N

N
N

HAL

open science

To Satisfy Impatient Web surfers is Hard

Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, Nicolas

» To cite this version:

Nisse

Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, Nicolas Nisse. To Satisfy
Impatient Web surfers is Hard. FUN: International Conference on FUN with Algorithms, Jun 2012,

Venice, Italy. pp.166-176. hal-00704201

HAL Id: hal-00704201
https://hal.science/hal-00704201

Submitted on 4 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00704201
https://hal.archives-ouvertes.fr

To Satisfy Impatient Web surfers is Hard*

F.V. FoMmIN', F. GIROIRE?, A. JEAN-MARIE?, D. MAzAURIC?, and N. NIssE?

! Department of Informatics, University of Bergen, Norway.
2 MASCOTTE, INRIA, I3S(CNRS/Univ. Nice Sophia Antipolis), France.
3 MAESTRO, INRIA and LIRMM, Univ. Montpellier 2, France.

Abstract. Prefetching is a basic mechanism for faster data access and
efficient computing. An important issue in prefetching is the tradeoff be-
tween the amount of network’s resources wasted by the prefetching and
the gain of time. For instance, in the Web, browsers may download doc-
uments in advance while a Web surfer is surfing on the Web. Since the
Web surfer follows the hyperlinks in an unpredictable way, the choice of
the Web pages to be prefetched must be computed online. The question
is then to determine the minimum amount of resources used by prefetch-
ing that ensures that all documents accessed by the Web surfer have
previously been loaded in the cache.

‘We model this problem as a two-players game similar to Cops and Robber
Games in graphs. The first player, a fugitive, starts on a marked vertex
of a (di)graph G. The second player, an observer, marks k > 1 vertices,
then the fugitive moves along one edge/arc of G to a new vertex, then
the observer marks k vertices, etc.

The observer wins if he prevents the fugitive to reach an unmarked ver-
tex. The fugitive wins otherwise, i.e., if she succeed to enter an unmarked
vertex. The surveillance number of a (di)graph is the minimum k > 1
allowing the observer to win against any strategy of the fugitive.

We study the computational complexity of the game. We show that de-
ciding whether the surveillance number of a chordal graph equals 2 is NP-
hard. Deciding if the surveillance number of a DAG equals 4 is PSPACE-
complete. Moreover, computing the surveillance number is NP-hard in
split graphs. On the other hand, we provide polynomial time algorithms
computing surveillance numbers of trees and interval graphs. Moreover,
in the case of trees, we establish a combinatorial characterization, related
to isoperimetry, of the surveillance number.

Keywords: Prefetching, Cops and robber games, PSPACE-complete.

1 Introduction

Prefetching is a basic technique in computer science. It exploits the par-
allelism between the execution of one task and the transfer of information
* Due to lack of space, some proofs have been omitted or sketched, and can be found

in [3]. This work has been done during the visit of Fedor V. Fomin at the INRIA
team-project MASCOTTE, INRIA Sophia-Antipolis, France.

necessary to the next task, in order to reduce waiting times. The classical
instance of the problem occurs in CPU, where instructions and data are
prefetched from the memory while previous instructions are executed. The
modern instance occurs in the Web, where browsers may download doc-
uments connected to the currently viewed document (Web page, video,
etc.) while it is being read or viewed. Accessing the next document ap-
pears to be instantaneous to the user, and gives the impression of a large
navigation speed [1]. For this reason, link prefetching has been proposed
as a draft Internet standard by Mozilla [7]. However, prefetching all doc-
uments that can be accessed in the current state may exceed networking
capacities, or at least, result in a waste of bandwidth since most of the
alternatives will not be used. Hence, it is necessary to balance the gain
of time against the waste of networking resources. Local storage memory
is also a potential issue, and prefetching is classically associated with the
question of cache management. However, memory in modern computers
is not scarce anymore, which makes network resources the critical ones.

The models developed so far in the literature to study prefetching
problems are based on the execution digraph where the nodes represent
the tasks (e.g., Web pages) and arcs model the fact that a task can be
executed once another has been done (e.g., arcs represent hyperlinks that
can be followed from a Web page). The execution of the program or the
surfing of the Web then corresponds to a path in the execution digraph.
The quantitative optimization of prefetching will then be based on some
cost function defined on paths, reflecting for instance the inconvenience
of waiting for some information while executing the tasks or surfing the
Web, and possibly taking into account the consumption of network or
memory resources. The related dimensioning problem consists in deter-
mining how much network bandwidth should be available so that the
prefetching performance stays within some predetermined range.

It is quite likely that such optimization problems are very difficult to
solve exactly. For instance, in Markovian models [8], where arcs of the
execution digraph are associated with transition probabilities (modeling a
random Web surfer), the prefetching problem can then be cast as an opti-
mization problem in the Stochastic Dynamic Programming framework [6,
9]. Tts exact solution requires a computational effort which is exponential
with respect to the number of nodes in the execution digraph: this is the
size of the state space of these Markov Decision models.

As a first step in the analysis of prefetching optimization, we therefore
consider the following simpler problem. We consider a surfer evolving over
the execution digraph, and we are concerned with perfect prefetching,

i.e., ensuring that the Web surfer never accesses an document that has
not been prefetched yet. In other words, the surfer is “impatient” in the
sense that she does not tolerate waiting for information. Due to network’s
capacity (bandwidth) limitation, it is important to limit the number of
Web pages that can be prefetched at each step. We aim at determining
the minimum amount of Web pages to be prefetched at each step. In
addition to being simpler than a fully specified optimization problem,
this question does not need specific assumptions on the behavior of the
Web surfer as in [6,9].

Given an execution digraph D and a node vy € V(D) corresponding
to the Web page from which the surfer starts, the surveillance number of
D starting in vg is the least number of Web pages prefetched at each step
that avoid the Web surfer to wait (whatever the surfer does).

Our results. We model the above prefetching problem as a Cop and
Robber game (e.g., see [4,2]). Using this framework, we prove that de-
ciding whether the surveillance number of a chordal graph equals 2 is
NP-hard. Then, we show that computing the surveillance number is NP-
hard in split graphs, a subclass of chordal graphs. In the case of digraphs,
we show that deciding if the surveillance number of a DAG equals 4
is PSPACE-complete. On the other hand, we provide polynomial time
algorithms that compute the surveillance number and a corresponding
optimal strategy in trees and interval graphs. Moreover, in the case of
trees, we establish a combinatorial characterization, related to isoperime-
try, of the surveillance number. That is, we show that the surveillance

number of a tree T' starting in vy € V(T') equals maxg [%—‘ where

S is taken among all subtrees of 7' containing vy and N[S] denotes the
closed neighborhood of S. We conclude with several open questions.

2 Preliminaries

For any (di)graph G = (V, E) considered in this paper, when vy € V is
fixed as the starting vertex, we assume that, for any v € V, there is a
(directed) path from vy to v. In particular, if G is an undirected graph,
we assume that G is connected. For S C V, let G[S] be the subgraph
induced by S in G. The open neighbourhood N (S) of a vertex subset S
is the subset of vertices in V'\ S having a neighbour in S and the closed
neighbourhood is N[S] = N(S)U S. If S = {v}, we use N(v) and N[v]
instead of N({v}) and N[{v}].

2.1 The Surveillance Game

The surveillance problem deals with the following two players game in an
n-node (di)graph G = (V, E) with a given starting vertex vg € V. There
are two players, fugitive and observer. The fugitive wants to escape the
control of an observer whose purpose is to keep the fugitive under constant
surveillance. Let k& > 1 be a fixed integer. The game starts when the
fugitive stands at vy which is initially marked. Then, turn by turn, the
observer controls, or marks, at most k vertices and then the fugitive either
moves along an edge to a (out-)neighbor of her current position, or skip
her move. In other words, at every step of the game the observer enlarges
observable part of the graph by adding to it k, not necessarily adjacent,
vertices. His task is to ensure that the fugitive is always in the observable
area. Note that, once a vertex has been marked, it remains marked until
the end of the game. The fugitive wins if, at some step, she reaches an
unmarked vertex and the observer wins otherwise. That is, the game ends
when either the fugitive enters an unmarked vertex (and then she wins)
or all vertices have been marked (and then observer wins).

More formally, a k-strategy (for the observer) is a function o that
assigns a subset S C V', |S| < k, to any configuration (M, f) of the game
where M C V is the set of the vertices that have already marked before
this step of the game, f € M is the current position of the fugitive, and
S = o(M, f) is the set of vertices to be marked at this step. Clearly, we
can restrict our investigation to the case where o(M, f) C V' \ M and
lo(M, f)| =k or o(M, f) = V' \ M. That is, at each step, the observer has
interest to mark as many unmarked vertices as possible. In particular, a
game consists of at most [n/k] steps. A k-strategy is winning if it allows
the observer to win whatever be the walk followed by the fugitive. Note
that any winning strategy must ensure that N(f)\ M C o(M, f) for any
M CV, f e M. The surveillance number of G, denoted by sn(G,vp), is
the least k such that there is a winning k-strategy in G starting from vy.

2.2 Restriction to induced paths

We define a restriction of the game that will be useful throughout this
paper. In the monotone variant of the surveillance game, the fugitive is
restricted to move at every step and to follow only induced paths in G.
That is, for any ¢ > 0, after having followed a path (vg,---,vs), the
fugitive is not allowed reaching a vertex in N[{vg,-- ,vp—1}] anymore.
Let msn(G,vo) be the smallest k& such that there is a winning monotone
k-strategy in G when the fugitive starts from vy. Due to lack of space,
the proof of Theorem 1 is omitted and can be found in [3].

Theorem 1. For any (di)graph G, vo € V(G), sn(G,vo) = msn(G,vg) [3].

In other words, if the fugitive follows induced paths and moves at
every step, the observer needs to mark the same amount of vertices at
each step as he does when the fugitive has no restriction. This means
that in the following proofs, we can always consider that the fugitive
obeys these restrictions.

3 Difficult problems

In this section, we study the computational complexity of the decision
version of the problem: given a graph G with vy € V(G) and an integer k,
the task is to decide whether sn(G,vy) < k. We start with the proof that
the problem is NP-hard on chordal graphs. Let us remind that a graph is
chordal if it contains no induced cycle of length at least 4.

Theorem 2. Deciding if sn(G,vo) < 2 is NP-hard in chordal graphs.

Proof. We use a reduction from the 3-Hitting Set Problem. In the 3-
Hitting Set Problem, we are given a set Z of elements, a set S of subsets
of size 3 of Z and k£ € N as an input. The question is to decide whether
there exists a set H C 7 of size at most k such that HNS # () for all S € S.
The 3-Hitting Set Problem is the classical NP-complete problem [5].

Let (Z={e1, - ,en},S ={S1,--+,Sm}) and k > 1 be an instance of
the 3-Hitting Set Problem. We construct the chordal graph G as follows.
Let P = {wvo,-+ ,Vm+k—2} be a path, K,, be the complete graph with
vertices {S1,---,Sn} and e, -+ ,e, be n isolated vertices. We add an
edge from v,,1 1o to all vertices of K,,, and for each ¢ < n and j < m,
add an edge between e; and S; if and only if e; € 5. Clearly, G is chordal.

First, we show that, if there exists a set H C T of size k such that
HNS # D for all S € S, then sn(G,vg) < 2. The 2-strategy of the observer
first consists in marking the vertices v; to vy, y1x_o in order, then the
vertices of K, and finally the vertices of H. This can be done in m+k—1
steps and in such a way that, at each step, all neighbors of the current
position of the fugitive are marked. Because H is a hitting set of S, after
the (m+ k —1)-th step, each vertex S;, i < m, has at most two unmarked
neighbors, all other vertices have all their neighbors marked and only
some vertices in eq,...,e, can be unmarked. Finally, from this step, the
strategy of the observer consists in marking the unmarked neighbors of
the current position of the fugitive. Clearly, the fugitive cannot win and,
thus, there exists a winning 2-strategy.

Now, assume that, for any H C 7 of size at most k, there is S € & such
that SN H = (). The escape strategy for the fugitive first consists in going
t0 Ut k—2 (this takes m+k—2 steps). Then, after the (m+k—1)-th step of
the observer, all vertices of P and K, are marked—otherwise the fugitive
either would have won earlier, or manage to reach a vertex of K, that is
still unmarked. It means that the subset H of vertices among e, - , e,
that are marked at this step is of size at most k. Hence, when it is the
turn of the fugitive who is occupying vertex v, o, there is S; € V(K,;,)
with H N S; = 0, i.e., all three neighbors of S; are unmarked. Then, the
fugitive goes to S;. The observer marks at most 2 of the neighbors of 5;,
and the fugitive can reach an unmarked vertex. Hence, sn(G,vg) > 2. O

The proof of the next Theorem is similar to the previous one. It is
omitted due to lack of space and can be found in [3]. A graph G = (V. E)
is a split graph if there is a partition (A, B) of V' such that A induces a
clique and B induces an independent set. A split graph is chordal.

Theorem 3. The problem of deciding whether sn(G,vg) < k is NP-hard
in split graphs (k is part of the input). Moreover, in this class of graphs,
the game consists of at most 2 steps [3].

For a set of boolean variables zq, yo, 1,1, , Tn,yn and a boolean
formula F' = C1A---AChy,, (Cj is a 3-clause), the 3-QSAT problem aims at
deciding whether the expression @ = VxgIyoVa13dy; - - - Vo, Jy, F is true.
3-QSAT is PSPACE-complete [5]. Due to lack of space, we sketch the
proof of next theorem. The proof of Theorem 4 can be found in [3].

Theorem 4. The problem of deciding whether sn(G,vy) < 4 is PSPACE-
complete in Directed Acyclic Graphs [3].

Sketch of the Proof. Let FF = Cy{ A---AC,, be a boolean formula with
variables xg, Yo, T1,Y1," " * » Tn, Yo and & = VroIyoVr13Iy; - - - Vo, Iy, F be
an instance of the 3-QSAT Problem. Let D be the DAG built as follows.

We start with the set of vertices {u;, v;, x}, T}, xi, Zi, Y}, Ul Vi, Ui Yo<i<n-
For any 0 < ¢ < n, there are arcs from v; to x} and Z,, one arc from z to
z; and one arc from Z to Z;. For any 0 < ¢ < n, there are arcs from z
and T} to u;, arcs from u; to both y, and g} and arcs from both of y; and
g: to both of y; and g;. Then, for any 0 < i < n, there is one arc from u;
to vi+1. Add the directed path (wq,- -, wpy—1) with one arc from wu, to
wy and such that w,,_1 has m out-neighbors Cy,--- ,C},. For any j < m
and 0 < i < n, add one arc from Cj to x; (resp., s, ys, ¥i) if z; (resp.,
Zi, Vi, i) appears in the clause Cj;. Finally, for any 0 <i <n, k <m —1,

2 @e—pr Wm—1

3N

G

N

Fig. 1. Reduction in proof of Th. 4. A small black node with an integer i beside and
that is the out-neighbor of a vertex v corresponds to i leaves that are in Nt (v).

J < m add two out-neighbors leaves to each vertex in {v;, 2}, Z}, wy, C}},
and, for any 0 < i < n, add three out-neighbors leaves to each of y, and
y:. An example of such DAG is depicted in Figure 1.

Since [N (vg)| = 4, sn(D,vp) > 4 and the first step of the observer, al-
lowed to mark 4 vertices per step, consists in marking the 4 out-neighbors
of vg. We sketch the proof that sn(D,vg) = 4 if and only if @ is true.

In [3], we show that the only way for the fugitive to win against an
observer who can mark 4 vertices at each step is by following the path
P = (vo, fo, w0, Vi, fiy Wiy s Uny froy Uy Wi, W2, + + 5 Wip—1), Where
fi € {z},z} for any 0 < i < n. Moreover, during this game, the observer
must have marked a; where a; = z; if f; = 2} and a; = z; if f; = T
(otherwise the fugitive would have won before by going to a;). On the
other hand, we prove that, during the game, the observer can have marked
exactly one vertex b; in {y;,;}. Finally, after the (3n + m)-th step of the
observer, the fugitive stands on w,,_1, all vertices in H = {C4,--- ,Cy,}
are marked while the set of marked vertices in the out-neighbors of H is
exactly {ag;bo, -, an, by }. Now, if @ is false, by the choice of the a;’s by
the fugitive, there is a clause C; with its 5 out-neighbors unmarked: the
fugitive goes to C; and will win at the next step. On the other hand, if
& is true, by the choice of the b;’s by the observer, all C;’s have at most
4 unmarked out-neighbors. Whatever be the next moves of the fugitive,
she will reach a marked vertex without out-neighbors.

Hence, deciding whether sn(G,vg) < 4 is PSPACE-hard in DAGs.
The proof that this problem is in PSPACE can be found in [3]. 0

The following theorem provides an exponential algorithm computing
sn(G,vg). Here, we use a modified big-Oh notation that suppresses all
polynomially bounded factors. For functions f and g we write f(n) =
O*(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Theorem 5. sn(G,v) can be computed in time O*(2") on n-node graphs.

Proof. For each k > 1, we decide if sn(G,vg) < k. We consider the arena

digraph G whose vertices are configurations of the game, i.e., the pairs

(M, f) where vy, f € M CV(G), N[f] € M and |M \ {vo}| = ki for some

i >0 (or M = V(QG)). Moreover, there is an arc from (M, f) to (M, f')

if f"€ N(f)and M C M" and |M'| = |[M|+ k (or [V(G)\ M| < k and
n—1

M’ = V(G)). Note that |V(G)| < nZLIT1 (riv1) < 2"n and that the
amount of arcs in G is O*(2").

We consider the following labelling process. Initially, all configurations
(V(G),v), for any v € V(G), are labeled with [21], and all other con-
figurations are labeled with oo. Iteratively, a configuration (M, f) with
M| = ki+ 1 is labeled i if, for any " € Ng(f), then f’ € M and there is
an out-neighbor (M, f') of (M, f) and that is labeled at most i + 1. We
show that sn(G,vg) < k if and only if there is a configuration (M, vy),
|M| =k + 1, labeled with 1.

We first show by induction on i, that the observer can win starting
from any configuration labeled with [”T_l] — 4. If ¢ = 0, the result holds
trivially. Assume that the result holds for [”T_w —1>4>0.Let (M, f)
be a configuration labeled with {"qu — (i +1). For any f" € N(f), by
definition of the labelling process, there is a configuration (M’, f’) out-
neighbor of (M, f) and labeled with ("qu — 1. If the fugitive goes from
f to f’, then the observer marks the vertices in M’ \ M and the game
reaches the configuration (M’, f’). Hence, by the induction hypothesis,
the observer wins. So, applying the result for ¢ = [”T_l] — 1, the observer
wins starting from any configuration (M, vg), |M| =k + 1, labeled 1. To
reach this configuration, the first step of the observer is to mark the k
vertices in M \ {vg}. Therefore, sn(G,vg) < k.

Now assume that sn(G,vg) < k. Let o be a winning k-strategy for the
observer. For any walk W = (vp,v1,--- ,v;) followed by the fugitive, let
M (W) be the set of vertices marked by the observer (using o) after the
fugitive has followed W until v; and when it is the turn of the fugitive.
By reverse induction on i, the labelling process labels (M (W), v;) with
i + 1. This shows that ({vo} Uo({vo},vo),v0) is labeled with 1.

For each k, the algorithm runs in time proportional to the size of G,
i.e. 2"nk, and thus the total running time of the algorithm is O*(2"). O

4 Polynomial-time Algorithms in some graph classes

In this section, we give polynomial-time algorithms to compute the surveil-
lance number of trees and interval graphs.

4.1 Keeping tree under surveillance

We first present a polynomial-time algorithm to compute sn(7T,vg) for
any tree T'= (V, E) rooted at vy € V. Let k > 0. We define the function
fr + V(T') — N in the following recursive way:

— fx(v) =0 for any leaf v of T,
— for any v € V(T') with d children, fj(v) = max{0,d+}_ .o fu(w)—Fk}
where C' is the set of children of v.

Lemma 1. Let T be a tree rooted in vy, fir(vo) =0 iff sn(T,vp) < k.

Proof. The result holds if T' is reduced to one vertex. So we may assume
that T has height at least 1. Recall that the height of T is the maximum
length (number of edges) of a path between the root vy and a leaf of T

We prove by induction on the height of T" that the observer cannot win
the game marking at most k vertices per step, even if at most fi(vo) — 1
vertices in V(T') \ {vg} are initially marked. Moreover, we prove that the
observer can win, marking at most k vertices per step, if at most f(vo)
vertices plus vg are initially marked.

If T has height 1 and vy has degree d, then fi(vo) = max{0,d — k}
and the result holds. Indeed, if vy and fi(vg) other vertices are initially
marked, then during its first step, the observer marks all remaining < k
vertices and wins. On the other hand, if vg and at most fx(vg) — 1 vertices
are marked, then after the first step of the observer (when he has marked
k other vertices), at least one neighbor of vy is still unmarked and the
fugitive can go to it and wins.

Now, assume that the result holds for any tree of height & > 1. Let T'
rooted in vy and of height A + 1, we show the result holds.

Let (v1,--- ,v,) be the children of vy and let T; be the subtree of T
rooted in v;, 1 < i < r. By the induction hypothesis, for any 1 < i < 7,
there is a set I; C V(T;) \ {vi} of fi(vi) vertices such that, if the vertices
of I; and wv; are initially marked in T;, then the observer can win in 7;
starting from v;, marking at most k vertices per step. On the contrary, if
strictly less than fi(v;) vertices are initially marked in V(7;) \ {v;}, then
the fugitive wins in 7T; against an observer marking < k vertices per step.

In T, if fx(vo) vertices can be marked initially in V/(7') \ {vo}, then a
k-strategy consists of the following. The set of vertices that are initially

marked union the vertices marked during the first step of the observer is
J = Nvo| U (Uy<;<, Li)- It is possible since |J| < 1+ fr(vg) + k. Then
the fugitive moves to some child v; (1 < i < r) of vp. Since the vertices
of I; and v; are already marked, the observer will win in 7;.

On the contrary, if strictly less than fi(vg) vertices can be marked
initially in V/(T') \ {vo}, then there is at least one child v; (1 < i < r)
such that either v; is not marked after the first step of the observer, or at
most fr(v;) — 1 vertices in V(T;) \ {v;} are marked after the first step of
the observer. In both cases, the fugitive will win in 7T;. ad

Theorem 6. For any tree T' rooted in vy, sn(T,vg) can be computed in
time O(n -logn).

We now give a combinatorial characterization of sn(T)vy).

Lemma 2. For any tree T rooted in vy and k < sn(T,vo), there is S C
V(T) inducing a subtree of T containing vy such that [%—‘ > k.

Proof. Let k < sn(T,vp). By Lemma 1, fx(vg) > 0. Let S be the inclusion-
maximal subtree of T" containing vy and such that fi(v) > 0 for all vertices
in S. We show by induction on the height of S that fi(vg) = |N[S]|—1—
E|S|. If S = {vo} and vy has degree d, then fi(vo) =d—k =|N[S]|—1—
k|S| > 0 because for any child v of vy, fr(v) = 0.

Assume that the result holds for any subtree of height A > 0 and
assume that S has height ~A+1. Let d be the degree of vg and let vy, - - - , vy,
1 < r < d, be the children of vy with fi(v;) > 0. Let S; be the subtree
of S rooted in v;, 1 < i < 7, and let N[S;] be the vertices of S; or in
the neighborhood of S; in the subtree of T" rooted in v;. By the induction
hypothesis, fx(v;) = |N[Si]| =1 — k|S;| for any 1 < i < r. Now, fi(vo) =
d—Fk+3 <o fovi) =d =k 430 (IN[S]| =1 = k|Si]) =d — k +
(INISII=1=(d=r)) —=r = k(S| = 1) = [N[S]| = 1 = K[S].

O

Lemma 3. For any tree T' rooted in vy, for any k > sn(T,vy), for any
S CV(T) inducing a subtree of T containing vy, we have {%1 <k.

Proof. We consider the following game. Initially, an unbounded number
of fugitives are in vy which is initially marked. Then, at most k vertices of
T\ {vo} are marked. At each turn, each fugitive can move along an edge
of the tree, and then, for each vertex v that is reached for the first time
by a fugitive, at most k vertices can be marked in T, the subtree of T
rooted in v. The fugitives win if at least one fugitive reaches an unmarked
vertex, they loose otherwise.

We first show that if & > sn(T,vg) then the fugitives loose in this
game. Assume that k > sn(T,vg). Then there is a winning k-strategy o
for the "normal” surveillance game in T starting from vg. Recall that by
Theorem 1, we can restrict the fugitive to follow an induced path. Since
for any t € V(T'), there is a unique induced path from vy to ¢, o can
be defined uniquely by the position of the fugitive. That is, in the case
of trees, we can define a k-strategy as a function that assigns a subset
o(t) C V(T;) (of size at most k) to any vertex t € V(T'). Now, in the
game with several fugitives, we consider the following strategy: each time
a vertex t is reached for the first time by a fugitive, we mark the vertices
in o(t).The fugitives cannot win against such a strategy.

Finally, we show that if there is a subtree S containing vy such that
PN [S]1-1

S|
first occupy all vertices of S. At this step, at most k- | S|+ 1 vertices have
been marked (because S is connected and vy is marked and for each vertex
in S at most k vertices in V(T')\{vo} are marked). Since |N[S]| > k-|S|+1,
at least one unmarked vertex in N[S] will be reached by some fugitive

during the next step.

W > k, then the fugitives win the new game. Indeed, the fugitives

Hence, sn(T,vg) > max [%-‘ where the maximum is taken over

all S C V(T') inducing a subtree of T containing vp. 0

Theorem 7. For any tree T' rooted in vy, sn(T,vp) = max [%—‘

where the mazximum is taken over all subtrees S of T' containing vg.

4.2 To keep an Interval Graph under surveillance

An interval graph G is the intersection graph of a set of real intervals.
The proof of the following theorem is omitted and can be found in [3].

Theorem 8. sn(G,vg) can be computed in time O(n- A3) in the class of
n-node interval graphs with mazimum degree A. [3]

5 Conclusion and further work

In [3], we define a variant of the surveillance game by introducing an extra
natural constraint. In the connected variant of the surveillance game, the
observer is constrained to mark only vertices that have neighbors already
marked, i.e., the set of marked vertices must always induce a connected
subgraph. We then define csn(G,vy) as the smallest k& such that there
is a winning connected k-strategy in G when the fugitive starts from vy.

In [3], we show that there are graphs G and starting vertex vy for which
esn(G,vg) > sn(G,vg). However, we prove that all results of this paper
hold for the connected variant. In particular, in any graph G that is an
interval graph or a tree, and for any vy € V(G), csn(G,vg) = sn(G,vp).
Moreover, in all graphs used for the complexity reductions in this paper,
the surveillance number equals its connected counterpart.

The connected version of the game seems interesting since it is closer
to the more realistic online version of the prefetching problem. In an online
version, the observer has no global knowledge of the graph anymore but
discovers progressively the neighbors of the vertices she marks.

To conclude, we ask some open questions:

— Does there exist a constant bounding the ratio (resp., the difference)
between csn and sn in any graph?

— What is the complexity of computing the surveillance number in the
class of graphs with maximum degree 47 With bounded degree? With
bounded treewidth?

— Does there exists a constant ¢ < 2 and an algorithm that computes
sn(G,vp) in time O(c") in general graphs G?7

— Is that true that, for any graph G and vy € V(G), sn(G,vy) =
maxg {%W where S is taken among all subsets of V(G) con-

taining vy and inducing a connected subgraph?

References

1. http://www.phdcomics.com/comics/archive.php?comicid=1456.

2. B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche,
pages 537, 2004.

3. F.V. Fomin, F. Giroire, A. Jean-Marie, D. Mazauric, and N. Nisse. To satisfy
impatient web surfers is hard. Technical Report INRIA-7740, INRIA, 2011. http:
//hal.inria.fr/inria-00625703/fr/.

4. F.V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci., 399(3):236—245, 2008.

5. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

6. R. Grigoras, V. Charvillat, and M. Douze. Optimizing hypervideo navigation using
a Markov decision process approach. In ACM Multimedia, pages 3948, 2002.

7. Zona Research Inc. The economic impacts of unacceptable web-site download
speeds. White paper, Redwood City, CA, April 1999. www.webperf.net/info/
wp_downloadspeed.pdf.

8. D. Joseph and D. Grunwald. Prefetching using Markov predictors. In ISCA, pages
252-263, 1997.

9. O. Morad and A. Jean-Marie. Optimisation en temps-réel du téléchargement de
vidéos. In Proc. of 11th Congress of the French Operations Research Soc., 2010.

