of the intermediate representation. Because dynamic communications
were transparent to Syndex, the routing of these communications between
distant processors had to be handled explicitly by some auxiliary processes
(whereas it is done automatically by Syndex for static communications). It
turned out that including the description of these auxiliary processes to the
Syndex kernel, in the form of efficient and architecture-independent paramet-
ric process templates was a difficult task. To make the problem tractable, the
Skipper-1 compilation process therefore made assumptions on the topology of

11

the target architecture (it had to be ring-interconnected). These assumptions,
along with the increased size and complexity of the Syndex kernel, lowered
the portability of the applications developed with Skipper-1 (compared to
Skipper-0). Finally, the hybrid intermediate representation of Skipper-1 im-
plicitly relied on a “flat” execution model and was definitely not suited for
implementing nested skeletons.

6 Hierarchical task graphs. Skipper-2

The Skipper-2 version is based upon an homogeneous intermediate represen-
tation of programs as hierarchical task graphs. This design choice was made
in order to overcome the difficulties raised by hybrid representations (such as
the one used in Skipper-1) and to solve the problem of skeleton nesting in a
systematic way. For this, and at the implementation level, all skeletons of the
Skipper repertoire are viewed as specialized instances of a generic skeleton,
called tf-ii 10 . The operational semantics of the tf-ii skeleton is basically
the one of a task farming skeleton: a master process doles out tasks to a pool
of worker (slave) processes, but here a task can be either a sequential function
to be computed or another skeleton to be run. The intermediate representa-
tion takes the form of a tree of tf-ii skeletons. It is computed by a modified
version of the Camlflow front-end, which uses alternate definitions of the
scm, df and tf skeletons as specialized calls to the tf-ii higher-order func-
tion. This step is illustrated in Fig. 8 where a program making using of three
scm skeletons (two of them nested) is turned into a tree of tf-ii descrip-
tors. In this tree, nodes correspond to skeleton control processes and leafs to
sequential functions (a detailed presentation of the Skipper-2 system can be
found in [9] or in the forthcoming [10]).

Interpretation of the intermediate representation within Skipper-2 is done
at run-time by a specialized program (the “kernel”) running in SPMD mode
on all processors (see Fig. 9). This kernel – written in C – provides dynamic
support for three kind of services: concurrent execution of master and worker
processes, inter-process communication (using a subset of MPI-conformant
routines) and handling of shared resources such as the worker pool. Whenever
a skeleton needs to be run, either as a “top-level” node (on the spine of the
tf-ii tree) or as a nested instance, a new copy of the kernel is launched on
the local processor. This copy acts as the master of the skeleton. It uses the
free resources (idle processors) to allocates new workers. When all resources
are busy, the execution of worker processes is sequentialized on the processor
running the master process.

10 For Task Farming, version II.

12

let f x = scm s2 f2 m2 x

let z = scm s3 f3 m3 y
let y = scm s1 f m1 x

S1

M1

M2 M2

S2 S2

F2 F2 F2 F2

S3

M3

F3 F3

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���S1

S2 S2
M2 M2

M1

F2 F2 F2 F2

S3
M3

F3 F3
Compute node

Control node

(a) Original program (b) Intermediate representation as a tree of tf-ii

Fig. 8. Intermediate representation of skeletal programs within Skipper-2

program specification

of skeletons

Kernel code

parallel code
Executable

sequential functions
Code ofOperational semantics

(camlflow)
FRONT−ENDSkeletal

Intermediate
representation
Tree of tf−ii

.c

C Compiler

.ml

let x = ...
let y = scm ...
...

.ml

let tf = .. tf−ii ..
let df = .. tf−ii ..
let scm = .. tf−ii ..

F1() {..
F2() {..

.c, .h

Fig. 9. Compilation path in the Skipper-2 parallel programming environment

6.1 Assessment

Skipper-2 is the first version to use a fully dynamic implementation mecha-
nism for skeleton-based programs. This has several advantages. First, in terms
of expressivity, since arbitrary nesting of skeletons is naturally supported. The
introduction of new skeletons is also facilitated, since it only requires giving
their translation in terms of tf-ii. Portability remains acceptable since port-
ing applications to new architectures only requires the porting of the run-time
kernel. This, in practice, turned to be a relatively straightforward task. The
approach used in Skipper-2 also provides automatic load-balancing, since
all mapping and scheduling decisions are taken at run-time, depending on the
available physical resources. In the same vein, sequential emulation is obtained
“for free” by just running the program on a single processor. As regards ef-

13

ficiency, preliminary experiments [9] on synthetic applications suggest that
for applications exhibiting a sufficiently high compute/communication ratio
the overhead of the kernel-based implementation (compared to hand-crafted
C+MPI code) can be less 10 %, although this overhead can grow up to 50 %
when the communications costs dominates 11 . But several problems have been
identified in the Skipper-2 implementation which in practice have limited its
utility in our context. First, predictability of performances is very low. It is very
difficult, in particular, to exhibit even approximative cost models for a model
in which processors can switch from a master to worker behavior depending
only on actual input data (there’s no “fixed” mapping for dynamic skeletons
as in Skipper-1). Even the interpretation of execution profiles, generated by
an instrumented version of the kernel, turned out to be far from trivial. This
point raises a pragmatical problem within a programming methodology based
upon experimental validation of solutions: here, one not only needs to obtain
quickly a running prototype, but also to be able to understand why a given
prototype exhibit poor run-time performances. By contrast, the profiling facil-
ities offered by Skipper-1 (and detailed in [27]) were much easier to exploit.
Second, shared resources are handled in a centralized manner in Skipper-2
(each worker allocation requires a couple of communication to a particular
processor, in particular). This centralization can become a bottleneck when
the size of the intermediate representation increases. Finally, it turned out
that the resource allocation strategy used in Skipper-2 only performed well
on architectures made of processors supporting multi-processing. If not, some
processors may end up running only one master process, with a small load
factor, leading to a poor global efficiency 12 . This problem practically limits
the applicability of the Skipper-2 system in our context and, in a rather
unexpected way, makes it more suitable for massively parallel, Beowulf-like
clusters than for embedded target architectures.

7 Dynamic Data-flow. Skipper-D

The implementation of Skipper-D started in 2000 and was inspired by results
obtained by M. Danelutto on the Macro Data-Flow (MDF) execution model
for skeletons [12]. This model is very similar to the one used in Skipper-0:
skeleton-based parallel programs are compiled down to data-flow graphs, in
which nodes correspond to sequential functions (“macro-instructions”) and
arcs to data dependencies between these functions. But, unlike Skipper-0,

11 In [9], this is explained by the fact that the kernel intrinsically performs more com-
munications than raw MPI, for exchanging data between inner and outer masters
in particular.
12 If the multi-processing case, the processor can be shared between master and
worker processes.

14

Danelutto proposes a dynamic interpretation mechanism for executing these
graphs. This mechanism relies on a set of distributed data-flow interpreters,
running in SPMD mode on all processors of the target architecture. Skipper-D
extends the MDF execution model proposed by Danelutto in order to imple-
ment arbitrary nested data or task farm skeletons. For this, the Skipper-D
runtime relies on the tagged-token data-flow interpretation technique [1,2].
This technique basically allows many concurrent activations of a single se-
quential node to overlap in time; it associates a unique tag with each acti-
vation and each data token also carries a tag that specifies the particular ac-
tivation to which it belongs. Skeletons involving run-time bounded iterations
and/or recursion, and nested in an arbitrary way, can then be represented as
cyclic data-flow graphs. This is illustrated in Fig. 10 with the formulation as
a tagged-token MDF graph of a program involving two nested df skeletons
(in this figure, tags are denoted as superscripts). The MDF graph uses a pair
of special nodes called iter and endf. Iter accepts a list of data items and
generates distinct result tokens, each carrying one data item and a distinct
tag. These tokens trigger distinct firings of the subsequent nodes. The tokens
resulting from these firings are collected by the endf and accumulated using
the acc sequential function. A more detailed account of this mechanism can
be found in [24].

/* Signature of seq. functions */

void getd(intListList *out);
void f(int in, float *out);
void acc2(float in1, float in2,
float *out);
void acc1(float in1, float in2,
float *out);

(* Program description *)

let xss = getd ()
let inner xs = df f acc1 xs
let outer xss = df inner acc2 xss

m
i:t
i

[xi,1; ..;xi,mi
]i:t : int list

x
j:i:t
i,j : int

[[x1,1; ..;x1,m1
]; ..; [xn,1; ..;xn,mn

]]t : int list list

endf<acc1>

endf<acc2>

r
i:t
i : float

r
t : float

y
j:i:t
i,j : float

n
t

iter

f

iter

getd

Fig. 10. Nested farm skeletons under the tagged-token MDF model

The Skipper-D programming environment relies on two sub-systems: a run-
time system (RTS), implementing a (centralized) tagged-token data-flow in-

15

terpreter and a compile-time system (CTS), producing the MDF graph for
this interpreter from a high-level skeletal program specification.

The run-time system of Skipper-D is sketched in Fig. 11. Like Danelutto’s
system, it relies on an SPMD approach: all the processors (nodes) of the target
architecture run the same program, which is the result of the compilation of the
user code (C sequential functions) and the interpreter code. The interpreter
itself involves several threads of execution: a dispatch thread, which fetches
macro-instructions (sequential functions to be computed) from a pool of fire-
able instructions and sends them to the worker threads, a collect thread,
which receives results from the worker threads and updates the instruction
pool accordingly and several 13 worker threads for computing sequential func-
tions. The dispatch thread fetches idle workers from a centralized pool, in
which all worker threads register at initialization and which is subsequently
updated by the update thread upon reception of results.

thread

thread
Worker

thread
Worker

Collect
Thread

Worker pool

Instr pool

Proc 0 (master)

Proc 1 (worker)

Proc n (worker)

FETCH

RECV

SEND

RECV

UPDATE

GET

PUT

SEND

Dispatch

Fig. 11. The run-time system of Skipper-D.

The compile-time system is sketched in Fig. 12. It produces the application-
specific data needed to customize the run-time interpreter, ie. the MDF rep-
resentation of the program used to build the initial instruction pool and the
code of the sequential C functions to be integrated with the custom run-time
interpreter. The MDF graph is generated by the Camlflow tool. This offers
a way, like in previous versions of Skipper to describe skeletons entirely in
Caml as higher-order functions.

7.1 Assessment

The main contribution of Skipper-D is to provide an all-encompassing inter-
mediate representation for all skeletons. This representation allows arbitrary

13 At least one per processor.

16

let y =
 df f h xs
...

.ml

CAMLFLOW

let scm = ...
let df = ...
let tf = ...

.ml

value f :
value h : ...

...
value g : ...

.mli

IDL prototypes and C code for
the app−specific sequential functions

Stub−code for
the app−specific functions

Customized
Data−flow
interpreter

and running
SPMD on ...

STUB−CODE
GENERATOR

"Skeletal" program specification

Skeleton definitions

Data−flow graph

reading ...

...

...

g

iter

f

endf

.idl

int g(...);
int f(...);
double h(...);

.c

int g(..) {..}
int f(..) {..}
double h(..) {..}

Signature of
the app−specific
functions

.c

int _g(..) {..}
int _f(..) {..}
double _h(..) {..}

let xs = g ()

TARGET COMPILER

Fig. 12. The run-time system of Skipper-D.

combination (including nesting) of skeletons, thanks to the tagged-token inter-
pretation mechanism. Skipper-D therefore definitely solves the expressivity
problem, at least for our repertoire of skeletons. Experimental results, obtained
with a prototype run-time system (written in Objective Caml) on a cluster
of workstations are reported in [24]. They show that, at least for “synthetic”
applications, performances can get very close to hand-written C+MPI code
(less than 10 % overhead). Moreover, it turns out that, at least for coarse
and medium-grained computation schemes, the mechanism used for handling
nesting does not entail a significant performance penalty. Together with those
reported by Danelutto in [13], these results confirm the merits of dynamic
MDF execution models with respect to template-based ones. Skipper-D run-
time performances could be further improved by integrating some optimiza-
tion techniques described in [13]. These techniques include a more sophisti-
cated management strategy of the instruction pool (based on high/low wa-
ter marks), local caching of data on worker nodes and, most noticeably, a
distributed interpreter implementation. The current Skipper-D implementa-
tion relies on a centralized data-flow interpreter and a rudimentary scheduling
strategy for fireable instructions and is likely not to provide comparable per-
formances in case of very irregular fine-grained computations. Predictability of
performances is clearly harder to obtain than with template-based implemen-
tation systems but does not seem an intractable problem (like in Skipper-2).
The interpretation of profiling results is also easier than with Skipper-2, es-
pecially if sophisticated visualization tools such as jumpshot [28] are provided.
The portability of the Skipper-D runtime system on architectures made of
specialized or digital signal processors is currently limited by the fact that it
is written in Objective Caml and uses bytecode threads. But the runtime

17

could easily be rewritten in C for these systems 14 . In this case, threads can
be emulated using hardware context switching mechanisms (as evidenced by
the implementation of the Syndex kernel for DSPs [18]).

8 Comparative assessment

Table 1 summarizes our assessment of the successive versions of Skipper.
In this table, we have tried to rate each version in terms of the five criteria
explicited in Section 3: balance between compile-time and run-time system
(Rts/Cts), efficiency (Eff), expressivity (Expr) , portability (Port) and pre-
dictability (Pred). For this we use a relative “score” between 1 and 4. For
the Rts/Cts criteria, 1 means a fully static system – for which all decisions
regarding mapping and scheduling of functions are taken at compile-time –
and 4 a fully dynamic system for which all these decisions are taken at run-
time. For the other criteria 1 means “poor” and 4 “excellent”. The second
column recalls the underlying intermediate representation (IR): Synchronous
Data Flow Graphs, Parametric Process Networks, Hierarchical Task Graphs
and Dynamic Data Flow Graphs.

IR Rts/Cts Eff Expr Port Pred

Skipper-0 SDFG 1 4 1 4 4

Skipper-1 PPN 2 3 2 1 3

Skipper-2 HTG 4 2 4 3 1

Skipper-D DDFG 3 3 4 4 2

Table 1
Comparative assessement of Skipper versions

The evolution from Skipper-0 to Skipper-D can be viewed as a progressive
shift – evidenced by the growing part of the run-time system in the imple-
mentation – from static approaches, offering excellent performances and pre-
dictability at the price of a limited expressivity, to more dynamic approaches,
trading off efficiency and/or predictability in favor of expressivity

Fully static approaches, like in Skipper-0, are attractive in our context of
embedded reactive applications because they minimize the resources needed
to implement the algorithm and allow strict real-time bounds to be computed.
But within a programming methodology dedicated to the fast prototyping of
solutions – and mainly intended to algorithmicians, not parallel programming

14 The current implementation is less than 500 lines of Objective Caml code.
We think that a re-implementation in C would be in the range of 1000-2000 loc,
perfectly suited for small memory-print processors.

18

specialists – these approaches were finally found too restrictive. For instance, it
is often possible to reformulate an existing vision algorithm – defined in terms
of dynamic allocated data structures as lists or trees – so that it only uses
fixed-size arrays and can be parallelized using a static data partition scheme;
but we found that it is not reasonable, even desirable, to do this reformulation
at the prototyping level, when being able to quickly test various algorithmic
and/or parallel implementation schemes turned out to be more important than
obtaining optimal performances. Moreover, some algorithms are intrinsically
not amenable to a static implementation because the size of the input data
and/or the duration of the sequential functions cannot be reliably estimated
at compile time.

On the other hand, the conclusions given in Section 6.1 show that approaches
relying on a fully dynamic run-time system, like Skipper-2, may raise ef-
ficiency and predictability or observability problems that conflicts with our
prototyping goals and/or target platforms (although these approaches might
prove useful in other application domains).

In this light, we believe that the Skipper-D approach offers the best trade-off
between the conflicting abovementioned criteria. The data-flow interpretation
mechanism is “mostly dynamic” 15 but its run-time behavior can be more
easily modelized and performances do not suffer from hardly understandable
performances drops due to unpredictable process allocation 16 . Moreover, we
are investigating the possibility of developing transformational rules to de-
rive automatically a static formulation of an algorithm (using a synchronous
data-flow execution model) from a dynamic one (based upon a tagged-token
execution model). Our ultimate goal, motivated by our experience and needs
in reactive vision applications, is to be able to specify, with the same skeletal
formalism both “hard” (time-critical) parallel applications (built from static
skeletons such as scm) and “softer” applications (built from dynamic skele-
tons such as df) which can tolerate the run-time unpredictability implied by
interpreter-based implementation techniques. Recent work on graph factoriza-
tion techniques [14] has provided some insights on how to do this in the context
of compile-time bounded iterations. We are currently working to extend this
scheme to generic data and task farming skeletons (the fundamental issue be-
ing: what constraints do we have to put on the tagged-token data-flow graph
formulation of an algorithm — that can always be interpreted dynamically —
to make it amenable to static implementation).

15 Scheduling is done at run-time but mapping of threads to processors is done at
compile-time.
16 As for the master processes in Skipper-2.

19

9 Conclusion

This paper has focused on implementation issues, investigating in particular
the relative merits and flaws of static and dynamic approaches for skeletons.
One of its conclusion is that a macro data-flow representation of skeleton-based
parallel programs is probably the best choice, because it can be associated with
a wide spectrum of operational semantics (from purely static synchronous
to dynamic tagged-token). This conclusion is similar to the one drawn by
Najjar et al in [22] who underline the “universality” of the data-flow model
by exhibiting potential application domains both in the “software” domain
(parallel programming on clusters of workstations for instance) and in the
“hardware” domain (design of application-specific circuits for instance).

Beside these implementation issues, the Skipper project has also provided
some useful insights on the applicability of skeleton-based parallel program-
ming techniques. These conclusions are supported by realistic case studies,
carried out with the help of full-fledged parallel programming environments,
by people who were not parallel programming specialists at the first place.
First, the “off-the-shelf” style provided by the skeleton approach effectively
provides dramatic savings in development effort. These savings make it possi-
ble to adopt a truly experimental approach in the design and implementation
of applications, a key property in our context. The price to pay is a decrease
in performances (compared to hand-crafted parallel code) but, for most of
the realizations presented here this can be kept reasonable and was viewed
as acceptable, anyway, with regard with the above mentioned benefits. Sec-
ond, within a given application domain, such as reactive embedded vision,
skeletons may be viewed as a very effective way to encapsulate and reuse the
expertise gained by skilled parallel programmers. This pragmatically solves the
classical “completeness” problem often associated with skeleton-based paral-
lel programming methodologies – namely the fact that, in theory, nothing can
guarantee that a given set of skeletons will be sufficient to express every par-
allel algorithm: in our case, the definition of the skeleton basis was made in a
bottom-up manner starting from an identifiable corpus of applications and/or
expert knowledge and was explicitly targeted towards low to mid-level vision
algorithms. Finally, it could be objected to the explicit, “menu-driven” ap-
proach proposed by Skipper that it requires a minimum understanding of
the skeleton operational semantics to be used and therefore that it cannot be
used as fully automatic parallelizing tool. Our answer, motivated by our expe-
rience in developing complex vision applications with algorithmicians, is that
skeletons actually provides an effective common ground for sharing expertise
between image processing and parallel programming specialists: the former
no longer have to deal with implementation details and the latter can treat
application-specific functions as black boxes.

20

References

[1] Arvind and K. P. Gostelow. The U-interpreter. IEEE Computer, 15(2):42–49,
Feb. 1982.

[2] Arvind and R. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Transactions on Computers, 39(3):300–318, Mar. 1990.

[3] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:
A structured high level programming language and its structured support.
Concurrency: Practice and Experience, 7(3):225–255, May 1995.

[4] B. Bacci, M. Danelutto, S. Pelagatti and M. Vanneschi. SkIE: an heterogeneous
environment for HPC applications. Parallel Computing, 25:1827–1852, Dec
1999.

[5] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming
with events and relations: the SIGNAL language and its semantics. Science of
Computer Programming, 16(2):103–149, Sep 1991.

[6] S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. anacleto: a
template-based p3l compiler. In Proceedings of the Seventh Parallel Computing
Workshop (PCW ’97), Australian National University, Canberra, August 1997.

[7] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[8] M. Cole. Algorithmic skeletons. In G. J. Michaelson and K. Hammond, editors,
Research Directions in Parallel Functional Programming. Springer Verlag, 1999.

[9] R. Coudarcher, J. Sérot and J.P. Dérutin. Implementation of a Skeleton-
based Parallel Programming Environment Supporting Arbitrary Nesting. 6th
International Workshop on High-Level Parallel Programming Models and
Supportive Environments, Apr. 2001, San Francisco. Volume 2026 of LNCS,
pp 71–85, Springer.

[10] R. Coudarcher. Composition de squelettes algorithmiques : application au
prototypage rapide d’applications de vision. PhD thesis, Université Blaise Pascal
Clermont-Ferrand (France), 2002. To appear.

[11] M. Danelutto, R. DiCosmo, X. Leroy, and S. Pelagatti. Parallel functional
programming with skeletons: the OCamlP3L experiment. In Proceedings ACM
workshop on ML and its applications. Cornell University, 1998.

[12] M. Danelutto. Dynamic run time support for skeletons. In Proceedings of the
ParCo99 Conference, Delft, The Netherlands, August 1999.

[13] M. Danelutto. Efficient run-time support for skeletons on workstation clusters.
Parallel Processing Letters, 11(1):41-56, Feb. 2001.

21

[14] A. Dias, C. Lavarenne, M. Akil, and Y. Sorel. Optimized implementation of
real-time image processing algorithms on field programmable gate arrays. In
ICSP’98 Fourth International Conference on Signal Processing, Beijing, China,
Oct 1998.

[15] D. Ginhac. Prototypage rapide d’applications parallèles de vision artificielle par
squelettes fonctionnels. PhD thesis, Université Blaise Pascal Clermont-Ferrand
(France), 1999.

[16] D. Ginhac, J. Sérot, and J. Dérutin. Fast prototyping of image processing
applications using functional skeletons on a MIMD-DM architecture. In IAPR
Workshop on Machine Vision and Applications, pp 468–471, Chiba, Japan, Nov
1998.

[17] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping for
real time embedded heterogeneous multiprocessors. In 7th Intl Workshop on
Hardware/Software Co-Design, Rome, May 1999.

[18] C. Lavarenne and Y. Sorel. Modèle d’exécutif distribué temps-réel pour SynDEx
INRIA Research Report, RR-3476, Aug. 1998.

[19] P. Legrand, R. Canals, and J.P. Dérutin. Edge and region segmentation
processes on the parallel vision machine Transvision. In Computer Architecture
for Machine Perception, pages 410–420, New-Orleans, USA, Dec 1993.

[20] G.J. Michaelson and N.R. Scaife. Prototyping a parallel vision system in
standard ML. Journal of Functional Programming, 5(3):345–382, 1995.

[21] G.J. Michaelson, N. Scaife, P. Bristow and P. King. Nested algorithmic skeletons
from higher order functions. Parallel Algorithms and Applications, 16:181-206,
Aug 2001.

[22] W.A. Najjar, E.A. Lee, and G.R Gao. Advances in the dataflow computational
model. Parallel Computing, (25):1907–1929, 1999.

[23] N. Scaife, P. Bristow, G. Michaelson and P. King. Engineering a parallel
compiler for SML. Proc. 10th International Workshop on Implementation of
Functional Languages, Sep 1998, pp 213-226;

[24] J. Sérot. Tagged-token data-flow for skeletons. Parallel Processing Letters,
11(4), Dec. 2001.

[25] J. Sérot, D. Ginhac, and J. Dérutin. Skipper: a skeleton-based parallel
programming environment for real-time image processing applications. In 5th
International Conference on Parallel Computing Technologies, volume 1662 of
LNCS, pp 296–305. Springer, 6–10 Sept. 1999.

[26] J. Sérot. CamlFlow: a Caml to data-flow graph translator. In S. Gilmore ed.,
Trends in Functional Programming, Vol 2, Intellect, 2001.

[27] J. Sérot, D. Ginhac, R. Chapuis, and J. Dérutin. Fast prototyping of parallel
vision applications using functional skeletons. Journal of Machine Vision and
Applications, 12(6):271-290, Jun. 2001.

22

[28] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance
visualization with Jumpshot. High Performance Computing Applications, 13(2),
1999.

23

