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Abstract This work aims at introducing some energy operators linked to Teager-Kaiser

energy operator (TKEO) (Kaiser in On a simple algorithm to calculate the energy of a

signal, pp 381–384, 1990), its associated higher order versions and expanding them to multi-

dimensional signals. These operators are very useful for analysing oscillatory signals with

time-varying amplitude and frequency (AM–FM). We first propose a new mathematical

expression of these operators using directional derivatives along any n-D vector and Kro-

necker powers (Proposition 1, Sect. 3). This mathematical formulation allows us to extend to

n-D case some properties of the classical TKEO such as tracking of AM envelope and instan-

taneous frequency of a multi-dimensional AM–FM signal. In addition, we have introduced

a new scalar function using the directional derivative along a vector to recover the “sign”

of the frequency components. Applications of this model to a local n-D AM–FM signal and

the related demodulation errors are presented. To show the effectiveness and the robustness

of the new class of operators in term of envelope and frequency tracking, results obtained

on synthetic and real data are compared to multi-dimensional energy separation algorithm

(Maragos and Bovik in J Opt Soc Am A 12:1867–1876, 1995) and to our previously devel-

oped method (Salzenstein and Boudraa in Signal Process 89(4):623–640, 2009). Finally, the

performances of these methods are investigated in the presence of an additive noise.
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1 Introduction

Teager-Kaiser Energy Operator (TKEO) (Kaiser 1990) is a local energy tracking measure

of oscillatory signals that is very easy to implement efficiently. In its continuous and 1-D

version, TKEO computes the energy of a real-valued signal x(t) as follows:

Ψ [s(t)] = [s(1)(t)]2 − s(0)(t)s(2)(t) (1)

It has been shown that Ψ applied to an AM–FM signal s(t) = a(t) cos(ω(t)) can approxi-

mately estimate the squared product a2(t).ω2(t) assuming that a(t) and ω(t) do not vary too

fast or too greatly in time compared to the carrier frequency (Maragos et al. 1993a). Based on

Ψ [s(t)] a closed-formula for exact computation of a(t) and ω(t) components called contin-

uous Energy Separation Algorithm (ESA) is introduced (Maragos et al. 1993b). Even limited

to narrow-band signals, TKEO is generally respecting the conditions of physical continuity

required for the amplitude and the detected frequency (Vakman 1996). For multi-compo-

nent signals analysis, TKEO requires a bandpass filtering (Havlicek et al. 2005). TKEO has

been extended to the bi-dimensional (2D) signals by Yu et al. (1991). In image processing,

this operator has been applied to demodulation (Maragos and Bovik 1995; Havlicek et al.

2005; Boudraa et al. 2005), noise reduction (Vleesschauwer et al. 1997), image contrast

enhancement (Mitra et al. 1991; Ramponi et al. 1996; Boudraa and Diop 2008) and image

thresholding (Boudraa et al. 2008). A 2D complex operator has also been developed to track

the energy of oriented patterns in images (Larkin 2005). Felsberg and Jonsson (2005) have

introduced energy tensors to describe the TKEO and expressed the gradient tensor by means

of the Kronecker product (Felsberg and Köthe 2005). In addition, higher order generaliza-

tion of TKEO called k-order Differential Energy Operator (DEO) Ψk has been introduced by

Maragos and Potamianos (1995):

Ψk [s(t)] = s(1)(t)s(k−1)(t) − s(0)(t)s(k)(t) (2)

This class of operators is useful for demodulating AM–FM signals. The case k = 2 yields

the second-order DEO.

We have extended these operators to the 2D continuous signals (Boudraa et al. 2005)

and demonstrated their efficiency for surface roughness detection in white light interferom-

etry (Salzenstein et al 2005), providing an extension of the popular FSA method (Larkin

1996). Moreover, a more general expression of TKEO and higher order operators for 1D

signals has been recently introduced by the authors Salzenstein et al. (2007). Recently, some

authors have shown the ability of such operators to separate multi-band components (Cai

et al. 2010). Finally, we have also recently introduced a generalization of some previous

operators to multi-dimensional signals by means of higher order gradients and Kronecker

products (Salzenstein and Boudraa 2009). In particular, we have proved that the recurrence

relation introduced in Maragos and Potamianos (1995) is effective at any dimension. A limit

of these operators (Maragos and Potamianos 1995; Salzenstein and Boudraa 2009) is their

sensitivity in very noisy environment.
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Main contributions of this paper include:

– To overcome the sensitivity of these methods, we have introduced a new approach which

is robust against noise to compute the frequency components of a n-D signal by fixing

the sign of each component.

– We have introduced a new n-D scalar operator linking the directional derivatives and the

gradients of a signal, including all partial derivatives at any order (Sect. 3, Proposition

1). The proofs of the proposition are reported in the Appendix section.

– We highlight, in Sect. 4, the efficiency of our approach to demodulate local AM–FM

signals, provided that the scalar is proportional to a norm of the frequency vector.

– We generalize the relations provided in Maragos et al. (1993a) and Maragos and Bovik

(1995) to any n-D scalar model.

– A computation of the error under such an assumption has been performed (see Appendix

section).

– We have constructed a new efficient scalar operator using a directional derivative along

a vector containing the local “sign” frequency components.

– The performances of the methods are investigated in presence of additive noise by extend-

ing the noise model introduced in Dimitriadis et al. (2009) to n-D signals.

We present results of demodulation of both noiseless and noisy synthetic signals, and of

real data such as interferometric, Sonar and fingerprint images. To show the efficiency of

our method, the results are compared to our previous operator Φk (Salzenstein and Boudraa

2009) and to the classical n-D operator ΦB introduced by Maragos and Bovik (1995).

2 Review of multi-dimensional TKEO and higher-order tensors of the literature

Different operators extending TKEO to 2D signals have been developed (Maragos and Bovik

1995; Boudraa et al. 2005; Larkin 2005). These operators are useful for AM–FM signal

demodulation because their outputs are proportional to the square of the product of ampli-

tude an frequency of the input 2D signal. For 2D signal s(u), the introduced operators denoted

respectively by ΦB (Maragos and Bovik 1995), ΦC (Boudraa et al. 2005) and ΦD (Larkin

2005) can be expressed by an energy tensor Ψt [s(u)] (Felsberg and Granlund 2004) as

follows:

Ψt [s(u)] = [∇s(u)][∇s(u)]T − s(u)Hs(u) =
(

Ψ11 Ψ12

Ψ21 Ψ22

)

where

u = (x, y), ∇s =
[

∂s

∂x

∂s

∂y

]T

, H = ∇∇T

∇ and H denote respectively the gradient and the Hessian of s(u). We have the following

relations:

ΦB [s(u)] = Ψ11 + Ψ22 = Trace[Ψt [s(u)]]
ΦC [s(u)] = Ψ11 + Ψ22 + Ψ12 + Ψ21 (3)

ΦD[s(u)] = Ψ11 − Ψ22 + jΨ12 + jΨ21

We have recently introduced (Salzenstein and Boudraa 2009) a multi-dimensional approach

extending both TKEO and k-order DEO. Let u = (x1 x2 , . . . , xn) be a n-D vector. For a

multi-dimensional signal s(u), the kth order tensor denoted Ψk[s(u)], is given by:
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Ψk[s(u)] = ds

du
⊗

(

dk−1s

duk−1

)T

− s ⊗
(

dks

duk

)T

for k = 2p

Ψk[s(u)] = ds

du
⊗

(

dk−1s

duk−1

)

− s ⊗
(

dks

duk

)

for k = 2p + 1

where symbol ‘⊗’ denotes the Kronecker product (Moon and Stirling 2000). In particular,

the trace of these tensors corresponds to ΦB operator. A scalar operator Φk[s(u)] can be

deduced by adding all elements of the matrix Ψk[s(u)]. In addition, we have shown that

this class of tensors are able to track instantaneous envelope A(u) and frequency vector

w = (w1 w2 , . . . , wn)T for any locally narrow band multi-dimensional signal such as:

s(x1, x2, . . . , xn) ≃ A(u) cos (wu + θ)

In this case we are faced with the problem of recovering the sign of the instantaneous fre-

quency signals as pointed out in Maragos and Bovik (1995). To resolve this problem, a new

“sign” component solution has been proposed by the authors Salzenstein and Boudraa (2009).

However, the proposed n-D method has two limits:

– It has been applied under local sinusoidal signal assumption.

– It can fail in the presence of some frequency values.

This paper deals with three main points:

– We provide a general link between the Kronecker powers and any higher order operators.

– We generalize the relations introduced in Maragos et al. (1993a) and Maragos and Bovik

(1995) related to the application of mono-dimensional and multi-dimensional Teager-

Kaiser (TK) operators to any local n-D AM–FM signals.

– We improve the robustness of the frequency estimation by the introduction of a new n-D

scalar operator.

3 A new generalization of TKEO by combining directional derivatives and Kronecker

powers

In this section, we introduce a new multi-dimensional operator linking higher order scalar

operators using directional derivatives and Kronecker powers. Thus the N-D problem is

reduced to a 1D one. Let ΨHk,p,m
be a multi-dimensional tensor defined by:

ΨHk,2p,2m+1
[s(u)] = d2m+1s

du2m+1
⊗

(

d2l+1s

du2l+1

)T

− d2ps

du2p
⊗

(

d2qs

du2q

)T

(4)

where k = 2p + 2q = 2m + 1 + 2l + 1 for an even order tensor.

ΨHk,2p,2m+1
[s(u)] = d2m+1s

du2m+1
⊗

(

d2ls

du2l

)

− d2ps

du2p
⊗

(

d2q+1s

du2q+1

)

(5)

where k = 2p + 2q + 1 = 2m + 2l + 1 (m, l) �= (p, q) for an odd order tensor. This cor-

responds to a multi-dimensional generalization of operators introduced in Salzenstein et al.

(2007). According to Kronecker product properties, dimensions of the matrices are given as

follows:
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d2ps

du2p
⇒ n p rows × n p columns

d2qs

du2q
⇒ nq rows × nq columns

d2m+1s

du2m+1
⇒ nm rows × nm+1 columns

d2l+1s

du2l+1
⇒ nl rows × nl+1 columns

Then it follows immediately from Eqs. (4) and (5), that ΨHk,2p,2m+1
is a nm+l+1 × nm+l+1 =

n p+q × n p+q matrix when k is an even integer and a nm+l × nm+l+1 = n p+q × n p+q+1

matrix when k is an odd integer.

Let us now recall the “Kronecker power” of a n × 1 vector v ∈ R
n (Vetter 1973):

⊗

p

v = v ⊗ v ⊗ · · · ⊗ v (6)

This gives a n p × 1 vector. The following proposition provides the relationship between

higher order tensors and higher order directional derivatives.

Proposition 1 Link between higher order even tensor Eq. (4) and all directional derivatives

is given by:

⎛

⎝

⊗

p+q

vT

⎞

⎠ΨHk,2p,2m+1
[s(u)]

⎛

⎝

⊗

p+q

v

⎞

⎠ = ∂2m+1s

∂v2m+1

(

∂2l+1s

∂v2l+1

)T

− ∂2ps

∂v2p

(

∂2qs

∂v2q

)T

(7)

In the same way, a link between higher order odd tensor Eq. (5) and all directional derivatives

is given by:

⎛

⎝

⊗

p+q

vT

⎞

⎠ ΨHk,2p,2m+1
[s(u)]

⎛

⎝

⊗

p+q+1

v

⎞

⎠ = ∂2m+1s

∂v2m+1

(

∂2ls

∂v2l

)T

− ∂2ps

∂v2p

(

∂2q+1s

∂v2q+1

)T

(8)

Complete proof of the proposition is given in Appendix A and B. According to Eqs. (7–8)

it is possible to construct a large class of scalar operators based on higher order tensors ΨHk

by choosing different vectors v.

Let us denote respectively ΦHk,2p,2m+1
[s(u)] and ΦHk,2p,2m+1

[s(u)] the previous operators.

For example, the scalar defined in Salzenstein and Boudraa (2009) corresponds to a n × 1

vector v = (1, . . . 1)T :

Φ2p[s(u)] =
(

⊗

p

vT

)

Ψ2p[s(u)]
(

⊗

p

v

)

(9)

Φ2p+1[s(u)] =
(

⊗

p

vT

)

Ψ2p[s(u)]

⎛

⎝

⊗

p+1

v

⎞

⎠ (10)
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The particular case of the second order operator yields the directional TKEO, which extends

the 1D classical TKEO to the directional derivatives along any unit vector:

vT Ψ2[s(u)]T v =
(

∂s

∂v
(u)

)2

− s(u)
∂2s

∂v2
(u) (11)

In the next sections we use the following notation: TKEO scalar operator associated with the

vector v and tensor Ψ2[s(u)] is denoted Φ2,v[s(u)] i.e:

vT Ψ2[s(u)]T v = Φ2,v[s(u)] (12)

As it will be seen in the next section, an interesting application of this method is the AM–FM

signal demodulation.

4 Demodulation of n-D signal

In this section, we present an envelope and frequency demodulation method of any local

AM–FM signal (Sect. 4.1). In particular, the general condition related to the choice of a

directional derivative, which leads to a new stable and robust method (Sect. 4.2) is provided.

4.1 Instantaneous envelope and frequency demodulation

Let s be an n-dimensional an AM–FM signal defined by:

s(u) = A(u) cos (φ(u))

This signal must have smooth local coherency in order to ensure that a particular pair of

AM–FM components can be selected (Bovik et al. 1992). When the envelop A(u) does not

vary too fast compared to the carrier, the gradient of the phase is such that ∇φ = w(u) ≃ w,

the local frequency vector is given by w = (w1 w2 , . . . , wn)T . We choose a normalized

vector v = (v1 v2 , . . . , vn)T so that (see next section):

∂φ

∂v
= dφ

du
v = wT v ≥ ||w|| (13)

This assumption leads to the following approximation (see also Appendix C):

Φ2,v[s(u)] ≃ A(u)2

(

∂φ

∂v
(u)

)2

= A(u)2
(

w(u)T v
)2

(14)

Thus, the extracted envelope is given by

A(u)2 ≃

∣

∣

∣Φ2
2,v[s(u)]

∣

∣

∣

∣

∣

∣Φ2
2,v[

∂s(u)
∂v

]
∣

∣

∣

=

∣

∣

∣Φ2
2,v[s(u)]

∣

∣

∣

∣

∣

∣Φ2
4,v[s(u)]

∣

∣

∣

(15)

Hence, Eq. (7) is helpful to compute the scalar Φ2
4,v[s(u)]. Such results can be easily extended

to any higher order operators and computed by using Eqs. (7–8). The instantaneous frequency

vector components are estimated using the algorithm developed in Salzenstein and Boudraa

(2009).

Let us consider the derivative signal si1x1,i2x2,...,in xn (u) obtained by the partial derivatives

along xi .

si1x1,i2x2,...,in xn (u) = i1
∂s

∂x1
+ i2

∂s

∂x2
+ · · · + in

∂s

∂xn

(16)
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where i j are integers. One can write using (15):

(i1w1 + i2w2 + · · · + inwn)2 ≃ Φ2,v[si1x1,i2x2,...,in xn (u)]
Φ2,v[s(u)] (17)

As in Salzenstein and Boudraa (2009) it is then possible to extract a unique frequency vector.

We call w(j) = (w
( j)
1 , . . . , w

( j)
n ) the set of components obtained by fixing the sign ǫ j = ±1

of a chosen component w j = ǫ j |w j |(�= 0):

1. Compute the quantities:

|w j | =
√

Φ2,v[sx j
]

Φ2,v[s]
(18)

w jwk =
Φ2,v[sx j

+ sxk
] − Φ2,v[sx j

− sxk
]

4Φ2,v[s]
(19)

2. Compute the j th component:

w
( j)
j = ǫ j sign

(

w jw j

)

|w j | = ǫ j |w j |

3. Compute of the kth component, k ∈ {1, . . . , n}:

w
( j)
k = ǫ j sign

(

wkw j

)

|wk |

4.2 Choice of the directional derivatives

The recent model introduced in Salzenstein and Boudraa (2009) corresponds to the direc-

tional derivatives along the vector v = (1, 1, . . . , 1)T . However, this algorithm can fail when

the sum of the frequency components is null:

wT v = w1 + w2 + · · · + wn = 0

To ensure the stability of the method, the following condition is necessary :

Φ2,v[A(u) cos (wu + θ)] = 0 ⇔ w ≃ 0 (20)

We have added a second condition in order to minimize the error bound:

∂φ

∂v
= dφ

du
v = wT v ≥ ||w|| (21)

In other words, any local AM–FM signal applied to a generalized scalar operator Φ2,v[s(u)]
should be proportional or greater to a norm of the frequency vector. The image demodula-

tion technique developed in Maragos and Bovik (1995) corresponds to the usual Euclidean

quadratic norm. In this paper, we propose a new scalar multi-dimensional algorithm which

compares favorably to the previous ones, using local directional derivatives according to the

normalized vector

v(u) ∝ sign(w) = (sign(w1) sign(w2) , . . . , sign(wn))T

at any point u. Applying Eq. (14) leads immediately to:

Φ2,sign(w)[s (u)] ≃ A2

n

(
∑

|wi |
)2

(22)
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The main problem lies in the recovering of the sign of the local frequency components. To

overcome this problem, calculus of Eq. (22) is done in another way. Actually, the general

term of the matrix Ψ2[s(u)] computed by the relation (4) equals:

[Ψ ]i j ≃ A2w
ki

i w
k j

j ki + k j = 2 (23)

Thus adding all absolute values of the elements of the matrix provides the final expression:
∑

i, j

∣

∣[Ψ ]i j

∣

∣ = A2 (|w1 + · · · + |wn |)2 (24)

which is proportional to the general scalar operator (22) using a directional derivative along

the vector v(u) = (sign(w1) sign(w2) , . . . , sign(wn))T at any point u. Finally we apply the

following general algorithm to demodulate local AM–FM signal:

1. Compute the matrix ΨHk,2p,2m+1
[s(u)] using the relation (4) for an even order k = 2

(resp. k = 4) and the associated parameters p, q, m, l (resp. p1, q1, m1, l1) provided

that k = 2p + 2q = 2m + 1 + 2l + 1 (resp. 2k = 2p1 + 2q1 = 2m1 + 1 + 2l1 + 1)

2. Compute the sum of all absolute values of the elements of the matrix;

3. Compute the instantaneous envelope using Eq. (15);

4. Compute the instantaneous frequency components using the “sign” algorithm outlined

at the end of the Sect. 4.1;

This algorithm corresponding to the operator Ψ2,sign(w) is called Algo 1.

4.3 An alternative algorithm using eigenvectors

We show in this subsection that there is an alternative way to compute the sign of the fre-

quency components. Actually, the general term of the tensor matrix Ψ2 is approximatively

equal to A2wiw j where wi and w j are respectively the i th and j th component of the fre-

quency vector (i.e, the gradient of the phase). We immediately observe that the normalized

frequency vector:

v = w

||w||
is an eigenvector associated with the eigenvalue λ = A2||w||2. Although this eigenvector

does not provide the absolute frequency vector, it gives the relative sign of the frequency

components, i.e., the local orientation. On the other hand, Ψ2 is a symmetric matrix, which

defines a positive semi-definite quadratic form for any narrow band signal i.e.,:

∀v �= 0 vT Ψ2[s]v ≥ 0

According to the properties of such forms, it follows that its eigenvalues are positive or

null (Moon and Stirling 2000). Moreover, the trace of the tensor equalling A2||w||2 it fol-

lows immediately that λ = A2||w||2 corresponds to the maximum eigenvalue of Ψ2 (the two

other eigenvalues being null, showing that the tensor is a singular matrix). Thus instead of

the step 4 in Algo 1, we propose the following algorithm in order to compute the frequency

vector:

1. Compute the quantities:

|w j | =
√

Φ2,v[sx j
]

Φ2,v[s]
(25)
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2. Compute the eigenvector v of the tensor Ψ2 associated with its maximum eigenvalue.

3. Compute of the j th component, j ∈ {1, . . . , n}:

w j = sign
(

v j

)

|w j |

This algorithm is referred to as Algo 2. This step only focuses on the frequency estimation,

for the envelope detection being the procedure is identical to Algo 1. Let us remark that the

scalar operator Φ2,v associated with the eigenvector v gives the trace of Ψ2 i.e., an operator

which is comparable to ΦB .

5 Results and discussions

To show the efficiency of our method, the results of synthetic and real data (Interferometry,

Sonar and fingerprints) are compared to our previous operator Φk (Salzenstein and Boudraa

2009) and to the classical n-D operator ΦB introduced by Maragos and Bovik (1995). This

operator corresponds to the trace of the Ψ2 tensor. The output of ΦB to a n−dimensional

AM–FM signal with slowly varying amplitude and frequencies is given by Maragos and

Bovik (1995):

ΦB [s(u)] = A2
(

w2
1 + w2

2 + · · · + w2
n

)

(26)

For narrow band AM–FM signal, the envelope and the modulus of the frequency components

can be approximated by the following relations:

A2 ≈ ΦB [s(u)]
∑n

k=1
ΦB [sxk

]
(wk)

2 ≈ ΦB [sxk
]

ΦB [s(u)]

Thus, ΦB based demodulation requires derivatives until the third order. While operator

Φk (Salzenstein and Boudraa 2009) requires partial derivatives until the fourth order, the

new multi-dimensional scalar operator Eq. (4) is calculated for respective orders k = 2 and

k = 4 (Step 1 of Sect. 4.2). These functions also require derivatives until the third order. Note

that, although in Maragos and Bovik (1995) the problem of relative sign of the frequency

components has not been studied, a possible solution to this problem is to replace Ψ2,v by ΦB

in Eqs. (25) and (19). We compare Algo 1 and Algo 2 to ΦB and Φk operators on 2D and 3D

data in terms of instantaneous envelope and frequency components extraction. Comparison

with other multi-dimensional methods have been reported in Salzenstein and Boudraa (2009)

where the 3D approaches i.e, the algorithms ΦB and Φk give best results. The relative error

rates related to the original data (if available) are calculated at each point u = (x y z) as

follows:

εenv =

∣

∣

∣A(u) − Â(u)

∣

∣

∣

A(u)
ε f req =

∥

∥w(u) − ŵ(u)
∥

∥

||w(u)||
Different slices of a synthetic fringe pattern (128 × 128 × 128) where the envelope and the

local carrier waves are varying according to the directions and magnitudes of the frequency

vectors are presented in Figs. 1 and 2. Error rates of envelope and frequency estimates given

by all methods for the two synthetic data in noise free and noisy environments are summa-

rized in Tables 1, 2, 3, 4, 5 and 6. Tables 1 and 2 report the results for noise free data while

Tables 3–4 and Tables 5 and 6 summarize the results with respective noise levels of 10 and

20%. Globally, the new operator Ψ2,sign(w) (Algo 1) gives a better error rate than the other

multi-dimensional energy separation algorithms. The improvement in frequency detection in
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Fig. 1 Contrasted pattern (I) with a contrasted envelope. a xy slice; b yz slice; c xz slice; d xy envelope; e yz

envelope; f xz envelope; g xy frequency and carrier; h yz frequency and carrier; i xz frequency and carrier

noisy environment is particularly interesting, as illustrated by the results reported by Table

6. In 3D noisy context, the frequency detection using the eigenvector (Algo 2) gives the

worst error rates. Other experimental results performed on 2D real data in both noisy and

free noise context confirm the high performance of the method Ψ2,sign(w) (Algo 1) regarding

the local frequency detection. Actually, Figs. 3 and 4 illustrate the frequency component

detection in a context of a noisy/free noise images. Sonar images and fingerprint patterns

(extracted from the database1) are represented in Figs. 3 and 4. Sonar images show ripples

and ridges of sand where their orientation and frequency oscillations is very useful informa-

tion for sea-bed characterization. We have focused on the quantitative performances of the

operators related to the frequency components. The frequency vectors extracted by ΦB is

more visually degraded specifically in the noisy context (see Figs. 3c,f, 4e,f). Tables 7 and 8

1 http://bias.csr.unibo.it/fvc2000/download.asp.
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Fig. 2 Contrasted pattern (II) with a contrasted envelope. a xy slice; b yz slice; c xz slice; d xy envelope; e yz

envelope; f xz envelope; g xy frequency and carrier; h yz frequency and carrier; i xz frequency and carrier

Table 1 Global envelope error

rates for noise-free patterns
Operators Contrast pattern I Contrast pattern II

(Fig. 1) (%) (Fig. 2) (%)

3D Φ2,sign(w) 1.73 0.16

D Φk 1.73 0.49

3D ΦB 2.22 0.32

also summarize the quantitative results corresponding to the relative error rates between the

frequency detection in the noise free context and the one in the noisy context, for different

levels of noise. In all cases the new algorithm Ψ2,sign(w)—Algo 1 and even Ψ2,sign(w)—Algo

2 show their effective robustness, providing good error rates. As we have chosen a unique

reference for the comparison with the noise free context (Ψ2,sign(w) (Algo 1) or ΦB ) or a

reference with regard to each algorithm, the levels of error rates remain unchanged.
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Table 2 Global frequency error

rates for noise-free patterns
Operators Contrast pattern Contrast pattern

I (%) II (%)

3D Φ2,sign(w)—Algo 1 2.61 3.48

3D Φ2,sign(w)—Algo 2 2.61 6.54

3D Φk 2.63 3.48

3D ΦB 2.63 3.48

Table 3 Global envelope error

rates for 10% noisy patterns
Operators Contrast pattern I Contrast pattern II

(Fig. 1) (%) (Fig. 2) (%)

3D Φ2,sign(w) 8.29 6.39

3D Φk 7.61 6.48

3D ΦB 9.27 6.62

Table 4 Global frequency error

rates for 10% noisy patterns
Operators Contrast pattern Contrast pattern

I (%) II (%)

3D Φ2,sign(w)—Algo 1 3.25 3.57

3D Φ2,sign(w)—Algo 2 13.24 8.24

3D Φk 4.42 3.93

3D ΦB 4.38 3.72

Table 5 Global envelope error

rates for 20% noisy patterns
Operators Contrast pattern I Contrast pattern II

(Fig. 1) (%) (Fig. 2) (%)

3D Φ2,sign(w) 14.13 12.15

3D Φk 13.96 12.51

3D ΦB 16.09 12.84

Table 6 Global frequency error

rates for 20% noisy patterns
Operators Contrast pattern Contrast pattern

I (%) II (%)

3D Φ2,sign(w)—Algo 1 4.98 3.95

3D Φ2,sign(w)—Algo 2 13.8 8.21

3D Φk 12.81 6.72

3D ΦB 10.01 5.12

6 Comparison of Ψ2,sign(w) and ΦB in additive noise: theoretical and empirical

approaches

6.1 Noise model

To validate and analyze more deeply the previous results, we propose a general scheme

to compare theoretically the multi-dimensional operator Φ2,sign(w) developed in this paper

with the well known multi-dimensional ΦB operator (Maragos and Bovik 1995) in pres-

ence of noisy additive components and different frequencies. In order to overcome the
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Fig. 3 Sonar image. a Free noise original slice; b 20% noisy original image; c estimated envelope by ΦB ;

d free noise estimated frequency by ΦB ; e 20% noisy estimated frequency by ΦB ; f estimated envelope by

ΦHk
; g free noise estimated frequency by ΦHk

; h 20% noisy estimated frequency by ΦHk

complexity and non linearity of the problem, we use the same strategy as the approach

proposed in Dimitriadis et al. (2009), where the authors have investigated the signal to

noise ratio related to the mono-dimensional TK and a short term energy signal operator.

For that purpose, they have based their study on an approximation concerning a wide

range of noise models obtained by adding K sinusoids containing random phase offsets.

We suggest adapting this model to the multi-dimensional context. Let us define a narrow

band noisy signal x(u) = s(u) + n(u), where s(u) represents a clean multi-dimensional

AM–FM narrow band signal and n(u) an uncorrelated noisy component. As in Dimitriadis

et al. (2009), let us define the multi-dimensional noise signal by the means of K sinu-

soids:
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Fig. 4 Fingerprints: a original image; b estimated frequency by ΦB ; c estimated frequency by ΦHk
; d noisy

image; e estimated frequency by ΦB ; f estimated frequency by ΦHk

n(u) =
K

∑

i=1

Bi cos
(

ηT
i u + θi

)

where the random offsets θi are uniformly distributed over [π,+π] and the frequency com-

ponents are distinct from each other i.e., ηi �= η j ∀i �= j . We will define the long-term time

average < f (u) > in the multi-dimensional context by the n-D integration of the signal over

a pavement DT = [−T1/2, T1/2] × [−T2/2, T2/2] × · · · × [Tn/2, Tn/2] where the surface

of DT exceeds the largest signal period:

< f (u) >= 1

T1T2, . . . , Tn

∮

DT

f (u)du

Moreover, let us define the ratio RB and Rk :

RB = 〈ΦB [n(u)]〉
〈ΦB [s(u)]〉 (27)

Rk =
〈

Φ2,sign(w)[n(u)]
〉

〈

Φ2,sign(w)[s(u)]
〉 (28)

They represent the contribution of the noise over the clean estimate called energy noisy ratio

(ENR). In order to study the behavior of ΦB and Φ2,sign(w) in a noisy context, we investigate

the previous quantities and apply them to different narrow band signals containing different

frequency components.
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Table 7 Global frequency error

rates for 10% noisy patterns
Operators Sonar image (%) Fingerprint (%)

2D Φ2,sign(w)—Algo 1 3.67 2.53

2D Φ2,sign(w)—Algo 2 2.97 1.80

2D Φk 9.73 8.07

2D ΦB 12.58 7.94

Table 8 Global frequency error

rates for 20% noisy patterns
Operators Sonar image (%) Fingerprint (%)

2D Φ2,sign(w)—Algo 1 5.98 4.97

2D Φ2,sign(w)—Algo 2 5.52 4.54

2D Φk 14.86 13.82

2D ΦB 14.97 18.64

6.2 Expression of the ENR

Let us now express the ENR as defined in the previous section. We base our assumption on

nearly local sinusoidal signal i.e s(u) ≃ A cos
(

wT u
)

. According to our results Φ2,v [s(u)] =
A2

(

wT v
)2

. Let us compute now Φ2,v [n(u)]: we have defined n(u) =
∑

i ni (u), where

ni (u) = Bi cos
(

ηT
i u + θi

)

. Applying the operator to a sum of function leads to:

Φ2,v [n(u)] =
∑

i

Φ2,v [ni (u)] +
∑

i

∑

j �=i

(

∂ni

∂v

∂n j

∂v
− ni

∂2n j

∂v2

)

=
∑

i

B2
i

(

ηT
i v

)2
+

∑

i

∑

j �=i

Bi B j

(

ηT
i v

) (

ηT
j v

)

sin
(

ηT
i u + θi

)

sin
(

ηT
j u + θ j

)

−
∑

i

∑

j �=i

Bi B j

(

ηT
j v

)2
cos

(

ηT
i u + θi

)

cos
(

ηT
j u + θ j

)

=
∑

i

B2
i

(

ηT
i v

)2
+ 1

2

∑

i

∑

j �=i

Bi B j

(

ηT
j v

) (

ηT
i v − ηT

j v
)

× cos
(

ηT
i u + θi − ηT

j u − θ j

)

−1

2

∑

i

∑

j �=i

Bi B j

(

ηT
j v

) (

ηT
i v + ηT

j v
)

cos
(

ηT
i u + θi + ηT

j u + θ j

)

The assumption that the long-term average of the different sinusoidal contributions tends

to zero, when the time intervals exceed the largest signal period leads to Dimitriadis et al.

(2009):

〈

Φ2,v [n(u)]
〉

≃
∑

i

B2
i

(

ηT
i v

)2
(29)
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Finally, we obtain the following expression related to the ratio Rk :

Rk ≃

∑

i
B2

i

(

ηT
i v

)2

A2
(

wT v
)2

(30)

Even adding a pre-filtering around the central frequency component of the AM–FM nar-

row band signal, approximation (29) remains not perfect due to the transient low pass terms.

Indeed, the long term averaging still provides residual noisy sinusoidal terms. These remain-

ing terms should be taken into account in presence of a local AM–FM low frequency narrow

band signal. Thus, the ratio (30) remains correct i.e these transient terms could be neglected

under the following hypotheses: (a) a relative higher SNR, which means that the instanta-

neous envelope of the signals exceeds the noisy amplitudes or b) the frequency of the AM–FM

narrow band signal (i.e the norm ||w| |) takes medium or high values. In our study, we focus

on these assumptions. Moreover, as mentioned in Sect. 5, Eq. (26), applying the operator

ΦB to any local sinusoidal signal s(u) ≃ A cos
(

wT u
)

leads to ΦB [s(u)] = A2‖w‖2. This

yields the relation (31):

RB ≃

∑

i
B2

i ‖ηi‖2

A2‖w‖2
(31)

To highlight the efficiency of these operators in presence of noise, we measure the rates

(30) and (31) for different vectors w. For notational simplicity we restrict our theoretical

discussion to 2D context.

6.3 Comparison of operators in presence of noise in 2D and 3D context

6.3.1 Theoretical analysis

We consider a single noisy 2D frequency component η = (a b)T associated with a random

amplitude B, and a narrow band signal around the central frequency w =
(

wx wy

)T
. To

compare the relative rates, we study separately the effects of each single noisy frequency

component. The following relations (32) and (33) are compared:

Rk =
B2

(

ηT v
)2

A2
(

wT v
)2

(32)

RB = B2‖η‖2

A2‖w‖2
(33)

As mentioned in the Sect. 4.2, for our new operator, we have opted for the particular vector

v =
(

sign(wx ) sign(wy)
)

. Finally, in a 2D context and for each noise frequency component,

we compare the rates (34) and (35) for different noise and signal frequencies η and w:

Rk =
(

asign(wx ) + bsign(wy)
)2

(

|wx | + |wy |
)2

(34)

RB = a2 + b2

w2
x + w2

y

(35)

We highlight the frequencies w for which Rk < RB (resp. Rk ≥ RB ). According to Eqs. (34)

and (35) a simple calculus leads to the following relations:
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Fig. 5 Function

f (x, y) = xy

x2+y2

– If sign(wxwy) > 0 i.e., wx and wy own the same sign:

Rk < RB ⇐⇒ ab

a2 + b2
<

wxwy

w2
x + w2

y

(36)

– If sign(wxwy) < 0 i.e., wx and wy own different signs:

Rk < RB ⇐⇒ ab

a2 + b2
>

wxwy

w2
x + w2

y

(37)

It appears that the function f (x, y) = xy

x2+y2 provides a geometrical solution for which the

rate of our new operator should be lower than the rate RB when the noisy component is

modelled as a sum of sinusoids containing different random amplitudes and phases. This

particular function is represented on Fig. 5.

Geometrically speaking, for a given point (x0, y0) of the same sign (resp. different signs),

which corresponds to a given frequency (wx wy) the more the number of points (x, y) i.e,

noise vector (a b) for which f (x, y) < f (x0, y0) (respectively f (x, y) > f (x0, y0)) is

higher, the more the rate Rk will be better than RB . According to Fig. 5 these properties

are verified when x0 i.e wx tends to be equal or the same order of magnitude than y0 i.e,

wy . In the opposite way, the more x0 and y0 tends to be different, the higher RB will be

from Rk . In other words, when the central frequency of the narrow band signal tends to be

vertical or horizontal, the operator ΦB should behave more efficiently than Φ2,sign(w). This

property seems to be coherent with the definition of the operators: the operator ΦB performs

the mono-dimensional TK along the horizontal and the vertical axes, and so should be more

sensitive to the diagonal orientations.

6.3.2 Experimental validation

To validate the assumptions made by the algorithmes in additive noise and on the frequency

component values and to show the effectiveness of our model: (i) the rates RB and Rk are

computed using Eqs. (27–28) for different values and directions of the frequency vector w

applying respectively the operators ΦB and Φ2,sign(w) to a sinusoidal signal s(u) = cos(wT u)

and a pure additive noise component n(u). These results are given in Table 9; (ii) Moreover,

we have reported the global error rates εB and εk (resp. for the operators ΦB and Φ2,sign(w))

related to the estimation of the frequency components and according to different values and
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Table 9 2D sinusoid: ENR rates for 15% noisy pattern

wx versus wy wx = 1/25 wx = 1/15 wx = 1/10 wx = 1/5

wy = 0 Rk = 4.2e − 2 Rk = 1.6e − 2 Rk = 8.5e − 3 Rk = 4e − 3

RB = 2.6e − 2 RB = 1e − 2 RB = 5e − 3 RB = 2.7e − 3

wy = 1/100 Rk = 2.6e − 2 Rk = 1.e − 2 Rk = 6.9e − 3 Rk = 3.8e − 3

RB = 2.5e − 2 RB = 1e − 2 RB = 5.3e − 3 RB = 2.6e − 3

wy = 1/50 Rk = 1.8e − 2 Rk = 1e − 2 Rk = 6e − 3 Rk = 3.5e − 3

RB = 2.2e − 2 RB = 1e − 2 RB = 5.2e − 3 RB = 2.6e − 3

wy = 1/25 Rk = 1.1e − 2 Rk = 6.7e − 3 Rk = 4.6e − 3 Rk = 3.2e − 3

RB = 1.5e − 2 RB = 8.2e − 3 RB = 4.9e − 3 RB = 2.5e − 3

wy = 1/15 Rk = 6.8e − 3 Rk = 4.2e − 3 Rk = 3.4e − 3 Rk = 2.8e − 3

RB = 8.2e − 3 RB = 6e − 3 RB = 4.2e − 3 RB = 2.7e − 3

wy = 1/10 Rk = 4.6e − 3 Rk = 3.5e − 3 Rk = 3e − 3 Rk = 2.6e − 3

RB = 4.9e − 3 RB = 4.2e − 3 RB = 3.6e − 3 RB = 2.7e − 3

wy = 1/5 Rk = 3.1e − 3 Rk = 2.8e − 3 Rk = 2.6e − 3 Rk = 3.4e − 3

RB = 2.6e − 3 RB = 2.8e − 3 RB = 3e − 3 RB = 4.2e − 3

Comparison of ΦB and Φ2,sign(w)

directions of the frequency vector w of a noisy sinusoidal signal s(u) = cos(wT u) + n(u).

These results are given in Table 10. According to these results:

– The rates RB and Rk of the TKEO depend on the central frequency vector: the higher

the central frequency, the lower the rates will be. This corresponds to the given formulae

of the respective rates: when the denominators tend to zero, the rates increase. Inversely,

for higher central frequencies, the rates will decrease.

– For a given central frequency, the relative values of the ENR are strongly correlated with

the relative quality of the estimation.

– The quality of the estimation rates εB and εk decreases for very low and very high fre-

quencies w: actually, concerning the relatively low frequencies the rates RB and Rk are

higher. Concerning the very high frequency i.e 1/5, all operators become sensitive to the

derivatives.

In the 2D context, the results confirm our theoretical hypotheses: the more vertical (resp.

horizontal) the carrier frequency of the signal tends to be, the better the operator ΦB will

behave relatively to Φ2,sign(w). Actually, for very low values of wy (i.e., 0, 1/100) the error

rates (and also ENR rates) are better concerning the operator ΦB . When wy ≃ wx with

medium or higher values (i.e., 1/15, 1/25, 1/10, 1/5) our operator tends to perform better,

except when both frequency values are too different (i.e., wx = 1/25 vs wy = 1/5): in that

case, ΦB behaves better.

6.3.3 Extension to the 3D context

When processing 3D data, the difficulty in representing the geometrical solution makes the

study more complex. However, it is possible to validate an extension of the previous assump-

tion by an empirical approach. We have computed the ENR for different values and directions

of the frequency components wx and wy , fixing some values of the third component wz . The

3D ENR values are given in Tables 11 and 13 for the respective values wz = 0 and wz = 1/25.
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Table 10 2D sinusoid: global frequency error for 15% noisy pattern

wx versus wy wx = 1/25 (%) wx = 1/15 (%) wx = 1/10 (%) wx = 1/5 (%)

wy = 0 εk = 17.8 εk = 6.7 εk = 6.5 εk = 18.1

εB = 17.5 εB = 6.1 εB = 5.9 εB = 17.8

wy = 1/100 εk = 12.4 εk = 4.5 εk = 5.4 εk = 17.9

εB = 12.1 εB = 4.6 εB = 5.3 εB = 17.8

wy = 1/50 εk = 6.3 εk = 3.4 εk = 5.6 εk = 18

εB = 10.9 εB = 4.25 εB = 5.5 εB = 17.9

wy = 1/25 εk = 3.9 εk = 3.9 εk = 6.4 εk = 18.4

εB = 5.95 εB = 4.3 εB = 6.4 εB = 18.2

wy = 1/15 εk = 3.9 εk = 3.4 εk = 8.2 εk = 20.1

εB = 4.3 εB = 5.4 εB = 8.4 εB = 20.1

wy = 1/10 εk = 6.4 εk = 8.2 εk = 11 εk = 22.6

εB = 6.4 εB = 8.4 εB = 11.1 εB = 22.6

wy = 1/5 εk = 18.4 εk = 20.1 εk = 22.6 εk = 31.9

εB = 18.2 εB = 20.1 εB = 22.6 εB = 32

Comparison of ΦB and Φ2,sign(w)

Moreover, the respective quality of the frequency estimation has been reported in Tables 12

and 14. With regard to the other components, let us define the small values of a frequency

component as ε (where ε ≃ 0 i.e, 0 or 1/100), a “medium” value as wx , wy or wz (1/50

to 1/15 cycles/pixel), the high value 1/10 as w+
x , w+

y or w+
z and the higher value 1/5 as

w++
x , w++

y or w++
z . Again, according to these results, for a given central frequency, the

relative values of the ENR are strongly correlated with the relative quality of the estimation.

Also, the same observation as for 2D context concerning the level of ENR vs the central

frequency. More precisely:

– The operator ΦB performs better than Φ2,sign(w) (i.e, RB ≤ Rk and εB ≤ εk) under the

following assumptions:

1. Two components of the frequency vector are small i.e, w = (wx , ε, ε) , w =
(

w+
x , ε, ε

)

or w =
(

w++
x , ε, ε

)

. In that case the frequency vector is almost mono-

dimensional;

2. All values are different w =
(

w+
x , wy, ε

)

, w =
(

w+
x , ε, wz

)

, w =
(

w++
x , wy, ε

)

or

w =
(

w++
x , ε, wz

)

;

3. One frequency component is very high and two components are medium i.e, w =
(

w++
x , wy, wz

)

;

4. Two frequency components own higher value vs one small value for one component

i.e, w =
(

w+
x , w+

y , ε

)

or w =
(

w++
x , w++

y , ε

)

;

– The operator Φ2,sign(w) performs better than ΦB (i.e, Rk ≤ RB and εk ≤ εB ) under the

following assumptions:

1. Two components are “medium” and one component is small i.e, w =
(

wx , wy, ε
)

or

w = (wx , ε, wz);

2. All components own similar order of medium values w =
(

wx , wy, wz

)

;

3. One component is high vs two medium values i.e, w =
(

w+
x , wy, wz

)

;
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Table 11 3D sinusoid: ENR rates for 15% noisy pattern and wz = 0

wx versus wy wx = 1/25 wx = 1/15 wx = 1/10 wx = 1/5

wy = 0 Rk = 6.9e − 2 Rk = 2.5e − 2 Rk = 1.2e − 2 Rk = 4.7e − 3

RB = 3.4e − 2 RB = 1.1e − 2 RB = 5.2e − 3 RB = 2.1e − 3

wy = 1/100 Rk = 4.2e − 2 Rk = 1.9e − 2 Rk = 1e − 2 Rk = 4.2e − 3

RB = 3.1e − 2 RB = 1.3e − 2 RB = 5.3e − 3 RB = 2e − 3

wy = 1/50 Rk = 2.5e − 2 Rk = 1.3e − 2 Rk = 8.4e − 3 Rk = 3.9e − 3

RB = 2.8e − 2 RB = 1.2e − 2 RB = 5.1e − 3 RB = 2e − 3

wy = 1/25 Rk = 1.5e − 2 Rk = 8.2e − 3 Rk = 6.3e − 3 Rk = 3.4e − 3

RB = 1.7e − 2 RB = 1e − 2 RB = 4.6e − 3 RB = 2e − 3

wy = 1/15 Rk = 8.2e − 3 Rk = 6e − 3 Rk = 4.7e − 3 Rk = 2.9e − 3

RB = 1e − 2 RB = 6.7e − 3 RB = 4e − 3 RB = 2e − 3

wy = 1/10 Rk = 6.3e − 3 Rk = 4.7e − 3 Rk = 3.7e − 3 Rk = 2.7e − 3

RB = 4.7e − 3 RB = 3.9e − 3 RB = 3.2e − 3 RB = 2.1e − 3

wy = 1/5 Rk = 3.4e − 3 Rk = 2.9e − 3 Rk = 2.7e − 3 Rk = 2.6e − 3

RB = 2e − 3 RB = 2e − 3 RB = 2.1e − 3 RB = 2.3e − 3

Comparison of ΦB and Φ2,sign(w)

Table 12 3D sinusoid: global frequency error for 15% noisy pattern and wz = 0

wx versus wy wx = 1/25 (%) wx = 1/15 (%) wx = 1/10 (%) wx = 1/5 (%)

wy = 0 εk = 24.3 εk = 9.6 εk = 6.2 εk = 12.9

εB = 24.1 εB = 8.1 εB = 4.9 εB = 12.2

wy = 1/100 εk = 21.3 εk = 7.25 εk = 5.1 εk = 12.7

εB = 18.2 εB = 6.9 εB = 4.4 εB = 12.3

wy = 1/50 εk = 12.9 εk = 6.2 εk = 4.8 εk = 12.7

εB = 17.3 εB = 6.4 εB = 4.5 εB = 12.4

wy = 1/25 εk = 7.5 εk = 4.8 εk = 5.0 εk = 13.3

εB = 9.9 εB = 5.4 εB = 4.9 εB = 13.0

wy = 1/15 εk = 4.8 εk = 4.6 εk = 6 εk = 14.5

εB = 5.4 εB = 4.9 εB = 5.9 εB = 14.3

wy = 1/10 εk = 5.0 εk = 6.0 εk = 8.1 εk = 16.7

εB = 4.9 εB = 6.0 εB = 7.8 εB = 16.6

wy = 1/5 εk = 13.3 εk = 14.5 εk = 16.7 εk = 26.3

εB = 13 εB = 14.3 εB = 16.6 εB = 25.3

Comparison of ΦB and Φ2,sign(w)

4. Two components are high vs medium value i.e, w =
(

w+
x , w+

y , wz

)

or w =
(

w++
x , w++

y , wz

)

;

Moreover, we have performed a simulation when w =
(

w+
x , w+

y , w+
z

)

and w =
(

w++
x , w++

y , w++
z

)

. The result provides: Rk ≤ RB and also εk ≤ εB .
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Table 13 3D sinusoid: ENR rates for 15% noisy pattern and wz = 1/25

wx versus wy wx = 0 wx = 1/100 wx = 1/50 wx = 1/25 wx = 1/15 wx = 1/10 wx = 1/5

wy = 0 Rk = 6.9e − 2 Rk = 4.2e − 2 Rk = 2.5e − 2 Rk = 1.5e − 2 h Rk = 8.2e − 3 Rk = 6.3e − 3 Rk = 3.4e − 3

RB = 3.4e − 2 RB = 3.1e − 2 RB = 2.8e − 2 RB = 1.7e − 2 RB = 1e − 2 RB = 4.7e − 3 RB = 2e − 3

wy = 1/100 Rk = 4.2e − 2 Rk = 2.9e − 2 Rk = 2.2e − 2 Rk = 1.3e − 2 Rk = 8.1e − 3 Rk = 5.5e − 3 Rk = 3.1e − 3

RB = 3.1e − 2 RB = 2.6e − 2 RB = 2.2e − 2 RB = 1.4e − 2 RB = 8.3e − 3 RB = 4.6e − 3 RB = 2e − 3

wy = 1/50 Rk = 2.5e − 2 Rk = 2.2e − 2 Rk = 1.7e − 2 Rk = 1.1e − 2 Rk = 7.1e − 3 Rk = 4.5e − 3 Rk = 3e − 3

RB = 2.8e − 2 RB = 2.2e − 2 RB = 2e − 2 RB = 1.4e − 2 RB = 7.8e − 3 RB = 5e − 3 RB = 2e − 3

wy = 1/25 Rk = 1.5e − 2 Rk = 1.3e − 2 Rk = 1.1e − 2 Rk = 7.7e − 3 Rk = 5.4e − 3 Rk = 3.9e − 3 Rk = 2.6e − 3

RB = 1.7e − 2 RB = 1.4e − 2 RB = 1.4e − 2 RB = 1e − 2 RB = 6.7e − 3 RB = 4.2e − 3 RB = 2e − 3

wy = 1/15 Rk = 8.2e − 3 Rk = 8.1e − 3 Rk = 7.1e − 3 Rk = 5.4e − 3 Rk = 4.1e − 3 Rk = 3.1e − 3 Rk = 2.3e − 3

RB = 1e − 2 RB = 8.1e − 3 RB = 7.8e − 3 RB = 6.7e − 3 RB = 5.1e − 3 RB = 3.7e − 3 RB = 2e − 3

wy = 1/10 Rk = 6.3e − 3 Rk = 5.5e − 3 Rk = 5e − 3 Rk = 3.9e − 3 Rk = 3.1e − 3 Rk = 2.6e − 3 Rk = 2.1e − 3

RB = 4.7e − 3 RB = 4.6e − 3 RB = 4.5e − 3 RB = 4.2e − 3 RB = 3.7e − 3 RB = 3e − 3 RB = 2e − 3

wy = 1/5 Rk = 3.4e − 3 Rk = 3.1e − 3 Rk = 3e − 3 Rk = 2.6e − 3 Rk = 2.3e − 3 Rk = 2.1e − 3 Rk = 2.2e − 3

RB = 2e − 3 RB = 2e − 3 RB = 2e − 3 RB = 2e − 3 RB = 2e − 3 RB = 2e − 3 RB = 2.3e − 3

Comparison of ΦB and Φ2,sign(w)

1
23



Multidim Syst Sign Process

Table 14 3D sinusoid: global frequency error for 15% noisy pattern and wz = 1/25

wx versus wy wx = 0 wx = 1/100 wx = 1/50 wx = 1/25 wx = 1/15 wx = 1/10 wx = 1/5

wy = 0 εk = 24.3 εk = 21.3 εk = 12.9 εk = 7.5 εk = 4.8 εk = 5.0 εk = 13.3

εB = 24.0 εB = 18.3 εB = 17.3 εB = 9.9 εB = 5.4 εB = 4.9 εB = 13.0

wy = 1/100 εk = 21.3 εk = 18.6 εk = 8.0 εk = 4.6 εk = 3.3 εk = 4.5 εk = 13.1

εB = 18.3 εB = 14.2 εB = 12.9 εB = 8.2 εB = 4.4 εB = 4.4 εB = 13.1

wy = 1/50 εk = 12.9 εk = 8.0 εk = 5.6 εk = 3.8 εk = 3.3 εk = 4.6 εk = 13.2

εB = 17.3 εB = 12.9 εB = 12.0 εB = 7.2 εB = 4.3 εB = 4.7 εB = 13.2

wy = 1/25 εk = 7.5 εk = 4.6 εk = 3.8 εk = 3.3 εk = 3.6 εk = 5.2 εk = 13.7

εB = 9.9 εB = 8.2 εB = 7.2 εB = 5.3 εB = 4.2 εB = 5.2 εB = 13.5

wy = 1/15 εk = 4.8 εk = 3.3 εk = 3.3 εk = 3.6 εk = 4.5 εk = 6.3 εk = 15.0

εB = 5.4 εB = 4.4 εB = 4.3 εB = 4.2 εB = 4.8 εB = 6.4 εB = 15.0

wy = 1/10 εk = 5.0 εk = 4.5 εk = 4.6 εk = 5.2 εk = 6.3 εk = 8.4 εk = 17.2

εB = 4.9 εB = 4.4 εB = 4.7 εB = 5.2 εB = 6.4 εB = 8.5 εB = 17.2

wy = 1/5 εk = 13.3 εk = 13.1 εk = 13.2 εk = 13.7 εk = 15.0 εk = 17.2 εk = 25.6

εB = 13.0 εB = 13.1 εB = 13.2 εB = 13.5 εB = 15.0 εB = 17.2 εB = 25.6

Comparison of ΦB and Φ2,sign(w)

Finally, although it is difficult to establish an exact mathematical rule which indicates the

respective performances of the algorithms, the operator ΦB behaves better than Φ2,sign(w)

when the frequency components are more dispersed or extreme.

7 Conclusion

In this paper, we have introduced a generalization of TKEO and higher order differential oper-

ators to multi-dimensional signals using higher order gradients combined with Kronecker

product. In particular we have highlighted the link between these tensors and any directional

derivatives along a vector, which allows us to construct a large class of functions. An appro-

priate choice of the directional vector leads to operators which are proportional to a quadratic

norm of the frequency. An important aspect of our algorithm is the ability to demodulate local

AM–FM signals. We have been introduced a new scalar operator corresponding to a direc-

tional derivative along the vector containing the “sign” of the frequency vector. A comparison

with some multi-dimensional energy separation algorithms shows the competitiveness and

robustness of our approach to track the instantaneous envelope and frequency components.

The theoretical comparison between the most used demodulation methods has been proposed,

which leads to a geometrical solution, validated by an empirical approach. Finally, as future

work, we plan to compare our approach to recent numerical improved version of 2D energy

operator and related 2D AM–FM demodulation algorithm that use regularization version of

the 2D TKEO (Kokkinos et al. 2009).

Acknowledgments The authors would like to thank the Editor and reviewers for their valuable comments
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the English.
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A Relation between higher order gradients and directional derivatives using

Kronecker product

The derivative of a product AB yields:

d

du
(AB) =

(

∂(AB)
∂x1

. . .
∂(AB)
∂xn

)

=
(

∂A
∂x1

B + A ∂B
∂x1

. . . ∂A
∂xn

B + A ∂B
∂xn

)

=
(

∂A
∂x1

. . . ∂A
∂xn

)

⎛

⎝

B 0 . . . 0

0 B . . . 0

0 . . . 0 B

⎞

⎠

+ A
(

∂B
∂x1

. . . ∂B
∂xn

)

= dA

du
(In ⊗ B) + A

dB

du
(38)

where In represents the identity matrix n × n. A general result dealing with derivatives

according to a matrix (instead of a vector) can be found in Brewer (1978). In particular, we

derive the following properties, where v and w represent any constant vectors, provided that

the dimensions are compatible:

d

du
(vAw) = v

dA

du
(In ⊗ w) (39)

Moreover, a property of the Kronecker product (Moon and Stirling 2000) yields:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (40)

We deduce, provided that the dimensions are compatible:

(A1 ⊗ B1)(A2 ⊗ B2)(A3 ⊗ B3) (41)

= ((A1A2) ⊗ (B1B2)) (A3 ⊗ B3)

= (A1A2A3) ⊗ (B1B2B3) (42)

From (40) it follows:

(In ⊗ v) v = (In ⊗ v) (v ⊗ I1) = (Inv) ⊗ (vI1) = v ⊗ v (43)

Moreover, we have the following relation:

(In ⊗ v ⊗ v) v = (An ⊗ v) (v ⊗ I1)

= (Anv) ⊗ (vI1) (44)

where An = In ⊗ v. From (43) it follows Anv = v ⊗ v. Finally (44) provides:

(In ⊗ v ⊗ v) v = v ⊗ v ⊗ v (45)

Unsing
⊗

k v = v ⊗ · · · ⊗ v, we deduce by recurrence:

(

In ⊗
⊗

k

v

)

v =
⊗

k+1

v (46)
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Let us now express the relation between the third order gradient and the third order directional

derivative:

∂3s

∂v3
(u) = ∂

∂v

[

∂2s

∂v2
(u)

]T

= d

du

[

∂2s

∂v2
(u)

]T

v

= d

du

[

vT d2s

du2
v

]T

v

= d

du

[

vT

(

d2s

du2

)T

v

]

v (47)

Using Eq. (39), relation (47) can be written:

d

du

[

vT

(

d2s

du2

)T

v

]

v = vT d3s

du3
(In ⊗ v) v (48)

Finally (46) and (48) where k = 1 give:

∂3s

∂v3
(u) = vT d3s

du3
(v ⊗ v) (49)

The dimensions are compatible. Let us now compute the fourth order derivative:

∂4s

∂v4
(u) = ∂

∂v

[

∂3s

∂v3
(u)

]T

= d

du

[

∂3s

∂v3
(u)

]T

v

= d

du

[

vT d3s

du3
w

]T

v

= d

du

[

wT

(

d3s

du3

)T

v

]

v

= wT d4s

du4
(In ⊗ v)v (50)

where w = v ⊗ v. According to (46) and the property (v ⊗ v)T = vT ⊗ vT Eq. (50) yields:

∂4s

∂v4
(u) =

(

vT ⊗ vT
) d4s

du4
(v ⊗ v) (51)

Equation (46) yields the following rules by recurrence:

for an even order k = 2p:

∂ks

∂vk
(u) =

(

⊗

p

vT

)

dks

duk

⊗

p

v (52)

for an odd order k = 2p + 1:

∂ks

∂vk
(u) =

(

⊗

p

vT

)

dks

duk

⊗

p+1

v (53)
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B Proof the Proposition 1

Let us multiply the tensors by a p + q = m + l + 1th Kronecker product of the n × 1 vector

v. Applying Eqs. (41) and (52) yields:

⎛

⎝

⊗

p+q

vT

⎞

⎠

(

d2ps

du2p
⊗

(

d2qs

du2q

)T
)

⊗

p+q

v

=
((

⊗

p

vT

)

⊗
(

⊗

q

vT

)) (

d2ps

du2p
⊗

(

d2qs

du2q

)T
) (

⊗

p

v ⊗
⊗

q

v

)

=
((

⊗

p

vT

)

d2ps

du2p

⊗

p

v

)((

⊗

q

vT

)

(

d2qs

du2q

)T
⊗

q

v

)

= ∂2ps

∂v2p

(

∂2qs

∂v2q

)T

In the same manner, applying Eqs. (41) and (53) yields:

(

⊗

m+l+1

vT

) (

d2m+1s

du2m+1
⊗

(

d2l+1s

du2l+1

)T
) (

⊗

m+l+1

v

)

=
((

⊗

m

vT

)

d2m+1s

du2m+1

⊗

m+1

v

) (

⊗

l+1

vT

(

d2l+1s

du2l+1

)T
⊗

l

v

)

= ∂2m+1s

∂v2m+1

(

∂2l+1s

∂v2l+1

)T

which completes the proof.

C Computation of the error

Let us consider the n dimensional TKEO which yields the following expression:

Φ2,v[s(u)] = vT · Ψ2[s(u)] · v = ∂s

∂v

∂s

∂v
− s

∂2s

∂v2

Consider a general AM–FM signal:

s(u) = A(u) cos (φ(u)) = A(u)B(u)

We now provide the conditions under which the approximation (54) remains true:

Φ2,v[s(u)] ≃ A(u)2

(

∂φ

∂v
(u)

)2

= A(u)2
(

w(u)T v
)2

(54)

The frequency vector is given by:

w(u) = (w1(u), w2(u), . . . , wn(u))T = dφ

du
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where

wi (u) = ∂φ

∂xi

(u)

As in Maragos and Bovik (1995); Maragos et al. (1993a), let us consider a band lim-

ited envelope A(u), i.e FT[A(u)] = Ã(ω) = 0 for ||ω|| ≥ ωA where FT[] is the Fourier

Transform. Giving a mean spectral absolute value:

µA = 1

(2π)n

+ωA
∫

−ωA

. . .

+ωA
∫

−ωA

∣

∣

∣ Ã(ω)

∣

∣

∣ dω1dω2 . . . dωn (55)

we deduce the following relations for any partial derivatives giving r = r1 + r2 + · · · + rn :

FT

[

∂r A

∂x
r1

1 ∂x
r2

2 . . . ∂x
rn
n

]

= ( jω1)
r1( jω2)

r2 . . . ( jωn)rn Ã(ω)

⇒
∣

∣

∣

∣

∂r A

∂x
r1

1 ∂x
r2

2 . . . ∂x
rn
n

∣

∣

∣

∣

=
∣

∣

∣FT−1
[

( jω1)
r1( jω2)

r2 . . . ( jωn)rn Ã(ω)

]∣

∣

∣ ≤ ωr
AµA

Further, the quantity ∂r A

∂x
r1
1 ∂x

r2
2 ...∂x

rn
n

being the general term of the higher order gradient dr A
dur ,

it follows from (56), and the results (52,53) obtained in Appendix B linking the higher order

gradients and directional derivatives that:

for an even order r = 2p:
∣

∣

∣

∣

∂r A

∂vr
(u)

∣

∣

∣

∣

≤ nrωr
AµA

∥

∥

∥

∥

∥

⊗

p

vT

∥

∥

∥

∥

∥

·
∥

∥

∥

∥

∥

⊗

p

v

∥

∥

∥

∥

∥

(56)

for an odd order r = 2p + 1:

∣

∣

∣

∣

∂r A

∂vr
(u)

∣

∣

∣

∣

≤ nrωr
AµA

∥

∥

∥

∥

∥

⊗

p

vT

∥

∥

∥

∥

∥

·

∥

∥

∥

∥

∥

∥

⊗

(p+1)

v

∥

∥

∥

∥

∥

∥

(57)

Moreover, the following result is deduced from the properties of the Kronecker product,

provided that the dimensions are compatible:

(A1 ⊗ A2 ⊗ · · · ⊗ An) (B1 ⊗ B2 ⊗ · · · ⊗ Bn) = (A1 B1) ⊗ (A2 B2) ⊗ · · · ⊗ (An Bn)

(58)

Equation (58) yields:

∥

∥

∥

∥

∥

⊗

p

v

∥

∥

∥

∥

∥

2

=
⊗

p

v

(

⊗

p

v

)T

=
⊗

p

v
⊗

p

vT

= (vvT) ⊗ (vvT) ⊗ · · · ⊗ (vvT)

= ||v||2 ⊗ ||v||2 ⊗ · · · ⊗ ||v||2

= ||v||2p (59)

Finally:
∥

∥

∥

∥

∥

⊗

p

v

∥

∥

∥

∥

∥

= ||v||p (60)
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Thus Eqs. (56,57) and (60) yield for any order r :
∣

∣

∣

∣

∂r A

∂vr
(u)

∣

∣

∣

∣

≤ nrµAωr
A||v||r (61)

Let us express now the first and second order directional derivatives of A(u) according to a

normalized vector ||v|| = 1 :

∣

∣

∣

∣

∂ A

∂v
(u)

∣

∣

∣

∣

≤ nωAµA

∣

∣

∣

∣

∂2 A

∂v2
(u)

∣

∣

∣

∣

≤ n2ω2
AµA (62)

Finally, we deduce the following inequality:
∣

∣Φ2,v[A(u)]
∣

∣ ≤ n2ω2
Aµ2

A + n2ω2
AµA Amax (63)

For narrow band signals analysis, we express each local component frequency as a sum of a

constant carrier term and an excursion frequency:

wi (u) = wc,i + wm,i fi (u)

As in Maragos and Bovik (1995), we assume that fi (u) ∈ [−1,+1] and wm,i is the maximum

deviation of the frequency from its center value 0 ≤ wm,i ≪
∣

∣wc,i

∣

∣. Let us now compute the

higher order derivatives of B(u) = cos (φ(u)) according to the vector v

∂ B

∂v
= ∂φ

∂v
sin (φ(u)) (64)

∂2 B

∂v2
= ∂2φ

∂v2
sin (φ(u)) −

(

∂φ

∂v

)2

cos (φ(u)) (65)

We suppose that the excursion �i j = wm,i fi (u), for all i is such that fi (u), is a band lim-

ited signal i.e, FT[ fi (u)] = f̃i (ω) = 0 for ||ω|| ≥ ω fi
. We suppose that ω fi

≤ ωci
where

ωc = ||wc(u)|| corresponds to the norm of the local central frequency, which means that the

frequency excursion is not too fast. The mean spectral absolute value is given by:

µ fi
= 1

(2π)n

+ω fi
∫

−ω fi

. . .

+ω fi
∫

−ω fi

∣

∣

∣ f̃i (ω)

∣

∣

∣ dω1dω2 . . . dωn

We compute the second order derivative along a normalized vector v = (v1, . . . , vn)T :

∂2φ

∂v2
(u) = vT d2Φ

du2
v =

n
∑

i=1

n
∑

j=1

viwmi

∂ fi

∂x j

v j (66)

A similar inequality as Eq. (56) and the previous conditions lead to:

∣

∣

∣

∣

∂2φ

∂v2
(u)

∣

∣

∣

∣

≪
n

∑

i=1

n
∑

j=1

w2
ci
µ fi

(67)

The choice of µ fi
≃ 1 means that the FT of the functions fi own linear phases (Maragos

et al. 1993a). Then, the inequality (67) becomes:

∣

∣

∣

∣

∂2φ

∂v2
(u)

∣

∣

∣

∣

≪
n

∑

i=1

n
∑

j=1

w2
ci

= nω2
c (68)
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On the other hand, an appropriate choice of the vector v leads to:

∂φ

∂v
(u) = dΦ

du
v ≥ ||w(u)|| ≃ wc (69)

For example the following vector used in our study, satisfies (69):

v =
(

sign(w1)√
n

, . . . ,
sign(wn)√

n

)T

Finally, it is trivial to generalize the well known property of the application of the TKEO to

the product of functions, regarding the directional derivatives:

Φ2,v[A(u)B(u)] = A2(u)Φ2,v[B(u)] + B2(u)Φ2,v[A(u)]

= A2(u)

(

(

∂φ

∂v

)2

− 1

2

∂2φ

∂v2
sin 2φ(u)

)

+ Φ2,v[A(u)] cos φ(u) (70)

According to our hypothesis, the instantaneous envelope A(u) is a slow signal, relatively to

the carrier one, which implies that ωA ≪ ωc. Moreover, the envelope being observed on a

short time interval, it is possible to extrapolate it as a sinusoidal function i.e, µA ≃ Amax.

Then the equality (70) yields:

Φ2,v[A(u)B(u)] = A2(u)

(

∂φ

∂v

)2

+ εv(u) (71)

According to Eqs. (63) and (68) and the previous assumptions, the error term εv verifies:

|εv(u)| ≪ A2
max

(

1

2
nω2

c + 2n2ω2
c

)

When comparing to error bound detailed in Maragos and Bovik (1995), there is a multipli-

cative factor n. In general, for any vector v the operator leads to:

Φ2,v[A(u) cos φ(u)] = A2(u)

(

(

∂φ

∂v

)2

− vT 1

2

d2φ

du2
sin 2φ(u)v

)

+vT Ψ2,v[A(u)] cos φ(u)v (72)

Notice tha it is possible to find a vector that minimizes the error term and yields an energy

operator which output is proportional to the quantity A(u)||w(u)||2. This corresponds to a

classical constraint minimization problem i.e:

minimize vT Rv subject to vT w = ||w||

where : R = 1

2

d2φ

du2
+ Ψ2,v[A(u)]

Provided that the matrix R is not a singular one, a solution to this problem is given by:

v = R−1w

wT R−1w
||w||

Considering a slow varying envelope in a short time interval, the optimal vector depends on

the Hessian of the phase and the frequency.
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