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In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions related to the Kelvin-Voigt damping and a delay term acting on the boundary. If the weight of the delay term in the feedback is less than the weight of the term without delay or if it is greater under an assumption between the damping factor, and the difference of the two weights, we prove the global existence of the solutions. Under the same assumptions, the exponential stability of the system is proved using an appropriate Lyapunov functional. More precisely, we show that even when the weight of the delay is greater than the weight of the damping in the boundary conditions, the strong damping term still provides exponential stability for the system.

Introduction

In this paper we consider the following linear damped wave equation with dynamic boundary conditions and a delay boundary term:

                       u tt -∆u -α∆u t = 0,
x ∈ Ω, t > 0 , u(x, t) = 0,

x ∈ Γ 0 , t > 0 , u tt (x, t) = -∂u ∂ν (x, t) + α∂u t ∂ν (x, t) + µ 1 u t (x, t) + µ 2 u t (x, t -τ )

x ∈ Γ 1 , t > 0 , u(x, 0) = u 0 (x) x ∈ Ω , u t (x, 0) = u 1 (x) x ∈ Ω , u t (x, t -τ ) = f 0 (x, t -τ ) x ∈ Γ 1 , t ∈ (0, τ ) , (1) 
where u = u(x, t) , t ≥ 0 , x ∈ Ω , ∆ denotes the Laplacian operator with respect to the x variable, Ω is a regular and bounded domain of R N , (N ≥ 1), ∂Ω = Γ 0 ∪ Γ 1 , mes(Γ 0 ) > 0, Γ 0 ∩ Γ 1 = ∅ and ∂ ∂ν denotes the unit outer normal derivative, α, µ 1 and µ 2 are positive constants. Moreover, τ > 0 represents the time delay and u 0 , u 1 , f 0 are given functions belonging to suitable spaces that will be precised later.

This type of problems arise (for example) in modelling of longitudinal vibrations in a homogeneous bar in which there are viscous effects. The term ∆u t , indicates that the stress is proportional not only to the strain, 1 but also to the strain rate. See [START_REF] Caroll | Singular and Degenerate Cauchy Problems[END_REF]. From the mathematical point of view, these problems do not neglect acceleration terms on the boundary. Such type of boundary conditions are usually called dynamic boundary conditions. They are not only important from the theoretical point of view but also arise in several physical applications. For instance in one space dimension, problem (1) can modelize the dynamic evolution of a viscoelastic rod that is fixed at one end and has a tip mass attached to its free end. The dynamic boundary conditions represents the Newton's law for the attached mass, (see [START_REF] Budak | A collection of problems on mathematical physics[END_REF][START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF][START_REF] Conrad | stabilization of a flexible beam with a tip mass[END_REF] for more details). In the two dimension space, as showed in [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF] and in the references therein, these boundary conditions arise when we consider the transverse motion of a flexible membrane Ω whose boundary may be affected by the vibrations only in a region. Also some dynamic boundary conditions as in problem (1) appear when we assume that Ω is an exterior domain of R 3 in which homogeneous fluid is at rest except for sound waves. Each point of the boundary is subjected to small normal displacements into the obstacle (see [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF] for more details). This type of dynamic boundary conditions are known as acoustic boundary conditions.

In the absence of the delay term (i.e. µ 2 = 0) problem ( 1) has been investigated by many authors in recent years (see, e.g., [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF], [START_REF] Gerbi | Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions[END_REF], [START_REF] Grobbelaar-Van Dalsen | On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions[END_REF], [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], [START_REF] Pellicer | Large time dynamics of a nonlinear spring-mass-damper model[END_REF], [START_REF] Pellicer | Analysis of a viscoelastic spring-mass model[END_REF]).

Among the early results dealing with the dynamic boundary conditions are those of Grobbelaar-Van Dalsen [START_REF] Grobbelaar-Van Dalsen | On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions[END_REF][START_REF] Grobbelaar-Van Dalsen | On the initial-boundary-value problem for the extensible beam with attached load[END_REF] in which the author has made contributions to this field.

In [START_REF] Grobbelaar-Van Dalsen | On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions[END_REF] the author introduced a model which describes the damped longitudinal vibrations of a homogeneous flexible horizontal rod of length L when the end x = 0 is rigidly fixed while the other end x = L is free to move with an attached load. This yields to a system of two second order equations of the form

             u tt -u xx -u txx = 0, x ∈ (0, L), t > 0, u(0, t) = u t (0, t) = 0, t > 0, u tt (L, t) = -[u x + u tx ] (L, t), t > 0, u (x, 0) = u 0 (x) , u t (x, 0) = v 0 (x) , x ∈ (0, L), u (L, 0) = η, u t (L, 0) = µ. (2) 
By rewriting problem (2) within the framework of the abstract theories of the so-called B-evolution theory, an existence of a unique solution in the strong sense has been shown. An exponential decay result was also proved in [START_REF] Grobbelaar-Van Dalsen | On the initial-boundary-value problem for the extensible beam with attached load[END_REF] for a problem related to [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF], which describe the weakly damped vibrations of an extensible beam. See [START_REF] Grobbelaar-Van Dalsen | On the initial-boundary-value problem for the extensible beam with attached load[END_REF] for more details. Subsequently, Zang and Hu [START_REF] Zhang | Energy decay for a nonlinear viscoelastic rod equations with dynamic boundary conditions[END_REF], considered the problem

u tt -p (u x ) xt -q (u x ) x = 0, x ∈ (0, 1) , t > 0 with u (0, t) = 0, p (u x ) t + q (u x ) (1, t) + ku tt (1, t) = 0, t ≥ 0.
By using the Nakao inequality, and under appropriate conditions on p and q, they established both exponential and polynomial decay rates for the energy depending on the form of the terms p and q.

It is clear that in the absence of the delay term and for µ 1 = 0, problem (2) is the one dimensional model of [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF]. Similarly, and always in the absence of the delay term, Pellicer and Solà-Morales [START_REF] Pellicer | Analysis of a viscoelastic spring-mass model[END_REF] considered the one dimensional problem of (1) as an alternative model for the classical spring-mass damper system, and by using the dominant eigenvalues method, they proved that their system has the classical second order differential equation

m 1 u ′′ (t) + d 1 u ′ (t) + k 1 u(t) = 0,
as a limit, where the parameter m 1 , d 1 and k 1 are determined from the values of the spring-mass damper system. Thus, the asymptotic stability of the model has been determined as a consequence of this limit. But they did not obtain any rate of convergence. See also [START_REF] Pellicer | Large time dynamics of a nonlinear spring-mass-damper model[END_REF][START_REF] Pellicer | Spectral analysis and limit behaviours in a spring-mass system[END_REF] for related results.

Recently, the present authors studied in [START_REF] Gerbi | Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions[END_REF] and [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF] a more general situation of (1). They considered problem (1) with µ 2 = 0, a nonlinear damping of the form g (u t ) = |u t | m-2 u t instead of µ 1 u t and a nonlinear source term f (u) = |u| p-2 u t in the right hand side of the first equation of problem [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF]. A local existence result was obtained by combining the Faedo-Galerkin method with the contraction mapping theorem. Concerning the asymptotic behavior, the authors showed that the solution of such problem is unbounded and grows up exponentially when time goes to infinity if the initial data are large enough and the damping term is nonlinear. The blow up result was shown when the damping is linear. Also, we proved in [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF] that under some restrictions on the exponents m and p, we can always find initial data for which the solution is global in time and decay exponentially to zero. The main difficulty of the problem considered is related to the non ordinary boundary conditions defined on Γ 1 . Very little attention has been paid to this type of boundary conditions. We mention only a few particular results in the one dimensional space [START_REF] Grobbelaar-Van Dalsen | Boundary stabilization for the extensible beam with attached load[END_REF][START_REF] Pellicer | Analysis of a viscoelastic spring-mass model[END_REF][START_REF] Doronin | Global solvability for the quasilinear damped wave equation with nonlinear second-order boundary conditions[END_REF][START_REF] Kirane | Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type[END_REF].

The purpose of this paper is to study problem [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF], in which a delay term acted in the dynamic boundary conditions. In recent years one very active area of mathematical control theory has been the investigation of the delay effect in the stabilization of hyperbolic systems and many authors have shown that delays can destabilize a system that is asymptotically stable in the absence of delays (see [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF] for more details).

In [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], Nicaise and Pignotti examined the wave equation with a linear boundary damping term with a delay. Namely, they looked to the following problem:

u tt -∆u = 0, x ∈ Ω, t > 0, ( 3 
)
where Ω is a bounded domain with smooth boundary ∂Ω = Γ 0 ∪ Γ 1 . On Γ 0 , they considered the Dirichlet boundary conditions. While on Γ 1 they assumed the following boundary conditions:

∂u ∂ν (x, t) = µ 1 u t (x, t) + µ 2 u t (x, t -τ ), x ∈ Γ 1 , t > 0. ( 4 
)
They proved under the assumption

µ 2 < µ 1 (5) 
that the solution is exponentially stable. On the contrary, if [START_REF] Caroll | Singular and Degenerate Cauchy Problems[END_REF] does not hold, they found a sequence of delays for which the corresponding solution of (3) will be unstable. The main approach used in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], is an observability inequality obtained with a Carleman estimate. The same results were showed if both the damping and the delay are acting in the domain. We also recall the result by Xu, Yung and Li [START_REF] Xu | Stabilization of the wave system with input delay in the boundary control[END_REF], where the authors proved the same result as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] for the one space dimension by adopting the spectral analysis approach. We point out that problem (1) has been already studied by Nicaise and Pignotti in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF] for µ 1 = 0 and a time-varying delay. They find the same condition as the one used in this paper when µ 1 = 0 by a different way. However our result and our Lyapunov functional are slightly different here. (See Remark 3.2 for more details), and we want to point out that this paper may be viewed as a continuation of the work of Nicaise and Pignotti [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF] in which an additional damping term acts on the boundary and the study of the competition between these two damping terms is very interesting.

As it has been proved by Datko [9,Example 3.5], systems of the form

w tt -w xx -aw xxt = 0, x ∈ (0, 1), t > 0, w (0, t) = 0, w x (1, t) = -kw t (1, t -τ ) , t > 0, (6) 
where a, k and τ are positive constants become unstable for an arbitrarily small values of τ and any values of a and k. In [START_REF] Conrad | stabilization of a flexible beam with a tip mass[END_REF] and even in the presence of the strong damping -aw xxt , without any other damping, the overall structure can be unstable. This was one of the main motivations for considering problem [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF]. (Of course the structure of problem ( 1) and ( 6) are different due to the nature of the boundary conditions in each problem). Subsequently, Datko et al [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF] treated the following one dimensional problem:

         u tt (x, t) -u xx (x, t) + 2au t (x, t) + a 2 u(x, t) = 0, 0 < x < 1, t > 0, u(0, t) = 0, t > 0, u x (1, t) = -ku t (1, t -τ ), t > 0, (7) 
which models the vibrations of a string clamped at one end and free at the other end, where u(x, t) is the displacement of the string. Also, the string is controlled by a boundary control force (with a delay) at the free end. They showed that, if the positive constants a and k satisfy

k e 2a + 1 e 2a -1 < 1,
then the delayed feedback system [START_REF] Grobbelaar-Van Dalsen | On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions[END_REF] is stable for all sufficiently small delays. On the other hand if

k e 2a + 1 e 2a -1 > 1,
then there exists a dense open set D in (0, ∞) such that for each τ ∈ D, system (7) admits exponentially unstable solutions.

As a consequence of what we have said before, two main questions naturally arise here:

• Is it possible for the damping term -∆u t to stabilize system (1) when the weight of the delay is greater than the weight of the boundary damping (i.e. when µ 2 ≥ µ 1 )?

• Does the particular structure of the problem prevents the instability result obtained in [START_REF] Datko | Two questions concerning the boundary control of certain elastic systems[END_REF] for problem (6)?

One of the main purpose of this paper is to give positive answers to the above two questions. More precisely, we study the asymptotic behavior (as t → ∞) and related decay rates for the corresponding solutions of system [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF] where the question to be addressed here is whether the delay term µ 2 u t (x, t -τ ) can destroy the stability of the system, which is exponentially stable in the absence of that delay [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF]. As we shall see below, the presence of the strong damping term α∆u t in (1) plays a decisive role in the stability of the whole system if (5) does not hold. Thanks to the energy method, we built appropriate Lyapunov functionals lead to stability results.

The paper is organized as follows: in the next section, we prove the global existence of the solutions by using the Lumer-Phillips' theorem in the same way as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]. In section 3, we show that if the weight of the delay is less than the weight of the damping, then the energy defined by (38) decays exponentially to zero. We also prove that even if the weight of the delay is greater than the weight of the damping, the solution still decays to zero exponentially provided that the damping parameter α satisfies an appropriate condition. Let us mention that without the damping factor α, Nicaise and Pignotti [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] proved the instability of the null stationary solution in the case µ 2 ≥ µ 1 , whereas we will show that if µ 2 ≥ µ 1 , by adding a condition of the form α > (µ 2 -µ 1 )B 2 (with B a constant defined later), we are able to prove the stability of the null stationary state thanks to a suitable choice of a Lyapunov function.

2 Well-posedness of Problem [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF].

In this section we will first transform the delay boundary conditions by adding a new unknown. Then as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], we will use the Lumer-Phillips' theorem to prove the existence and uniqueness of the solution of problem (1).

Setup and notations

We denote

H 1 Γ0 (Ω) = u ∈ H 1 (Ω)/ u Γ0 = 0 . We set γ 1 the trace operator from H 1 Γ0 (Ω) on L 2 (Γ 1 ) and H 1/2 (Γ 1 ) = γ 1 H 1 Γ0 (Ω)
. We denote by B the norm of γ 1 namely:

∀u ∈ H 1 Γ0 (Ω) , u 2,Γ1 ≤ B ∇u 2 .
We recall that H 1/2 (Γ 1 ) is dense in L 2 (Γ 1 ) (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]).

We denote E(∆, L 2 (Ω)) = {u ∈ H 1 (Ω) such that ∆u ∈ L 2 (Ω)} and recall that for a function u ∈ E(∆, L 2 (Ω)) , ∂u ∂ν ∈ H -1/2 (Γ 1 ) and the next Green's formula is valid (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]):

Ω ∇u(x)∇v(x)dx = Ω -∆u(x)v(x)dx + ∂u ∂ν ; v Γ1 , ∀v ∈ H 1 Γ0 (Ω), (8) 
where .; . Γ1 means the duality pairing between H -1/2 (Γ 1 ) and H 1/2 (Γ 1 ).

By (., .) we denote the scalar product in L 2 (Ω) i.e. (u, v) = Ω u(x)v(x)dx. Also we mean by . q the L q (Ω) norm for 1 ≤ q ≤ ∞, and by . q,Γ1 the L q (Γ 1 ) norm.

Throughout the paper, we use the standard notations as in the book [START_REF] Brezis | Analyse fonctionnelle[END_REF] for example.

In order to prove the local existence of the solution of problem (1), we consider the following two cases :

case 1: µ 2 < µ 1 .
We may define a positive real number ξ such that:

τ µ 2 ≤ ξ ≤ τ (2µ 1 -µ 2 ) . ( 9 
)
case 2: µ 2 ≥ µ 1 . We will suppose that the damping parameter α verifies:

α > (µ 2 -µ 1 )B 2 . ( 10 
)
In this case, we may define a positive real number ξ satisfying the two inequalities:

ξ ≥ τ µ 2 , (11) 
α > µ 2 2 + ξ 2τ -µ 1 B 2 > 0 . (12) 

Semigroup formulation of the problem

In this section, we prove the global existence and the uniqueness of the solution of problem (1). To overcome the problem of the boundary delay, we introduce, as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], the new variable:

z (x, ρ, t) = u t (x, t -τ ρ) , x ∈ Γ 1 , ρ ∈ (0, 1) , t > 0. (13) 
Then, we have τ z t (x, ρ, t) + z ρ (x, ρ, t) = 0, in Γ 1 × (0, 1) × (0, +∞) .

Therefore, problem (1) is equivalent to:

                               u tt -∆u -α∆u t = 0, x ∈ Ω, t > 0 , τ z t (x, ρ, t) + z ρ (x, ρ, t) = 0, x ∈ Γ 1 , ρ ∈ (0, 1) , t > 0 , u(x, t) = 0, x ∈ Γ 0 , t > 0 , u tt (x, t) = - ∂u ∂ν (x, t) + α ∂u t ∂ν (x, t) + µ 1 u t (x, t) + µ 2 z(x, 1, t) , x ∈ Γ 1 , t > 0 , z(x, 0, t) = u t (x, t), x ∈ Γ 1 , t > 0 , u(x, 0) = u 0 (x), x ∈ Ω , u t (x, 0) = u 1 (x), x ∈ Ω , z(x, ρ, 0) = f 0 (x, -τ ρ), x ∈ Γ 1 , ρ ∈ (0, 1) . (15) 
The first natural question is the existence of solutions of the problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF]. In this section we will give a sufficient condition that guarantees the well-posedness of the problem.

For this purpose, as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], we will use a semigroup formulation of the initial-boundary value problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF]. If we denote V := (u, u t , γ 1 (u t ), z)

T , we define the energy space:

H = H 1 Γ0 (Ω) × L 2 (Ω) × L 2 (Γ 1 ) × L 2 (Γ 1 × (0, 1)).
Clearly, H is a Hilbert space with respect to the inner product

V 1 , V 2 H = Ω ∇u 1 .∇u 2 dx + Ω v 1 v 2 dx + Γ1 w 1 w 2 dσ + ξ Γ1 1 0 z 1 z 2 dρdσ for V 1 = (u 1 , v 1 , w 1 , z 1 ) T , V 2 = (u 2 , v 2 , w 2 , z 2 )
T and ξ is defined by ( 9) or [START_REF] Doronin | Global solvability for the quasilinear damped wave equation with nonlinear second-order boundary conditions[END_REF]. Therefore, if V 0 ∈ H and V ∈ H , the problem ( 15) is formally equivalent to the following abstract evolution equation in the Hilbert space H :

V ′ (t) = A V (t), t > 0, V (0) = V 0 , (16) 
where ′ denotes the derivative with respect to time t, V 0 := (u 0 , u 1 , γ 1 (u 1 ), f 0 (., -.τ ))

T and the operator A is defined by:

A        u v w z        =          v ∆u + α∆v - ∂u ∂ν -α ∂v ∂ν -µ 1 v -µ 2 z (., 1) - 1 τ z ρ          .
The domain of A is the set of V = (u, v, w, z) T such that:

(u, v, w, z) T ∈ H 1 Γ0 (Ω) × H 1 Γ0 (Ω) × L 2 (Γ 1 ) × L 2 Γ 1 ; H 1 (0, 1) , (17) 
u + αv ∈ E(∆, L 2 (Ω)) , ∂(u + αv) ∂ν ∈ L 2 (Γ 1 ), (18) 
w = γ 1 (v) = z(., 0) on Γ 1 . (19) 
The well-posedness of problem ( 15) is ensured by: Theorem 2.1. Suppose that µ 2 ≥ µ 1 and α > (µ 2 -µ 1 )B 2 or µ 2 < µ 1 . Let V 0 ∈ H , then there exists a unique solution V ∈ C (R + ; H ) of problem [START_REF] Grobbelaar-Van Dalsen | Boundary stabilization for the extensible beam with attached load[END_REF]. Moreover, if V 0 ∈ D (A ), then

V ∈ C (R + ; D (A )) ∩ C 1 (R + ; H ) .
Proof. To prove Theorem 2.1, we use the Lumer-Phillips' theorem. For this purpose, we show firstly that the operator A is dissipative. Indeed, let V = (u, v, w, z) T ∈ D (A ). We have

A V, V H = Ω ∇u.∇vdx + Ω v (∆u + α∆v) dx + Γ1 w - ∂u ∂ν -α ∂v ∂ν -µ 1 v -µ 2 z (σ, 1) dσ - ξ τ Γ1 1 0 zz ρ dρdσ. But since u + αv ∈ E(∆, L 2 (Ω)) and ∂(u + αv) ∂ν ∈ L 2 (Γ 1 )
, we may apply Green's formula [START_REF] Grobbelaar-Van Dalsen | On the initial-boundary-value problem for the extensible beam with attached load[END_REF] where the duality pairing .; . Γ1 is simply the L 2 (Γ 1 ) inner product (because w = γ 1 (v) ∈ L 2 (Γ 1 )) and obtain:

A V, V H = -µ 1 Γ1 w 2 dσ -µ 2 Γ1 z (σ, 1) wdσ -α Ω |∇v| 2 dx - ξ τ Γ1 1 0 z ρ zdρdx. ( 20 
)
At this point, we have to distinguish the following two cases: Case 1: We suppose that µ 2 < µ 1 . Let us choose then ξ that satisfies inequality [START_REF] Datko | Two questions concerning the boundary control of certain elastic systems[END_REF]. Using Young's inequality, (20) leads to

A V, V H + α Ω |∇v| 2 dx + µ 1 - ξ 2τ - µ 2 2 Γ1 w 2 dσ + ξ 2τ - µ 2 2 Γ1 z 2 (σ, 1) dσ ≤ 0.
Consequently, by using ( 9), we deduce that

A V, V H ≤ 0. ( 21 
)
Case 2: We suppose that µ 2 ≥ µ 1 and α > (µ 2 -µ 1 )B 2 . Let us choose then ξ that satisfies the two inequalities [START_REF] Doronin | Global solvability for the quasilinear damped wave equation with nonlinear second-order boundary conditions[END_REF] and [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF]. Using Young's inequality and the definition of the constant B, we can again prove that the inequality [START_REF] Pellicer | Large time dynamics of a nonlinear spring-mass-damper model[END_REF] holds. This means that in both cases A is dissipative. Now we show that λI -A is surjective for all λ > 0.

For F = (f 1 , f 2 , f 3 , f 4 ) T ∈ H , let V = (u, v, w, z) T ∈ D (A ) solution of (λI -A ) V = F, which is: λu -v = f 1 , (22) λv -∆(u + αv) = f 2 , ( 23 
)
λw + ∂(u + αv) ∂ν + µ 1 v + µ 2 z(., 1) = f 3 , (24) 
λz + 1 τ z ρ = f 4 . ( 25 
)
To find V = (u, v, w, z) T ∈ D (A ) solution of the system ( 22), ( 23), ( 24) and ( 25), we proceed as in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]. Suppose u is determined with the appropriate regularity. Then from [START_REF] Pellicer | Analysis of a viscoelastic spring-mass model[END_REF], we get:

v = λu -f 1 . (26) 
Therefore, from the compatibility condition on Γ 1 , ( 19), we determine z(., 0) by:

z(x, 0) = v(x) = λu(x) -f 1 (x), for x ∈ Γ 1 . (27) 
Thus, from [START_REF] Trench | Introduction to real analysis[END_REF], z is the solution of the linear Cauchy problem:

z ρ = τ f 4 (x) -λz(x, ρ) , for x ∈ Γ 1 , ρ ∈ (0, 1), z(x, 0) = λu(x) -f 1 (x). ( 28 
)
The solution of the Cauchy problem (28) is given by:

z(x, ρ) = λu(x)e -λρτ -f 1 e -λρτ + τ e -λρτ ρ 0 f 4 (x, σ)e λστ dσ for x ∈ Γ 1 , ρ ∈ (0, 1). (29) 
So, we have at the point ρ = 1,

z(x, 1) = λu(x)e -λτ + z 1 (x), for x ∈ Γ 1 (30) 
with

z 1 (x) = -f 1 e -λτ + τ e -λτ 1 0 f 4 (x, σ)e λστ dσ, for x ∈ Γ 1 . Since f 1 ∈ H 1 Γ0 (Ω) and f 4 ∈ L 2 (Γ 1 ) × L 2 (0, 1), then z 1 ∈ L 2 (Γ 1
). Consequently, knowing u, we may deduce v by [START_REF] Xu | Stabilization of the wave system with input delay in the boundary control[END_REF], z by (29) and using (30), we deduce w = γ 1 (v) by [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF].

In view of equations ( 23) and ( 24), we set, as in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF], u = u + αv. Then, from (26), we have

v = λu -f 1 = λ(u -αv) -f 1 .
Since λ > 0 and α > 0 , 1 + λα = 0; thus we have:

v = λ 1 + λα u - f 1 1 + λα . (31) 
But since u = u -αv, we have:

u = 1 1 + λα u + α 1 + λα f 1 . (32) 
From equations ( 23) and ( 24), u must satisfy:

λ 2 1 + λα u -∆u = f 2 + λ 1 + λα f 1 , in Ω (33) 
with the boundary conditions

u = 0, on Γ 0 (34) ∂u ∂ν = f 3 -λγ 1 (v) -µ 1 γ 1 (v) -µ 2 z(. , 1), on Γ 1 (35) 
the last equation at least formally since we don't have yet found the regularity of u. Replacing u by its expression (32) and inserting it in equation (30), we get:

z(x, 1) = λ 1 + λα u(x)e -λτ + λα 1 + λα f 1 (x)e -λτ + z 1 (x), for x ∈ Γ 1 .
Using the preceding expression of z(., 1) and the expression of v given by (31), we have:

∂u ∂ν = - λ µ 2 e -λτ + (λ + µ 1 1 + λα u + f (x), for x ∈ Γ 1 (36) 
with

f (x) = f 3 (x) + (λ + µ 1 ) -µ 2 λαe -λτ 1 + λα f 1 (x) -µ 2 z 1 (x), for x ∈ Γ 1 .
From the regularity of

f 1 , f 2 , z 1 , we get f ∈ L 2 (Γ 1 ).
The variational formulation of problem (33), (34),( 36) is to find u ∈ H 1 Γ0 (Ω) such that:

Ω λ 2 1 + λα uω + ∇u∇ωdx + Γ1 λ µ 2 e -λτ + (λ + µ 1 1 + λα u(σ)ω(σ)dσ, (37) 
= Ω f 2 + λ 1 + λα f 1 ωdx + Γ1 f (σ)ω(σ)dσ,
for any ω ∈ H 1 Γ0 (Ω). Since λ > 0 , µ 1 > 0 , µ 2 > 0, the left hand side of (37) defines a coercive bilinear form on H 1 Γ0 (Ω). Thus by applying the Lax-Milgram theorem, there exists a unique u ∈ H 1 Γ0 (Ω) solution of (37). Now, choosing ω ∈ C ∞ c , u is a solution of (33) in the sense of distribution and therefore u ∈ E(∆, L 2 (Ω)). Thus using the Green's formula [START_REF] Grobbelaar-Van Dalsen | On the initial-boundary-value problem for the extensible beam with attached load[END_REF] in (37) and exploiting the equation (33) on Ω, we obtain finally:

Γ1 λ µ 2 e -λτ + (λ + µ 1 1 + λα u(σ)ω(σ)dσ + ∂u ∂ν ; ω Γ1 = Γ1 f (σ)ω(σ)dσ ∀ω ∈ H 1 Γ0 (Ω) .
So u ∈ E(∆, L 2 (Ω)) verifies (36) and by equation ( 32) and (31) we recover u and v and thus by (29), we obtain z and finally setting w = γ 1 (v), we have found V = (u, v, w, z) T ∈ D (A ) solution of (Id -A ) V = F . Thus, the proof of Theroem 2.1, follows from the Lumer-Phillips' theorem.

3 Asymptotic behavior 3.1 Exponential stability for µ 2 < µ 1

In this subsection, we show that under the assumption µ 2 < µ 1 , the solution of problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF] decays to the null steady state with an exponential decay rate. For this goal, we use the energy method combined with the choice of a suitable Lyapunov functional. For a positive constant ξ satisfying the strict inequality ( 9), (i.e. < instead of ≤) we define the functional energy of the solution of problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF] as

E(t) = E(t, z, u) = 1 2 ∇u(t) 2 2 + u t (t) 2 2 + u t (t) 2 2,Γ1 + ξ 2 Γ1 1 0 z 2 (σ, ρ, t) dρ dσ = 1 2 E 1 (t) + ξ 2 Γ1 1 0 z 2 (σ, ρ, t) dρ dσ, (38) 
where E 1 (t) = ∇u(t) 2 2 + u t (t) 2 2 + u t (t) 2 2,Γ1 . Let us first remark that this energy is greater than the usual one of the solution of problem [START_REF] Andrews | Second order evolution equations with dynamic boundary conditions[END_REF], namely E 1 (t). Now, we prove that the above energy E (t) is a decreasing function along the trajectories. More precisely, we have the following result: Lemma 3.1. Assume that µ 1 > µ 2 , then the energy defined by ( 38) is a non-increasing positive function and there exists a positive constant C such that for (u, z) solution of [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], and for any t ≥ 0, we have:

dE (t) dt ≤ -C Γ1 u 2 t (σ, t) dσ + Γ1 z 2 (σ, 1, t) dσ -α Ω |∇u t (x, t)| 2 dx . (39) 
Proof. We multiply the first equation in ( 15) by u t and perform integration by parts to get:

1 2 d dt ∇u(t) 2 2 + u t (t) 2 2 + u t (t) 2 2,Γ1 + α ∇u t (t) 2 2 +µ 1 u t (t) 2 2,Γ1 + µ 2 Γ1 u t (σ, t)u t (σ, t -τ )dσ = 0 . ( 40 
)
We multiply the third equation in [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF] by ξz, integrate the result over Γ 1 × (0, 1), we obtain:

ξ τ Γ1 1 0 z ρ z(σ, ρ, t) dρ dσ = ξ 2τ Γ1 1 0 ∂ ∂ρ z 2 (σ, ρ, t) dρ dσ = ξ 2τ Γ1 z 2 (σ, 1, t) -z 2 (σ, 0, t) dσ . (41) 
Using the definition (13) of z in the equality (40) and using the same technique as in the first step of the proof of Theorem 2.1, where we proved that A is dissipative, inequality (39) holds.

The asymptotic stability result reads as follows:

Theorem 3.1. Assume that µ 2 < µ 1 . Then there exist two positive constants C and γ independent of t such that for (u, z) solution of problem ( 15), we have:

E(t) ≤ Ce -γt , ∀ t ≥ 0 . (42) 
Proof. The proof of Theorem 3.1 relies on the construction of a Lyapunov functional. For a small positive constant ε to be chosen later, we define:

L(t) = E(t) + ε Ω u(x, t)u t (x, t) dx + ε Γ1 u(σ, t)u t (σ, t) dσ + εα 2 Ω |∇u(x, t)| 2 dx (43) + εξ Γ1 1 0 e -2τ ρ z 2 (σ, ρ, t) dρ dσ.
Let us say that the introduction of the last term in the Lyapunov functional L is inspired by the work of Nicaise and Pignotti [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF].

It is straightforward to see that for ε > 0, L(t) and E(t) are equivalent in the sense that there exist two positive constants β 1 and β 2 > 0 depending on ε such that for all t ≥ 0

β 1 E(t) ≤ L(t) ≤ β 2 E(t) . (44) 
By taking the time derivative of the function L defined by (43), using the equations in problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], several integration by parts, and exploiting (39), we get:

dL(t) dt ≤ -C Γ1 u 2 t (σ, t) dσ + Γ1 z 2 (σ, 1, t) dσ -α ∇u t 2 2 -ε ∇u 2 2 + ε u t 2 2 + ε u t 2 2,Γ1 -εµ 1 Γ1 u t (σ, t)u(σ, t) dσ -εµ 2 Γ1 z(σ, 1, t)u(σ, t)dσ (45) 
+ εξ d dt Γ1 1 0 e -2τ ρ z 2 (σ, ρ, t) dρ dσ .

By using the second equation in [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], the last term in (45) can be treated as follows:

εξ d dt Γ1 1 0 e -2τ ρ z 2 (σ, ρ, t) dρ dσ = - 2εξ τ Γ1 1 0 e -2τ ρ z(σ, ρ, t)z ρ (σ, ρ, t) dρ dσ = - εξ τ Γ1 1 0 e -2τ ρ ∂ ∂ρ z 2 (σ, ρ, t) dρ dσ.
Then, by using an integration by parts and the definition of z, the above formula can be rewritten as:

εξ d dt Γ1 1 0 e -2τ ρ z 2 (σ, ρ, t) dρ dσ = - εξ τ e -2τ Γ1 z 2 (1, ρ, t) dρ dσ + εξ τ Γ1 u 2 t (σ, t) dσ (46) -2εξ Γ1 1 0 e -2τ ρ z 2 (σ, ρ, t) dρ dσ .
Proof of Theorem 3.2. We use the same Lyapunov function as in the previous section, namely, for a small positive constant ε to be chosen later, we define: e -2τ ρ z 2 (σ, ρ, t) dρ dσ.

L(t) = E(t) + ε Ω u(x,
By taking the time derivative of the function L, using the equations in problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], several integration by parts, and exploiting (52), we get: e -2τ ρ z 2 (σ, ρ, t) dρ dσ .

dL(t) dt ≤ -κ Γ1 z 2 (
The remaining part of the proof is similar to the one of the proof of Theorem 3.1: by choosing firstly δ and then ε, we may find γ > 0 independent of t such that: dL(t) dt ≤ -γL(t) , ∀t ≥ 0 .

This inequality permits us to conclude the proof of Theorem 3.2.

Remark 3.2. After our work had been submitted, we noticed that a similar problem has been already studied by Nicaise and Pignotti [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF]. However our problem is slightly different from the one considered in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF]:

• First, we have the extra term µ 1 u t on the boundary conditions, which makes the stability analysis independent of the strong damping α∆u t , for µ 1 > µ 2 . This is not the case in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF]. See the assumption (2.56) in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF]. Moreover, the paper [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF] does not cover the case α = 0 at all.

• Secondly, our Lyapunov functional is different from the one used in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF]. We choose to use this one to have a strong control of the boundary delay term.

Finally, let us remark that our assumption (µ 2 -µ 1 )B 2 < α is exactly the same than the one obtained in [20, Condition (2.56)], when µ 1 = 0. So this work can be viewed as a continuation of the works of Nicaise and Pignotti [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF] 
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Applying Young's inequality, and the trace inequality, we obtain, for any δ > 0: 

We choose now δ small enough in (49) such that

.

Once δ is fixed, using once again Poincaré's inequality in (49), we may pick ε small enough to obtain the existence of η > 0, such that:

On the other hand, by virtue of (44), setting γ = -ηε/β 2 , the last inequality becomes:

Hence, integrating the previous differential inequality (51) between 0 and t, we get

for some positive constant C * . Consequently, by using (44) once again, we conclude that it exists C > 0 such that:

This completes the proof of Theorem 3.1 .

Exponential stability for

As, we have said in the Introduction, and it is clearly observed in Theorem 3.1, that the strong internal damping compensates the destabilizing effect of the delay in the boundary condition.

In this section, we assume that µ 2 > µ 1 and α > (µ 2 -µ 1 )B 2 . As we will see, we cannot directly perform the same proof as for the case where µ 2 ≤ µ 1 , since the boundary delay term µ 2 u t (x, t -τ ) is greater than the normal one µ 1 u t (x, t), i.e. (µ 2 ≥ µ 1 ). So we have to control this term by the damping term α∆u t in the equation.

Remark 3.1. In the case 2, namely µ 2 > µ 1 the condition α > (µ 2 -µ 1 )B 2 permits us to find ξ satisfying (11)-( 12). This choice of ξ is essential in the proofs of Lemma 3.2 and Theorem 3.2 below. Lemma 3.2. Assume that µ 2 > µ 1 and α > (µ 2 -µ 1 )B 2 . For any ξ satisfying ( 11)-( 12), the energy defined by ( 38) is a non-increasing positive function and there exists a positive constant κ such that for (u, z) solution of ( 15), and for any t ≥ 0, we have:

Proof. Let us first recall from ( 40) and (41) the following identity

Now, using Young's inequality, then (53) takes the form:

Since,

then, using the trace inequality, we obtain:

Using the two inequalities ( 11)-( 12) that ξ satisfy , we may find κ > 0 such that the inequality (52) holds.

We can now state that under the same assumption as in Lemma 3.2, the system (15) is also exponentially stable. The second stability result reads as follows: Theorem 3.2. Assume that µ 2 > µ 1 and α > (µ 2 -µ 1 )B 2 . For any ξ satisfying (11)- [START_REF] Gerbi | Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions[END_REF], there exist two positive constants C and γ independent of t such that for (u, z) solution of problem [START_REF] Grobbelaar-Van Dalsen | On the solvability of the boundary-value problem for the elastic beam with attached load[END_REF], we have:

(55)