
HAL Id: hal-00704200
https://hal.science/hal-00704200v1

Submitted on 4 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allowing Each Node to Communicate Only Once in a
Distributed System: Shared Whiteboard Models

Florent Becker, Adrian Kosowski, Nicolas Nisse, Ivan Rapaport, Karol Suchan

To cite this version:
Florent Becker, Adrian Kosowski, Nicolas Nisse, Ivan Rapaport, Karol Suchan. Allowing Each Node
to Communicate Only Once in a Distributed System: Shared Whiteboard Models. SPAA - 24th ACM
Symposium on Parallelism in Algorithms and Architectures, 2012, United States. pp.7. �hal-00704200�

https://hal.science/hal-00704200v1
https://hal.archives-ouvertes.fr

Allowing Each Node to Communicate Only Once
in a Distributed System: Shared Whiteboard Models

Florent Becker
LIFO, Université d’Orléans
florent.becker@univ-

orleans.fr

Adrian Kosowski
LaBRI, INRIA

Bordeaux Sud-Ouest
kosowski@labri.fr

Nicolas Nisse
CNRS / Université Nice

Sophia-Antipolis
nicolas.nisse@sophia.inria.fr

Ivan Rapaport
DIM-CMM (UMI 2807 CNRS)

Universidad de Chile
rapaport@dim.uchile.cl

Karol Suchan
UAI (Chile) and U of Science

and Technology (Poland)
karol.suchan@uai.cl

ABSTRACT
In this paper we study distributed algorithms on massive
graphs where links represent a particular relationship be-
tween nodes (for instance, nodes may represent phone num-
bers and links may indicate telephone calls). Since such
graphs are massive they need to be processed in a distributed
and streaming way. When computing graph-theoretic prop-
erties, nodes become natural units for distributed compu-
tation. Links do not necessarily represent communication
channels between the computing units and therefore do not
restrict the communication flow. Our goal is to model and
analyze the computational power of such distributed systems
where one computing unit is assigned to each node. Com-
munication takes place on a whiteboard where each node
is allowed to write at most one message. Every node can
read the contents of the whiteboard and, when activated,
can write one small message based on its local knowledge.
When the protocol terminates its output is computed from
the final contents of the whiteboard. We describe four syn-
chronization models for accessing the whiteboard. We show
that message size and synchronization power constitute two
orthogonal hierarchies for these systems. We exhibit prob-
lems that separate these models, i.e., that can be solved in
one model but not in a weaker one, even with increased
message size. These problems are related to maximal inde-
pendent set and connectivity. We also exhibit problems that
require a given message size independently of the synchro-
nization model.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Parallelism and Concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

General Terms
Algorithms, Theory

Keywords
Distributed computing, local computation, graph proper-
ties, bounded communication

1. INTRODUCTION
A distributed system is typically represented by a graph

where links correspond to a particular relationship between
nodes. For instance, nodes may represent phone numbers
and links may indicate telephone calls. A classical approach
is to view each node as a processor. Since nodes lack global
knowledge, new algorithmic and complexity notions arise. In
contrast with classical algorithmic theory – where the Tur-
ing machine is the consensus formal model of algorithm – in
distributed systems many different models are considered.
Under the paradigm that communication is much slower and
more costly than local computations, complexity analysis of
distributed algorithms mainly focuses on message passing.
That is, an important performance measure is the number
and the size of messages that are sent by nodes for perform-
ing some computation. Theoretical models were conceived
for studying particular aspects of protocols such as fault-
tolerance, synchronism, locality, congestion, etc.

The particularity of this work lies in the fact that links
between nodes do not necessarily represent communication
channels between the computing units and therefore do not
restrict the communication flow. In that sense our setting
is similar to the “mud” (massive, unordered, distributed)
model, where the authors tackle the problem of performing
a computation when the data is distributed among many
machines [4]. Roughly, in such mud algorithms, pieces of
data are processed independently in parallel and pairs of
messages are aggregated in any order. Only one message
is created by each node because in truly massive database
“a common approach for dealing with large datasets is to
stream over the input in one pass” [4].

The problem we intend to model here is less general than
the one addressed in [4]. In fact, in our setting there exists
an underlying graph and the information each node possesses
is nothing but its neighborhood. The computation the nodes
need to perform collectively is related to some property of

the graph. In [2] the first simple model for studying such
scenario was introduced. In that model, the total amount
of local information that each node was allowed to provide
was bounded by O(logn) bits. Each node transmitted its
message to a central authority, the referee, that collected
and used them in order to give the correct output.
The main question was whether this small amount of local

information provided by each node was sufficient for the ref-
eree to decide some basic structural properties of the graph
G. For instance, simple questions like “Does G contain a
square (cycle of length 4)?” or “Is the diameter of G at most
3?” cannot be solved. On the other hand, the referee can
decode the messages in order to have full knowledge of G
when G belongs to one of many graph classes such as pla-
nar graphs, bounded treewidth graphs and, more generally,
bounded degeneracy graphs.
In this paper we define extensions of the model in [2] and

investigate their computational power. It is interesting to
point out that despite being extremely natural, these models
of computation have never been studied before.

Communication using a shared whiteboard. The com-
putational model in [2] can be stated equivalently in the fol-
lowing form. Given a question about the graph, every node
writes simultaneously one message (computed from its local
knowledge) on a global zone of shared memory, a whiteboard,
and then one must be able to answer the question using only
the contents of the whiteboard.
In this paper we intend to give more power to the initial

model of [2]. For this purpose, we relax the simultaneity con-
straint in different ways. Roughly, messages may be written
sequentially on the whiteboard. This allows nodes to com-
pute their messages taking into account the contents of the
whiteboard, i.e., the messages, that have previously been
written. In other words, in the new models we propose,
nodes have more sophisticated ways to share information.
Basically, the four models we now present aim at describing
how the nodes can access the shared medium, in particular,
differentiating synchronous and asynchronous networks.
We define a framework for synchronization without us-

ing a global clock. Instead, time is divided into rounds
corresponding to observable events, i.e., whiteboard mod-
ifications. More precisely, a round terminates when a node
writes a message on the whiteboard. Along the evolution
of the system, the nodes may be in three states: awake, ac-
tive or terminated. Initially, all nodes are awake. A node
becoming active means that this node would like to write
a message on the whiteboard. Metaphorically speaking, it
“rises its hand to speak”. To model the worst-case behavior,
an adversary chooses, among the set of active nodes, the par-
ticular node which is going to write a message on the white-
board. Afterwards, this node enters the terminated state.
Therefore, a node is in state terminated when its message
has been written on the whiteboard. In one round, several
awake nodes may become active but exactly one active node
becomes terminated. Note that a node may become active
and terminated in one round. In our model, if a node is
active in round i and it does not write a message then it
must stay active in round i+1. In other words, once a node
raises its hand it cannot “change its mind” later. After the
last round, when all nodes are terminated, all of them must
be able to answer the question by using only the information
stored on the whiteboard.
In this setting, we propose several scenarios leading to

the definition of four computational models. A computa-
tional model is said simultaneous if all nodes become ac-
tive (raise their hands) at the beginning of the process. On
the other hand, the model is said free if, in every round,
any awake node may decide to become active based on its
knowledge and on its own protocol. The other criterion we
use to distinguish models is the state-transition during which
a node must create the message it will eventually write on
the whiteboard. In the asynchronous scenario, the nodes
must create their message as soon as they become active. In
the synchronous scenario, every node is allowed to create
its message later, when the adversary chooses it to write the
message on the whiteboard. Thus, in the asynchronous case,
there may be some delay between the creation of a message
and the step when it is written. In particular, the order in
which the messages are created and the order in which they
are actually available on the whiteboard may differ. In this
way, we can model real-world asynchronous systems where
there are no guarantees on the time of communications.

Our results. In this work we define four families of systems,
namely SimAsync[f(n)], SimSync[f(n)], FreeAsync[f(n)]
and FreeSync[f(n)], which correspond to the four pos-
sible free/simultaneous, asynchronous/synchronous scenar-
ios, parametrized by the amount f(n) of data (in bits) each
node is allowed to write on the whiteboard. We show that
these classes form a hierarchy from the point of view of
message size as well as from the point of view of the syn-
chronization mechanism. More precisely, for any f(n) =
o(n), we show that SimAsync[f(n)] ⊊ SimSync[f(n)] ⊊
FreeAsync[f(n)] ⊆ FreeSync[f(n)]; the strictness of the
last inclusion is left as an open problem. On the other hand,
we also prove that when g(n) = o(f(n)), FreeSync[g(n)] ⊊
SimAsync[f(n)]. This means that message size and syn-
chronization mechanisms are two orthogonal parameters with
respect to the power of each instance of our model.

Connectivity problems in general, and breadth-first search
(BFS) in particular, are classical problem in distributed com-
puting, and we examine their positions in our hierarchy.
We show that BFS is in the class FreeSync[logn], and
that for the bipartite case, it is in FreeAsync[logn]. We
also show that for all f(n) = o(n), BFS is not in the class
SimSync[f(n)] even in the bipartite case.

Related work. The two main aspects of our approach, the
locality and the fact that the nodes are allowed to send only
one short message have been tackled before. In the classical
model CONGEST [8], where a network is represented by
a graph whose nodes correspond to network processors and
edges to inter-processor links, the n processors can send in
each round a message of size O(log n) bits through each of
its outgoing links. A restriction of the CONGEST model
has been proposed by Grumbach and Wu to study frugal
computation [5]. In this model, where the total amount of
information traversing each link is bounded by O(logn) bits,
they showed that any first order logic formula can be eval-
uated in any planar or bounded degree network [5]. Many
variations to the CONGEST model have been proposed in
order to focus on different aspects of distributed computing.
In a seminal paper, Linial introduced the LOCAL model [7,
8]. In the LOCAL model, the restriction on the size of
messages is removed so that every vertex is allowed to send
unbounded size messages in every round. This model fo-

cuses on the issue of locality in distributed systems, and
more precisely on the question “What cannot be computed
locally?” [6]. Difficult problems like minimum vertex cover
and minimum dominating set cannot be well approximated
when processors can locally exchange arbitrary long mes-
sages during a bounded number of rounds [6].
The idea of abstracting away from the cost of transmit-

ting data throughout the network and to look at how much
local information must be shared in order to compute some
property is present in the the Simultaneous Message Model
defined in [1]. In such model the communication is global:
n players must evaluate a function f(x1, . . . , xn) in which
player i knows the whole input except xi. Each player
directly transmits one message to a central authority, the
referee, that collects and uses them in order to compute
f(x1, . . . , xn). The Simulateouus Message Model is a vari-
ant of the more general Multiparty Communication model,
where the n players communicate by writing messages on a
common whiteboard [3].

2. COMMUNICATION MODELS
Our protocols work on simple undirected connected n-

node graphs. In G = (V,E), each node v ∈ V has a
unique identifier ID(v) between 1 and n. Typically, V =
{v1, . . . , vn}, where vi is such that ID(vi) = i. Throughout
the paper, a graph should be understood as a labeled graph.
At each node v ∈ V there is an independent processing unit
that knows its own identifier, the identifier of each of its
neighbors and the total number of nodes n. Each node is in
one of three states: awake, active or terminated. Initially,
they are all awake.
All nodes execute the same algorithm. Roughly, if they

are in the awake state, they must decide whether to become
active, and if they are active, what to write on the white-
board. Each node is allowed to write exactly one message
on the whiteboard. Once they write the message they enter
the terminated state. The size of these messages, in bits, is
some f(n) = o(n), typically O(logn).
Let Wn,s be the set of possible configurations of the white-

board with at most n messages of size at most s bits each.
We first define synchronous protocols, then asynchronous

protocols. Synchronous protocols rely on some external syn-
chronization primitives to ensure that messages are deliv-
ered one by one, whereas asynchronous protocols have to
deal with concurrent messages, which means that messages
are created as soon as the nodes become active. We also
distinguish between simultaneous and free protocols. In si-
multaneous protocols, nodes must be ready to speak at any
time, whereas in free protocols, they can decide when to be-
come active. We get the following four family of models,
with f(n) representing the message size:

message created when
node becomes active

all nodes initially active SimAsync[f(n)]
no node initially active FreeAsync[f(n)]

message created when
node is chosen

all nodes initially active SimSync[f(n)]
no node initially active FreeSync[f(n)]

2.1 Synchronous protocols
Definition 1. Let n be a positive integer. Let [1, n] =

{1, . . . , n}. A synchronous protocol with output set O and
message size f(n) is a triplet A = (actn,msgn, outn) where:

• actn: [1, n] × 2[1,n] × Wn,f(n) → {awake, active} is
the activation function, which depending on the node’s
identifier, its neighborhood and the contents of the white-
board decides whether to become active or stay awake.

• msgn: [1, n]×2[1,n]×Wn,f(n) → {0, 1}f(n) is the mes-
sage function, which depending on the node’s identi-
fier, its neighborhood and the contents of the white-
board decides what to write on the whiteboard.

• outn: Wn,f(n) → O is the output function.

Let FreeSync[f(n)] be the set of all synchronous proto-
cols with message size at most O(f(n)). A configuration of a
protocol corresponds to a configuration of the whiteboard in
Wn,f(n) together with a state in {awake, active, terminated}n
(which must be interpreted as the state of each node). In the
initial configuration, all nodes are awake and the whiteboard
is empty.

A round corresponds to an observable transition of the
protocol, which in practice occurs when a message is written
on the whiteboard. In a round, awake nodes may decide to
become active and one active node will write its message.

Definition 2. Consider the synchronous protocol A =
(actn,msgn, outn). Let G = (V,E) be an n-node graph. A
round goes from configuration C to configuration C′ if:

• Any terminated node in C is also terminated in C′.

• For any node vi ∈ V which is awake in C, its state
in C′ is actn(i,N(vi),WC), where N(vi) is the set of
identifiers of vi’s neighbors and WC is the content of
the whiteboard in configuration C.

• The configuration of the whiteboard WC′ is the same
as WC but where the message msgn(j,N(vj),WC) is
attached provided that there exists at least one active
node vj in C. In C′ the node vj enters the terminated
state. Every other active node stays active.

Definition 3. An execution of a protocol A is a (finite)
sequence of configurations starting from the initial config-
uration where transitions are determined by rounds. The
execution is successful if in the last configuration, all nodes
are terminated. We say that the execution ends in a dead-
lock when we end up in a situation where there are no active
nodes but the set of awake nodes is not empty. For a suc-
cessful execution, where the last whiteboard configuration is
W , we define the output to be outn(W).

Definition 4. For a function Fn defined from the set of
n-node graphs to an output set O, we say that A computes
Fn if for all G, all maximal executions of A are successful
and output Fn(G). Therefore, we can assume that there is
an adversary that chooses in each round which active node
writes a message on the whiteboard.

Definition 5. A protocol is simultaneous if all nodes are
active from the beginning (the activation function is uni-
formly active). We note SimSync[f(n)] the set of simulta-
neous protocols. In this subclass of protocols there will never
be deadlocks.

2.2 Asynchronous protocols
In asynchronous protocols nodes create their messages as

soon as they become active. Therefore, if two nodes become
active simultaneously, then the first message written on the
whiteboard does not affect the second message.

Definition 6. Let n be a positive integer. Let [1, n] =
{1, . . . , n}. An asynchronous protocol with output set O and
message size f(n) is a pair A = (act/msgn, outn) where:

• act/msgn: [1, n]×2[1,n]×Wn,f(n) → {awake, active}×
{0, 1}f(n) is the activation/message function. Note
that this transition is such that a (nonempty) message
is created only when the node enters the active state.

• outn: Wn,f(n) → O is the output function.

Let FreeAsync[f(n)] be the set of asynchronous proto-
cols with message size O(f(n)).
The definition of configuration is similar to the synchronous

case, except that since active nodes create their messages
(following the act/msg function) before being chosen by the
adversary for writing on the whiteboard (eventually), these
messages are part of the configuration, despite the fact that
they do not appear on the whiteboard.
We define rounds, executions, deadlocks, successful exe-

cutions and computations as in the synchronous case. We
also define the set SimAsync[f(n)] of simultaneous asyn-
chronous protocols.
This paper aims at deciding what kind of problems can

be solved in each of these models. For instance, [2] proves
that deciding if a graph has degeneracy k, k ≥ 1, can be
solved in SimAsync[logn]. On the negative side, deciding
whether a graph contains a triangle as a subgraph and de-
ciding whether a graph has diameter at most 3 cannot be
solved in SimAsync[logn] [2].

3. A COMPUTING POWER LATTICE
First of all, we prove the following lemma that extends a

result of [2]. Let BUILD be the problem that consists in
computing the adjacency matrix of a graph.

Lemma 1. Let G be a family of n-node graphs, and g(n)
be the number of graphs in G. Let f(n) = o(n), and C ∈
{SimAsync,SimSync,FreeAsync,FreeSync}. If the prob-
lem BUILD, when the input graphs are restricted to the
class G, can be solved in the model C[f(n)] then log g(n) =
O(n(f(n) + logn)).

Proof. Consider any algorithm in one of the four consid-
ered models. In any model, at the end of the communication
process, n messages of size O(f(n)) bits are written on B.
Hence, at the end, accounting for the order of the messages,
a total of O(nf(n) + logn) bits are available on the white-
board. For the output function to distinguish two different
graphs in G, we must have log g(n) = O(n(f(n)+logn)).

For the ease of descriptions, in what follows we will not
define explicitly the functions for activation, message cre-
ation and decision. Nevertheless, they always will be clear
from the context.
In this section we intend to show that these models form

a lattice in which the computational power grows strictly
whenever either the syncronization model is enriched or the

message size is increased. On the other hand, when one re-
source is increased but the other restricted then the resulting
class is incomparable with the original. (neither is included
in the other) The main result of this section is the following
theorem:

Theorem 1. For all Ω(logn) = f(n) = o(n),
SimAsync[f(n)] ⊊ SimSync[f(n)] ⊊ FreeAsync[f(n)] ⊆
FreeSync[f(n)].

We start with the following weaker result:

Lemma 2. For all f(n),
SimAsync[f(n)] ⊆ SimSync[f(n)] ⊆ FreeAsync[f(n)] ⊆
FreeSync[f(n)].

Proof. SimAsync[f(n)] ⊆ SimSync[f(n)]. In the Sim-
Sync model, any node applies directly the protocol of the
SimAsync model. Nodes create their message initially, ig-
noring the messages present on the whiteboard when they
write their own.

SimSync[f(n)] ⊆ FreeAsync[f(n)]. Recall that a problem
is solved in the SimSync model if the nodes compute the
output no matter the order chosen by the adversary. So we
can translate a SimSync protocol into a FreeAsync one if
we fix an order (for instance v1, . . . , vn) and use this order
for a sequential activation of the nodes.

FreeAsync[f(n)] ⊆ FreeSync[f(n)]. The situation is that
of the first inclusion. It suffices to force the protocols in
FreeSync to create their messages based only on what was
known at the moment when they became active.

3.1 SimAsync vs. SimSync

We consider here a “rooted” version of the Inclusion
Maximal Independent Set problem. This problem, de-
noted by MIS(x), takes as input an n-node graph G =
(V,E) together with an identifier ID(x), x ∈ V , and the
desired output is any maximal (by inclusion) independent
set containing x.

Theorem 2. MIS(x) can be solved in the SimSync[logn]
model.

Proof. Recall that in the SimSync model, all nodes are
initially active and that the adversary chooses the ordering
in which the nodes write their messages. Hence, an algo-
rithm in this model must specify the message created by a
node v, according to the local knowledge of v and the mes-
sages written on the whiteboard before v is chosen by the
adversary.

The protocol is trivial (it is the greedy one). When node
v is chosen by the adversary, the message of v is either its
own ID (meaning that v belongs to the final independent
set) or v writes “no” (otherwise). The choice of the message
is done as follows. The message is ID(v) either if v = x or
if v /∈ N(x) and ID(y) does not appear on the whiteboard
for any y ∈ N(v). Otherwise, the message of v is “no”.

Clearly, at the end, the set of vertices with their IDs on the
whiteboard consists of an inclusion maximal independent set
containing x.

Theorem 3. For any f(n) = o(n), MIS(x) cannot be
solved in the SimAsync[f(n)] model.

Proof. Let f(n) = o(n). We proceed by contradiction.
Let us assume that there exists a protocol A for solving
MIS(x) in the SimAsync[f(n)] model. Then we show how
to design an algorithm A′ to solve the BUILD Problem for
any graph in this model, contradicting Lemma 1.
Let G = (V,E) be a graph with V = {v1, . . . , vn}. For

any 1 ≤ i < j ≤ n, let G
(x)
i,j be obtained from G by adding a

vertex x adjacent to every vertex in V with the exception of
vi and vj . Note that {x, vi, vj} is the only inclusion maximal

independent set containing x in G
(x)
i,j if and only if {vi, vj} /∈

E. Indeed, if {vi, vj} ∈ E, there are two inclusion maximal
independent sets containing x: {x, vi} and {x, vj}.
Recall that, in the SimAsync model, all nodes must cre-

ate their message initially, i.e., while the whiteboard is still
empty. Hence, the message created by a node only depends
on its local knowledge
Notice that, for a given k, the node vk only sees two dif-

ferent neighborhoods for all the possible G
(x)
i,j , depending on

whether k ∈ {i, j} or k /∈ {i, j}. Therefore, we call mk the
message that vk generates when k ∈ {i, j} (i.e., x and vk
are not neighbors) and m′

k the message vk generates when
k /∈ {i, j} (i.e., x and vk are neighbors).
From the previous protocol A we are going to define an-

other protocol A′ in the SimAsync[f(n)] model which solves
the BUILD Problem for any graph. Protocol A′ works as
follows. Every node vk generates the pair (mk,m

′
k) of the

two messages vk would send in A when it is adjacent to x
and when it is not. Clearly, this consists of O(f(n)) bits.
Now let us prove that any node can reconstruct G =

(V,E) from the messages generated by A′. More precisely,
for any 1 ≤ s < t ≤ n, any node can decide whether
{vs, vt} ∈ E or not. It is enough for any node to simu-

late de decision function of A in G
(x)
s,t by using messages

ms,mt and {m′
k : k ∈ {1, · · · , n} \ {s, t}}. Since the out-

put of A is {x, vs, vt} if and only if {vs, vt} /∈ E, the results
follows. This would mean that from O(nf(n)) bits we can
solve BUILD in the class of all graphs, a contradiction.

Corollary 1. For all Ω(logn) = f(n) = o(n),
SimAsync[f(n)] ⊊ SimSync[f(n)].

We discuss now another problem that could possibly sepa-
rate the two models. Given an (n−1)-regular 2n-node graph
G, the 2-Cliques problem consists in deciding whether G
is the disjoint union of two complete graphs with n vertices.
It is easy to show that 2-Cliques can be solved in the

SimSync[logn] model. Indeed, a trivial protocol can parti-
tion the vertices into two cliques numbered 0 and 1 if the
input consists of two cliques, or otherwise indicate that it is
not the case. The first vertex u to be chosen by the adver-
sary writes (ID(u), 0) on B. Then, each time a vertex v is
chosen, it writes (ID(v), 0) if it “believes” to be in the same
clique as u, and (ID(v), 1) otherwise. More precisely, let Sv

be the subset of neighbors of v that have already written a
message on the whiteboard. If Sv = ∅ then v writes 1. If all
nodes in Sv have written that they belong to the the same
clique c ∈ {0, 1} then v writes c, and v writes“no”otherwise.
Clearly, G is the disjoint union of two cliques if and only if
there is no message “no” on the whiteboard at the end of the
communication process.
Proving that the problem 2-Cliques cannot be solved in

the SimAsync[f(n)] model (either for f(n) = logn or for
any other f(n)) is an interesting question because it would

allow us to show that Connectivity (deciding whether a
graph is connected or not) cannot be solved in the SimAsync
model. Indeed, it is easy to show that an (n − 1) regular
2n-node graph is the disjoint union of two cliques if and only
if it is not connected. We leave this as an open question:

Open Problem 1. For which f(n) can 2-Cliques be solved
in the SimAsync[f(n)] model?

3.2 SimSync vs. FreeAsync

We say that a graph is even-odd-bipartite if there are no
edges between nodes having identifiers with the same parity.
For separating models SimSync and FreeAsync, the prob-
lem we are going to introduce is EOB-BFS. In this problem,
the input is an arbitrary n-node graph G and the output is
a BFS-tree (or BFS-forest) if G is even-odd bipartite, and
a negative answer otherwise. The root of the BFS-tree in
each connected component of G will be the node with the
smallest identifier in the respective component.

Theorem 4. The problem EOB-BFS can be solved in
the FreeAsync[logn] model.

Proof. Let G be the input graph. All nodes detecting
that they have a neighbor with the same parity become ac-
tive and create a message saying that this is an ”invalid”
graph. So we are going to define our algorithm assuming
that G is indeed even-odd-bipartite.

The protocol will activate the nodes layer by layer in the
BFS-forest. The first node to become active is v1, then all
its neighbors, then all nodes at distance 2, and so on. When
all nodes in layer k have written their messages, then the
information appearing in the whiteboard will be sufficient
to compute the number of edges crossing between layer k
and layer k + 1 (if such number is 0 then that would mean
that another connected component must be activated).

Initially, only v1 is active. Let N∗
v be the set of neigh-

bors of v that have already written a message on the white-
board. When node v becomes active it creates the message
(i(v), l(v), p(v), d−1(v), d+1(v)) where:

i(v) is its ID

l(v) = minw∈N∗
v
l(w) + 1

p(v) is the node in N∗
v with minimum ID, or

root if N∗
v is empty

d−1(v) = |N∗
v |

d+1(v) = d(v)− |N∗
v |, with d(v) its degree

l(v) represents the level of v, d−1(v) its degree towards the
previous level, d+1(v) its degree towards the next level and
p(v) its parent in the BFS-forest. The message created by
v1 at the beginning is (1, 0,root, 0, d(v1)). Since v1 is the
only active node the adversary is forced to choose it and v1
writes its message on the whiteboard. Then all the neighbors
of v1 become active and, since we want all nodes of the same
layer to become active simultaneously, the protocol works as
follows. An arbitrary node v becomes active (and computes
its message) if the next two conditions are satisfied:

1. A neighbor w of v has already written its message on
the whiteboard.

2. Σu∈Ll(w)
d−1(u) = Σu∈Ll(w)−1

d+1(u), where Lk is the
set of nodes in layer k that have already written a
message.

The key argument is to see that the second condition for
activation ensures that all edges from layer k − 1 to layer
k have been written their messages before layer k + 1 is
activated.
Previous protocol works correctly if the graph has only one

connected component. In order to avoid any deadlock we
have to add another condition for becoming activated. The
idea is to verify that a component has already been covered.
More precisely, v becomes activated if the last message was
written by a non-neighbor node w of v and the following
three conditions are satisfied:

1. Σu∈Ll(w)
d+1(u) = 0.

2. Σu∈Ll(w)
d−1(u) = Σu∈Ll(w)−1

d+1(u).

3. The ID of v is the minimum among the nodes that
have not written a message yet.

These condition ensure that when the active connected
component changes, exactly one node is activated. In the
end, the output function corresponds to the forest indicated
by the p(v) from each message.

Theorem 5. For any f(n) = o(n), EOB-BFS cannot be
solved in the SimSync[f(n)] model.

Proof. We proceed by contradiction. Let us assume
that there exists a protocol A for solving EOB-BFS in
SimSync[f(n)] for some f(n) = o(n). The idea is to con-
struct a protocol A′ for solving the BUILD problem for
even-odd-bipartite graphs in SimAsync[f(n)], in contradic-

tion with Lemma 1. Note that there are 2O(n2) even-odd-
bipartite graphs with n vertices.
Let G = (V,E) be an even-odd-bipartite graph with V =

{v1, . . . , vn−1}. Assume (w.l.o.g) that n is odd, and renum-
ber the vertices so that V = {v2, . . . , vn}.
Let V ′ = {v1, vn+1, vn+2, . . . , v2n−1}. Let 3 ≤ i ≤ n be

odd. We are going to define the auxiliar even-odd-bipartite
graph Gi = (V ∪V ′, E ∪Ei) where the edges Ei are defined
as follows: connect v1 with vi+n−2, vj with vj+n−2 for every
3 ≤ j ≤ n odd and vj with vj+n for every 2 ≤ j ≤ n − 1
even.
Suppose now that we run A on Gi. A node vj is at level

3 of the BFS-tree rooted in v1 if and only if vi and vj are
neighbors in G. Thus, if we simulate A on every Gi (i.e., for
all 3 ≤ i ≤ n odd) at once, then we would solve BUILD in
SimSync[f(n)].
Note that if we run A on each of the Gi’s with the nodes

activated in order (v2, v3, . . . , v2n−1, v1) then the messages
written by the nodes in V = {v2, . . . , vn} will not depend
on the choice of i. In fact, the neighbourhood of all of these
nodes is the same in every Gi, and their messages can only
depend on such neighborhoods and the previous messages.
We then define A′ to be the protocol in which each node

in G sends the message it would send in any of the Gi’s when
running A. Once all these messages have been collected, A′

simulates A for every Gi in order to compute the neighbour-
hood of vi. Thus, EOB-BFS is not in FreeAsync[f(n)].

Corollary 2. For all Ω(logn) = f(n) = o(n),
SimSync[f(n)] ⊊ FreeAsync[f(n)].

3.3 Message size
Obviously, by increasing the size of the messages we make

the system more powerful. What is more interesting is that
this resource is orthogonal (independent) to the synchroniza-
tion power. We have already seen in previous section that
MIS(x) ∈ SimSync[logn] but MIS(x) /∈ SimAsync[o(n)].
In other words, there are problems that can not be solved if
we go down in the sinchronization hierarchy no matter the
extra length given to the size of the messages. Now we are
going to prove a more general result.

Theorem 6. Let f(n) = o(n). subgraphf is the prob-
lem where the input is an n-node graph G = (V,E) and the
output is the subgraph obtained by removing all edges between
nodes in {vf(n)+1, . . . , vn} ⊆ V . Let g(n) = o(f(n)). It fol-
lows that subgraphf ∈ SimAsync[f(n)] but subgraphf /∈
FreeSync[g(n)].

Proof. It is obvious that subgraphf ∈ SimAsync[f(n)].
In fact, each node sends a vector consisting of the f(n) first
bits of its line in the adjacency matrix of the graph. Let
g(n) = o(f(n)). subgraphf cannot be in FreeSync[g(n)],
since that would allow us to solve BUILD for graphs of size
n where {vf(n+1), . . . , vn} are isolated nodes. This contra-

dicts Lemma 1 because these graphs need 2O(nf(n)) bits to
be defined.

4. CONNECTIVITY AND RELATED PROB-
LEMS

One of the main questions arising in distributed environ-
ments concerns connectivity. For instance, one important
task in wireless networks consists in computing a connected
spanning subgraph (e.g., a spanning tree) since the links of
such subgraph are used for communication.

In Section 3 we proved that, in the FreeAsync[logn]
model, it is possible to compute a BFS-forest for even-odd-
bipartite graphs (i.e., bipartite graphs where the bipartition
is fully known to every node). In such model it is in fact
possible to get a protocol which outputs a BFS-forest for all
bipartite graphs without knowledge of the bipartition. In the
case of a non-bipartite graph though, running this protocol
can result in a deadlock: at some point, no more nodes are
activated. With synchronzation, as we are going to see in
the next theorem, we do not need the graph to be bipartite
and BFS can be solved in the general case, for arbitrary
input graphs. Formally, the input of problem BFS is an
arbitrary n-node graph G and the output is a BFS-tree (or
BFS-forest). The root of the BFS-tree in each connected
component of G will be the node with the smallest identifier
in the respective component.

Theorem 7. BFS can be solved in the FreeSync[logn]
model.

Proof. The protocol is very similar to the one we used
for EOB-BFS, but we need to keep track of edges within a
level (these edges do not exist in the bipartite case).

Initially, only v1 is active. Let N∗
v be the set of neigh-

bors of v that have already written a message on the white-
board. When node v becomes active it creates the message
(i(v), l(v), p(v), d−1(v), d0(v), d+1(v)) where:

i(v) is its ID

l(v) = minw∈N∗
v
l(w) + 1

p(v) is the node in N∗
v with minimum ID, or

root if N∗
v is empty

d−1(v) = |{w ∈ N∗
v : l(w) = l(v)− 1}|

d0(v) = |{w ∈ N∗
v : l(w) = l(v)}|

d+1(v) = d(v)− d−1(v), with d(v) its degree

Consider nodes v at distance al least 2 from the root.
These nodes v become active if the condition (1 ∧ 2) ∨ 3 is
satisfied, where

1. A neighbor w of v has already written its message on
the whiteboard.

2. ∑
u∈Ll(w)

d−1(u) =
∑

u∈Ll(w)−1

d+1(u)− 2
∑

u∈Ll(w)−1

d0(u),

where Lk is the set of nodes in layer k that have already
written a message on the whiteboard.

3. v is the node with the smallest ID that has not written
a message on the whiteboard, the last message was
written by a non-neighbor w,∑
u∈Ll(w)

d−1(u) =
∑

u∈Ll(w)−1

d+1(u)− 2
∑

u∈Ll(w)−1

d0(u),

and ∑
u∈Ll(w)

d+1(u)− 2
∑

u∈Ll(w)

d0(u) = 0.

Condition 2, by counting the edges crossing from layer
l(v)− 1 to layer l(v)− 2, ensures that all the nodes in layer
l(v) − 1 have sent their messages and the nodes of layer
l(v) may become active. Condition 3 ensures that, when
the active connected component changes (because there are
no edges ”going outside” the last layer), exactly one node is
activated.

Corollary 3. There exists a protocol in FreeAsync[log]
which, on any bipartite graph G, outputs a BFS-forest of G.

Proof. In a bipartite graph there are no edges between
nodes in the same layer. In other words, we need to apply
the protocol for the general case without computing d0(v).
Thanks to this, all the information the nodes in layer k need
to compute is available when layer k is activated.

Open Problem 2. Is it possible to solve Spanning-Tree
or even Connectivity in the FreeAsync[f(n)] model? For
which f(n)?

Open Problem 3. Is it true that for all (or some) f(n),
FreeAsync[f(n)] ⊊ FreeSync[f(n)]? We conjecture that
this is the case and that in fact BFS cannot be solved in the
FreeAsync[f(n)] model for f = o(n).

5. ACKNOWLEDGMENTS
Partially supported by programs Fondap and Basal-CMM

(I.R., K.S.), Fondecyt 1090156 (I.R.), Anillo ACT88 (K.S.),
Fondecyt 11090390 (K.S) and FP7 STREP EULER (N.N.).

6. REFERENCES
[1] L. Babai, A. Gál, P. G. Kimmel, and S. V. Lokam.

Communication complexity of simultaneous messages.
SIAM J. Comput., 33:137–166, 2004.

[2] F. Becker, M. Matamala, N. Nisse, I. Rapaport,
K. Suchan, and I. Todinca. Adding a referee to an
interconnection network: What can(not) be computed
in one round. In Parallel and Distributed Processing
Symposium, International, pages 508–514. IEEE
Computer Society, 2011.

[3] A. K. Chandra, M. L. Furst, and R. J. Lipton.
Multi-party protocols. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 94–99. ACM, 1983.

[4] J. Feldman, S. Muthukrishnan, A. Sidiropoulos,
C. Stein, and Z. Svitkina. On distributing symmetric
streaming computations. ACM Trans. Algorithms,
6:66:1–66:19, 2010.

[5] S. Grumbach and Z. Wu. Logical locality entails frugal
distributed computation over graphs. In Proceedings of
35th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), volume 5911 of
Lecture Notes in Computer Science, pages 154–165,
2009.

[6] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In Proceedings of the 23rd
Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 300–309. ACM, 2004.

[7] N. Linial. Locality in distributed graph algorithms.
SIAM J. Comput., 21(1):193–201, 1992.

[8] D. Peleg. Distributed computing: a locality-sensitive
approach. SIAM Monographs on Discrete Mathematics
and Applications, 2000.

