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We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering
approach. As a comparison with these exact results, we also evaluate the domain of validity of Derjaguin’s
proximity approximation (PA). We consider a system of two corrugated silica plates with various grating
geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical
computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the
gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such
a displacement.
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I. INTRODUCTION

Recent experiments and theoretical work have given
promising perspectives in the field of radiative heat transfer
in the micrometer range.1,2 It has been shown that radiative
heat transfer greatly exceeds the black body limit for dis-
tances shorter than the average thermal wavelength, which is
understood as an effect arising from the contribution of the
evanescent waves. The studies of near-field heat transfer are of
great interest to the design of both NEMS and MEMS which
are naturally affected by possible side effects of heat exchange
at the nanoscale. Other potential applications lie in the
fields of nanotechnology, photonic crystals,3 metamaterials,4,5

thermalphotovoltaics,6,7 multilayered structures,8 improved
resolution in nanostructure imaging, and new nanofabrication
techniques.

While radiative heat transfer beyond Stefan-Boltzmann’s
law was observed experimentally9 and described
theoretically10 over the last forty years, radiative heat
transfer between two parallel flat plates at the nanoscale
has been considered experimentally only recently.11–13 The
most interesting features of this field are the possible side
effects of nontrivial geometries on the thermal emission
of nanoobjects. Thus an in-depth study of heat transfer for
different configurations has been performed over the years,
ranging from the case of a particle facing a surface,14–17

to particles or nanospheres facing each other,18–22 or more
recently to the sphere-plane geometry.23,24 One should
also note that for nearly flat surfaces where roughness is
considered as a perturbation factor, certain perturbative
approaches can be used.25,26 But for larger geometrical
irregularities, more accurate methods become necessary.27

These more complex geometries are best described through
a scattering approach.24,28–30 Another exciting perspective is
the study of the variation in heat transfer brought forth by
surface polaritons in certain materials.17 In this paper we
focus on the interplay between the surface waves excitation
and the surface profile, as shown in Fig. 1.

The fact that the radiative heat transfer in near-field
considerably changes with variation of the separation distance
between plane surfaces has already been shown.1,23,31 When
introducing a profile for the interfaces, the flux is expected to

depend on the relative lateral displacement of the two surfaces
denoted δ, as seen in Fig. 1.

This is all the more interesting as a simple argument
based on the proximity approximation suggests a strong
modulation of the flux. Indeed, by assuming that one can
use locally the plane-plane heat transfer coefficient, it is seen
that the flux is maximum for δ = 0. The validity of the
proximity approximation has been discussed in the context
of a plane sphere23 and between two spheres.18,19 This
validity in the context of lamellar gratings with subwavelength
periods remains an open question. Here, we investigate this
issue by using the exact formalism of scattering theory.
Furthermore, we discuss the physical phenomena involved
and show that the nature of the material needs to be taken
into account when discussing the validity of the proximity
approximation.

II. HEAT TRANSFER IN THE SCATTERING APPROACH

Based on the scattering formalism developed in Ref. 28,
we consider two corrugated profiles at temperatures T1 and T2,
as shown in Fig. 1. The heat transfer is constructed from the
statistical average of the (x,y) sum over the z component of
the Poynting vector Sz and is thus related to a flux. We define
the wave vector k = (k⊥,kz) with kz =

√
ω2/c2 − k2

⊥ defined
with −π/2 < arg kz � π/2.

Following,32 we then introduce the reflection operators
R1(ω) and R2(ω) of the two gratings separated by a distance
L, by which we understand the distance of closest approach,
equal to zero at contact. We then set our scattering operators
such that S1 = R1(ω) and S2 = eıkzLR2(ω)eıkzL. According to
the scattering formalism for gratings developed in Refs. 32
and 33, the scattering matrices are of dimensions 2(2N + 1),
where N is the order of diffraction.

We now define the operators �
pω/eω
n = 1

2kn
z �

pω/eω as con-
structed from the projectors on the propagative and evanescent
sectors, respectively:

�
pω

αα′ = δαα′ [1 + sgn(ω2/c2 − k2
⊥)] (1)

�eω
αα′ = δαα′ [1 − sgn(ω2/c2 − k2

⊥)], (2)
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FIG. 1. (Color online) Two identical gratings facing each other at
a distance L and relatively shifted by a lateral displacement δ. The
corrugations have a period d , height a, and thickness p′. The filling
factor p = p′/d is given as a percentage of the period d .

where α = s,p represents the transverse electric and transverse
magnetic polarizations, respectively. The thermal energy
density per field mode at temperature T writes eT (ω) =
h̄ω/(eh̄ω/kBT − 1). We can now express the heat transfer
coefficient between two gratings of the same corrugation depth
a as

h = 1

|T1 − T2|
∫

dω

2π
[eT1 (ω) − eT2 (ω)]H12 (3)

with

H12 =
∫ +π/d

kx=−π/d

∫
ky∈R

dkxdky

4π2
tr(DW1D†W2) (4)

D = (1 − S1S2)−1 (5)

W1 = �
pω

−1 − S1�
pω

−1 S1
† + S1�

eω
−1 − �eω

−1S1
† (6)

W2 = �
pω

1 − S2
†�pω

1 S2 + S2
†�eω

1 − �eω
1 S2. (7)

It is noteworthy that the heat transfer depends on the shape and
material properties of the gratings only through their scattering
matrices S1 and S2. Furthermore, the factor eT1 (ω) − eT2 (ω)
introduces a cutoff for all frequencies larger than kBT /h̄. It is
hence H12 in equation (4), which corresponds to the sum of
the transmission factors of the modes, that gives rise to the
interesting modes pertaining to the near-field contribution.

Note also that the first perpendicular wave vector compo-
nent kx belongs to the first Brillouin zone between −π/d and
+π/d, whereas ky ∈ R is not restricted. A practical challenge
of the numerical integration of h lays in the choice of the
boundaries of ω and ky through a careful study of the integrand
of equation (4) plotted over the whole range of frequencies to
determine the modes.

III. NUMERICAL RESULTS FOR GRATINGS

We will from now on consider two gratings of silica
glass SiO2, the dielectric properties of which are given in
Ref. 34. This material is chosen as it supports surface phonon-
polaritons, which are known to enhance the flux. The gratings
temperatures are supposed to be T1 = 310 K and T2 = 290 K.
Two sets of data are systematically computed: The first one
corresponds to zero lateral displacement of the two plates along
the x axis (δ = 0) so that the corrugation maxima directly face

those from the opposite profile. The second one corresponds to
a lateral displacement of half the grating period (δ = d/2), so
that the corrugation peaks face the corrugation trenches of the
opposite profile. In near-field, the two structured plates expose
a larger surface to each other at δ = 0 than at δ = d/2, so that
we expect a strong modulation of the heat transfer coefficient
which will be discussed later. This is based on the assumption
that the plane-plane heat transfer coefficient is locally valid.

The results of the scattering approach can be compared
with the PA, which consists of the weighted sum of the planar
normal contributions h0(L) depending on the local separation
distances L within each period. Assuming that p < 50%, we
have for δ � p′:

hPA
δ (L) = p′ − δ

d
h0(L) + 2δ

d
h0(L + a)

+
(

1 − p′ + δ

d

)
h0(L + 2a). (8)

For δ > p, we find the following saturation value of

hPA
p′ (L) = 2p′

d
h0(L + a)

+
(

1 − 2p′

d

)
h0(L + 2a). (9)

In what follows, we study in detail the interplay between
surface waves and corrugations. The results are systematically
compared with those obtained within the PA. Figure 2 shows
the heat transfer coefficient for δ = 0 and δ = d/2, as a
function of the separation distance L, for two gratings of
period d = 1500 nm, filling factor p = 20%, and groove depth
a = 500 nm. Regardless of the distance, we can see that the
PA is a good approximation of the heat transfer coefficient at
δ = 0, but not at δ = d/2. At L = 25 nm, the error of the PA
is of ∼3% for δ = 0, and of ∼35% for δ = d/2.

The reason for this is illustrated in Fig. 3, which shows the
field modulus map for a given source dipole that is placed in the
middle of a corrugation right under the surface, and which is

50 100 200 500 1000
10

20

50

100

200

500

1000

Separation distance L nm

H
ea

tt
ra

ns
fe

r
co

ef
fi

ce
nt

W
 m

2  K
1

FIG. 2. (Color online) Heat transfer coefficients as a function of
separation distance L, when the gratings are not laterally displaced
(blue solid line) and when they are by half a period (blue dashed
line). This is compared with the proximity approximation in red. The
gratings have a period d = 1500 nm, filling factor p = 20%, and
groove depth a = 500 nm.
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FIG. 3. (Color online) Field modulus map of a given source dipole placed in the middle of a corrugation and right under the surface. The
field is here represented only in the upper grating, so as to highlight where the absorption takes place. This is for gratings at a separation distance
L = 25 nm. The two figures on the left display the profiles in the xz plane (in green) when they are aligned (δ = 0), and the two figures on the
right when they are laterally displaced by half a period (δ = d/2), both for two different wavelengths λ = 8.75 μm (top) and 9.15 μm (down).

oriented perpendicular to it. The color scale is logarithmic. The
intensity or square modulus of the electric field is represented
only in the upper grating so as to highlight the place of
absorption. The gratings have a separation distance L = 25
nm, corrugation depth a = 500 nm, period d = 1500 nm,
and filling factor p = 20%. Two different wavelengths λ =
8.75 μm and λ = 9.15 μm are considered, knowing that
SiO2 has two resonance frequencies at λ = 8.75 μm and
λ = 21 μm. In the case where δ = 0 and λ = 8.75 μm, we
see that the field is clearly both intense and confined. As
8.75 μm corresponds to the horizontal asymptote of the
surface phonon dispersion relation, a large number of modes
with different values of the wave vector are excited. This leads
to a highly localized subwavelength hot spot. At 9.15 μm,
the spot is broader than expected: This is similar to the loss
of resolution of superlens away from the resonance. On the
right column of the figure, we show the intensity for δ = d/2.
It is seen that the heated region is delocalized so that PA
is clearly not valid. In this regime, the heat transfer is no
longer due to a dipole-dipole interaction through the gap.
Instead, a dipole excites modes of the structures. In turn, these
spatially extended modes produce dissipation in the walls.
This discussion indicates that PA is valid if the gap width does
not vary significantly on a length scale given by the spatial
extension of the modes. Furthermore, we have already seen
in Fig. 2 the difference between the proximity approximation
and the scattering results. This difference can be interpreted as

an indicator of the contribution of the lateral modes, since the
proximity approximation considers normal modes only.

To further illustrate this qualitative dependence of the
radiative heat transfer on separation distance, we show in Fig. 4
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FIG. 4. (Color online) Heat transfer coefficients as a function
of the separation distance L between two plane mirrors of SiO2

(red solid curve), compared with the black body limit (blue dashed
line). One can divide the separation distance in three domains A, B,
and C, respectively corresponding to the extreme near-field below
200 nm, to the near-field from 200 nm to 10 μm, and to the domain
of Stefan-Boltzmann’s law beyond 10 μm. This can be seen by the
change of the slope of the curve along these three ranges.
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FIG. 5. (Color online) Heat transfer coefficients as a function of
grating period d , when the gratings are not laterally displaced (solid
blue line) and when they are displaced by half a period (dashed blue
line). This is compared with the PA in red. The gratings have a groove
depth a = 500 nm, filling factor p = 20%, and are at a separation
distance L = 100 nm.

the heat transfer coefficients as a function of the separation
distance L between two plates of SiO2. One can distinguish
three domains A, B, and C, corresponding respectively to
the extreme near-field below 200 nm, to the near-field from
200 nm to 10 μm, and to the domain of Stefan-Boltzmann’s
law beyond 10 μm. The heat transfer coefficient changes in
slope along these three ranges: The strongest contributions
come respectively from the dipole-dipole interaction, from
surface phonon-polaritons, and from the classical radiative
heat transfer. The contribution in the first domain corresponds
to the localized heat transfer seen in the upper-left-hand map
of Fig. 3, whereas the main contribution in the second domain
corresponds to the delocalized heat transfer mediated by the
surface wave seen on the right-hand maps of Fig. 3.

It is also instructive to study the heat transfer modulation as
a function of the corrugation period d, as shown in Fig. 5. We
have selected six types of gratings with corrugation periods
ranging from d = 250 to 1500 nm, each with a groove depth
a = 500 nm and filling factor still fixed at p = 20%. The
separation distance is L = 100 nm. The fact that the heat
transfer coefficients at δ = 0 do not vary much with a change
of period is further confirmation of the validity of the PA in
this configuration. At δ = d/2, however, the scattering and
PA results radically differ for small periods, but tend to agree
for large periods. The reason for this is that when d → ∞,
the ratio a/d tends to zero, and we expect the heat transfer
to be well approximated by the plane-plane case, and hence
the PA.

Let us finally turn to the discussion of the modulation effect.
Figure 2 shows that the heat transfer depends dramatically
on the lateral displacement of the two surfaces, opening the
possibility of a strong modulation via only lateral displacement
of one of the two plates at a fixed distance. To assess
the possible performance of such a system as a thermal
modulator we investigate the modulation factor hδ=0/hδ=d/2

for different filling factors. The results are illustrated in Fig. 6
for gratings with a period and groove depth a = 500 nm, and a
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FIG. 6. (Color online) Heat transfer coefficients as a function of
filling factor p, when the gratings are not laterally displaced (solid
blue line) and when they are displaced by half a period (dashed blue
line). Respective PA predictions are in red. The dotted gray line is
the percentage of the modulation factor hδ=0/hδ=d/2. Gratings have a
period and groove depth of 500 nm, and are separated by a distance
L = 100 nm.

separation distance L = 100 nm. For these large separations,
the modulation factor hδ=0/hδ=d/2 still reaches a maximum of
about 2.2, at a filling factor corresponding to 20% of the total
grating period. At short distances (L ∼ 25 nm) it can reach up
to 35 (c.f. Fig. 2).

IV. CONCLUSION

We have studied radiative heat transfer between laterally
shifted corrugated dielectric plates by using the scattering
method. When comparing the exact results thus obtained
with the commonly used Proximity Approximation, we have
clarified the origin of the success and failure of the latter
approximation by analyzing the interplay between surface
wave resonances and corrugations. We have shown for various
nanograting geometries and separation distances that the
proximity approximation has a better precision for δ = 0
than for δ = d/2. The key to the understanding of the
system is the comparison of the lateral length scale of the
surface corrugation with the lateral extension of surface waves
involved in the heat transfer. Finally, we have narrowed down
the optimum geometrical parameters of a thermal modulator
device for nanosystems based on a lateral displacement of two
corrugated plates facing each other at fixed distance. We found
in general a stronger modulation for small filling factors and
separation distances, and for large grating periods. In certain
regimes it is possible to reach a modulation factor of more
than 35. An in-depth study of the modes accounting for the
most important part of the heat transfer would be an interesting
prospect as well as to further enhance the modulation by using a
broader range of materials35 such as different alloys combining
the polaritons of certain dielectrics and the near-field properties
of metals. The issue of heat transfer in near-field in the case
of coatings,8 phase change materials,31,35 metamaterials,5,36

or graphene-covered dielectrics2 in this regard should also be
explored.
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