
HAL Id: hal-00704248
https://hal.science/hal-00704248

Submitted on 5 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Case retrieval in medical databases by fusing
heterogeneous information.

Gwénolé Quellec, Mathieu Lamard, Guy Cazuguel, Christian Roux, Béatrice
Cochener

To cite this version:
Gwénolé Quellec, Mathieu Lamard, Guy Cazuguel, Christian Roux, Béatrice Cochener. Case retrieval
in medical databases by fusing heterogeneous information.. IEEE Transactions on Medical Imaging,
2011, 30 (1), pp.108-18. �10.1109/TMI.2010.2063711�. �hal-00704248�

https://hal.science/hal-00704248
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON MEDICAL IMAGING 1

Case Retrieval in Medical Databases by Fusing

Heterogeneous Information
Gwénolé Quellec, Mathieu Lamard, Guy Cazuguel, Member, IEEE, Christian Roux, Fellow Member, IEEE and

Béatrice Cochener

Abstract—A novel content-based heterogeneous information
retrieval framework, particularly well suited to browse med-
ical databases and support new generation Computer Aided
Diagnosis (CADx) systems, is presented in this paper. It was
designed to retrieve possibly incomplete documents, consisting
of several images and semantic information, from a database;
more complex data types such as videos can also be included in
the framework. The proposed retrieval method relies on image
processing, in order to characterize each individual image in a
document by their digital content, and information fusion. Once
the available images in a query document are characterized,
a degree of match, between the query document and each
reference document stored in the database, is defined for each
attribute (an image feature or a metadata). A Bayesian network
is used to recover missing information if need be. Finally, two
novel information fusion methods are proposed to combine these
degrees of match, in order to rank the reference documents
by decreasing relevance for the query. In the first method, the
degrees of match are fused by the Bayesian network itself. In
the second method, they are fused by the Dezert-Smarandache
theory: the second approach lets us model our confidence in each
source of information (i.e. each attribute) and take it into account
in the fusion process for a better retrieval performance. The
proposed methods were applied to two heterogeneous medical
databases, a diabetic retinopathy database and a mammography
screening database, for computer aided diagnosis. Precisions at
five of 0.809±0.158 and 0.821±0.177, respectively, were obtained
for these two databases, which is very promising.

Index Terms—Medical databases, Heterogeneous information
retrieval, Information fusion, Diabetic retinopathy, Mammogra-
phy

I. INTRODUCTION

TWO main tasks in Computer Aided Diagnosis (CADx)

using medical images are extraction of relevant informa-

tion from images and combination of the extracted features

with other sources of information to automatically or semi-

automatically generate a reliable diagnosis. One promising
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way to achieve the second goal is to take advantage of

the growing number of digital medical databases either for

heterogeneous data mining, i.e. for extracting new knowledge,

or for heterogeneous information retrieval, i.e. for finding

similar heterogeneous medical records (e.g. consisting of

digital images and metadata). This paper presents a generic

solution to use digital medical databases for heterogeneous

information retrieval, and solve CADx problems using Case-

Based Reasoning (CBR) [1].

CBR was introduced in the early 1980s as a new decision

support tool. It relies on the idea that analogous problems have

similar solutions. In CBR, interpreting a new situation revolves

around the retrieval of relevant documents in a case database.

The knowledge of medical experts is a mixture of textbook

knowledge and experience through real life clinical cases, so

the assumption that analogous problems have similar solutions

makes sense to them. This is the reason why there is a growing

interest in CBR for the development of medical decision

support systems [2]. Medical CBR systems are intended to

be used as follows: should a physician be doubtful about

his/her diagnosis, he/she can send the available data about

the patient to the system; the system selects and displays the

most similar documents, along with their associated medical

interpretations, which may help him/her confirm or invalidate

his/her diagnosis by analogy. Therefore, the purpose of such

a system is not to replace physicians’ diagnosis, but rather to

aid their diagnosis. Medical documents often consist of digital

information such as images and symbolic information such as

clinical annotations. In the case of Diabetic Retinopathy, for

instance, physicians analyze heterogeneous series of images

together with contextual information such as the age, sex and

medical history of the patient. Moreover, medical information

is sometimes incomplete and uncertain, two problems that

require a particular attention. As a consequence, original

CBR systems, designed to process simple documents such

as homogeneous and comprehensive attribute vectors, are

clearly unsuited to complex CADx applications. On one hand,

some CBR systems have been designed to manage symbolic

information [3]. On the other hand, some others, based on

Content-Based Image Retrieval [4], have been designed to

manage digital images [5]. However, few attempts have been

made to merge the two kinds of approaches. We consider in

this paper a larger class of problems: CBR in heterogeneous

databases.

To retrieve heterogeneous information, some simple ap-

proaches, based on early fusion (i.e. attributes are fused in

feature space) [6], [7] or late fusion (i.e. attributes are fused

in semantic space) [8], [9], [10] have been presented in the
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literature. A few application-specific approaches [11], [12],

[13], [14], [15], as well as a generic retrieval system, based

on dissimilarity spaces and relevance feedback [16], have also

been presented. We introduce in this paper a novel generic

approach that does not require relevance feedback from the

user. The proposed system is able to manage incomplete

information and the aggregation of heterogeneous attributes:

symbolic and multidimensional digital information (we focus

on digital images, but the same principle can be applied to

any n-dimensional signals). The proposed approach is based

on a Bayesian network and the Dezert-Smarandache theory

(DSmT) [17]. Bayesian networks have been used previously

in retrieval systems, either for keyword based retrieval [18],

[19] or for content-based image or video retrieval [20], [21].

The Dezert-Smarandache theory is more and more widely used

in remote sensing applications [17], however, to our knowl-

edge, this is its first medical application. In our approach, a

Bayesian network is used to model the relationships between

the different attributes (the extracted features of each digital

image and each contextual information field): we associate

each attribute with a variable in the Bayesian network. It lets us

compare incomplete documents: the Bayesian network is used

to estimate the probability of unknown variables (associated

with missing attributes) knowing the value of other variables

(associated with available attributes). Information coming from

each attribute is then used to derive an estimation of the degree

of match between a query document and a reference document

in the database. Then, these estimations are fused; two fusion

operators are introduced in this paper for this purpose. The

first fusion operator is incorporated in the Bayesian network:

the computation of the degree of match, with respect to a

given attribute, relies on the design of conditional probabilities

relating this attribute to the overall degree of match. An

evolution of this fusion operator that models our confidence in

each source of information (i.e. each attribute) is introduced. It

is based on the Dezert-Smarandache theory. In order to model

our confidence in each source of information, within this

second fusion operator, an uncertainty component is included

in the belief mass function characterizing the evidence coming

from this source of information.

The main advantage of the proposed approach, over standard

feature selection / feature classification approaches, is that a

retrieval model is trained separately for each attribute. This

is useful to process incomplete documents: in the proposed

approach, we simply combine the models associated with all

available attributes; as a comparison, a standard classifier relies

on feature combinations, and therefore may become invalid

when input feature vectors are incomplete. Also, because each

attribute is processed separately, the curse of dimensionality

is avoided. Therefore, it is not necessary to select the most

relevant features: instead, we simply weight each feature by a

confidence measure.

The paper is organized as follows. Section II presents

the proposed Bayesian network based retrieval. Section III

presents the Bayesian network and Dezert-Smarandache theory

based retrieval. These methods are applied in section IV to

CADx in two heterogeneous databases: a diabetic retinopa-

thy database and a mammography database. We end with a

discussion and a conclusion in section V.

II. BAYESIAN NETWORK BASED RETRIEVAL

A. Description of Bayesian Networks

A Bayesian network [22] is a probabilistic graphical model

that represents a set of variables and their probabilistic depen-

dencies. It is a directed acyclic graph whose nodes represent

variables, and whose edges encode conditional independencies

between the variables. Examples of Bayesian networks are

given in Fig. 1.

(a) (b) (c)

Fig. 1. Examples of Bayesian Networks. Fig. (a) shows a chain. Fig. (b)
shows a polytree, i.e. a network in which there is at most one (undirected)
path between two nodes. Fig. (c) shows a network containing a cycle: <
A,D,E,C,A >.

In the example of Fig. 1 (b), the edge from the parent

node A to its child node D indicates that variable A has a

direct influence on variable D. Each edge in the graph is

associated with a conditional probability matrix expressing

the probability of a child variable given one of its parent

variables. For instance, if A = {a0, a1} and D = {d0, d1, d2},

then A → D is assigned the following (3 × 2) conditional

probability matrix P (D|A):

P (D|A) =





P (D = d0|A = a0) P (D = d0|A = a1)
P (D = d1|A = a0) P (D = d1|A = a1)
P (D = d2|A = a0) P (D = d2|A = a1)





(1)

A directed acyclic graph is a Bayesian Network relative

to a set of variables {X1, ..., Xn} if the joint distribution

P (X1, ..., Xn) can be expressed as in equation 2:

P (X1, ..., Xn) =
n
∏

i=1

P (Xi|parents(Xi)) (2)

where parents(X) is the set of nodes such that Y → X is in

the graph ∀ Y ∈ parents(X). Because a Bayesian network

can completely model the variables and their relationships,

it can be used to answer queries about them. Typically, it

is used to estimate unknown probabilities for a subset of

variables when other variables (the evidence variables) are

observed. This process of computing the posterior distribution

of variables, given evidence, is called probabilistic inference.

In Bayesian networks containing cycles, exact inference is

a NP-hard problem. Approximate inference algorithms have

been proposed, but their accuracies depend on the network’s

structure; therefore, they are not general. By transforming the

network into a cycle-free hypergraph, and performing infer-

ence in this hypergraph, Lauritzen and Spiegelhalter proposed

an exact inference algorithm with relatively low complexity

[23]; this algorithm was used in the proposed system.
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B. Learning a Bayesian Network from Data

A Bayesian network is defined by a structure and the

conditional probability of each node given its parents in that

structure (or its prior probability if it does not have any parent).

These parameters can be learned automatically from data.

Defining the structure consists in finding pairs of nodes (X,Y )
directly dependent, i.e. such that:

• X and Y are not independent (P (X,Y ) 6= P (X)P (Y ))
• There is no node set Z such that X and Y are indepen-

dent given Z (P (X,Y |Z) 6= P (X|Z)P (Y |Z))

Independence and conditional independence can be assessed

by mutual information (see equation 3) and conditional mutual

information (see equation 4), respectively.

I(X,Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
(3)

I(X,Y |Z) =
∑

x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)
(4)

Two nodes are independent (resp. conditionally independent)

if mutual information (resp. conditional mutual information)

is smaller than a given threshold ǫ, 0 ≤ ǫ < 1. Ideally, ǫ

should be equal to 0. However, in the presence of noise, some

meaningless edges (links) can appear. These edges can also

unnecessarily increase the computation time. To avoid this, in

this study, ǫ was chosen in advance to be equal to 0.1. This

number is independent of dataset cardinality [24].

The structure of the Bayesian network, as well as edge

orientation, was obtained by Cheng’s algorithm [24]. This

algorithm was chosen for its complexity: complexity is poly-

nomial in the number of variables, as opposed to exponential

in competing algorithms.

C. Including Images in a Bayesian Network

Contextual information are included as usual in a Bayesian

network: a variable with a finite set of states, one for each

possible attribute value, is defined for each field.

To include images in a Bayesian network, we first define a

variable for each image in the sequence. For each “image

variable”, we follow the usual steps of Content-Based Image

Retrieval (CBIR) [4]: 1) building a signature for each image

(i.e. extracting a feature vector summarizing their digital

content), and 2) defining a distance measure between two

signatures (see section II-C1). Thus, measuring the distance

between two images comes down to measuring the distance

between two signatures. Similarly, in a Bayesian network,

defining states for an “image variable” comes down to defining

states for the signature of the corresponding images. To

this aim, similar image signatures are clustered, as described

below, and each cluster is associated with a state. Thanks to

this process, image signatures can be included in a Bayesian

network like any other variable.

1) Image Signature and Distance Measure: in previous

works on CBIR, we proposed to extract a signature for

images from their wavelet transform [25]. These signatures

model the distribution of the wavelet coefficients in each

subband of the decomposition; as a consequence they provide

a multiscale description of images. To characterize the wavelet

coefficient distribution in a given subband, Wouwer’s work

was applied [26]: Wouwer has shown that this distribution can

be modeled by a generalized Gaussian function. The maximum

likelihood estimators of the wavelet coefficient distribution

in each subband are used as a signature. These estimators

can be computed directly from wavelet-based compressed

images (such as JPEG-2000 compressed images), which can

be useful when a large number of images has to be processed.

A simplified version of Do’s generalized Gaussian parameter

estimation method [27], [25] is proposed in appendix A to

reduce computation times. Any wavelet basis can be used to

decompose images. However, the effectiveness of the extracted

signatures largely depends on the choice of this basis. For

this reason, we proposed to search for an optimal wavelet

basis [25] within the lifting scheme framework, which is

implemented in the compression standards. To compare two

signatures, Do proposed the use of the Kullback-Leibler di-

vergence between wavelet coefficient distributions P and Q

in two subbands [27]:

D(P ||Q) =

∫

R

p(x) log
p(x)

q(x)
dx (5)

where p and q are the densities of P and Q, respectively.

A symmetric version of the Kullback-Leibler divergence was

used, since clustering algorithms require (symmetric) distance

measures:
1

2
(D(P ||Q) +D(Q||P )) (6)

Finally, the distance between two images is defined as a

weighted sum of these distances over the subbands, noted

WSD; weights are tuned by a genetic algorithm to maximize

retrieval performance on the training set [25]. The ability to

select a weight vector and a wavelet basis makes this image

representation highly tunable. We have shown in previous

works the superiority of the proposed image signature, in

terms of retrieval performance, over several well-known image

signatures [25].

2) Signature Clustering: in order to define several states

for an “image variable”, similar images are clustered with

an unsupervised classification algorithm, thanks to the image

signatures and the associated distance measure above. Any

algorithm can be used, provided that the distance measure

can be specified. We chose the well-known Fuzzy C-Means

algorithm (FCM) [28] and replaced the Euclidean distance by

WSD described above. In this algorithm, each document is

assigned to each cluster k = 1..K with a fuzzy membership

uk, 0 ≤ uk ≤ 1, such that
∑K

k=1 uk = 1, which can

be interpreted as a probability. Finding the right number of

clusters is generally a difficult problem. However, when each

sample has been assigned a class label, mutual information

between clusters and class labels can be used to determine the

optimal number of clusters K̂ [29] (see equation (7)).

K̂ = argmax
K

C
∑

c=1

K
∑

k=1

P (c, k) logC+K

P (c, k)

P (c)P (k)
(7)

where c = 1..C are the class labels, P (c, k) is the joint proba-

bility distribution function of the class and cluster labels, P (c)
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and P (k) are the marginal probability distribution functions.

Other continuous variables can be discretized similarly: the

age of a person, one-dimensional signals, videos, etc.

D. System Design

QUERY - case in the testing setOFFLINE - on the training set

Learn the probabilistic
relationships

between variables
(section II.B).

Compute the correlation
between two

states of a variable
(section II-E2).

Intermediate network
(Fig 3(a))

Correlations

Compute the probabilistic
relationships between the

variables and the query node
(section II-E).

Add a query node Q to
the intermediate network

(section II-D).

Query-specific network
(Fig 3(b))

case x in the training set

Probabilistic inference on
the query-specific network

using x as evidence
(sections II-A, II-F)

Cases in the training set
ranked in decreasing

order of P(Q|x)

Fig. 2. Bayesian Network based Retrieval. Solid-lined arrows mean “leads
to” or “is followed by” and dashed-lined arrows mean “is used by”.

Let xq be a query document and M be the number of

attributes.

Definition: A document x is said to be relevant for xq if x

and xq belong to the same class.

To assess the relevance of each reference document in a

database for xq , we define a Bayesian network with the

following variables:

• a set of variables {Ai, i = 1..M}, where Ai represents

the ith attribute of x,

• a Boolean variable Q = “x is relevant for xq” (Q̄ = “x

is not relevant for xq”).

The design of the system is described hereafter and illustrated

in Fig. 2. To build the network, the first step is to learn the

different relationships between the attributes {Ai, i = 1..M}.

So, an intermediate network is built from data, using Cheng’s

algorithm (see section II-B). In that purpose, the studied

database is divided into a training dataset and a test dataset.

Cheng’s algorithm is applied to the training dataset. In our

experiments, the query document xq belongs to the test dataset

and x belongs to the training dataset. To build this Bayesian

network, a finite number of states aij is defined for each

variable Ai, i = 1..M . To learn the relationships between these

variables, we use the membership degree of any document y

in the training dataset to each state aij of each variable Ai,

noted αij(y). If Ai is a nominal variable, αij(y) is boolean;

for instance, if y is a male then α“sex′′,“male′′(y) = 1 and

α“sex′′,“female′′(y) = 0. If Ai is a continuous variable (such

as an image-based feature), αik(y) is the fuzzy membership

of y to each cluster k = 1..K (see section II-C2). An example

of intermediate network is given in Fig. 3 (a).

(a) Intermediate network

(b) Query-specific network

Fig. 3. Retrieval Bayesian Network (built for the database presented in
section IV-A). In the example of Fig. (b), attributes A1, ..., A6, A8, A10,
A13, A14, A15, A17, A18, A22, A23 are available for the query document
xq , so the associated nodes are then connected to node Q.

Q is then integrated in the network. For retrieval, the

attributes of x are observable evidences for Q, as a con-

sequence the associated variables should be descendants of

Q. In the retrieval network, the probabilistic dependences

between Q and each variable Ai depend on xq . In fact, xq

specifies which attributes should be found in the retrieved

documents in order to meet the user’s needs. So, when the

ith attribute of xq is available, we connect the two nodes Q

and Ai and we estimate the associated conditional probability

matrix Pq(Ai = aij |Q) according to xq (see Fig. 3 (b)).

The index q denotes that the probability depends on xq . A

query-specific network is obtained: its structure depends on

which attributes are available for the query document and the

conditional probability matrices depend on the value taken for

these available attributes by the query document. This network

is used to assess the relevance of any reference document for

xq .

E. Computing the Conditional Probabilities Pq(Ai = aij |Q)

To compute Pq(Ai = aij |Q), we first estimate Pq(Q|Ai =
aij): the probability that a reference document x, with full

membership to the state aij of attribute Ai, is relevant.

Pq(Ai = aij |Q) can then be computed thanks to Bayes’

theorem (see equation (8)). The prior probability Pq(Q) is

required; it can be estimated by the probability that two

documents belong to the same class, i.e. the probability that

both documents belong to class 1 or that both documents

belong to class 2, etc., hence equation 9:

P (A|B) =
P (B|A)P (A)

P (B)
(8)

Pq(Q) =
C
∑

c=1

(P (c))
2

(9)
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where c = 1..C are the class labels (as a consequence the

prior probability Pq(Q) is actually independent of xq).

1) Objectives: we want to define Pq(Q|Ai = aij) such that

the posterior probability Pq(Q|x) is as close to 1 as possible

if x and xq belong to the same class, and as close to 0 as

possible otherwise (note that the class label of xq is unknown).

We define the semantic similarity between documents x and

xq , with respect to Ai, as follows:
∑

j

∑

k

αij(x)Sijkαik(xq) (10)

where Sikl is the correlation between two states aik and ail
of Ai, regarding the class of the documents at these states.

2) Correlation Between Two States of a Variable: to com-

pute Sikl, we first compute the mean membership Dikc (resp.

Dilc) of documents y in a given class c to the state aik (resp.

ail) (y belongs to the training dataset):
{

Dijc = β
∑

y δ(y,c)αij(y)
∑

y δ(y,c)
∑C

c=1 (Dijc)
2 = 1, ∀(i, j)

(11)

where δ(y, c) = 1 if y is in class c, δ(y, c) = 0 otherwise, and

β is a normalizing factor chosen to meet the second relation.

Sikl is given by equation 12:

Sikl =

C
∑

c=1

DikcDilc (12)

3) Degree of Match Between x and xq With Re-

spect to Ai: when computing the posterior probability

Pq(Q|x), the Bayesian inference algorithm fuses probabilities

Pq(Q|Ai)P (Ai) coming from each node Ai connected to Q

(see Fig. 3 (b)). In the remainder of this paper, probability

dmi(x, xq) = Pq(Q|Ai)P (Ai) is referred to as the degree of

match between x and xq with respect to attribute Ai. This

degree of match can be rewritten as follows:

dmi(x, xq) =
∑

j

Pq(Q|Ai = aij)αij(x) (13)

where αij(x), the membership degree of x to the state

aij of Ai, is known or computed by the Bayesian net-

work. Pq(Q|Ai = aij) is chosen proportional to rij =
∑M

k=1 αik(xq)Sijk. It implies that dmi(x, xq) is proportional

to the semantic similarity between x and xq (13). As a con-

sequence, the reference documents maximizing the semantic

similarity with xq will maximize Pq(Q|x), which was our

objective. Computation details for Pq(Q|Ai = aij) are given

in appendix B.

F. Retrieval Process

The different reference documents in the database are then

processed sequentially. To process a document x, every avail-

able attribute for x is processed as evidence and Lauritzen

and Spiegelhalter’s inference algorithm is used to compute the

posterior probability of each variable, the posterior probability

of Q, Pq(Q|x), in particular (see Fig. 4 (a)). The reference

documents in the database are then ranked in decreasing order

of the computed posterior probability Pq(Q|x).

(a) Bayesian network based method

(b) Bayesian network + DSmT based method

Fig. 4. Assessing the relevance of a reference document x for the query
by the proposed methods. In this example, attributes A6, A7, A14, A15,
A16, A20, A22 and A23 are available for xq . Evidence nodes are colored in
gray and target nodes are brightly encircled. In Fig. (b), the fusion system is
colored in gray (

⊕
).

III. BAYESIAN NETWORK AND DEZERT-SMARANDACHE

BASED RETRIEVAL

A. Description of the Dezert-Smarandache Theory

The Dezert-Smarandache Theory (DSmT) of plausible and

paradoxical reasoning, proposed in recent years [17], lets us

combine any types of independent sources of information rep-

resented in term of belief functions. It generalizes the theory of

belief functions (Dempster-Shafer Theory - DST) [30], which

itself generalizes the Bayesian theory, used in the system

above. DSmT is mainly focused on the fusion of uncertain,

highly conflicting and imprecise sources of evidence.

Let θ = {θ1, θ2, ...} be a set of hypotheses under consideration

for the fusion problem; θ is called the frame of discern-

ment. For our problem, θ = {Q̄,Q}. In Bayesian theory,

a probability P (θi) is assigned to each element θi of the

frame, such that
∑

θi∈θ P (θi) = 1. More generally, in DST,

a belief mass m(A) is assigned to each element A of the

power set 2θ =
{

∅, Q, Q̄,Q ∪ Q̄
}

, i.e. the set of all composite

propositions built from elements of θ with ∪ operators, such

that m(∅) = 0 and
∑

A∈2θ m(A) = 1. Belief masses let us

express our uncertainty; it is possible for instance to define

confidence intervals on probabilities: depending on external

circumstances, the probability of Q can range from m(Q)
and m(Q) + m(Q ∪ Q̄). DSmT takes one step further: a

(generalized) belief mass m(A) is assigned to each element

A of the hyper-power set D(θ) =
{

∅, Q, Q̄,Q ∩ Q̄,Q ∪ Q̄
}

,

i.e. the set of all composite propositions built from elements

of θ with ∩ and ∪ operators, such that m(∅) = 0 and
∑

A∈D(θ) m(A) = 1.

The belief mass functions mi must be first specified by the user

for each source of information, i = 1..M (mi functions used
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in our system are described below, in paragraph III-C). Then,

mass functions mi are fused into the global mass function mf ,

according to a given rule of combination. Another difference

between DST and DSmT comes from the underlying rules

of combinations. Several rules, designed to better manage

conflicts between sources, were proposed in DSmT, including

the hybrid rule of combination [17] and the Proportional

Conflict Redistribution (PCR) rules [31]. It is possible to

introduce constraints in the model [17]: we can specify pairs of

incompatible hypotheses (θa, θb), i.e. each subset A of θa∩θb
must have a null mass, noted A ∈ C(θ).
Once the fused mass function mf has been computed, we can

compute the belief (credibility) and the plausibility of each

hypothesis A (or any other element of D(θ)) as follows:

Bel(A) =
∑

Bi⊆A,Bi∈D(θ)

mf (Bi) (14)

Pl(A) =
∑

Bi∩A∈C(θ)∪∅,Bi∈D(θ)

mf (Bi) = 1−Bel(Ā) (15)

Belief and plausibility are respectively pessimistic and opti-

mistic. Pignistic probability [32], a possible compromise, is

used instead (see below, in paragraph III-D); other probabilis-

tic transformations are available [33].

B. Link with Bayesian Network based Retrieval

Our motivation for using the theory of belief functions,

instead of the Bayesian theory, is that the former lets us model

our confidence in each source of information, instead of taking

each piece of information at face value. This property is partic-

ularly attractive for a medical decision support system where

heterogeneous sources of information, with varying reliability,

are combined. Because its fusion operators better manage

conflicting sources of information, a common occurrence when

these sources are unreliable, DSmT was used instead of the

original theory of belief functions.

In the Bayesian network based method (see section II), the

relevance of a reference document for the query, according to

a given attribute Ai, has been estimated through the design

of conditional probabilities Pq(Q|Ai = aij). The M sources

of information (represented by the network variables Ai,

i = 1..M ) were then fused by the Bayesian network inference

algorithm (see Fig. 3 (b)) to compute the posterior probability

of Q, Pq(Q|x), for a document x in the database. We can

translate this Bayesian fusion problem into the framework

of the belief mass theory. Let θ = {Q̄,Q} be the frame of

discernment. For each source i (Ai), we defined (13) a degree

of match dmi(x, xq) between x and the query xq , which may

be viewed as the belief mass mi(Q) assigned to hypothesis Q

and consequently mi(Q̄)=1−mi(Q) was assigned to Q̄.

In that first approach, we did not model our confidence in

the estimation of the relevance provided by each source of

evidence (through the design of conditional probabilities). And

poor estimations of the relevance provided by some sources

might mislead the computation of the fused estimation. So we

would like to give more importance in the fusion process to

the trusted sources of evidence. We propose to use DSmT to

model our confidence in each source of evidence, as explained

below.

C. System Design

QUERY - case in the testing setOFFLINE - on the training set

Find the optimal test Ti
on each attribute Ai

(section III-C).

Intermediate network
(Fig 2 / Fig 3(a))

Correlations (Fig 2)
For each attribute Ai,

compute the degree of match
between x and the query

(equation 13).

Case x in the training set

Belief mass function for Ai
(sections III-C)

Cases in the training set
ranked in decreasing

order of betP(Q)

Threshold, sensitivity
and specificity of each

test Ti

Membership degree
 of x to each state
 of each variable

Fusing the belief masses
according to the PCR rule

(sections III-A)

Fig. 5. Bayesian Network and Dezert-Smarandache based Retrieval.

To extend the previous method in the DSmT framework,

we assign a mass not only to Q and Q̄, but to each element

in D(θ) =
{

∅, Q, Q̄,Q ∩ Q̄,Q ∪ Q̄
}

. Assigning a mass to

Q ∩ Q̄ is meaningless, so we only assign a mass to elements

in D(θ) \ Q ∩ Q̄ =
{

∅, Q, Q̄,Q ∪ Q̄
}

= 2θ (it is actually

Shafer’s model [30]).

To compute the belief masses for a given source of infor-

mation i, we defined a test Ti on the degree of match dmi:

Ti(x, xq) is true if dm(x, xq) >= τi, 0 ≤ τi ≤ 1, and false

otherwise. The mass functions are then assigned according to

Ti(x, xq):

• if Ti(x, xq) is true:

– mi(Q) = P (Ti(x, xq)|x is relevant for xq) (the

sensitivity of Ti)

– mi(Q ∪ Q̄) = 1−mi(Q)
– mi(Q̄) = 0

• else

– mi(Q̄) = P (Ti(x, xq)|xisnot relevantfor xq) (the

specificity of Ti)

– mi(Q ∪ Q̄) = 1−mi(Q̄)
– mi(Q) = 0

The sensitivity (resp. the specificity) represents the degree

of confidence in a positive (resp. negative) answer to test

Ti; mi(Q ∪ Q̄) is assigned the degree of uncertainty. The

sensitivity of Ti, for a given threshold τi, is defined as

the percentage of pairs of training documents (y1, y2) from

the same class such that Ti(y1, y2) is true. Similarly, the

specificity of Ti is defined as the percentage of pairs of training

documents (z1, z2) from different classes such that Ti(z1, z2)
is false. Test Ti is relevant if it is both sensitive and specific.

As τi increases, sensitivity increases and specificity decreases.

So, we set τi as the intersection of the two curves “sensitivity
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TABLE I
STRUCTURED CONTEXTUAL INFORMATION FOR DIABETIC RETINOPATHY PATIENTS

category attributes possible values

general clinical context

family clinical context diabetes, glaucoma, blindness, misc.
medical clinical context arterial hypertension, dyslipidemia, protenuria, renal dialysis, allergy, misc.
surgical clinical context cardiovascular, pancreas transplant, renal transplant, misc.

ophthalmologic cataract, myopia, AMD, glaucoma, unclear medium,
clinical context cataract surgery, glaucoma surgery, misc.

examination and diabetes context

diabetes type none, type I, type II
diabetes duration < 1 year, 1 to 5 years, 5 to 10 years, > 10 years
diabetes stability good, bad, fast modifications, glycosylated hemoglobin

treatments
insulin injection, insulin pump, anti-diabetic drug + insulin,

anti-diabetic drug, pancreas transplant

eye symptoms reported
ophthalmologically none, systematic ophthalmologic screening - known diabetes, recently

symptomatic diagnosed diabetes by check-up, diabetic diseases other than ophthalmic ones

before the angiography test
ophthalmologically none, infection, unilateral decreased visual acuity (DVA), bilateral DVA,

asymptomatic neovascular glaucoma, intra-retinal hemorrhage, retinal detachment, misc.

maculopathy maculopathy focal edema, diffuse edema, none, ischemic

according to τi” and “specificity according to τi”. A binary

search is used to find the optimal τi.

D. Retrieval Process

To process a reference document x, every available attribute

for x is processed as evidence and Lauritzen and Spiegel-

halter’s inference algorithm is used to estimate αij(x) ∀j,

i = 1..M . If the ith attribute of xq is available, the degree

of match dmi(x, xq) is computed according to αij(x) (see

equation 13) and the belief masses are computed according

to test Ti(x, xq). The sources available for xq are then fused.

Usual rules of combination have a time complexity exponential

in M , which might be a limitation. So we proposed a rule

of combination for two-hypotheses problems (Q and Q̄ in

our application), adapted from the PCR rules, with a time

complexity polynomial in M [34]. Once the sources available

for xq are fused by the proposed rule of combination, the

pignistic probability betP (Q) is computed following equation

16.

betP (Q) = mf (Q) +
mf (Q ∪ Q̄)

2
(16)

The process is illustrated in Fig. 4 (b) and Fig. 5. The reference

documents are then ranked in decreasing order of betP (Q).

IV. APPLICATION TO MEDICAL IMAGE DATABASES

The proposed method has been applied to CADx on two

heterogeneous databases. First, it has been applied to diabetic

retinopathy severity assessment on a dataset (DRD) built at the

Inserm U650 laboratory, in collaboration with ophthalmolo-

gists of Brest University Hospital. Then, it has been applied to

breast cancer screening on a public access database (DDSM).

A. Diabetic Retinopathy Database (DRD)

The diabetic retinopathy database contains retinal images of

diabetic patients, with associated anonymized information on

the pathology. Diabetes is a metabolic disorder characterized

by sustained inappropriately high blood sugar levels. This

progressively affects blood vessels in many organs, which may

lead to serious renal, cardiovascular, cerebral and also retinal

complications. The latter case, namely diabetic retinopathy,

can lead to blindness. The database consists of 67 patient

files containing 1112 photographs altogether. Images have a

definition of 1280 pixels/line for 1008 lines/image. They are

lossless compressed images. Patients have been recruited at

Brest University Hospital (France) since June 2003 and images

were acquired by experts using a Topcon Retinal Digital

Camera (TRC-50IA) connected to a computer. An image series

is given in Fig. 6.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Photograph sequence of a patient eye. Images (a), (b) and (c) are
photographs obtained with different color filters. Images (d) to (j) constitute
a temporal angiographic series: a contrast agent (fluorescein) is injected and
photographs are taken at different stages (early (d), intermediate (e)-(i), late
(j)). At the intermediate stage, photographs from the periphery of the retina
are available.

The contextual information available is the age and sex of

the patient, as well as structured medical information (see table

I). Patients records consist of at most 10 images per eye (see

Fig. 6) and 13 contextual attributes; 12.1% of these images

and 40.5% of these contextual attribute values are missing.

The disease severity level, according to ICDRS classification

[35], was assessed by a single expert for all 67 patients:

because of intra-observer variability, the reference standard is

imperfect. The distribution of the disease severity among the

above-mentioned 67 patients is given in table II.

B. Digital Database for Screening Mammography (DDSM)

The DDSM project [36], involving the Massachusetts Gen-

eral Hospital, the University of South Florida and the San-

dia National laboratories, has built a mammographic image

database for research on breast cancer screening. It consists

of 2277 patient files. Each of them includes two images of
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TABLE II
PATIENT DISEASE SEVERITY DISTRIBUTION

database disease severity number of

patients

DRD

no apparent diabetic retinopathy 7

mild non-proliferative 9

moderate non-proliferative 22

severe non-proliferative 9

proliferative 9

treated/non active diabetic retinopathy 11

DDSM

normal 695

benign 669

cancer 913

each breast, associated with patient information (age at time

of study, subtlety rating for abnormalities, American College

of Radiology breast density rating and keyword description

of abnormalities) and image information (scanner, spatial

resolution, ...). The following contextual attributes are used

in this study:

• the age at time of study

• the breast density rating

Images have a varying definition, of about 2000 pixels/line for

5000 lines/image. An example of image sequence is given in

Fig. 7. There is no missing information in DDSM.

(a) (b) (c) (d)

Fig. 7. Mammographic image sequence of the same patient. (a) and (b) are
two views of the left breast, (c) and (d) are two views of the right one.

Each patient file has been graded by a physician. Patients

are then classified in three groups: normal, benign and cancer.

The distribution of grades among the patients is given in table

II. The reference standard is also affected by intra- and inter-

observer variability in this dataset.

C. Objective of the System

Definition: let xq be a query document, and x1, x2, ..., xK

be its K most similar documents within the training set. The

precision at K for xq is the fraction of documents, among

{x1, x2, ..., xK}, that belong to the same class as xq .

For each query document, we want to retrieve the most

similar reference documents in a given database. Satisfaction

of the user’s needs can thus be assessed by the precision at

K. The average precision at K measures how good a fusion

method is at combining feature-specific distance measures into

a semantically meaningful distance measure.

D. Patient File Features

In those databases, each patient file consists of both digital

images and contextual information. Contextual attributes (13

in DRD, 2 in DDSM) are processed as-is in the CBR system.

Images need to be processed in order to extract relevant

digital features. A possible solution is to segment these images

and extract domain specific information (such as the number

of lesions); for DRD, the number of automatically detected

microaneurysms (the most frequent lesion of diabetic retinopa-

thy) [37] is used. However, this kind of approach requires

expert knowledge and a robust segmentation of images, which

is not always possible because of acquisition variability. So,

an additional solution to characterize images by their digital

content, without segmenting images, is proposed: a feature

vector is extracted from the wavelet decomposition of the

image [25]. An image signature is computed for each image

field in a document (4 in DDSM: RCC, RMLO, LCC, LMLO

and 10 in DRD); each image signature is associated with

an attribute (see section II-C). In conclusion, there are 24

attributes in DRD and 6 attributes in DDSM.

E. Training and Test Sets

Retrieval performance is assessed as follows. Both datasets

are randomly divided into five subsets V1, V2, ..., V5 of equal

size. Each subset Vi, i = 1..5, is used in turn as test set while

the remaining four subsets are used for training the retrieval

system. Note that the test set is completely independent from

the training process.

F. Results

The number of documents proposed by the system is

typically set to K ∈ {5, 10, 20}. Precisions obtained with each

fusion method are reported in table III. Because the cardinality

of each class is small in DRD, performance was expected

to decrease as K increases. For both databases, at K = 5,

the average precision is greater than 0.8; it means that, on

average, more than 80% of the selected documents are relevant

for a query. We can see that, on DRD, the use of DSmT

increases the average precision at K = 5 by about 10%, but

not on DDSM. This can be explained by the the fact that, on

DRD, many sources of information are contextual: less reliable

similarity measures are derived from these contextual sources

(the sensitivity/specificity values of the corresponding tests

Ti are lower), hence the interest of DSmT for this database.

To assess the performance of the proposed fusion framework,

independently of the underlying image signatures (described

in II-C1), it was compared to an early fusion [6] and a late

fusion method [8] based on the same image signatures. The

results we obtained for these methods are summarized in table

III.

The average computation time to retrieve the five closest

documents for the second method is given in table IV (compu-

tation times are similar with the first method). Clearly, most of

the time is spent during the computation of image signatures.

All experiments were conducted using an AMD Athlon 64-bit

based computer running at 2 GHz.

To study the robustness of the method with respect to

missing values the following test was carried out:

• for each document xi in the database, 100 new documents

were generated as follows. Let ni be the number of
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TABLE III
PRECISION OBTAINED WITH DIFFERENT METHODS

Dataset DRD DDSM

Number of retrieved documents (K) 5 10 20 5 10 20

Bayesian network (see section II) 0.704±0.168 0.654±0.174 0.551±0.191 0.821±0.177 0.813±0.179 0.798±0.191

Bayesian network + DSmT (see section III) 0.809±0.158 0.693±0.165 0.590±0.180 0.803±0.182 0.801±0.185 0.787±0.188

Bayesian network + DSmT (simplified signature computation) 0.806±0.158 0.693±0.165 0.587±0.180 0.800±0.184 0.799±0.186 0.787±0.189

Bayesian network + DSmT (images only) 0.704±0.176 0.640±0.181 0.529±0.200 0.759±0.192 0.740±0.194 0.725±0.194

Early fusion [6] 0.430±0.207 0.448±0.203 0.432±0.212 0.714±0.193 0.731±0.192 0.718±0.196

Late fusion [8] 0.394±0.210 0.431±0.194 0.427±0.204 0.703±0.192 0.717±0.191 0.700±0.200

TABLE IV
COMPUTATION TIMES FOR THE DSMT BASED METHOD

database DRD DDSM

retrieval (once signatures are computed) 0.37 s 4.67 s

Do’s generalized Gaussian estimation method

computing the signatures (for 1 image) 4.57 s 35.89 s

average retrieval time (the average number of images 40.58 s 148.27 s

per document is ≃ 9 for DRD and 4 for DDSM)

Simplified generalized Gaussian estimation method — see appendix A

computing the signatures (for 1 image) 0.25 s 2.23 s

average retrieval time 2.58 s 13.59 s

attributes available for xi, each new example was ob-

tained by removing a number of attribute values randomly

selected in {0, 1, ..., ni}.

• the precision at five obtained for these generated docu-

ments, with respect to the number of available attributes,

was plotted in Fig. 8.

Fig. 8. Robustness with respect to missing values. Note that documents are
returned at random when no attributes are available (0 on the x-axis).

Finally, for comparison purposes, the proposed system was

applied to abnormal (‘benign’ or ‘cancer’) versus ‘normal’

document classification:

• for each document xi in the database (1364 abnormal and

695 normal), an abnormality index a(xi) was defined;

a(xi) is the percentage of abnormal documents among

the topmost K results (if xi belongs to Vj , then the results

are selected within the database minus Vj),

• the Receiver-Operating Curve (ROC) [38] of a(.) was

plotted and the area under this curve, noted Az , was

computed.

An area under the ROC curve of Az = 0.921, Az = 0.917 and

Az = 0.914 was obtained for K = 5, K = 10 and K = 20,

respectively. In comparison, for the task of classifying regions

of interest of 512 × 512 pixels (489 malignant masses, 412

benign masses and 919 normal breasts), Mazurowski et al.

obtained an area under the ROC curve of Az = 0.907±0.024
using mutual information [38].

V. DISCUSSION AND CONCLUSIONS

In this paper, we introduced two methods to include image

series and their signatures, with contextual information, in a

CBR system. The first method uses a Bayesian network to

model the relationships between attributes. It allows us to

manage missing information, and to fuse several sources of in-

formation. In particular, a method to include image signatures

in a Bayesian network was proposed. In this first method, we

modeled the relevance of a reference document in the database

for the query, according to a given attribute Ai, through the

design of conditional probabilities Pq(Ai = aij |Q). The sec-

ond method, based on the Dezert-Smarandache theory, extends

the first one by improving the fusion operator: we modeled

our confidence in each estimation of the relevance through

the design of belief mass functions. These methods have

been successfully applied to two medical image databases.

These methods are generic: they can be extended to databases

containing sound, video, etc. The wavelet transform based

signature, presented in section II-C, can be applied to any

n-dimensional digital signal, using its n-dimensional wavelet

transform (n = 1 for sound, n = 3 for video, etc) [39].

Extending the proposed image signature to n-dimensional

wavelet transforms is trivial: characterizing the distribution

of wavelet coefficients simply implies iterating over rows,

columns, depth (or time), etc., instead of rows and columns for

a 2-D image (see appendix A). The proposed methods are also

convenient in the sense that they do not need to be retrained

each time a new document is included in the database.

The precision at five obtained for DRD (0.809±0.158) is

particularly interesting, considering the few examples avail-

able, the large number of missing values and the large number

of classes taken into account. On this database, the methods

outperform usual methods by almost a factor of 2 in terms

of precision at 5. The improvement is also noticeable on

DDSM (0.821±0.177 compared to 0.714±0.193). The pro-

posed retrieval methods are fast: most of the computation

time is spent during the image processing steps. The code

may be parallelized to decrease computation times further.

Moreover, sufficient precision can be reached before all the
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attributes are provided by the user. As a consequence, the user

can stop formulating his query when the returned results are

satisfactory. On DRD for instance, a precision at five of 0.6

can be reached by providing less than 30% of the attributes

(see Fig. 8): with this precision, the majority of the retrieved

documents (3 out of 5) belong to the right class. Table III

shows that the difference, in terms of retrieval performance,

between single image retrieval [25] and heterogeneous docu-

ment retrieval, comes from the combination of image features

extracted from several images, more than the inclusion of

contextual attributes.

This study has three limitations. First, only one type of

image feature [25] has been included in the retrieval system

(two for DRD [25], [37]). In particular, the inclusion of

application-specific image features will have to be validated

on several medical image databases. Second, the reference

standards are affected by inter- and intra- observer variability,

further validation and observer studies are needed. Finally,

as it has been shown by Cheng et al., the size of the

dataset has an influence on the correctness of the generated

Bayesian networks. DRD, in particular, is small compared

to the datasets used to validate Bayesian network generation

methods [24]. The limited size of the dataset may also impact

the performance on the test set, especially if K is larger than

(or is in the order of) the number of cases belonging to some

of the classes within the dataset.

As a conclusion, using appropriate information fusion oper-

ators, heterogeneous case retrieval in medical digital databases

is a powerful tool to build reliable CADx systems. In future

works, we will try to improve retrieval performance further

through the use of relevance feedback [4] and through the

inclusion of localized image features. A web interface, that

will permit relevance feedback, is being developed to allow

assessment of clinical usefulness by physicians.

APPENDIX A

FAST PARAMETER ESTIMATION FOR GENERALIZED

GAUSSIAN DISTRIBUTIONS

In Do’s parameter estimation method [27], the parameters of

the wavelet coefficient distribution in a M ×N subband X =
{xi,j , i = 1..M, j = 1..N}, namely α̂ and β̂, are obtained by

iterating over all coefficients in this subband. For instance, α̂

is obtained as follows:

α̂ =





β

MN

M
∑

i=1

N
∑

j=1

|xi,j |
β





1

β

(17)

where β is an approximation of β̂, which is iteratively refined

using the Newton-Raphson procedure [27]. The computation

of β relies, for each wavelet coefficient, on multiple eval-

uations of the logarithm and the digamma function, which

implies slow computations.

We propose to significantly reduce the number of such evalu-

ations by applying Do’s estimation method, not directly to X ,

but to a histogram of X :

1) the standard deviation σ of X is computed,

2) a B-bins histogram of X , restricted to the [−nσ;nσ]
interval, is computed (we used B=64 and n=5 — these

numbers were chosen to reduce the approximation error

on an independent dataset1),

3) let hk be the number of coefficients assigned to the kth

bin, and vk the centroid of that bin

vk = −nσ +
(

k − 1
2

) 2nσ

B
(18)

Equation 17 becomes

α̂ =

(

β

MN

B
∑

k=1

hk |vk|
β

)

1

β

(19)

All other equations in [27] are modified similarly.

APPENDIX B

Pq(Ai = aij |Q): COMPUTATION DETAILS

For each attribute Ai, i = 1..M , we want Pq(Q|Ai = aij)

to be proportional to rij =
∑M

k=1 αik(xq)Sijk (see section

II-E). In that purpose, we first determine pi = Pq(Q|Ai =
ai argmaxj(rij)

). Let r̃ij =
rij

maxk(rik)
. The following constraints

have to be satisfied:

Pq(Q|Ai = aij) + Pq(Q̄|Ai = aij) = 1 (20)
∑

j

Pq(Q|Ai = aij)P (Ai = aij) = Pq(Q) (21)

∑

j

Pq(Q̄|Ai = aij)P (Ai = aij) = Pq(Q̄) (22)

where Pq(Q), Pq(Q̄) and P (Ai = aij) are prior probabilities.

Injecting pi and r̃ij in equation 21, we obtain equation 23.

∑

j

pi.r̃ij .P (Ai = aij) = Pq(Q), i = 1..M (23)

pi is then extracted from equation 23:

pi =
Pq(Q)

∑

j r̃ij .P (Ai = aij)
, i = 1..M (24)

Once pi is computed, Pq(Q̄|Ai = ai argmaxj(rij)
) = 1−pi can

be computed (see equation 20). Other conditional probabilities

are deduced from the definition of r̃ij : Pq(Q|Ai = aij) =
pi.r̃ij .

If the most desirable state for attribute Ai (argmaxj(rij)) is

a rare state, it is possible that pi > 1. Indeed, in constraint

21, Pq(Q|Ai = ai argmaxk(rik)
) is multiplied by a small value

(P (Ai = ai argmaxk(rik)
)), the result of this product is small

and the other terms of the sum (with a value Pq(Q|Ai = aij)
smaller than Pq(Q|Ai = ai argmaxj(rij)

) by definition) might

be too small for the sum to reach Pq(Q). In that case, the

conditional probabilities should be changed as follows:

• we set pi = 1,

• each r̃ij , j 6= argmaxk(rik), is multiplied by a constant

γ > 0.

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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With this setup, constraint 21 becomes equation 25.

P (Ai = aij) +
∑

j 6=argmaxk(rik)

γ.r̃ij .P (Ai = aij) = Pq(Q)

(25)

Finally, γ is extracted from equation 26 and conditional

probabilities from equation 27.

γ =
Pq(Q)− P (Ai = ai argmaxj(rij)

)
∑

j 6=argmaxk(rik)
r̃ij .P (Ai = aij)

(26)

Pq(Q|Ai = aij) = γ.r̃ij , j 6= argmaxj(rij) (27)

The inequality Pq(Q) ≥ P (Ai = ai argmaxk(rik)
) always

holds, as a consequence γ > 0. Indeed Pq(Q) ≥ Pq(Q|Ai =
ai argmaxk(rik)

)P (Ai = ai argmaxk(rik)
) (according to con-

straint 21), i.e. Pq(Q) ≥ pi.P (Ai = ai argmaxk(rik)
); given

that pi = 1, the following inequality holds: Pq(Q) ≥ P (Ai =
ai argmaxk(rik)

).
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