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Abstract

This paper addresses signal norm testing (SNT), that is, the problem of deciding

whether a random signal norm exceeds some specified value τ > 0 or not, when

the signal has unknown probability distribution and is observed in additive and in-

dependent standard Gaussian noise. The theoretical framework proposed for SNT

extends usual notions in statistical inference and introduces a new optimality crite-

rion. This one takes the invariance of both the problem and the noise distribution

into account, via conditional notions of power and size and, more specifically, the

introduction of the spherically-conditioned power function. The theoretical results

established with respect to this criterion extend those deriving from standard statis-

tical inference theory in the case of an unknown deterministic signal.

Thinkable applications are problems where signal amplitude deviations from

some nominal reference must be detected above a certain tolerance τ, possibly cho-

sen by the user on the basis of his experience and know-how. In this respect, the

theoretical results of this paper are applied to an SNT formulation for the problem

of detecting random signals in noise, with a specific focus on the case where the

noise standard deviation is unknown.

Keywords

Signal norm testing, hypothesis testing, invariance, conditional power function, sphe-

rically-conditioned power function, invariant tests, tests with uniformly best invari-

ant spherically-conditioned power (UBISCP)
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1 Introduction

A basic problem in statistical signal processing is the detection of the presence or

the absence of some signal in additive noise, on the basis of some measurement or

observation. In many cases, the observation, the signal and noise are d-dimensional

real vectors. If the signal is absent, the observation consists of noise only. If the

signal is present, the observation is the sum of this signal and noise.

The signal is often assumed to be some unknown deterministic d-dimensional

real vector θ. The problem of detecting θ in noise is then stated as the (non-Bayesian)

hypothesis testing problem of accepting or rejecting the hypothesis θ = 0 with a

specified value for the false alarm probability, that is, the probability of falsely re-

jecting θ = 0. Such a standard framework is questionable with regard to physics. To

begin with, the signal deterministic model is an oversimplification of the reality and

a random model should generally be preferred. In any case, in many applications,

the signal depends on pairs of physical parameters, such as velocities and positions,

that cannot simultaneously be known to arbitrary precision because of Heisenberg’s

uncertainty principle. In addition, even in the case where the signal is known to be

0 for some nominal values of its parameters, more or less big fluctuations around

these nominal values can occur — due to environmental conditions for instance —

and induce deviations of ‖θ‖ around 0, where ‖·‖ throughout stands for the standard

euclidean norm in the space R
d of all the d-dimensional real vectors. Depending on

the application, the detection of small deviations of ‖θ‖ around 0 can be of poor

interest for the user and only relatively big ones must actually be detected. There-

fore, whether the signal is assumed to be deterministic or random, testing the signal

norm with respect to 0 may sometimes be too severe, and even paradoxical, be-

cause of unavoidable imprecision due to physics in the parameter setting. Thence,

the idea to introduce some tolerance in the detection problem statement, this toler-

ance being possibly specified by the user himself on the basis of his experience and

know-how with respect to a given environment or context.

With respect to the foregoing, the scope of the present paper is then signal norm

testing (SNT) with respect to some non-negative real value τ, that is, the problem

of testing whether the norm of a d-dimensional real random signal with unknown

distribution exceeds τ or not, when this signal is observed in independent noise.

The value τ is then called the tolerance of the SNT problem. The standard detec-

tion problem evoked at the beginning of this introduction is then the particular

SNT problem with null tolerance. To the best of our knowledge, SNT is addressed

here for the first time. In what follows, noise is assumed to be standard Gaussian,

in the sense that it is centred, Gaussian distributed, with covariance matrix pro-

portional to the d ×d identity matrix Id . Following standard terminology, the sig-

nal will be said to be observed in independent and additive white Gaussian noise

(AWGN). This assumption is acceptable in many cases of practical interest. The nov-

elty brought by this paper is then threefold.

1) We introduce the SNT problem, whose applications are seemingly numerous.

To treat this problem, an original theoretical framework is established to perform

SNT of any random signal, with any unknown distribution, in independent AWGN.

SNT of a random signal thus concerns a random event, in contrast to standard sta-

tistical inference aimed at testing an hypothesis on a parameter of a distribution

family.

2) Many hypothesis testing problems considered in the literature concern unknown
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deterministic parameter vectors and exhibit invariance properties with respect to

nuisance parameters. The invariance principle [1–3] is a particularly suitable sta-

tistical tool in such cases. In contrast to standard theory based on the invariance

principle, the most general results established below in SNT apply to any random

vector, whatever its distribution. In fact, to establish these results where the sig-

nal plays the role of a random parameter with unknown distribution, the standard

invariance principle dedicated to the deterministic case does not apply and an al-

ternative approach to deal with the natural invariance of both the SNT problem and

the noise distribution is thus proposed. Since the SNT problem is not scale invari-

ant, save for the null tolerance case, our general results are established under the

assumption that the noise standard deviation is known and embrace all possible

tolerance values.

3) Application of the invariance principle to the detection of an unknown deter-

ministic signal in AWGN has received much attention to design tests invariant to

nuisance parameters and, thus, robust to various contexts and applications. For in-

stance, [4–8] address the case of a noise covariance matrix with known form, whereas

[9–19] expose adaptive solutions for the case where the noise covariance matrix is

unknown and secondary data are available. These solutions takes the scale-invariance

of the detection problem into account. As already mentioned above, the detection of

a signal in AWGN, whatever its distribution, is the particular SNT problem with null

tolerance. This paper then contributes also to the standard detection problem by

presenting results that apply to any random signal with any unknown distribution,

whether the noise standard deviation is known or estimated via a noise reference.

Application of SNT is thinkable any time a deviation from a nominal reference

must be detected. For instance, beyond the standard detection problem, the results

stated below could be helpful in tracking tasks where a tolerance may help select

or pre-classify targets, in combination with a scheduling policy aimed at deciding

which and how long certain targets must be tracked with high priority [20]. Similarly,

for anti-collision radars or a robot asked to find its path in a certain environment,

SNT could apply to the detection (resp. the deletion) of new (resp. old) obstacles,

as well as the management of “tracked obstacles in a thresholded proximity of mea-

surement” [21]. Fault-detection and structural health monitoring (SHM) could also

be natural applications of what follows. “Because the stress level in any element will

never be exactly zero, one must establish a threshold stress level for proper dam-

age diagnosis” [22]. The introduction of a tolerance, aimed at bracketing possible

fluctuations other than noise around the signal nominal model, could therefore be

considered. Fault-detection, robust to system uncertainties and external noise, is

still a challenging task addressed in most recent papers [23–25] and could possibly

benefit from the theoretical SNT framework established in the sequel.

2 Outline of main results

Although our more general results concern SNT of a random signal with any un-

known distribution, we begin with the case of an unknown deterministic signal. Al-

beit questionable with regard to physics for reasons evoked above, the deterministic

case gives the opportunity to recall basics in statistical inference and establish some

first easy results in SNT. These basic notions and results are then extended to deal

with random signals and state our more generals theorems, which will then be ap-
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plied to the detection problem. More specifically, three types of results are hereafter

presented.

1) First, when the signal is assumed to be an unknown deterministic d-dimensional

real vector, we tackle SNT within the usual framework of statistical inference. For

the one-dimensional case, we can even exhibit uniformly most powerful (UMP) and

uniformly most powerful unbiased (UMPU) tests, depending on the type of testing

under consideration. In the general d-dimensional case, testing the signal norm

with respect to τ at specified level γ ∈ (0 , 1) can be treated via the statistical invari-

ance principle [1–4] to take the natural invariance of the problem into account and

derive tests that are uniformly most powerful invariant (UMPI) with respect to the

orthogonal group Od inR
d . Our main result in the deterministic case — namely, the-

orem 1 — then states that these UMPI tests are, in fact, UMP among the tests with

level γ and spherically invariant power function. As such, they are said to be UMP-

SIP. Theorem 1 is connected to Wald’s theory of tests with uniformly best constant

power (UBCP) [26]. The proof of theorem 1 will not be given in the section concern-

ing the deterministic case because it is a straightforward consequence of our results

established for random signals.

2) When the signal is random, which is a suitable model in many signal processing

applications of practical interest, the decision-making in SNT concerns a random

event, in contrast to standard statistical inference aimed at testing an hypothesis on

an unknown parameter parameterizing a distribution family. Therefore, SNT of a

random signal cannot be tackled via usual hypothesis testing. In addition, we make

no assumption about the signal distribution. As a consequence, the natural invari-

ance of the problem cannot be treated by means of the standard invariance principle

because this one applies to problems involving distributions depending on param-

eters that are indeed unknown, but deterministic. Therefore, the problem of testing

the norm of a random signal must be posed within an appropriate and dedicated

mathematical framework. New definitions, extending those recalled in the deter-

ministic case, are then introduced. A new criterion, suitable for the random case

and based on the spherical invariance of both the problem and the Gaussian distri-

bution, is proposed in coherence with these definitions. This criterion extends that

of the deterministic case. The tests optimal with respect to this criterion are said to

have uniformly best invariant spherically-conditioned power (UBISCP). Our main

theoretical and most general results are then theorems 2 and 3. The former states

that UBISCP tests are necessarily UMP-SIP and the latter that the UMP-SIP tests of

theorem 1 are UBISCP, which extends their properties. The reader can already de-

duce from what precedes that theorem 1 actually follows from theorems 2 and 3.

3) The standard problem of detecting a random signal in independent AWGN is

posed as an SNT problem. Theorem 3 applies and the performance measurements

of UBISCP tests designed for various tolerances are discussed. The signal detection

problem in case of an estimated noise standard deviation is considered as well be-

cause it can also be regarded as an SNT problem. In case of an unknown noise stan-

dard deviation, our results in SNT are adapted to detect random signals with any

unknown distributions, via an estimate-and-plug-in detector [27] based on auxiliary

data of noise alone. It then turns out that the use of a positive tolerance partly com-

pensates the performance loss incurred by the use of the noise standard deviation

estimate.

The next section introduces some material used throughout. SNT in the deter-
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ministic case is then treated in section 4 where the definitions of UMP, UMPU et

UMPI tests are recalled since the sequel will often refer to such standard notions.

Section 5 focuses on the general random case and leads to our main results. The

application to signal detection is addressed in section 6 where the case of a known

standard deviation and that of an unknown standard deviation are considered. Pe-

spectives are then summarized in the concluding section 7 of this paper. For clarity

sake, many mathematical proofs are postponed to appendices and only those that

favour the understanding of the approach are kept in the main core of the paper.

3 Preliminary material

In this section, we present some notation and terminology as well as a few defini-

tions that will be used throughout the rest of the paper with always the same mean-

ing. We also state some preliminary results that will prove very useful and whose

proofs are postponed to appendices.

To begin with, the tolerance with respect to which SNT is performed will always

be denoted by τ. The corrupting noise will hereafter be denoted by X . It is assumed

to be d-dimensional, centred, Gaussian distributed with covariance matrix Id . As

usual, we write X ∼ N(0,Id ).

For any given ρ ∈ [0 , ∞ ), R(ρ, ·) hereafter stands for the cumulative distribution

function of the square root of any random variable that follows the non-central χ2

distribution with d degrees of freedom and non-central parameter ρ2. Therefore, R

is the map of [0,∞)× [0,∞) into [0,1] such that, for any θ ∈R
d and any η ∈ [0 , ∞ ),

P
[
‖θ+X ‖ ∈ [0 , η ][

]
=R(‖θ‖,η). (1)

where [0,η ][ is any of the two intervals [0,η ] or [0,η ). Whether [0, η ][ is closed or not

does not matter in the equality above because the probability distribution of θ+ X

is absolutely continuous with respect to Lebesgue’s measure in R
d . Given any ρ ∈

[0 , ∞ ), R(ρ, ·) is strictly increasing and continuous and, thus, a one-to-one mapping

of [0,∞ ) into [0, 1). An analytical expression of R will be given in appendix IV for

further technical use. In the main core of this paper, the definition of R given by (1)

above suffices. The following lemmas state properties of R that will be very useful in

the sequel.

Lemma 1 Given any η ∈ (0 , ∞ ), the map R(·,η) is strictly decreasing.

PROOF: See appendix I.

Lemma 2

(i) given γ ∈ (0 , 1] and ρ ∈ [0 , ∞ ), there exists a unique solution λγ(ρ) ∈ [0,∞) in η

to the equation 1−R(ρ,η) = γ;

(ii) given γ ∈ (0 , 1], λγ is a strictly increasing and everywhere continuous map of

[0,∞) into [0,∞);

(iii) given ρ ∈ [0 , ∞ ), the map γ ∈ (0 , 1] 7→ λγ(ρ) ∈ [0 ,∞ ) is strictly decreasing and

continuous everywhere.

PROOF: See appendix II.
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In the sequel, a test is any measurable map of Rd into
{

0, 1
}
. As usual, a test T

is said to accept (resp. reject) a given hypothesis whenever it takes the value 0 (resp.

the value 1). Thresholding tests, which play a crucial role in the sequel, are defined

as follows. Given η ∈ [0 , ∞ ), a thresholding test with threshold height η is any test

Tη such that

Tη(y) =
{

0 if ‖y‖ < η

1 if ‖y‖ > η
(2)

or such that

Tη(y) =
{

0 if ‖y‖ > η

1 if ‖y‖ < η.
(3)

If a thresholding test Tη with threshold η satisfies (2) (resp. (3)), it is said to be from

above (resp. from below). The handling of equality in the definition of a thresh-

olding test plays no role in what follows because of the absolute continuity of the

observation probability distribution with respect to Lebesgue’s measure.

Given any test T, the power function of T, with respect to family
{
N(θ,Id ) : θ ∈R

d
}

of distributions, is defined for every θ ∈R
d by [1]

βθ(T) = P
[
T(θ+X ) = 1

]
. (4)

The value βθ(T) is thus the probability that T rejects the hypothesis, whatever this

hypothesis may be, when Y = θ+ X . In the sequel, we simply speak of the power

function of test T, without recalling the family distribution with respect to which it

is defined since this family will remain the same.

Because of the spherical invariance of both the noise distribution and the test-

ing problems encountered below, spheres of Rd will play an important role. For any

given ρ ∈ [0,∞), the standard notation ρSd−1 will hereafter stand for the sphere cen-

tred at the origin in R
d with radius ρ.

4 Signal norm testing in the deterministic case

This section can be regarded as an introduction to the more general random case.

In particular, it gives the opportunity to recall basic definitions in statistical infer-

ence that will be extended in the random case. It also pinpoints the importance of

thresholding tests due to the invariance of the SNT problem.

4.1 Problem statement

The observation Y is assumed to be Gaussian distributed with covariance matrix Id

and unknown mean θ ∈ R
d . As usual, we write Y ∼ N(θ,Id ). The basic purpose of

SNT in the deterministic case is then to decide whether ‖θ‖ is above some given real

number τ or not. There are actually four hypotheses that can be tested: ‖θ‖ 6 τ,

‖θ‖ < τ, ‖θ‖> τ and ‖θ‖ > τ. We hereafter say that we test the norm of θ from above

(resp. from below) τ when the tested hypothesis is either ‖θ‖ 6 τ or ‖θ‖ < τ (resp.

‖θ‖ > τ or ‖θ‖ > τ). When there is no need to specify whether SNT is from above

or from below, the interval involved in the hypothesis to test will be denoted by Iτ.

Therefore, SNT of the deterministic signal θ, either from above or from below toler-

ance τ, is the testing of the composite hypothesis ‖θ‖ ∈ Iτ with θ ∈ R
d . Of course,

for the problem to be meaningful, it is assumed that Iτ and Ic
τ are non-empty sets,

where Ic
τ henceforth denotes the complementary set [0, ∞ ) \ Iτ of Iτ in [0, ∞ ). In
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SNT from above (resp. from below), Iτ can thus be any of the two intervals [0, τ ] and

[0, τ ) (resp. any of the two intervals [τ , ∞ ) and (τ , ∞ )) when τ > 0 and cannot be

but {0} (resp. (0, ∞ )) when τ = 0. For the sake of shortening the notation, we write

[0, τ][ (resp. ][τ , ∞ )) to designate any of the intervals [0, τ ] and [0, τ ) (resp. any of

the two intervals [τ , ∞ ) and (τ , ∞ )), without specifying which of these two intervals

is actually concerned and without recalling that this interval must be non-empty.

The results stated in this section rely on the following usual definitions [1]. Let T

be some test. First, the size of T for testing ‖θ‖ ∈ Iτ with θ ∈R
d is defined by

α(T) = sup
‖θ‖∈Iτ

βθ(T). (5)

Given γ ∈ [0 , 1], T is said to have level (resp. size) γ for testing ‖θ‖ ∈ Iτ with θ ∈ R
d

if α(T) 6 γ (resp. α(T) = γ). Hereafter, Kγ denotes the class of those tests T such

that α(T) 6 γ. Second, the power of T for testing the norm of θ with respect to Iτ is

defined as the value of the power function βθ(T) for θ such that ‖θ‖ ∈ Ic
τ. The power

of test T is thus the restriction of the power function of T to vectors θ with norms

in Ic
τ. According to the standard definition of unbiased tests, an unbiased test for

testing ‖θ‖ ∈ Iτ with θ ∈ R
d is any test T such that βθ(T) > α(T) for any θ ∈ R

d such

that ‖θ‖ ∈ Ic
τ. Transposing standard terminology in statistical inference to SNT in

the deterministic case, we put the following definition.

Definition 1 A test T is said to be UMP with size γ within some class K′ ⊂Kγ of tests

for testing ‖θ‖ ∈ Iτ with θ ∈ R
d if (i) T ∈ K′, (ii) α(T) = γ and (iii) βθ(T) > βθ(T′) for

any T′ ∈ K′ and any θ such that ‖θ‖ ∈ Ic
τ. In particular, if there exists a UMP test

with size γ within the class of all unbiased (resp. invariant) tests with level γ for

testing ‖θ‖ ∈ Iτ with θ ∈ R
d , this test is said to be UMP unbiased (UMPU) (resp.

UMP invariant (UMPI)) with size γ. If there exists a UMP test with size γ within the

class of all possible tests with level γ for a given SNT problem, we simply say that

this test is UMP with size γ.

On the basis of the previous definitions and material, three results are estab-

lished below. They follow from standard ones in composite hypothesis testing, such

as those given in [1]. More specifically, the first two concern the one-dimensional

case only. In contrast, the third one — namely theorem 1 — establishes the exis-

tence, for any given dimension and any given level γ ∈ (0 , 1), of thresholding tests

that have size γ and that are uniformly most powerful among the tests with spheri-

cally invariant power function. These thresholding tests are said to be UMP-SIP with

sizeγ. They are also UMPI since thresholding tests are basically invariant and invari-

ant tests have spherically invariant power function.

Proposition 1 Given some level γ ∈ (0 , 1) and any τ ∈ [0 , ∞ ), any thresholding test

from below with threshold height λ1−γ(τ) is UMP with size γ for testing ‖θ‖ ∈ ][τ , ∞ )

with θ ∈R
d .

PROOF: The existence of a UMP test with size γ for testing the norm of θ from below

tolerance τ simply follows from [1, Theorem 3.7.1] since the Gaussian distribution

belongs to the one-parameter exponential family. It suffices to show that this test is

actually the thresholding test from below with threshold height λ1−γ(τ). According

to [1, Theorem 3.7.1], the UMP test at hand is given by

T(y) =
{

0 if y < c1 or y > c2

1 if c1 < y < c2
, (6)
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where c1 < c2 are determined so as to verify the equalities

P
[

c1 <−τ+X < c2

]
= P

[
c1 < τ+X < c2

]
= γ. (7)

By setting m = (c1 + c2)/2 and ∆ = (c2 − c1)/2, it follows that
[

c1 < X − τ < c2

]
=[

|X −τ−m| <∆
]

and that
[

c1 < X +τ< c2

]
=

[
|X +τ−m| <∆

]
. Therefore, according

to (1), the values c1 and c2 must satisfy R(|m +τ|,∆) = R(|τ−m|,∆). The strict de-

creasingness of R(·,∆) guaranteed by lemma 1 implies that |m+τ| = |τ−m|. Because

τ> 0, we must have m = 0 so that test T defined by (6) is necessarily the threshold-

ing test from below with threshold c2 = −c1. It now follows from (1) and (7) that

R(τ,c2) = γ. Therefore, according to statement (i) of lemma 2, c2 = λ1−γ(τ) and the

proof is complete.

For testing the norm of a deterministic signal from above, there is no UMP test.

However, the following proposition states the existence of a uniformly most power-

ful unbiased (UMPU) test.

Proposition 2 Given some level γ ∈ (0 , 1) and any τ ∈ [0 , ∞ ), any thresholding test

from above with threshold height λγ(τ) is UMPU with size γ for testing ‖θ‖ ∈ [0 , τ ][

with θ ∈R
d .

PROOF: The existence of a UMPU test with size γ for testing the norm of θ ∈ R

from above tolerance τ follows from [1, Eqs. (4.2) & (4.3), section 4.2]. The proving

that this test is actually the thresholding test from above with threshold height λγ(τ)

mimics that of the preceeding proposition and is left to the reader.

The previous results are limited to the one-dimensional case and concern two

differient criteria. It is desirable to obtain a result that holds for any dimension

and optimizes a unique criterion. Basically, the problem is spherically invariant —

or invariant under the action of the orthogonal group Od in R
d — in the standard

sense [1, Chapter 6, Section 6.1]. Indeed, for any given element g of Od , the noise

probability distribution satisfies P
[
‖X ‖ ∈ B

]
= P

[
‖g X ‖ ∈ B

]
for any Borel set of Rd

and the hypothesis remains unchanged when the signal is gθ instead of θ. There-

fore, it is natural to seek a UMPI test with level equal to some specified γ ∈ (0 , 1),

that is, a UMP test within the class of those tests that are invariant under the group

Od and whose level is γ. If such a UMPI test exists, it follows from [1, Lemma 6.2.1]

that this test must be a function of ‖ · ‖, which a maximal invariant of Od . It turns

out that such a UMPI test actually exists and is a thresholding test for the following

reasons. The group Od leaves invariant the hypothesis ‖θ‖ ∈ Iτ to test. Since the

norm ‖·‖ is a maximal invariant of Od , so is ‖·‖2. Moreover, ‖Y ‖2 is chi-2 distributed

with d degrees of freedom and non-centrality parameter µ = ‖θ‖2. It then follows

from [1, Theorem 6.2.1] — or [2, Theorem 1, Sec. 47, chapter III] — that the invariant

tests for testing ‖θ‖ ∈ Iτ when we observe Y ∼ N(θ,Id ) reduce to the tests for testing

µ ∈ {x2 : x ∈ Iτ} on the basis of ‖Y ‖2. According to [5] or corollary 1 of appendix IV,

the non-central chi-2 distribution has monotone likelihood ratio. The existence of a

UMP test for testing µ ∈ {x2 : x ∈ Iτ} is then a consequence of the Karlin-Rubin theo-

rem [1, Theorem 3.4.1]. This UMP test is therefore UMPI for testing ‖θ‖ ∈ Iτ on the

basis of the initial observation Y . It remains to prove that this UMPI test is actually

the threshold test from above (resp. from below) with threshold height λγ(τ) (resp.

λ1−γ(τ)) when SNT is from above (resp. from below) tolerance τ. This is achieved by

proceeding as in the proof of proposition 1.

RR - 2011 01 - SC 10



In fact, more can be said about thresholding tests in SNT of a deterministic sig-

nal. To this end, we consider the tests with spherically invariant power function. Al-

though the following definition for such tests is straightforward and could be omit-

ted, we however prefer making it, so as to introduce the terminology chosen through-

out to designate such tests, especially with regard to the contents of section 5.

Definition 2 A test T is said to have spherically invariant power function (SIPfun) if

βθ(T(g )) =βθ(T) for any element g of Od and any θ ∈R
d , where T(g ) is the compos-

ite map T ◦ g . The class of the tests with SIPfun is hereafter denoted by KSIPfun.

Note that the tests with SIPfun are also the tests T whose power function βθ(T) is

a function of ‖θ‖ and, thus, constant on every sphere with radius ρ ∈ (0 , ∞ ), which

are the orbits of the orthogonal group in R
d . Recall that if invariant tests have neces-

sarily SIPfun, the converse is however not true [1, Chapter 6, pp. 227 – 228]. We can

now state the main result of this section.

Theorem 1 Given some level γ ∈ (0 , 1), any thresholding test from above (resp. from

below) with threshold height λγ(τ) (resp. λ1−γ(τ)) is unbiased and UMP with size

γ within KSIPfun ∩Kγ — we say that this test is UMP-SIP with size γ — for testing[
‖θ‖ ∈ Iτ

]
with θ ∈R

d and Iτ = [0 , τ][ (resp. Iτ = ][τ , ∞)).

PROOF: The fact that the thresholding tests specified in the statement are UMP-

SIP with size γ for testing
[
‖θ‖ ∈ Iτ

]
with θ ∈ R

d straighforwardly follows from the-

orems 2 and 3 established below. The only thing we prove here is the unbiasedness

of these tests. In fact, we prove this unbiasedness in SNT from above τ only, for the

proving in SNT from below τ is similar and can be left to the reader. We thus consider

the problem of testing
[
‖θ‖ ∈ Iτ

]
with θ ∈R

d and Iτ = [0 , τ][. Let Tλ∗ be any thresh-

olding test from above with threshold height λ∗ = λγ(τ) so that 1−R(τ,λ∗) = γ. Ac-

cording to (1), βθ(Tλ∗ ) = 1−R(‖θ‖,λ∗) for any θ ∈ R
d . On the other hand, it follows

from lemma 1 that 1−R(·,λ∗) increases strictly. Therefore, we derive from the fore-

going that βθ(Tλ∗ ) > γ for any θ such that ‖θ‖ ∈ Ic
τ. Thence, the unbiasedness of Tλ∗ .

4.2 Connection to Wald’s theory of tests with uniformly best con-

stant power

We now show that theorem 1 embraces Wald’s proposition [26, Section 6, Proposi-

tion III, p. 450] about tests with uniformly best constant power (UBCP) for testing

the mean of a Gaussian distributed random vector. To begin with, we briefly recall

Wald’s definition [26, Definition III, Section 6, p. 450]. Then, we present the hy-

pothesis testing problem addressed by Wald’s proposition before stating and prov-

ing [26, Section 6, Proposition III, p. 450], as a consequence of theorem 1. Wald’s

definition or criterion is the following one.

Definition 3 [Wald’s UBCP tests] Let Y be a d-dimensional real random vector

whose distribution belongs to a given class
{
Pθ : θ ∈ ̟

}
, where ̟ is some param-

eter space. For any given θ ∈ ̟, let Pθ

[
T(Y ) = 1

]
stand for the probability value

P
[
T(Y ) = 1

]
when the distribution of Y is Pθ . Let

{
Υρ : ρ ∈ I

}
be a family of sur-

faces in ̟ where I is some index set. For testing H0 : θ = θ0 against H1 : θ 6= θ0 where

θ0 ∈ ̟, a test T is said to be UBCP on
{
Υρ : ρ ∈ I

}
if it satisfies the following two

conditions:
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(a) Test T has constant power function on every Υρ , ρ ∈ I, in that, given any ρ ∈ I,

Pθ

[
T(Y ) = 1

]
= Pθ′

[
T(Y ) = 1

]
for any θ,θ′ ∈Υρ ⊂̟.

(b) For any θ ∈ ̟, Pθ

[
T(Y ) = 1

]
> Pθ

[
T′(Y ) = 1

]
for any test T′ whose power is

constant on every givenΥρ withρ ∈ I and such that Pθ0

[
T(Y ) = 1

]
= Pθ0

[
T′(Y ) = 1

]
.

Wald’s result [26, Section 6, Proposition III, p. 450] can then be rewritten in the

following form, with no loss of generality. We prove it as a consequence of theorem 1.

Proposition 3 [26, Section 6, Proposition III] Let Y be some random d-dimensional

random vector whose distribution belongs to the family
{
N(θ,Id ) : θ ∈R

d
}
. For test-

ing H0 : EY = 0 against H1 : EY 6= 0, any thresholding test from above whose thresh-

old is positive is UBCP on the family of spheres ρSd−1 with ρ ∈ [0 , ∞ ).

PROOF: Let Tη be some thresholding test from above with threshold height η > 0.

We must prove that (1) Tη has constant power on every sphere ρSd−1 with ρ ∈ [0 , ∞ )

and (2) βθ(Tη) >βθ(T′) for any θ ∈R
d and any test T′ with constant power on every

sphere ρSd−1 with ρ ∈ [0 , ∞ ) and such that β0(Tη) =β0(T′).

First, the tests whose power is constant on every given sphere ρSd−1, ρ > 0, are

exactly the tests with SIPfun. Therefore, as any thresholding test, Tη has SIPfun and,

thus, constant power on every sphere ρSd−1 with ρ > 0, which proves (1).

Second, the problem of testing H0 against H1 is equivalent to the SNT problem

of testing ‖EY ‖ from above tolerance τ= 0. This and (5) imply that

β0(T) =α(T), (8)

for any test T. Since lemma 2 guarantees the existence of a unique γ ∈ (0 , 1) such

that η = λγ(0), it follows from theorem 1 that Tη is UMP-SIP for testing ‖θ‖ = 0 and

(8) implies that

β0(Tη) =α(Tη) = γ. (9)

Let T′ be any other test with constant power on every sphere ρSd−1 with ρ > 0 and

such that β0(Tη) = β0(T′). This test T′ has thus SIPfun and, according to (8) and (9),

is such that α(T′) =α(Tη) = γ. Thereby, Tη and T′ are both elements of KSIPfun ∩Kγ.

Since Tη is UMP-SIP with size γ for testing ‖θ‖ = 0, βθ(Tη) > βθ(T′) and (2) holds

true.

According to theorem 1 and proposition 3, given any γ ∈ (0 , 1), any threshold-

ing test from above with threshold height equal to λγ(0) is UBCP on the family of

spheres ρSd−1 with ρ ∈ [0 , ∞ ) and UMP-SIP with size γ for testing θ = 0 with θ ∈R
d .

Throughout the rest of the paper, any thresholding test with threshold height λγ(0)

will be called Wald’s test with size γ.

5 Testing the norm of a random signal

5.1 Mathematical statement

All the random vectors and variables are assumed to be defined on the same prob-

ability space (Ω,B,P). As usual, we write (a-s) for almost surely. The set of all d-

dimensional real random vectors defined on (Ω,B) and valued, thus, in R
d , is here-

after denoted by M(Ω,Rd ). Throughout this section, the observation is Y = Θ+ X
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where Θ is an unknown element of M(Ω,Rd ) and X ∼ N(0,Id ) is standard Gaussian

noise. Given any Z ∈ M(Ω,Rd ) (resp. any random variable), PZ−1 stands for the

probability distribution of Z , that is the probability measure defined for any Borel

subset B of Rd (resp. R) by PZ−1(B) = P
[

Z ∈ B
]
.

The SNT problem in the random case can be posed as follows. Given some non-

negative real number τ and some elementary event ω ∈Ω, we want to know whether

‖Θ(ω)‖ 6 τ or not, when we are given Y (ω) and the probability distribution of Θ is

unknown. By analogy with standard terminology in statistical inference, we say that

we test the event
[
‖Θ‖6 τ

]
. In fact, 3 other events can actually be tested in SNT of

a random signal. These possible events are
[
‖Θ‖ < τ

]
,
[
‖Θ‖ > τ

]
and

[
‖Θ‖ > τ

]
.

The results established below do not depend on whether the inequality is strict or

not in the event to test. This follows again from the absolute continuity of the prob-

ability distribution of Θ+X with respect to Lebesgue’s measure in R
d . All the possi-

ble events that can be tested in SNT in the random case can be written in the form[
‖Θ‖ ∈ Iτ

]
, where Iτ is any of the four intervals [0, τ ], [0 , τ ), [τ , ∞ ) and (τ , ∞ ).

Of course, SNT in the random case is of actual interest when the signal is assumed

to be an element of the set ϑτ of those d-dimensional real random vectors Θ such

that P
[
‖Θ‖ ∈ Iτ

]
∈ (0 , 1), which implies that Iτ and Ic

τ = [0 , ∞ ) \ Iτ are non-empty

sets, as in section 4. Thereby, our focus will hereafter be the problem of testing the

event [‖Θ‖ ∈ Iτ
]

with Θ ∈ϑτ, under the necessary assumption that neither Iτ nor Ic
τ

is empty. This necessary assumption is implicit throughout. As in the deterministic

case, SNT in the random case is said to be from above (resp. from below) tolerance

τ when Iτ is any of the two intervals [0, τ ] and [0, τ ) (resp. any of the two inter-

vals [τ , ∞ ) and (τ , ∞ )). In the sequel, we keep on using the notation [0, τ][ (resp.

][τ , ∞ )) to designate any of the intervals [0, τ ] and [0, τ ) (resp. any of the two inter-

vals [τ , ∞ ) and (τ , ∞ )).

Basically, testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ amounts to choosing some map of Ω

into
{

0,1
}

so that, for every ω ∈ Ω, the value returned by this map is the decision

on whether ‖Θ(ω)‖ is an element of Iτ or not. Similarly to standard terminology in

statistical inference, if this decision assigned to a given ω ∈Ω is 0 (resp. 1), the event[
‖Θ‖ ∈ Iτ

]
is said to be accepted (resp. rejected). Of course, there are infinitely many

possible choices for maps of Ω into
{

0,1
}
. In the sequel, we restrict our attention to

the rather natural class of the composite maps T ◦ Y = T(Y ) where T is any test,

that is, any measurable map of Rd into
{

0,1
}

. We then assess the performance of

a given test T for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ via the following two quantities,

whose definitions extend the standard notions [1] of size and power. To begin with,

the size of T for testing the norm of a given Θ ∈ ϑτ with respect to Iτ is defined as the

conditional

α
ϑτ

Θ
(T) = P

[
T(Θ+X ) = 1

∣∣‖Θ‖ ∈ Iτ
]
. (10)

and the size of T for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ϑτ is defined by

αϑτ (T) = sup
Θ∈ϑτ

α
ϑτ

Θ
(T). (11)

Test T is then said to have level (resp. size) γ ∈ [0 , 1] for testing
[
‖Θ‖ ∈ Iτ

]
with

Θ ∈ ϑτ if αϑτ (T) 6 γ (resp. αϑτ (T) = γ). Given γ ∈ [0 , 1], K
ϑτ
γ will henceforth denote

the class of those tests T such that αϑτ (T) 6 γ. Second, the power of T for testing the

norm of a given Θ ∈ϑτ with respect to Iτ is defined as the conditional

β
ϑτ

Θ
(T) = P

[
T(Θ+X ) = 1

∣∣‖Θ‖ ∈ Ic
τ

]
. (12)
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A test T with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ is said to be unbiased if, for

any given Θ ∈ ϑτ, β
ϑτ

Θ
(T) > γ. Given two tests T and T′ with same level for testing[

‖Θ‖ ∈ Iτ
]

with Θ ∈ϑτ, T is said to be more powerful that T′ for testing the norm of a

given Θ ∈ϑτ with respect to Iτ if β
ϑτ

Θ
(T) >β

ϑτ

Θ
(T′). The following lemma emphasizes

that the above notions of size and power in the random case relate to those of section

4 dedicated to the deterministic case.

Lemma 3 Let T be some test. We have:

(i) given any θ ∈R
d with norm in Iτ, βθ(T) 6α(T) 6αϑτ (T);

(ii) given any θ′ ∈ R
d with norm in Ic

τ, βθ′ (T) = β
ϑτ

Θ
(T) for any Θ ∈ ϑτ such that Θ =

εθ′+ (1−ε)θ where θ ∈ R
d has norm in Iτ and ε is a Bernouilli distributed random

variable valued in {0,1} with P
[
ε= 1

]
∈ (0 , 1).

PROOF: Let θ and θ′ be any two elements of Rd such that ‖θ‖ ∈ Iτ and ‖θ′‖ ∈ Ic
τ. Let

ε stand for some Bernouilli distributed random variable valued in {0,1} with P
[
ε =

1
]
∈ (0 , 1). The random vector Θ= (1−ε)θ+εθ′ is an element of ϑτ. Let T be some

test. From (4) and (11), we derive that βθ(T) 6 αϑτ (T). Since θ is arbitrarily chosen

so that ‖θ‖ ∈ Iτ, the second inequality in statement (i) follows from (5). Statement

(ii) is a direct consequence of (12).

Similarly to the deterministic case, our purpose is to pinpoint tests in K
ϑτ
γ whose

power is optimal, with respect to a certain criterion, for testing the norms of the

elements of ϑτ. Because of the next remark and comments, the criterion must nec-

essarily concern a restricted family of tests.

Remark 1 The same type of reasoning as above makes it possible to derive that

there is no UMP test with level γ ∈ (0 ,1) for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ. By

UMP test with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ, we mean some T ∈ K

ϑτ
γ

such that β
ϑτ

Θ
(T) > β

ϑτ

Θ
(T′) for any Θ ∈ ϑτ and any T′ ∈ K

ϑτ
γ . Such a UMP test does

not exist for the following reason. Let θ and θ′ be any two elements of R
d such

that ‖θ‖ ∈ Iτ and ‖θ′‖ ∈ Ic
τ. Consider again any Bernouilli distributed random vari-

able ε valued in {0,1} such that P
[
ε = 1

]
∈ (0 , 1) and construct the random vector

Θ = (1− ε)θ+ εθ′ ∈ ϑτ. If a UMP test T existed within K
ϑτ
γ , it follows from lemma

3 that this test would be most powerful with level γ to test µ = θ against µ = θ′,
when the observation is Gaussian distributed with mean µ and covariance matrix

Id . The existence of such a most powerful test, independent of the arbitrarily cho-

sen θ and θ′ such that ‖θ‖ ∈ Iτ and ‖θ′‖ ∈ Ic
τ, would then contradict the Neyman-

Pearson lemma [1, Theorem 3.2.1, Sec. 3.2, p. 60].

In addition to the non-existence of UMP tests for SNT in the random case, nei-

ther standard general results — such as Karlin-Rubin’s theorem [1, Theorem 3.4.1, p.

65, corollary 3.4.1, p. 67] or [1, Theorem 3.7.1, p. 81] — nor the results of section 4

apply to the SNT problem addressed in this section. The main reason is that the sig-

nal probability distribution is unknown. Thereby, standard arguments and results

based on invariance cannot be used directly to reduce the problem. The invariance

of both the problem and the noise distribution can, however, still be used through

another criterion for optimality. This alternative criterion is that of definition 6 be-

low and relies on the following conditional notion of power function.
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5.2 Spherically-conditioned power function

Signal norm testing in the random case is an invariant problem in that, given any

element g of the orthogonal group Od in R
d , gΘ+ g X is also an element of ϑτ and[

‖Θ‖ ∈ Iτ
]
=

[
‖gΘ‖ ∈ Iτ

]
. On the other hand, theorem 1 above has exhibited UMP-

SIP tests, with level γ ∈ (0 , 1), for testing
[
‖θ‖ ∈ Iτ

]
with θ ∈ R

d , when the obser-

vation is Y = θ+ X . The natural question that arises at this stage is whether these

UMP-SIP tests would not actually satisfy some additional invariance-based optimal-

ity, for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ. Theorem 3 provides an affirmative answer to

this question on the basis of the following definition, which extends the notion of

test with SIPfun, so as to embrace the case of a random signal.

Definition 4 The spherically-conditioned power function (SCPfun) of a given test T

is the map that assigns to each Θ ∈ M(Ω,Rd ) the unique element βΘ

(
T

∣∣‖Θ‖ = ·
)
∈

L1(P‖Θ‖−1) defined for every ρ ∈ [0 , ∞ ) by

βΘ

(
T

∣∣‖Θ‖ = ρ
)
= P

[
T(Θ+X ) = 1

∣∣‖Θ‖ = ρ
]
.

With the notation of the previous definition, the basic property ofβΘ

(
T

∣∣‖Θ‖ = ·
)

is that

P
([

T(Θ+X ) = 1
]
∩B

)
=

∫

B
βΘ

(
T

∣∣‖Θ‖ = ρ
)

P‖Θ‖−1(dρ) (13)

for any Borel set B of R. The SCPfun is analogous to the standard power function

and, in fact, relates to it as follows. Let Θ = εθ+ (1− ε)θ′ where θ and θ′ are two

elements of Rd such that ‖θ′‖ 6= ‖θ‖ and ε stands for some Bernouilli distributed

random variable valued in {0,1}, with P
[
ε = 1

]
∈ (0 , 1). We then have βθ(T) =

βΘ

(
T

∣∣‖Θ‖ = ‖θ‖
)
.

As shown by the next equalities, the SCPfun of a test T also relates to the size and

power of T for testing the norm of a given Θ ∈ Iτ. First, for any Θ ∈ ϑτ and any Borel

set B such that P
[
‖Θ‖ ∈ B

]
6= 0, Bayes’s rule and (13) induce that

P
[
T(Θ+X ) = 1

∣∣‖Θ‖ ∈ B
]
=

1

P
[
‖Θ‖ ∈ B

]
∫

B
βΘ

(
T

∣∣‖Θ‖ = ρ
)

P‖Θ‖−1(dρ). (14)

It then suffices to apply (14) to Iτ and Ic
τ to obtain that:

α
ϑτ

Θ
(T) =

1

P
[
‖Θ‖ ∈ Iτ

]
∫

Iτ

βΘ

(
T

∣∣‖Θ‖ = ρ
)

P‖Θ‖−1(dρ) (15)

and

β
ϑτ

Θ
(T) =

1

P
[
‖Θ‖ ∈ Ic

τ

]
∫

Ic
τ

βΘ

(
T

∣∣‖Θ‖ = ρ
)

P‖Θ‖−1(dρ). (16)

Let T and T′ be two elements of K
ϑτ
γ , that is, two tests with same levelγ for testing[

‖Θ‖ ∈ Iτ
]

with Θ ∈ ϑτ. If βΘ

(
T

∣∣‖Θ‖ = ρ
)
> βΘ

(
T′ ∣∣‖Θ‖ = ρ

)
for a given Θ ∈ ϑτ and

P‖Θ‖−1 – almost every ρ ∈ Ic
τ, T is more powerful than T′ for testing the norm of

Θ ∈ϑτ with respect to Iτ. Therefore, there is no test T ∈K
ϑτ
γ such that, for all T′ ∈K

ϑτ
γ

and all Θ ∈ ϑτ, βΘ

(
T

∣∣‖Θ‖ = ρ
)
> βΘ

(
T′ ∣∣‖Θ‖ = ρ

)
for P‖Θ‖−1 – almost every ρ ∈ Ic

τ.

Indeed, if such a test T existed, it follows from (16) that this test would be, in fact,

UMP with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ, a contradiction with remark

1. Hence, we extend the notions of tests with SIPfun to come up with a suitable

criterion that can be optimized to test
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ϑτ.
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5.3 Tests with uniformly best invariant spherically-conditioned power

On the one hand, the notion of tests with SIPfun extend that of invariant tests. On

the other hand, the notion of SCPfun extends that of power function. An SCPfun-

based definition of invariant tests is then introduced. This definition extends that of

tests with SIPfun and the properties of these ones can then be extended to SNT in

the random case.

Definition 5 Let T be some test. Given Θ ∈ M(Ω,Rd ), T is said to have Θ-inva-

riant SCPfun — we say that T has Θ-ISCPfun — over ρSd−1 with ρ ∈ [0 , ∞ ) if

βΘ

(
T

∣∣‖Θ‖ = ρ
)
=βθ(T)

for any θ ∈ ρSd−1.

An immediate consequence of the preceeding definition is that the power func-

tion of any test T with Θ-ISCPfun over a given sphere ρSd−1 is constant on this same

sphere, so that βθ(T) =βθ′ (T) for any θ,θ′ ∈ ρSd−1. The following proposition could

have been our definition for tests with Θ-ISCPfun.

Proposition 4 Given some test T and some Θ ∈ M(Ω,Rd ), T has Θ-ISCPfun over

ρSd−1 with ρ ∈ [0 , ∞ ) if and only if βΘ

(
T

∣∣‖Θ‖ = ρ
)
= P

[
T(Ξ+ X ) = 1

]
for any Ξ ∈

M(Ω,Rd ) independent of X and such that ‖Ξ‖ = ρ (a-s).

PROOF: Given some Θ ∈M(Ω,Rd ), suppose that T is some test with Θ-ISCPfun over

ρSd−1 with ρ ∈ [0 , ∞ ). Let Ξ be some element of M(Ω,Rd ), independent of X and

such that ‖Ξ‖ = ρ (a-s). We therefore have

P
[
T(Ξ+X ) = 1

]
=

∫

ρSd−1
P

[
T(Ξ+X ) = 1

∣∣Ξ= ξ
](

PΞ−1
)

(dξ).

From the independence of Ξ and X , we obtain that

P
[
T(Ξ+X ) = 1

]
=

∫

ρSd−1
P

[
T(ξ+X ) = 1

](
PΞ−1

)
(dξ).

Since T has Θ-ISCPfun over ρSd−1, the integrand of the right hand side (rhs) in the

equality above is constant and equal to βΘ

(
T

∣∣‖Θ‖ = ρ
)
. The direct implication

stated by the proposition follows.

Conversely, suppose thatβΘ

(
T

∣∣‖Θ‖ = ρ
)
= P

[
T(Ξ+X ) = 1

]
for anyΞ ∈M(Ω,Rd ),

independent of X and such that ‖Ξ‖ = ρ (a-s). It then suffices to choose Ξ = θ (a-

s) where θ is any element of ρSd−1 to obtain that βΘ

(
T

∣∣‖Θ‖ = ρ
)
= βθ(T), which

concludes the proof.

The following proposition relates the notion of test with Θ-ISCPfun to the notion

of test with SIPfun. The criterion that will be considered in definition 6 for testing

the norm of a random signal basically relies on this result, which indicates how to

extend the notion of UMP-SIP test to the random case. For readiness sake, we recall

that, given Θ ∈M(Ω,Rd ), a support of P‖Θ‖−1 is any measurable subset D of [0, ∞ )

such that P‖Θ‖−1(D) = P
[
‖Θ‖ ∈D

]
= 1. Note that [0, ∞ ) is a support of P‖Θ‖−1 for

any Θ ∈ M(Ω,Rd ). On the other hand, for any ρ ∈ [0 , ∞ ), D = {ρ } is a support of

P‖Θ‖−1 for any Θ distributed on ρSd−1.
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Proposition 5 Let T be some test. We have:

(i) T has SIPfun if and only if, for any Θ ∈ M(Ω,Rd ), there exists a support D of

P‖Θ‖−1 such that T has Θ-ISCPfun over any sphere with radius in D.

(ii) if T has SIPfun and level γ ∈ [0 , 1] for testing
[
‖θ‖ ∈ Iτ

]
with θ ∈ R

d , then T has

level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ϑτ.

PROOF: See appendix III.

The previous result directly induce the following properties of thresholding tests.

Lemma 4 Let η be some non-negative real number and Tη be some thresholding

test with threshold height η.

(i) For any Θ ∈ ϑτ, there exists a support D of P‖Θ‖−1 such that, for every ρ ∈D, Tη

has Θ-ISCPfun over ρSd−1 so that

βΘ

(
Tη

∣∣‖Θ‖ = ρ
)
= 1−R(ρ,η) (17)

if the thresholding is from above and

βΘ

(
Tη

∣∣‖Θ‖ = ρ
)
=R(ρ,η) (18)

if the thresholding is from below. These equalities are equivalent to

P
[
‖Θ+X ‖ ∈ [0 , η ][

∣∣ ‖Θ‖ = ρ
]
=R(ρ,η). (19)

(ii) The size of Tη for testing the norm of a given Θ ∈ϑτ with respect to Iτ is

α
ϑτ

Θ
(Tη) =

1

P
[
‖Θ‖ ∈ Iτ

]
∫

Iτ

(
1−R(ρ,η)

)
P‖Θ‖−1(dρ), (20)

if Tη and the signal norm testing problem are both from above and

α
ϑτ

Θ
(Tη) =

1

P
[
‖Θ‖ ∈ Iτ

]
∫

Ic
τ

R(ρ,η)P‖Θ‖−1(dρ), (21)

if Tη and the signal norm testing problem are both from below.

(iii) The size of Tη for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ is αϑτ (T) = 1−R(τ,η) (resp.

αϑτ (T) = R(τ,η)) if Tη and the signal norm testing problem are both from above

(resp. from below).

(iv) The power of Tη for testing the norm of a given Θ ∈ϑτ with respect to Iτ is

β
ϑτ

Θ
(Tη) =

1

P
[
‖Θ‖ ∈ Ic

τ

]
∫

Ic
τ

(
1−R(ρ,η)

)
P‖Θ‖−1(dρ) (22)

if Tη and the signal norm testing problem are both from above and

β
ϑτ

Θ
(Tη) =

1

P
[
‖Θ‖ ∈ Ic

τ

]
∫

Ic
τ

R(ρ,η)P‖Θ‖−1(dρ), (23)

if Tη and the signal norm testing problem are both from below.
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PROOF:

Proof of statement (i): Since Tη is a thresholding test, Tη has SIPfun. Therefore, ac-

cording to proposition 5, for any Θ ∈ ϑτ, there exists some support D of P‖Θ‖−1

such that Tη has Θ-ISCPfun over any sphere with radius in D. Therefore, given

any ρ ∈ D, βΘ

(
Tη

∣∣‖Θ‖ = ρ
)
= βθ(Tη) for any θ ∈ ρSd−1. From (1) and (4), we de-

rive that βΘ

(
Tη

∣∣‖Θ‖ = ρ
)
= 1−R(ρ,η) if the thresholding is from above and that

βΘ

(
Tη

∣∣‖Θ‖ = ρ
)
= R(ρ,η) is the thresholding is from below. Each of the foregoing

equalities is equivalent to (19) by definition of the SCPfun of test Tη.

Proof of statement (ii): A straightforward application of statement (i) above and (15).

Proof of statement (iii): Suppose that Tη is from above (resp. from below). From

statement (ii) above, (11) and the increasingness (resp. decreasingness) of 1−R(·,ρ)

(resp. R(·,ρ)) guaranteed by lemma 1, we derive that αϑτ (Tη) 6 1−R(τ,η) (resp.

αϑτ (Tη) 6 R(τ,η)). To prove that these inequalities are, in fact, equalities, letρ be any

element of Iτ and letΘ= εθ+(1−ε)θ′ ∈ϑτ where θ,θ′ ∈R
d with ‖θ‖ = ρ, ‖θ′‖ = ρ′ ∈ Ic

τ

and ε is Bernouilli distributed, valued in {0,1} such that P
[
ε = 1

]
∈ (0 , 1). Since

{ρ,ρ′} is included in every support of P‖Θ‖−1, (17) (resp. (18)) holds true. We have

P‖Θ‖−1 = P
[
ε= 1

]
δρ +P

[
ε= 0

]
δρ′ where, given x ∈R, δx is the Dirac measure cen-

tred on x: for any Borel subset A of Rd , δx (A) = 1 if x ∈ A and δx (A) = 0, otherwise.

It thus follows from (14) that P
[
Tη(Θ+ X ) = 1

∣∣‖Θ‖ ∈ Iτ
]

equals 1 −R(ρ,η) (resp.

R(ρ,η)). By definition of αϑτ (Tη) given by (11), we now have 1−R(ρ,η) 6 αϑτ (Tη)

(resp. R(ρ,η) 6 αϑτ (Tη)). Since ρ is arbitrary in Iτ, it follows from the continuity

of R(ρ, ·) that limρ→τR(ρ,η) = R(τ,η) so that 1−R(τ,η) 6 αϑτ (Tη) (resp. R(τ,η) 6

αϑτ (Tη)), which concludes the proof of statement (ii).

Proof of statement (iv): A direct application of statement (i) and (16).

Because the problem of testing
[
‖Θ‖ ∈ Iτ

]
is spherically invariant, we can expect,

for a given Θ ∈ϑτ and a given ρ in some support D of P‖Θ‖−1, the existence of a test

with specified level γ ∈ (0 , 1) and best Θ-ISCPfun over ρSd−1. By test with level γ ∈
(0 , 1) and bestΘ-ISCPfun overρSd−1, we mean a test T ∈K

ϑτ
γ such thatβΘ

(
T

∣∣‖Θ‖ =
ρ

)
> βΘ

(
T′ ∣∣‖Θ‖ = ρ

)
for any other test T′ ∈ K

ϑτ
γ with Θ-ISCPfun over ρSd−1. The

optimality of such a test would be limited to Θ, whereas our goal is to point out

tests that are optimal, in a certain sense related to spherical invariance, for testing[
‖Θ‖ ∈ Iτ

]
for all Θ ∈ϑτ. Thence, the following definition.

Definition 6 Givenγ ∈ (0 , 1), a test T∗ is said to have uniformly best invariant spheri-

cally-conditioned power function — and we say that T∗ is UBISCP — with level (resp.

size) γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ϑτ if:

[Level] : T∗ ∈K
ϑτ
γ (resp. αϑτ (T∗) = γ);

[Power] : for any Θ ∈ϑτ, there exists some support D of P‖Θ‖−1 such that:

[P1] for any ρ ∈D, T∗ has Θ-ISCPfun over ρSd−1,

[P2] for any ρ in D ∩ Ic
τ and any T ∈K

ϑτ
γ with Θ-ISCPfun over ρSd−1,

βΘ

(
T∗ ∣∣‖Θ‖ = ρ

)
>βΘ

(
T

∣∣‖Θ‖ = ρ
)
.
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Remark 2 It follows from statements (i) of proposition 5 and lemma 3 that a UBISCP test

with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ has necessarily SIPfun and level γ for

testing
[
‖θ‖ ∈ Iτ

]
with θ ∈R

d .

Remark 3 It is worth emphasizing that property [P2] satisfied by UBISCP tests is

rather strong. Indeed, if T∗ is UBISCP in K
ϑτ
γ , this properties specifies that T∗ has

larger Θ-ISCPfun over any sphere ρSd−1 with ρ ∈ D ∩ Ic
τ than any other test T with

Θ-ISCPfun over this same sphere, whatever the behaviour of T on any sphere other

than ρSd−1. This property induces the following results. In particular, theorem 2

below states that the class of UBISCP tests involves that of UMP-SIP tests.

Proposition 6 Let Θ be some element of ϑτ and D be some support of P‖Θ‖−1. Let

us consider the class K
ϑτ

γ ;Θ-ISCPfun
of those elements of K

ϑτ
γ that have Θ-ISCPfun over

the spheres with radii in D∩ Ic
τ. If test T∗ is UBISCP with level γ ∈ (0 , 1) for testing[

‖Θ‖ ∈ Iτ
]

with Θ ∈ϑτ, then T∗ is UMP within K
ϑτ

γ ;Θ-ISCPfun
.

PROOF: An application of (16) and definition 6.

Theorem 2 If T∗ is UBISCP with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ, then T∗

is UMP-SIP with level γ for testing
[
‖θ‖ ∈ Iτ

]
with θ ∈R

d .

PROOF: Let us assume that T∗ is UBISCP with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with

Θ ∈ ϑτ. As noticed in remark 2, this test is necessarily an element of KSIPfun ∩Kγ.

The only thing to prove is that T∗ is UMP within KSIPfun ∩Kγ. To this end, let θ be

any element of Rd such that ‖θ‖ ∈ Ic
τ and T be any test in KSIPfun∩Kγ. We must show

that βθ(T∗) >βθ(T).

Let us choose some θ′ ∈R
d such that θ′ ∈ Iτ and construct Θ= εθ+ (1−ε)θ′ ∈ Iτ

where ε is Bernouilli distributed, valued in {0,1} with P
[
ε = 1

]
∈ (0 , 1). We then

have T ∈ K
ϑτ
γ , T has Θ-ISCPfun over ‖θ‖Sd−1 and βθ(T) = βΘ

(
T

∣∣‖Θ‖ = ‖θ‖
)
: the

first property follows from statement (ii) of proposition 5, the second one directly

results from statement (i) of proposition 5 and the third property is obtained by di-

rect computation or as a straightforward consequence of definition 5. The inequal-

ity βθ(T∗) > βθ(T) then derives from these properties of T and the fact that T∗ is

UBISCP with level γ for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ so that T∗ ∈ K

ϑτ
γ , T∗ has Θ-

ISCPfun over ‖θ‖Sd−1, βθ(T∗) =βΘ

(
T∗ ∣∣‖Θ‖ = ‖θ‖

)
>βΘ

(
T

∣∣‖Θ‖ = ‖θ‖
)
.

The question is now whether UBISCP tests actually exist. The answer is yes,

according to our main theorem 3 below. In fact, the previous result implies that

UBISCP tests are necessarily UMP-SIP tests. It is thus natural to wonder whether

the thresholding tests of theorem 1 are not, in fact, UBISCP for testing the norm of

a random signal. Theorem 3 establishes that these tests are indeed UBISCP, which

extends their properties stated in theorem 1. Theorem 1 thus turns out to be a direct

consequence of theorems 2 and 3.

Theorem 3 Let γ be an element of (0, 1). Any thresholding test from above (resp.

from below) whose threshold height is λγ(τ) (resp. λ1−γ(τ)) is UBISCP with size γ

and unbiased for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ϑτ and Iτ = [0 , τ][ (resp. Iτ = [0 , τ][c ).

PROOF: See appendix IV.

Remark 4 According to this theorem and the discussion of section 4.2, Wald’s test

with size γ is UBISCP with size γ for testing Θ= 0 (a-s) with Θ ∈ϑτ.
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6 UBISCP tests in signal detection

The detection of an unknown and non-null d-dimensional signal in independent

AWGN is a problem of most interest in practice. In many papers and textbooks,

the unknown signal is considered to be deterministic. Depending on the geomet-

rical structure that this deterministic unknown signal may satisfy — for instance,

if this signal obeys a linear subspace model —, the natural spherical- and scale-

invariances of the detection problem can be taken into account so as to reduce the

problem via the invariance principle [1–3]. Tests proposed in [4–8] and other works

cited in the aforementioned papers are then optimal within a restricted class of tests

invariant to nuisance parameters, among which the noise standard deviation. Such

tests often relate to the generalized likelihood ratio test (GLRT) for the natural in-

variance this test can exhibit by involving maximum likelihood estimates of nui-

sance parameters [5–8]. The so-called subspace adaptive detectors also derive from

this invariance principle applied to situations where the noise matrix covariance is

unknown and auxiliary data are available [9–19].

For the same type of reasons as those described in the introduction, an unknown

but random model for the signal might be prefered in practice. In this respect, the

present section addresses the problem of detecting a random signal with unknown

distribution in independent AWGN. With no additional assumption, this problem is

cast in the SNT framework and the contribution brought by UBISCP tests to signal

detection is discussed. We begin by addressing the case of a known noise standard

deviation. In subsection 6.2, we consider the case where this standard deviation

is unknown and the detection is performed via an estimate-and-plug-in detector

based on a noise reference.

6.1 Detection of a random signal

Let Ξ be some d-dimensional real random signal whose distribution is unknown

and such that Ξ 6= 0 (a-s). As usual, we assume that Ξ is independent with AWGN. As

above, noise will be denoted by X . In this subsection, the noise standard deviation

is assumed to be known and, without loss of generality, equal to 1. We thus have

X ∼ N(0,Id ). An appropriate framework for the description of detection problems

of this type in signal processing is that of binary hypothesis testing (see [27–30]).

The so-called null hypothesis H0 is that only noise is present and the alternative

hypothesis H1 is that the observation is the sum of signal and noise. We always can

assume the existence of some non-negative real value τ0, possibly equal to the trivial

lower bound 0 for the norm, such that ‖Ξ‖ > τ0 (a-s). Denoting the observation by

Y , the problem of detecting Ξ in noise X can then be summarized by

{
H0 : Y ∼ N(0,Id ),

H1 : Y =Ξ+X , X ∼ N(0,Id ),P
[
‖Ξ‖ > τ0

]
= 1.

(24)

The performance of a given test T, that is, a measurable map of Rd into {0,1}, is then

measured via the false alarm and detection probabilities. The false alarm proba-

bility is the probability of erroneously accepting the null hypothesis H1 when the

observation is noise only, that is, the probability PFA

[
T

]
= P

[
T(X ) = 1

]
. The detec-

tion probability is the probability of correctly accepting the alternative hypothesis

H1, that is, the probability PD

[
T

]
= P

[
T(Ξ+ X ) = 1

]
. The detection problem (24)

can then be cast in the theoretical SNT framework of section 5.
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To see this, we first assume the existence of a random variable ε independent of

Ξ and X , defined on the same probability space as Ξ and X , valued in {0,1} and such

that Y = εΞ+ X . The signal is present (resp. absent) whenever ε = 1 (resp. ε = 0).

Given any test T, the value of the random variable T(Y ) = T ◦Y is the index of the

accepted hypothesis, whereas the value of ε is the index of the true hypothesis. With

a slight and easy extension of the terminology introduced in section 5, we could also

say that detecting the presence or the absence of Ξ in independent AWGN amounts

to testing the event
[
ε= 0

]
against the event

[
ε= 1

]
. The introduction of the indica-

tor variable ε induces that of the signal prior probabilities of presence P
[
ε= 1

]
and

absence P
[
ε = 0

]
, in contrast to the standard Neymann-pearson approach, wich

avoids this. However, the role of these priors is very limited and merely convenient

to state and treat the problem within the SNT theoretical framework of section 5.

For the problem to be meaningful, we assume that P
[
ε= 1

]
∈ (0 , 1).

Now, set Θ = εΞ. For any non-negative real value τ such that 0 6 τ 6 τ0, the

events
[
‖Θ‖ 6 τ

]
and

[
‖Θ‖ > τ

]
are P – (a-s) equal to the events

[
ε = 0

]
and

[
ε =

1
]
, respectively. Thereby, P

[
‖Θ‖ 6 τ

]
= P

[
ε = 0] and P

[
‖Θ‖ > τ

]
= P

[
ε = 1

]
so

that Θ is an element of ϑτ since P
[
ε = 0] and P

[
ε = 1

]
are both elements of (0,1).

Consequently, the detection problem (24) is the SNT problem of testing the event[
‖Θ‖ 6 τ

]
, up to a negligible P – negligible subset of Ω. In other words, making a

decision about the presence or the absence of Ξ in independent AWGN amounts to

testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ, Iτ = [0 , τ ] and τ ∈ [0 , τ0 ]. This is SNT from above

with respect to Iτ. According to theorem 3, there exists a UBISCP test with level

γ ∈ (0 , 1) for this SNT problem. This UBISCP test is the thresholding test from above

Tλγ(τ) with threshold height λγ(τ).

With regard to what follows, we now calculate the false alarm and detection

probabilities of any given thresholding test from above Tη with threshold height η.

The false alarm probability of Tη is

PFA

[
Tη

]
= P

[
‖X ‖ > η

]
= 1−R(0,η) 6 1−R(τ,η), (25)

which follows from (1) and the increasingness of 1 −R(·,η) induced by lemma 1.

Since the detection problem (24) is an SNT problem, we can easily verify that (25)

actually derives from results of section 5. In fact, thanks to the independence of ε,Ξ

and X , we have PFA

[
Tη

]
= α

ϑτ

Θ
(Tη) 6 αϑτ (Tη). Since P‖Θ‖−1 = P

[
ε = 0

]
δ0 +P

[
ε =

1
]
P‖Ξ‖−1 and ‖Ξ‖ > τ (a-s), (25) results from (20) and statement (iii) of lemma 4.

As far as the detection probability of Tη is concerned, we have PD

[
Tη

]
= β

ϑτ

Θ
(Tη),

because of the independence of ε,Ξ and X . By taking the expression of P‖Θ‖−1 given

above and the fact that ‖Ξ‖ > τ0 (a-s), we derive from (22) and the decreasingness of

R(·,η) guaranteed by lemma 1 that

PD

[
Tη

]
=

∫∞

τ0

(1−R(ρ,η))P‖Ξ‖−1(dρ) > 1−R(τ0,η). (26)

By applying (25) and taking the definition of λγ(τ) into account, we derive that

the false alarm probability of the UBISCP test Tλγ(τ) satisfies

PFA

[
Tλγ(τ)

]
= 1−R(0,λγ(τ)) 6 γ. (27)

In the same way, it results from (26) that the detection probability of Tλγ(τ) is lower

bounded by

PD

[
Tλγ(τ)

]
> 1−R(τ0,λγ(τ)). (28)
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It is usual to characterize the performance of a family of tests with levels in (0, 1)

by the receiver operator characteristic (ROC) curve of this family of tests. Each point

M of the ROC curve of this family is obtained for a given level γ, the abscissa of

M being the false alarm probability of the test with level γ and the ordinate of M

being the detection probability of this same test. For a given tolerance τ, we can

thus consider the ROC curve of the family of UBISCP tests {Tλγ(τ) : γ ∈ (0 , 1)}. This

ROC curve is the set of points C
[
Tλγ(τ)

]
=

{(
PFA

[
Tλγ(τ)

]
,PD

[
Tλγ(τ)

])
: γ ∈ (0 , 1)

}
. We

can also consider the set of points

Ĉ
[
Tλγ(τ)

]
=

{(
1−R(0,λγ(τ)),1−R(τ0,λγ(τ))

)
: γ ∈ (0 , 1)

}
. (29)

This curve is hereafter called the lower ROC curve since, according to (27) and (28),

it lies below the ROC one. When τ ranges in [0,τ0], the families of UBISCP tests

{Tλγ(τ) : γ ∈ (0 , 1)} have all the same ROC and the same lower ROC curves. This

simply follows from the fact that, given Tλγ(τ) with τ ∈ [0,τ0] and any τ′ ∈ [0,τ0],

statement (iii) of lemma 2 guarantees the existence of a unique γ′ ∈ (0 , 1) such

that λγ(τ) =λγ′ (τ
′). The difference in performance between the UBISCP tests Tλγ(τ)

when τ ranges in [0,τ0] can then be exhibited by observing, for a given level γ ∈
(0 , 1), the false alarm probability and the lower bound for the detection probability

when τ varies. In fact, when the tolerance τ increases to τ0, the false alarm proba-

bility and the lower bound for the detection probability of Tλγ(τ) both decrease and

the former tends from above to 1−R(0,λγ(τ0)), whereas the latter tends from above

to 1−R(τ0,λγ(τ0)). In contrast, when the tolerance τ decreases to 0, the false alarm

probability and the lower bound for the detection probability of Tλγ(τ) both increase,

the former tending from below to the specified level, whereas the latter tends from

below to 1−R(τ0,λγ(0)). This behaviour straighforwardly derives from the proper-

ties of R and λγ and is coherent with the fact that the UBISCP tests have same ROC

curve. As an illustration of this discussion, figure 1 displays the false alarm proba-

bilities and the lower bounds for the detection probabilities of several UBISCP tests

Tλγ(τ) when d = 12 and the signal norm lower bound is τ0 = 7.

According to the foregoing, we can conclude this section by saying that, unless

the application requires a false alarm probability actually lesser than the specified

level γ, the most appropriate UBISCP test for detecting the signal is Wald’s test with

size γ, which is discussed in section 4.2 and remark 4. Indeed, the detection prob-

ability lower bound yielded by this test is the largest possible one, whereas the false

alarm of this test remains equal to the specified level. However, there exist situa-

tions where the flexibility on the actual size of the UBISCP tests proves helpful. We

describe such a situation in the next section.

6.2 Detection in noise with unknown standard deviation

We now consider the case where the noise standard deviation is unknown but aux-

iliary data are available to consitute a noise reference. The following discussion em-

phasizes that an estimate-and-plug-in detector based on UBISCP tests can be used

to cope with such a situation and brings some robustness. An estimate-and-plug-

in detector basically involves estimating the noise standard deviation on the basis of

the noise reference and using this estimate instead of the true value in the expression

of a test designed for the nominal case of a known standard deviation [27, Chapter

9, p. 337].
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We begin with an easy remark. Suppose that the unknown value of the noise

standard deviation is 1 again and that a measurement of this value, say σ, has been

provided by some device, once for all. Let us consider that this measurement is de-

terministic. When Wald’s test with size γ is adjusted with σ, we obtain the thresh-

olding test Tσλγ(0) with threshold height σλγ(0). The false alarm probability of this

test is PFA

[
Tσλγ(0)

]
= P

[
‖X ‖ > σλγ(0)

]
= 1 −R(0,σλγ(0)). If σ < 1, the strict in-

creasingness of R(0, ·) implies that this false alarm probability is lower bounded by

1−R(0,λγ(0)), which equals γ, by definition of λγ. Therefore, when a noise standard

deviation measurement less than 1 is used to adjust the estimate-and-plug-in de-

tector based on Wald’s test with size γ, the resulting test has a false alarm probability

above the specified level γ, which is undesirable. It follows that the conclusion of the

previous section may fail in practical cases where an estimate of the noise standard

deviation is plugged into the expression of the test. The use of a UBISCP test with

non-null tolerance can therefore be expected to avoid this unwanted behaviour be-

cause, as emphasized in the previous section, a non-null tolerance lowers the size of

the UBISCP test for detecting the signal.

Instead of further detailling the example above, let us tackle the more general sit-

uation where the estimate-and-plug-in detector is adjusted with some estimate σ̂ of

the noise standard deviation. We assume that σ̂, X and Ξ are independent. Without

loss of generality because of the scale invariance of the problem, let us assume that

the noise standard deviation is 1 again. The thresholding test with threshold height

λγ(τ) with τ ∈ [0,τ0] is UBISCP for testing
[
‖Θ‖ ∈ Iτ

]
with Θ ∈ ϑτ and Iτ = [0 , τ ].

By replacing the actual value of the noise standard deviation by its estimate σ̂ in the

expression of this UBISCP test, we do not obtain a test in the sense given above but

a UBISCP estimate-and-plug-in detector — in short, UBISCP detector —, which is

henceforth denoted by Tσ̂λγ(τ/σ̂)(Y ). The UBISCP detector decides that the signal

is present if ‖Y ‖ > σ̂λγ(τ/σ̂) and that the signal is absent, otherwise. Once again,

the handling of equality in this decision does not matter for the absolute continuity

of ‖Y ‖ with respect to Lebesgue’s measure in R. The index of the hypothesis ac-

cepted by Tσ̂λγ(τ/σ̂)(Y ) is thus the value of Tσ̂λγ(τ/σ̂)(Y ). The false alarm probability

of Tσ̂λγ(σ̂)(Y ) is then PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
= P

[
‖X ‖ > σ̂λγ(τ/σ̂)

]
. Because of the inde-

pendence of σ̂ and X , we have:

PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
=

∫∞

0
PFA

[
Tσλγ(τ/σ)

]
Pσ̂−1(dσ), (30)

where Pσ̂−1 stands for the probability distribution of σ̂ and the false alarm probabil-

ity PFA

[
Tσλγ(τ/σ)

]
of the thresholding test Tσλγ(τ/σ) with threshold height σλγ(τ/σ)

can be computed according to (25). Similarly, the detection probability of Tσ̂λγ(σ̂)(Y )

is given by

PD

[
Tσ̂λγ(τ/σ̂)(Y )

]
=

∫∞

0
PD

[
Tσλγ(τ/σ)

]
Pσ̂−1(dσ), (31)

where the detection probability PD

[
Tσλγ(τ/σ)

]
of the thresholding test Tσλγ(τ/σ) with

threshold height σλγ(τ/σ) can be calculated via (26). The detection probability of

the UBISCP detector can be lower bounded by applying (26), so that:

PD

[
Tσ̂λγ(τ/σ̂)(Y )

]
>

∫∞

0
(1−R(τ0,σλγ(τ/σ))Pσ̂−1(dσ). (32)

As in section 6.1, the lower ROC curve of the UBISCP detector Tσ̂λγ(τ/σ̂)(Y ) is defined
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as the set of points

Ĉ
[
Tσ̂λγ(τ/σ̂)(Y )

]
=

{(
PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
,

∫∞

0
(1−R(τ0,σλγ(τ/σ))Pσ̂−1(dσ)

)
: γ ∈ (0 , 1)

}
.

On the one hand, the larger the rhs in (32), the larger the detection probability of

Tσ̂λγ(τ/σ̂)(Y ). The largest possible value for the rhs in (32) is

∫∞

0
(1−R(τ0,σλγ(0/σ))Pσ̂−1(dσ).

This value is the detection probability lower bound of the Wald estimate-and-plug-

in detector — in short, Wald detector — Tσ̂λγ(0/σ̂)(Y ), which derives from Wald’s test

Tλγ(0) by replacing the known unitary standard deviation by σ̂. Therefore, a suitable

tolerance τ should be as small as possible so as to guarantee a detection probability

lower bound close to that of the Wald detector. However, a too small value for τ may

not be appropriate for the following reason. According to the properties of R and

λγ stated in section 3, PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
is a continuous and decreasing function

of τ and thus, since τ ∈ [0,τ0], we have PFA

[
Tσ̂λγ(τ0/σ̂)(Y )

]
6 PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
6

PFA

[
Tσ̂λγ(0)(Y )

]
. The upper bound in this inequality is the false alarm probability

of the Wald detector Tσ̂λγ(0)(Y ). If the false alarm probability PFA

[
Tσ̂λγ(0)(Y )

]
of the

Wald detector is above γ, τ should therefore not be chosen too close to 0. It follows

from the above remarks that the UBISCP detector for a given level γ should be the

adjusted-UBISCP (A-UBISCP) detector Tσ̂λγ(τ∗/σ̂)(Y ) with adjusted tolerance τ∗ =
argmin
τ∈[0,τ0]

∣∣∣PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
−γ

∣∣∣. Thanks to the continuity and strict decreasingness

of PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
with τ, we have: τ∗ = τ0 if PFA

[
Tσ̂λγ(τ0/σ̂)(Y )

]
> γ; τ∗ = 0 if

PFA

[
Tσ̂λγ(0)(Y )

]
6 γ; τ∗ is the unique solution in τ to the equation PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
=

γ if PFA

[
Tσ̂λγ(τ0/σ̂)(Y )

]
< γ < PFA

[
Tσ̂λγ(0)(Y )

]
. In the last case, the adjusted toler-

ance τ∗ guarantees a false alarm probability of the A-UBISCP detector Tσ̂λγ(τ∗/σ̂)(Y )

equal to the specified level γ and we also have

τ∗ = min
{
τ ∈ [0,τ0] : PFA

[
Tσ̂λγ(τ/σ̂)(Y )

]
6 γ

}
.

If the estimate σ̂ is good enough, it can be further expected that the detection per-

formance of the A-UBISCP detector will remain comparable to that achieved when

the noise standard deviation is known and the detection is performed by Wald’s test.

To prolongate the discussion, let us consider the case where σ̂ is the noise stan-

dard deviation maximum likelihood estimate (MLE) calculated on the basis of a

noise reference. More specifically, suppose we are given an N -dimensional random

vector W ∼ N(0,IN ), independent of X and Ξ. This vector is a noise reference and

the estimate σ̂ is now the noise standard deviation MLE

σ̂N =
1

p
N

‖W ‖. (33)

Since ‖W ‖2 follows the centred chi-2 distribution with N degrees of freedom, the

probability distribution Pσ̂−1
N of σ̂N has density fN (σ) = 2Nσ fχ2

N
(0)(Nσ2), where

fχ2
N

(0) stands for the probability density function of the centred chi-2 distribution

with N degrees of freedom. The A-UBISCP detector is then the MLE A-UBISCP de-

tector Tσ̂Nλγ(τ∗
N

/σ̂N )(Y ) where τ∗N is the adjusted tolerance τ∗ calculated with σ̂= σ̂N .

In this case, we can make the following remarks.
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The MLE σ̂N is strongly consistent so that σ̂N tends to 1 (a-s). Therefore,

lim
N→∞

PFA

[
Tσ̂Nλγ(τ0/σ̂N )(Y )

]
= PFA

[
Tλγ(τ0)

]
= 1−R(0,λγ(τ0)).

It then follows from the strict increasingness of 1−R(·,λγ(τ0)) guaranteed by lemma

1 and the definition of λγ(τ0) given by lemma 2 that 1 −R(0,λγ(τ0)) < γ, so that

PFA

[
Tσ̂Nλγ(τ0/σ̂N )(Y )

]
< γ for N large enough. Therefore, for N above some natural

integer, τ∗N is either 0 or such that PFA

[
Tσ̂Nλγ(τ∗

N
/σ̂N )(Y )

]
= γ. Since the MLE strong

consistency also implies that lim
N→∞

PFA

[
Tσ̂Nλγ(0)(Y )

]
= PFA

[
Tλγ(0)

]
= 1−R(0,λγ(0)) =

γ, we can conjecture that τ∗N tends to 0. The actual proving of this conjecture is

still an open issue. However, we can establish the existence of a subsequence of

{τ∗N : N = 1,2, . . .} that converges to 0. Indeed, suppose the existence of some posi-

tive real value τ such that τ∗N > τ for any large enough integer N . On the one hand,

for any integer N large enough, we would have PFA

[
Tσ̂Nλγ(τ∗

N
/σ̂N )(Y )

]
= γ. On the

other hand, for N large enough again, it would follow from (30) and the decreasing-

ness of 1−R(0, ·) that

PFA

[
Tσ̂Nλγ(τ∗

N
/σ̂N )(Y )

]
6

∫∞

0
(1−R(0,σλγ(τ/σ)))Pσ̂−1

N (dσ).

Since the rhs in the inequality above tends to 1−R(0,λγ(τ)) when N tends to ∞ be-

cause of the MLE strong consistency, we would necessary have γ6 1−R(0,λγ(τ)), a

contradiction since τ > 0, 1−R(·,λγ(τ)) is strictly increasing and γ = 1−R(τ,λγ(τ))

by lemmas 1 and 2. For a subsequence of tolerances that converges to 0, the lower

ROC curve of the resulting MLE A-UBISCP detectors will thus approach that ob-

tained when the noise standard deviation is known and the detection is performed

by Wald’s test.

The foregoing discussion is illustrated by figures 2 and 3. On the one hand, figure

2 shows that the false alarm probability of the MLE Wald detector — that is, the Wald

detector adjusted with the MLE of (33) — is above the specified level, whereas the

MLE A-UBISCP detector guarantees the specified level. On the other hand, figure

3 presents the lower ROC curve of the MLE A-UBISCP detector for comparison to

that obtained, when the noise standard deviation is known, by Wald’s test. The false

alarm probabilities and the detection probability lower bounds displayed in these

figures were numerically calculated by standard quadrature Gaussian integration

based on the expression of the probability distribution of σ̂N and MATLAB routines

of the toolbox stats, since R(ρ,η) = Fχ2
d

(ρ2)(η
2) where Fχ2

d
(ρ2) is the cumulative dis-

tribution function of the non-central χ2 distribution with d degrees of freedom and

non-central parameter ρ2.

7 Conclusion and perspectives

In this paper, we have introduced the SNT problem in presence of independent

AWGN and proposed a theoretical framework dedicated to this type of problem.

Basically, the problem is to decide whether some random signal, whose distribu-

tion is unknown and which is observed in independent AWGN with known vari-

ance, has norm above or below some tolerance that can be specified by the user

himself, on the basis of his own experience and know-how with respect to a given

environment or context. The theoretical framework proposed in this paper has led
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to several results. In particular, we have established the existence of UBISCP tests,

which are optimal with respect to a suitable spherical invariance-based criterion for

the SNT problem. The theoretical results established in this paper encompass stan-

dard ones obtained when the signal is unknown deterministic and, in fact, make it

possible to embrace a whole class of testing problems within a unified theoretical

framework. We can also say, as in [31, Sec. 3.1, p. 1160] about Wald’s UBCP tests,

that the UBISCP tests are alternative to tests, such as likelihood ratio tests, whose

power is optimal for a certain class of signals but that can be very inefficient over the

complementary of this class. As illustrated in section 6 dedicated to the detection of

any random signal with any unknown distribution, the use of a positive tolerance in

SNT and the properties of the UBISCP tests bring some robustness, when the noise

standard deviation is unknown and the detection is performed via an estimate-and-

plug-in detector. The application of the SNT framework to the detection of random

signals with unknown distributions in independent AWGN should be further studied

in combination with results stated in the reference papers mentioned in section 6.

Besides, a complete study of the MLE A-UBISCP, involving the case of a non signal-

free reference, could impact the design of constant false alarm rate (CFAR) systems

standardly used in radar processing [32, 33] and, lately, in ultra wideband (UWB) re-

ceivers [34]. In this respect, for the estimation of the noise standard deviation on the

basis of a non signal-free reference, it would also be desirable to analyse to what ex-

tent SNT could be combined to standard results in robust statistics [35–38], as well

as to [39, 40] that propose robust noise standard deviation estimates in presence of

any random signals obeying sparsity hypotheses. Beyond the standard detection

problem, SNT and UBISCP tests should also apply to many other practical prob-

lems, among which those evoked in the introduction, as soon as the problem is the

detection of a deviation from a nominal reference.

We now emphasize some theoretical prospects opened by this paper. Our dis-

cussion relies on the fact that the actual main crux in the aproach is the invariance

of the noise probability distribution. The event to test regarding the signal thus in-

volves the norm because the norm is readily the most straightforward maximal in-

variant of the orthogonal group inR
d . Therefore, the noise geometrical properties —

in terms of invariance with respect to the orthogonal group — have induced the type

of events to test in SNT, as well as the type of tests to use in SNT, whatever the signal

distribution. We could also say that the noise properties are sufficient to exhibit a

large class of event testing problems that can be solved without prior knowledge on

the signal distributions. It is thus rather natural to wonder to what extent such an

approach, constrained by the noise invariance only, can actually be extended so as

to deal with other types of noise. For instance, let us consider some noise X whose

distribution is invariant with respect to a certain group G. The question is whether,

similarly to the SNT problem addressed in this paper, event testing problems could

be specified and solved via extended notions of SIPfun, tests with Θ-ISCPfun and

UBISCP tests, defined on the basis of some maximal invariant ν of G. It is thinkable

that the answer to such a question should strongly depends on whether the distri-

bution of ν(X ) has a monotone likelihood ratio and whether a function similar to R

defined by (1) actually exists.
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Appendix I

Proof of lemma 1

This improvement of [41, Lemma IV.2] is proved similarly by refining some argu-

ments. Let ρ and ρ′ be two real numbers such that 0 6 ρ < ρ′ <∞. Let θ and θ′ be

two colinear vectors of Rd such that ‖θ‖ = ρ and ‖θ′‖ = ρ′. According to (1), R(ρ,η) =∫
B(θ,η) f (x)dx and R(ρ′,η) =

∫
B(θ′,η) f (x)dx where f is the probability density func-

tion of X and B(θ,η) (resp. B(θ′,η)) is the closed ball, in R
d , centred at θ (resp. θ′)

with radius η. We have R(ρ,η)−R(ρ′,η) =
∫

B(θ,η)\B(θ′,η)

(
f (x)− f (θ+θ′−x)

)
dx. Let

(e1,e2, . . . ,ed ) be an orthonormal basis of Rd such that θ = ρe1 and θ′ = ρ′e1. We

have ‖θ+ θ′ − x‖2 −‖x‖2 = (ρ+ρ′)(ρ+ρ′ − 2x1) for any x = (x1, x2, . . . , xd ) ∈ R
d . If

x ∈ B(θ,η)\B(θ′,η), then ‖x−θ′‖ > ‖x−θ‖, which implies that (ρ′−ρ)(ρ+ρ′−2x1) > 0

and, thus, that ρ+ρ′−2x1 > 0 since ρ′ > ρ. Therefore, ‖θ+θ′−x‖ > ‖x‖. Since f de-

creases strictly with the norm of its argument, it follows that f (x)− f (θ+θ′− x) > 0

so that R(ρ,η) >R(ρ′,η) and the proof is complete.

Appendix II

Proof of lemma 2

[Existence and unicity of λγ(ρ)] : R(ρ, ·) is a one-to-one mapping from [0,∞ ) into

[0, 1). Thence, the existence and the unicity of λγ(ρ) for γ ∈ (0 , 1].

[Strict increasingness of λγ] : Let ρ and ρ′ be two non-negative real number such

that ρ < ρ′. According to lemma 1, R(ρ′,λγ(ρ)) < R(ρ,λγ(ρ)). The right hand side

(rhs) in this inequality equals 1−γ and, thus, R(ρ′,λγ(ρ′)). The result then follows

from the strict increasingness of R(ρ′, ·).

[Continuity of λγ] : Given ρ0 ∈ [0 , ∞ ), the strict increasingness of λγ implies the ex-

istence of a limit λγ(ρ−
0 ) ∈ [0 , ∞ ) when ρ tends to ρ0 from below and the existence of

a limit λγ(ρ+
0 ) ∈ [0 , ∞ ) when ρ tends to ρ0 from above. Since R is continuous in the

plane and R(ρ,λγ(ρ)) = 1−γ for every ρ ∈ [0 , ∞ ), R(ρ0,λγ(ρ−
0 )) = R(ρ0,λγ(ρ+

0 )) =
1−γ. Since R(ρ0, ·) is one-to-one, λγ(ρ−

0 ) =λγ(ρ+
0 ) =λγ(ρ0) and λγ is continuous.

[Strict decreasingness of γ 7→ λγ(ρ)] : Let ρ be some element of [0,∞). let us con-

sider two elements γ and γ′ of (0,1]. We have 1−R(ρ,λγ(ρ)) = γ and 1−R(ρ,λγ′ (ρ)) =
γ′. If γ < γ′, we thus have R(ρ,λγ(ρ)) > R(ρ,λγ′ (ρ)), which implies that λγ(ρ) >
λγ′ (ρ) since R(ρ, ·) is strictly increasing.

[Continuity of γ 7→ λγ(ρ)] : The proof is similar to that of the continuity of λγ and

left to the reader.
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Appendix III

Proof of proposition 5

III.1 Proof of statement (i)

We begin with the direct implication. Given any ρ ∈ [0 , ∞ ), let ρSd−1 stand for the

sphere with radius ρ and centred at the origin in R
d . If T has SIPfun, we can define

the map R of [0, ∞ ) into [0, 1] such that R(ρ) = P
[
T(θ+X ) = 1

]
for any θ ∈ ρSd−1.

Let Θ be some element of ϑτ and B be any Borel set of R. From the independence

of Θ and X , it follows from the definition of R that, for any θ ∈R
d ,

P
[
T(Θ+X ) = 1, ‖Θ‖ ∈ B

∣∣Θ= θ
]
= IB (‖θ‖)R(‖θ‖) (34)

where IB is the indicator function of B : IB (x) = 1 if x ∈ B and IB (x) = 0, otherwise. By

the standard change-of-variable formula [42, Theorem 16.13], we now have

∫
IB (‖θ‖)R(‖θ‖)PΘ−1(dθ) =

∫

B
R(ρ)P‖Θ‖−1(dρ). (35)

Since P
[
T(Θ+ X ) = 1, ‖Θ‖ ∈ B

]
=

∫
P

[
T(Θ+ X ) = 1, ‖Θ‖ ∈ B

∣∣ Θ = θ
]

PΘ−1(dθ), it

follows from (34) and (35) that

P
[
T(Θ+X ) = 1, ‖Θ‖ ∈ B

]
=

∫

B
R(ρ)P‖Θ‖−1(dρ).

On the other hand,

P
[
T(Θ+X ) = 1, ‖Θ‖ ∈ B

]
=

∫

B
P

[
T(Θ+X ) = 1

∣∣‖Θ‖ = ρ
]

P‖Θ‖−1(dρ). (36)

Therefore, we derive from the foregoing and the definition of a conditional proba-

bility that

P
[
T(Θ+X ) = 1

∣∣‖Θ‖ = ρ
]
=R(ρ), P‖Θ‖−1 – (a-s).

We now establish the converse statement. Let T be some test. Assume that, for

anyΘ ∈M(Ω,Rd ), there exists a support D of P‖Θ‖−1 such that T hasΘ-ISCPfun over

any sphere with radius in D. Let ρ be any non-negative real number and Θ be any

element of M(Ω,Rd ) such that ‖Θ‖ = ρ (a-s). Since ρ belongs to any support of Θ, T

has Θ-ISCPfun over ρSd−1. We thus have βθ(T) = βθ′ (T) for any θ′ ∈ ρSd−1. Thence,

the spherical invariance of the power function of T since ρ has been chosen arbi-

trarily.

III.2 Proof of statement (ii)

With the same assumptions as above, let us suppose that T has level γ ∈ [0 , 1] for

testing
[
‖θ‖ ∈ Iτ

]
with θ ∈ R

d , so that βθ(T) 6 α(T) 6 γ for every θ ∈ R
d such that

‖θ‖ ∈ Iτ. It then follows from statement (i) proved above that, for every Θ ∈ ϑτ,

βΘ

(
T

∣∣‖Θ‖ = ρ
)
6 γ for P‖Θ‖−1 – almost every ρ ∈ Iτ. Statement (ii) then follows

from (15).
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Appendix IV

Proof of theorem 3

We begin with some technical preliminary results. In particular, corollary 1 of lemma

5 is an interesting result beyond the scope of the present paper. In fact, although this

corollary is probably standard [5], we did not find precise references. So, we have

provided a proof that derives from the following lemma 5. Many arguments given

in this section rely on the following analytical expression of R [41, Section V, p. 232,

(19)], which straightforwardly follows from [43, p. 22, Theorem 1.3.4]. For every pair

(ρ,η) of non-negative real numbers, we have

R(ρ,η)
∆=

e−ρ
2/2

2d/2−1Γ(d/2)

∫η

0
e−t 2/2t d−1

0F1

(
d/2;ρ2t 2/4

)
dt (37)

where 0F1 is the generalized hypergeometric function [44, p. 275].

Lemma 5 For every real number ν > 1/2 and every pair of non-negative real num-

bers ρ0 and ρ1 such that 0 6 ρ0 < ρ1, the continuous map

x ∈ [0 , ∞ ) 7−→ 0F1

(
ν ; ρ2

1x2/4
)
/0F1

(
ν ; ρ2

0x2/4
)

is strictly increasing and, thus, one-to-one.

PROOF: Set f (x) = 0F1

(
ν ; ρ2

1x2/4
)
/0F1

(
ν ; ρ2

0x2/4
)

for any x ∈ [0 , ∞ ). We have

f (0) = 1 and since 0F1(ν ; ·) is increasing, we have f (x) > 1 for any x > 0. For x ∈
(0 , ∞ ), the derivative of 0F1(ν ; x) with respect to x follows from [44, Sec. 9.14, p.275]

and some routine algebra shows that the sign of f ′(x) is that of

q(x) =
ρ2

1

ρ2

0F1(ν+1; ρ2
1x2/4)

0F1(ν ; ρ2
1x2/4)

− 0F1(ν+1; ρ2
0x2/4)

0F1(ν ; ρ2
0x2/4)

.

Put g (t ) = Iν(t )/Iν−1(t ), t ∈ [0 , ∞ ), where Iν is the modified Bessel function [45,

Sec. 9.6, p. 374]. According to [45, p. 377, 9.6.47], we have g (t ) = t
2ν

0F1(ν+1; t 2/4)

0F1(ν ; t 2/4)
, t ∈

[0 , ∞ ). Therefore, q(x) = 2ν
ρ2

0x

(
ρ1g (ρ1x)−ρ0g (ρ0x)

)
whose sign is that of ρ1g (ρ1x)−

ρ0g (ρ0x). It is proved in [41, Lemma B.1, Appendix B, p. 237] that g is strictly increas-

ing. Therefore, since ρ0 < ρ1 and g is non-negative, we have ρ0g (ρ0x) < ρ1g (ρ1x)

and the proof is complete.

Corollary 1 The family of the non-central χ2 distributions with d degrees of liberty

has monotone likelihood ratio with its non-central parameter.

Proposition 7 Let γ ∈ (0 , 1]. Given any two non-negative real values ρ0 and ρ1 such

that ρ0 < ρ1, let Ξ0 and Ξ1 be any random vectors that are uniformly distributed on

ρ0Sd−1 and ρ1Sd−1, respectively. Any thresholding test from above with threshold

height λγ(ρ0) is most powerful (MP) with size γ for testing the null hypothesis H0 :

Y =Ξ0 +X against the alternative one H1 : Y =Ξ1 +X . The power of this MP test is

1−R(ρ1,λγ(ρ0)).

PROOF: It follows from [41, Proposition V.1, (18), p. 232] that the likelihood ratio for

testing H0 against H1 is

Λ(y) = exp
(
−(ρ2

1 −ρ2
0)/2

)
0F1

(
d/2; ρ2

1‖y‖2/4
)
/0F1

(
d/2; ρ2

0‖y‖2/4
)
, y ∈R

d .
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According to the Neyman-Pearson lemma [1, Theorem 3.2.1, Sec. 3.2, p. 60], there

exists some constant ζ with the following property: each test that accepts (resp. re-

jects) H0 if Λ(y) < ζ (resp. Λ(y) > ζ) is MP with size γ for testing H0 againts H1. Ac-

cording to lemma 5, this MP test is a thresholding test from above Tζ′ . The threshold

height ζ′ of this test can be calculated by solving the equation P
[
Tζ′ (Ξ0+X ) = 1

]
= γ.

Since we derive from (1) and lemma 4 — or, equivalently, from (37) and [41, Propo-

sition V.1, (17), p. 232] — that P
[
Tζ′ (Ξ0 + X ) = 1

]
= 1 −R(ρ0,ζ′), it follows that

ζ′ = λγ(ρ0). The power of the thresholding test from above with threshold height

λγ(ρ0) for testing H0 against H1 is a consequence of (1) and lemma 4 — or (37)

and [41, Proposition V.1, (17), p. 232] — again.

We now tackle the proof of theorem 3 in the case where SNT is from above toler-

ance τ, that is, when we test the event
[
‖Θ‖6 τ

]
with Θ ∈ϑτ and Iτ = [0 ,τ ][. Indeed,

the proving when the testing is from below τ, that is, when Iτ = ][τ , ∞ ), can be car-

ried out by mimicking what follows and is left to the reader.

We thus consider any thresholding test from above Tλ∗ , whose threshold height

is λ∗ = λγ(τ). The fact that αϑτ (Tλ∗ ) = γ is a direct consequence of lemma 4, state-

ment (ii). Let Θ be any element of ϑτ. According to statement (i) of lemma 4, there

exists some support D of P‖Θ‖−1 such that Tλ∗ has Θ-ISCPfun over any sphere with

radius in D. It thus remains to prove that Tλ∗ satisfies property [P2] of definition

6 and that Tλ∗ is unbiased. To this end, let T be some element of K
ϑτ
γ such that

T has Θ-ISCPfun over any sphere with radius in D ∩ Ic
τ. Given any ρ0 ∈ Iτ and

any ρ1 ∈ D∩ Ic
τ, let Ξ0 and Ξ1 be any two elements of M(Ω,Rd ) independent of

X such that ‖Ξ0‖ = ρ0 (a-s) and ‖Ξ1‖ = ρ1 (a-s). Let ε be some random variable

valued in {0,1}, independent of Ξ0, Ξ1 and X , with P
[
ε = 1

]
∈ (0 , 1). We have

P
[
T(Ξ0+X ) = 1

]
= P

[
T(Ξ+X ) = 1

∣∣‖Ξ‖ ∈ Iτ
]
, whereΞ= (1−ε)Ξ0+εΞ1 ∈ Iτ. Thereby,

since T ∈K
ϑτ
γ , we obtain that:

P
[
T(Ξ0 +X ) = 1

]
6 γ. (38)

Now, because T is assumed to have Θ-ISCPfun over ρ1Sd−1, we derive from propo-

sition 4 that

P
[
T(Ξ1 +X ) = 1

]
=βΘ

(
T

∣∣‖Θ‖ = ρ1

)
. (39)

Let us consider the problem of testing the null hypothesis H0 : Y = Ξ0 + X against

the alternative one H1 : Y = Ξ1 + X . It then follows from (38) and (39) that T has

level γ and power equal to βΘ

(
T

∣∣‖Θ‖ = ρ
)

for testing H0 against H1. This holds

true for any distribution of Ξ0 and Ξ1, provided that the supports of these random

vectors are ρ0Sd−1 and ρ1Sd−1, respectively. We then choose Ξ0 (resp. Ξ1) uniformly

distributed over ρ0Sd−1 (resp. ρ1Sd−1). According to proposition 7, the thresholding

test from above Tλγ(ρ0) with threshold height λγ(ρ0) is MP with size γ and power

equal to 1−R(ρ1,λγ(ρ0)) for testing H0 against H1. As a consequence, we have 1−
R(ρ1,λγ(ρ0)) >βΘ

(
T

∣∣‖Θ‖ = ρ1

)
. The left hand side in the previous inequality tends

to 1−R(ρ1,λ∗) when ρ0 tends to τ by continuity of R(ρ1, ·) and λγ (see lemma 2).

Since Tλ∗ hasΘ-ISCPfun over ρ1Sd−1, (17) induces that 1−R(ρ1,λ∗) =βΘ

(
T∗ ∣∣‖Θ‖ =

ρ1

)
. Therefore, βΘ

(
T∗ ∣∣‖Θ‖ = ρ1

)
>βΘ

(
T

∣∣‖Θ‖ = ρ1

)
.

We now show that Tλ∗ is unbiased. According to (22), we have

β
ϑτ

Θ
(Tλ∗ ) =

1

P
[
‖Θ‖ ∈ Ic

τ

]
∫

Ic
τ

(
1−R(ρ,λ∗)

)
P‖Θ‖−1(dρ)
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with Iτ = [0 , τ ][, since we consider SNT from above. We also have 1−R(ρ,λ∗) >

1−R(τ,λ∗) for ρ ∈ Ic
τ thanks to lemma 1. Thence, the unbiasedness of Tλ∗ because

1−R(τ,λ∗) = γ.
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False alarm probabilities and detection probability lower bounds for some UBISCP tests Tλγ(τ)

 

 

τ = 0 (Wald’s test)
τ = 1
τ = 2
τ = 3
τ = 4

Figure 1: False alarm probabilities and lower bounds for the detection probabilities

of UBISCP tests Tλγ(τ) with τ ∈ {1,2,3,4}, when the signal and noise have dimension

d = 12 and the lower bound for the signal norm is τ0 = 7. The abscissas are given in

the logarithmic (base 10) scale so that the curves presented in this figure are plotted

as functions of log10(γ), with γ ∈ (0 , 1). The false alarm probability and the detec-

tion probability lower bound both decrease (resp. increase) when τ increases (resp.

decreases). The dashed curves are the probability detection lower bounds and the

solid curves are the false alarm probabilities. The false alarm probability of Wald’s

test is exactly the curve {(log10(γ),γ) : γ ∈ (0 , 1)}, below which the false alarm proba-

bilities of all the other UBISCP tests remain. The probability detection lower bound

of Wald’s test is above those of all the other UBISCP tests. Therefore, when the noise

standard deviation is known, Wald’s test is the best UBISCP test to use for detecting

random signals with unknown distributions.
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MLE A−UBISCP detector (N = 100, 150, 300, 500, 1000)
MLE Wald detector (N = 1000)
MLE Wald detector (N = 500)
MLE Wald detector (N = 300)
MLE Wald detector (N = 150)
MLE Wald detector (N = 100)

Figure 2: The signal and noise are assumed to have dimension d = 12 and the

signal norm lower bound is supposed to be τ0 = 7. This figure displays the false

alarm probability of the MLE Wald detector as a function of log10(γ), when N =
100,150,300,500 in (33) and the specified level γ ranges in (0, 1). The false alarm

probabilities of the MLE Wald detector are above the diagonal and, thus, above the

specified level γ, which is undesirable. In contrast, the MLE A-UBISCP detector

guarantees the specifed level.
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Lower ROC curves of Wald’s test and MLE A-UBISCP detector

 

 

Wald’s test (known standard deviation)
MLE A−UBISCP detector (N = 1000)
MLE A−UBISCP detector (N = 500)
MLE A−UBISCP detector (N = 300)
MLE A−UBISCP detector (N = 150)
MLE A−UBISCP detector (N = 100)

Figure 3: As in figure 2, the signal and noise are assumed to have dimension

d = 12 and the signal norm lower bound is supposed to be τ0 = 7. The figure

displays the lower ROC curves of the MLE A-UBISCP detector with adjusted tol-

erance τ∗N , with N = 100,150,300,500 in (33). Whatever the tested value of N ,

PFA

[
Tσ̂Nλγ(τ0/σ̂N )(Y )

]
< γ < PFA

[
Tσ̂Nλγ(0)(Y )

]
so that τ∗N guarantees that the false

alarm probability of the MLE A-UBISCP detector equals the specifed level. The use

of an estimate of the noise standard deviation impacts the detection performance.

Indeed, the lower ROC curves of the MLE A-UBISCP detector are below the lower

ROC curve of Wald’s test obtained when the noise standard deviation is known.

However, this performance loss in detection reduces as N increases, whereas the

false alarm probability of the MLE A-UBISCP detector remains equal to the speci-

fied level.
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