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Abstract – New laboratory tests are presented for the experimental evaluation and assessment of the piezo-

ceramic shunted damping (PSD) concept for cantilever Aluminium thin (long) beams bonded symmetrically

on their upper/lower surfaces with single pairs of small piezoceramic patches. Following these tests out-
come, the PSD efficiency measure is proposed to be the so-called modal effective electromechanical coupling

coefficient, which is post-processed from free-vibrations analyses under short-circuit and open-circuit elec-
trodes of the patches. For this purpose, the tests are numerically modelled, analysed, and correlated using
ABAQUS r© commercial finite element (FE) code. Good tests/models correlations were reached after FE
models electromechanical updating. This is attributed to the refined FE models in the sense that they have
considered realistic and desirable features such as, electrodes equipotentiality, piezoceramic patches poling

orientations (same/opposite), and the corresponding (parallel/series) electric wiring (connections).

Key words: Piezoceramic shunted damping / experimental tests / finite element analysis / electrodes
equipotentiality / piezoceramic poling orientation / patches electric wiring / models electromechanical
updating

Résumé – Concept d’amortissement piézoélectrique shunté : expérimentation, modélisation et

corrélation. De nouveaux tests de laboratoire sont présentés pour l’évaluation expérimentale du concept
d’amortissement piézocéramique shunté (APS) pour des poutres cantilever minces (longues) en Aluminium
sur lesquelles sont collées symétriquement sur leurs surfaces supérieures/inférieures des paires uniques de
petits patches piézocéramiques. Suite aux résultats de ces tests, le coefficient de couplage électromécanique

effectif modal, obtenu par post-traitement à partir d’analyses vibratoires avec des électrodes de patches
en court-circuit et circuit ouvert, est proposé comme mesure de l’efficacité de l’APS. Pour cela, les tests
sont numériquement modélisés, analysés et corrélés à l’aide du code commercial d’éléments finis (EF)
ABAQUS r©. De bonnes corrélations modèles/essais sont obtenues après le recalage électromécanique des
modèles. Celles-ci sont attribuées aux modèles EF raffinés dans le sens où ils ont considéré des aspects
réalistes et désirables tels que l’équipotentialité des électrodes, les orientations (mêmes/opposées) des
patches piézocéramiques, et les connexions (parallèles/séries) électriques correspondantes.

Mots clés : Amortissement piézocéramique shunté / tests expérimentaux / analyse par éléments finis /
équipotentialité des électrodes / orientation des polarisations piézoélectriques / connexions électriques de
patches / recalage électromécanique de modèles

1 Introduction and state of the art

The piezoceramic shunted damping (PSD) concept
relies on the conversion, via a piezoceramic transducer
bonded to the vibrating structure, of the mechanical en-
ergy to an electric energy that is dissipated through the
resistive component of a shunting electronic circuit [1].
In analogy with the intrinsic electromechanical coupling

a Corresponding author:
gael.chevallier@supmeca.fr

coefficient (EMCC) that measures the energy conversion
efficiency of a piezoceramic material [2–5], the general-
ized (or effective) EMCC parameter was introduced [6–9]
to measure the patches energy conversion when they are
bonded to, or integrated in, a host structure [10,11]. More-
over, the added damping was shown to be proportional
to this parameter [12]. Hence, the latter can be used as
a PSD performance indicator. The shunting circuit can
be resistive (constituted by a simple resistance), reso-
nant (or inductive, containing at least a resistance and
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Nomenclature

A Patch electrode area (m2)

CS
p Capacitance at constant strain of a patch (nF)

CT
p Capacitance at constant stress of a patch (nF)

fOC Open-circuit natural frequency (Hz)

fSC Short-circuit natural frequency (Hz)

h Thickness of a patch (m)

k31 Material transverse electromechanical coupling coefficient

K Effective electromechanical coupling coefficient

Ropt Optimal electric resistance (Ω)

∈S
33 Transverse dielectric permittivity at constant strain (F.m−1)

∈T
33 Transverse dielectric permittivity at constant stress (F.m−1)

∈0 Dielectric permittivity in void (=8.854 pF.m−1)

ωSC Short-circuit radial frequency (rad.s−1)

ω̄ Nominal radial frequency (rad.s−1)

ξR,RL

add Added resistive (R), resonant (RL) shunted damping

ξSC,OC Modal damping ratio for short-circuit/open-circuit patches electrodes

ξopt Total damping ratio for optimal shunt resistance

List of acronyms

2D Two-dimensional,

3D Three-dimensional

CFRP Carbon fibre reinforced plastics

DOF Degrees of freedom

EBC Electric boundary conditions

EMCC Electromechanical coupling coefficient

EP Equipotential

FE Finite element

FRF Frequency response function

MBC Mechanical boundary conditions

MSE Modal strain energy

NIDAQ National instruments data acquisition

OC Open circuit

OP Opposite poling

PSD Piezoceramic shunted damping

PW Parallel wiring

PZT Lead Zirconate Titanate

SC Short circuit

SP Same poling

SW Series wiring

UMAT User material

an inductance in series or parallel) and capacitive (con-
taining a simple capacitance with a positive or negative
value) [9, 13]. Switching between open-circuit (OC) and
short-circuit (SC) electric states, or between OC and re-
sistive or resonant shunted states, can also reduce vibra-
tions [14]. It is worthy to mention the analogy between
the resistive PSD and viscoelastic damping, and between
the resonant PSD and the proof mass damping.

During the last three decades, the PSD concept was
the focus of intense researches [13–15]. Its experimen-
tal evaluation and assessment have been conducted on
simple structures, like bars, beams, plates and rings. By
far, the cantilever beam with symmetrically (co-localised)
bonded piezoceramic patches was the most experimented

structure using various shunting circuits going from the
simple resistor circuit [6] up to complex feedback [15] one.
In this case of multiple patches, the poling (polarization)
directions and the electric connections (wiring) of their
electrodes affect the structure deformation state. Hence,
when the patches have the same poling (SP) directions,
they require electric parallel wiring (PW); while when
they have opposite poling (OP) directions, they require
electric series wiring (SW) [16]. In both cases, this pro-
duces opposite electric fields in the patches so that when
the bottom patch expands, the upper one contracts cre-
ating an upward pure bending of the cantilever beam.

Early PSD experimental evaluation and assessment
tests have concerned a cantilever Aluminium beam on



G. Chevallier et al.: Mécanique & Industries ??, ??–?? (2009) 3

which two SP piezoceramic pairs were surface-bonded
with a very thin conducting epoxy [6]. The beam was
grounded and the positive electrodes were attached
to the exterior electroded surfaces of the piezoceramic
pairs. Resistive and resonant PSD tests were modelled
and analysed using a single-mode mixed mechanical
impedance/Ritz method [17]. The same electric wiring
has been considered in [18] but for six piezoceramic pairs
that were individually wired in parallel for multimode res-
onant PSD and a viscous damping was taken into account
in the mechanical impedance formulation. The latter has
been combined to the finite element (FE) method [8,12], a
Navier analytical solution [19] and a shunt tuning method
based on the measured electrical impedance [20] rather
than pole placement and transfer function methods pro-
posed in [6] and used in [7, 8, 12, 17–19].

A modal strain energy (MSE) approach has been pro-
posed and validated [21] on similar experiments as above.
Here, it was clearly indicated that the patches have SP
and PW. It was shown that the resistive PSD induced
damping can be written as the product of the effective
fraction of MSE stored in the piezoceramic material, an
effective piezoceramic material loss factor and a frequency
shaping factor. The first parameter is determined via a
FE model, the second one is closely related to the ma-
terial EMCC and the third one results from the shunt-
ing circuit dynamics. The proposed anelastic relaxation
damping was later implemented as an integral hereditary
material law in an ABAQUS r© UMAT subroutine [22].

Few experiments have considered OP shunted piezo-
ceramics. Hence, early in this decade, four pairs with
inward OP piezoceramics bonded symmetrically on can-
tilever beams have been experimented for variable hy-
brid (shunted/active) damping based on control power
requirement [23]. Recently, resistive PSD using outward
OP piezoceramics bonded symmetrically with a conduc-
tive contact to a quasi-isotropic CFRP laminated can-
tilever beam were tested [24]. Here, the outside piezoce-
ramics surfaces were coated with a conductive silver paint
to form the positive electrodes across which the shunt-
ing resistance was connected. The contact was conductive
but no information was given on the beam grounding. A
similar configuration has been considered also recently
for coupled-field analysis of a piezoelectric bimorph disc
in a direct-write process [25]. Here, an inward OP bi-
morph piezoceramic beam without interface electrodes
was shown to bend upward under series voltage condi-
tions; this is the so-called series bimorph [16]. The mod-
elling and analysis were made using ANSYS r© PLANE223
two-dimensional (2D) piezoelectric FE.

Comparison of both SP and OP PSD configurations
has been made only recently for multimode vibration re-
duction of a CD-ROM drive base [26]. The admittance
of the piezoelectric structure, calculated using ANSYS r©

SOLID5 piezoelectric FE, was proposed as a PSD per-
formance index. It was found that the magnitude of the
admittance in case of OP is much smaller than that of the
SP. It was concluded then that the vibration suppression
of the piezoelectric shunt is small in case of OP. In the

case of SP, the admittance obtained by numerical simu-
lation correlates well with that obtained by experiments.
These results were contradicted by the tests conducted re-
cently [27] which gave similar experimental performance
for OP and SP. It is thought then that the OP patches
were not suitably wired and simulated in [26]. In [27], the
SP and OP patches were connected in PW and SW, re-
spectively, which is consistent with the PW for SP in [21]
and the SW for OP in [25] as well as with parallel and
series bimorphs definitions [16]. It is then necessary to in-
dicate the poling directions and electric wiring for PSD
experiments. Hence, the absence of these indications, as
in [28, 29], renders the tests and their results useless for
reference.

Use of commercial FE softwares for the modelling
and analysis of PSD finds increasing interest. First, a
UMAT ABAQUS r© subroutine has been exploited as dis-
cussed above [22]; then, 2D 8-noded (PLANE223) [25]
and three-dimensional (3D) 8-noded (SOLID5) [26, 30]
piezoelectric FE of ANSYS r© have been used. In [30], the
electronic circuit was modelled using CIRCUIT94 spe-
cific element. Super element ANSYS r© capability has been
used, in [31], for modelling the piezoelectric patches as-
sembled in MATLAB r© to the host elastic structure FE
model. The electrodes equipotential (EP) constraints were
considered and model truncations have been implemented
for both resistive and resonant shunts. The experimental
and FE analyses have shown that the total modal damp-
ing equals the sum of the structural (Rayleigh) damping
and the damping introduced by the piezoelectric patches.
This damping superposition (additive) property has been
used so that first, the inherent structural modal damping
ratios (ξOC) were determined by the –3 dB method for OC
electrodes ; then, the same frequency band was applied so
that the total modal damping (ξopt) is determined; next,
their difference has been used to quantify the increase
in modal damping due to the applied passive electrical
network; that is, ξsh

add = ξopt − ξOC. A parameter study
has shown that modal damping ratios are very sensitive
to uncertainties of the piezoelectric coupling matrix but
not very sensitive to small changes in the optimal resis-
tance. These results are consistent with obtained experi-
mental ones [27] and theoretical one for the shunt parame-
ter only [32]. Finally, MSC/NASTRAN r© software, which
has no piezoelectricity modelling capability, has been used
to implement PSD [33]. For this purpose, the viscoelas-
tic materials complex models of [34,35] were adapted and
combined to the impedance theory [6] for resistive and
resonant PSD modelling. Notice that none of above sim-
ulations [25, 26, 30, 31] has considered the FE models up-
dating.

This work presents, first, new laboratory tests for the
experimental evaluation and assessment of the PSD con-
cept for cantilever Aluminium thin (long) beams bonded
symmetrically on their upper/lower surfaces with sin-
gle pairs of small piezoceramic patches. Then, these
tests are numerically modelled in 3D, analysed, and cor-
related using the commercial FE code ABAQUS r© in
order to measure the PSD efficiency via the so-called



4 G. Chevallier et al.: Mécanique & Industries ??, ??–?? (2009)

Y
Z

X

17

L1=

30
B=

5
B1=

201 . 5

L3=

25

L2=

20
b=

0
.

2
5

h
=

2
H

=

5
B2=

5

2 5

2
0

2
0

.
2

5

Fig. 1. Cantilever Aluminium beam with a bonded pair of PIC255 PZT patches (dim. in mm).

modal effective EMCC, which is post-processed from free-
vibrations analyses under SC and OC electrodes of the
patches. Hence, two cantilever Aluminium beams with
symmetrically bonded PIC255 piezoceramics (PZT), hav-
ing either SP or OP, were analysed in free-vibrations for
SC and OC electrodes without (w/o) or with EP con-
straints. The electric connections, representing the exper-
imental PW and SW, were also modelled. To correlate
with the experimental tests, the FE models electrome-
chanical updating was also conducted. In contrary to the
common practices, as attested by the above state-of-the-
art, these tests simulations can then be seen as refined
in the sense that they consider the following realistic fea-
tures:

– SP and OP are modelled using local coordinates sys-
tems. It is shown that a simpler alternative technique
consists in using positive and negative piezoelectric
matrices for SP and OP, respectively, when filling the
piezoelectric properties data.

– EP physical property was considered using linear con-
straints command for the electrodes electric degrees
of freedom (DOF).

– SC and OC electric boundary conditions (EBC) were
handled by imposing nil electric potential on the four
electrodes for the SC EBC, and by letting the elec-
trodes free of any load for the OC (with or w/o EP)
EBC.

– PW and SW of the SP and OP patches configurations,
respectively, were handled by adding electric connec-
tions equations to the EP electrodes.

– The FE models were updated in three ways: first,
mechanically, by updating the mechanical boundary
conditions (MBC), the experimental clamp, using lin-
ear springs which axial stiffness is tuned for each

configuration so that the differences between FE and
experimental fundamental SC frequencies are made
minimum; then, electrically, by updating the trans-
verse blocked dielectric constant using the measured
blocked capacities of the individual patches; finally,
electromechanically, by combining the previous two
methods.

The original contributions of this work are (i) the exper-
imental PSD performance assessment for both SP and
OP bimorph configurations; (ii) the clarification of the
electric wiring (connection) of SP and OP configurations;
(iii) the electromechanically updated FE modelling with
a commercial code of PSD experiments for different po-
larisations configurations; (iv) the assessment of the influ-
ence of the equipotential physical constraint on the modal
effective EMCC. This work outcome could be of major in-
terest to practitioners and researchers.

2 Piezoceramic shunted damping
concept testing

2.1 Test articles design and experimental setup

Two test articles were designed and assembled for the
experimental evaluation and assessment of the PSD con-
cept. They consist of Aluminium cantilever beams with
0.25 mm-thick PIC255 PZT patches (purchased from PI
Ceramics) glued symmetrically with a conductive epoxy
adhesive on their top and bottom surfaces near the clamp
(Fig. 1) in order to get measurable effective EMCC at
least for the first bending mode. Focus is made here on
the pure bending modes of the beams which induce ex-
pansion and contraction strains on their external faces.
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Fig. 2. Piezoceramic patches bonding configurations: (a) SP. (b) OP.
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Fig. 3. Electric connections: (a) Parallel wiring (for SP). (b) Series wiring (for OP).

Since the patches are polarized along the thickness direc-
tion and work in their extension response, as sketched in
Figure 2 for the fundamental mode, this can be reached
by bonding them so that they have either positive SP
(Fig. 2a) or outward OP (Fig. 2b) directions.

As it is well known, a piezoceramic patch generates
electric charges, hence a flowing electric current, when
it is deformed. The sign of this current depends on the
signs of the imposed strains on the patches as in Fig-
ure 2. Hence, above bonding configurations have to be
connected electrically in parallel (Fig. 3a) and in series
(Fig. 3b), respectively. This leads to respective equiva-
lent capacitance of wired piezoceramic patches of half and
twice that of each patch. It is clear from Figure 4 that SP
and OP patches have to be PW and SW, respectively;
otherwise, no current is flowing in the wired pair and no
added PSD can be expected. For better readability, PW
and SW patches electric connections acronyms will be
used mainly in this testing section, while those of SP and
OP patches bonding configurations will be used mainly
in the FE modelling section.

The bending modes of the beams are excited with an
electromagnetic shaker. The latter is plugged near the
beam clamp in order to minimize its mass coupling. Since
only the first modes are measured there is no modal cou-
pling between the shaker and the beam. A white noise
generator is used to drive the shaker in a [10–1000] Hz
frequency range. The acceleration is measured using an
electromagnetic sensor located near the beam tip. This
position is a good compromise in order to get the largest
displacement for the first two bending modes. Both the
generator and the sensor are linked to a National Instru-
ment Data Acquisition (NIDAQ) card (Fig. 5) which mea-
sures their signals. Using the latter, SC and OC frequency
response functions (FRF), for both electrical connections,

are plotted in order to extract the natural frequencies and
modal damping ratios. The latter are calculated using the
classical –3 dB approach from the FRFs; these were com-
puted using the H1 transfer function after averaging the
signals acquired during 400 blocks. To get good EMCC
calculation accuracy, the frequency resolution is taken as
0.039 Hz. This value is obtained with the above frequency
range and with blocs of 16 384 samples. Finally, to evi-
dence the effect of the passive damping induced by the
shunted piezoceramics, all the other causes of damping
were minimized by using an electromagnetic non contact
sensor, a clamp as stiff as possible (a heavy steel mass as
in Fig. 1), and specific electric wires, as thin as possible.

2.2 Experimental PSD performance evaluation
and assessment

Some preliminary tests were first conducted. They
consist of measuring, for both series and parallel electri-
cal connections, the bonded patches individual and wired
(equivalent) capacitances at constant strain and the open-
loop (without shunt) OC and SC modal properties (FRFs,
natural frequencies, damping ratios).

Individual and wired bonded patches capacitances (at
constant strain) are measured using a multi-meter for a
nominal frequency of 100 Hz. The obtained values are
compared in Table 1 to the theoretical ones resulting from
the expression of the capacitance at constant strain (S) in
term of that at constant stress (T ) and material extension
EMCC, k31:

CS
p = CT

p (1 − k2
31) (1a)

with

CT
p =

∈
T
33 A

h
(1b)
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Table 1. Measured and theoretical blocked capacitances (nF).

Wiring Side Measured Theoretical Measured Theoretical Relative

Individual Individual Equivalent Equivalent Difference (%)

Parallel
left 17.9

27.2

36 54.5 33.8
right 17.6

Series
left 23

12 13.6 11.8
right 23.8
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Fig. 4. Flowing currents (a) and voltages (b) in individual,
SP and OP patches.

where ∈
T
33 / ∈0= 1750 and k31 = 0.35 are the PIC255

PZT relative transverse dielectric constant at free stress
and EMCC; h and A are its thickness and electrode area.
The observed relative differences may be due, on one
hand, to the quality of the manual gluing procedure of
the patches to the beams for both electrical connections;
it seems that the series configuration was better exper-
imentally prepared than the parallel one. On the other
hand, these deviations may be also due to the fact that the
measured capacitance is in fact the static one which value
lies between those of the free and blocked capacitances.

Electromagnetic
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Electromagnetic

Sensor

White Noise 

Generator

Current 

Amplifier 

NI DAQ

230 mm

15 mm
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Electromagnetic

Sensor

White Noise 
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NI DAQ

230 mm

15 mm

Fig. 5. Experimental setup.

The made error depends mainly on the MSE fraction
in the patches [9]. Besides, the dielectric bonding glue
may affect the OP configuration capacitance and OC fre-
quency (hence EMCC) measurements more than the SP
ones since the beams were not grounded. Nevertheless,
the bonding layers capacities were measured and found
to be around one hundred times lower that those of the
individual patches. No specific measurement difficulties
were encountered with the OP configuration.

Measured frequency response functions of the first two
bending modes of series and parallel electrical connections
with OC electrodes of the patches are shown in Figure 6.
The differences (<3% for the frequencies) between the two
electrical connections can be explained by the geometrical
defects and the manual gluing procedure. The equivalent
capacitances of both configurations should induce only
small differences at this testing stage.

Open-loop series and parallel connections measured
SC and OC natural frequencies and damping ratios of
the first and second bending modes are given in the cor-
responding FRFs shown in Figures 7 and 8, respectively.
It can be noticed that the open-loop measured damping
ratios are rather small and that, due to the experimental
conditions, they can not be further reduced.

For the resistive PSD concept experimental evalua-
tion and assessment, the maximum added damping is
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Fig. 6. OC measured FRF of SW and PW configurations: (a)
First mode. (b) Second mode.

calculated using the measured OC and SC natural fre-
quencies for both SW and PW via this approximate rela-
tion [7-9]:

ξR
add ≈

K2

4
(2a)

with,

K2 =
f2
OC − f2

SC

f2
SC

(2b)

Then, optimal resistances are computed from measured or
calculated capacitances (Tab. 1) and compared to those
obtained from an experimental parametric analysis. Cor-
responding calculated and measured damping ratios are
also compared for validation. Hence, using equations (2),
in conjunction with the SC/OC measured frequencies
given in Figures 7 and 8, the corresponding modal ef-
fective EMCC and theoretical maximum added PSD are
calculated and summarized in Table 2. In the latter, ξopt

is the total damping ratio calculated as the sum of the
SC damping ratio (ξSC) that can be seen as the nominal
damping and the added one (ξR

add) obtained for the op-
timal resistive shunt. This is a different use than in [31]
of the damping additive property since the added PSD
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Fig. 7. First mode open-loop SC/OC FRF for: (a) SW. (b)
PW.

was deduced there from measured OC and total damp-
ing (ξsh

add = ξopt − ξOC), while here, it is estimated via
equation (2a) and the total damping is computed as
ξopt = ξSC + ξR

add; i.e., only ξSC is measured. Low values
of the added damping ratios can be noticed from Table 2,
in particular for the second mode. This can be expected
from the corresponding modal effective EMCC that can
be seen as a PSD performance indicator. It is worthy to
mention that equation (2a) is valid only for low modal ef-
fective EMCC. It is deduced from an exact relation that
was obtained from single mode PSD transfer functions
root loci [9]; hence, equation (2a) is also limited to well
spaced modes. The exact and approximate resistive PSD
formulas comparison and their validation with experimen-
tal data [6] were made in [12].

To provide the maximum added piezoelectric shunted
damping at the nominal radial frequency ω̄ = ωSC =
2πfSC, the optimal resistance should be chosen as [6]:

Ropt =

√

1 − k2
31

CS
p ω̄

(3)
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Fig. 8. Second mode open-loop SC/OC FRF for: (a) SW. (b)
PW.

Table 2. Modal effective EMCC and predicted optimal damp-
ing ratios.

Mode 1 2
Wiring Series Parallel Series Parallel
K (%) 7.77 8.31 3.96 3.34

K2 (%) (2b) 0.6 0.69 0.16 0.11
ξR
add (%) (2a) 0.15 0.17 0.04 0.03

ξSC (%), measured 0.42 0.42 0.29 0.44
ξopt(= ξSC + ξR

add) (%) 0.57 0.59 0.33 0.47
ξSC % increase 36 45 14 7

With this relation, the optimal resistances are computed
using the capacitances given in Table 1 for both elec-
tric connections and the first two bending modes. Experi-
mental capacitances were used to help for minimizing the
gap between predictions and measurements and to obtain
predicted damping ratios of Table 2. Moreover, to vali-
date the latter, an experimental parametric analysis was
performed by varying the shunt resistor for both modes
and connections. Corresponding results are summarized
in Table 3. The latter indicates that, for the considered
connections and modes, the theoretical resistances are in
the interval defined by the best tested resistances. It can

Table 3. Optimum resistance and damping of a resistively
shunted cantilever Aluminium beam.

Mode 1 2
Wiring Series Parallel Series Parallel

Theoretical Ropt (kΩ) (3) 468 159 75 26
predictions ξopt (%) (Tab. 2) 0.57 0.59 0.33 0.47

Experimental Ropt (kΩ) 440 150 70 15
analyses ξopt (%) 0.56 0.55 0.34 0.49

be noticed also that a very good agreement is also reached
between predicted and measured optimal damping ratios.
These results confirm the low sensitivity of the resistive
PSD to the resistor tuning parameter, as in [31, 32], and
the damping additive property, as in [31]. Also, the added
PSD estimation using the modal effective EMCC, as de-
fined in equations (2), is here experimentally verified;
thus, this parameter can be used as a PSD performance
indicator.

2.3 Modal effective EMCC as a PSD
performance indicator

From above experiments, it appears clearly that the
knowledge of the modal effective EMCC provides a good
estimation, via equation (2a), of the maximum added
resistive shunted damping. In fact, its square root is
also a very useful damping parameter since it provides
an estimation of the maximum added damping of reso-
nant shunting via this approximate relation (see [9] for
example):

ξRL
add ≈

K

2
(4)

The same comments on equation (2a), at the end of the
paragraph that follows it, are also valid here for equa-
tion (4), except that the exact and approximate resonant
PSD formulas comparison and their validation with ex-
perimental data [6] were made in [8].

Therefore, to design PSD applications, it is capital to
know the modal effective EMCC; then, its square and
square root can inform on the expected maximum added
resistive and resonant PSD, respectively. Besides, the use
of SC and OC modal analyses renders its calculation easy
by commercial codes (available for industry) and makes it
a good PSD design criteria. For this reason, the upcoming
numerical analyses and test/model correlations will focus
only on the modal effective EMCC evaluation and assess-
ment with regards to the above listed realistic features
(see the end of the introduction section).

3 PSD tests fe modelling, analyses
and correlations

3.1 Tests FE modelling

The tested cantilever beams, as sketched in Figure 1,
with SP and OP symmetrically bonded piezoelectric
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Patch BeamClamp 

Fig. 9. FE model of the tested cantilever smart beams.

patches and connected electrically in PW and SW, re-
spectively, were modelled using ANSYS multiphysics and
ABAQUS r© FE commercial codes, the only ones available
for us to run coupled piezoelectric analysis. However, only
the modelling procedure with ABAQUS r© is retained here
because it is thought that it presents higher research and
practical added values. ANSYS multiphysics procedures
for this beanchmark can be found in [36] and in [37] for
another benchmark.

The encountered first problem was the incomplete set
of PIC255 material data provided by the supplier; to over-
come it, the useful provided ones for a 3D FE analysis
were completed using the procedure described in [37]. The
second problem was to fill the code GUI for the materials
properties with the right data since the software does not
use the IEEE Standards on piezoelectricity notations [3]
regarding the shear electromechanical (elastic and piezo-
electric) constants. Also, the code uses the 4 indices nota-
tions for the constitutive equations but expects 2 indices
notations input data (see Appendix A).

After a preliminary FE model convergence analysis,
the cantilever adaptive beam has been discretized using
quadratic (20-nodes) brick elements so that the result-
ing FE model has 885 elements and 8896 nodes; that is,
C3D20R (R for reduced integration) and C3D20ER (E for
electric) were used for the Aluminium beam and piezoce-
ramic patches, respectively (Fig. 9).

To represent the different poling directions for SP
and OP configurations, local coordinates systems were
attached to the individual patches. For this purpose, it is
necessary to create a “Datum CSYS” for each patch and
to assign an orientation so that, for the SP, both patches
systems have the same orientation, and for the OP, one
of the patches systems will be turned to 180◦ of the other
patch system around the first axis (Fig. 10).

For each electric connection (series or parallel), there
are two wiring ways: SC and OC (with or without equipo-
tentiality). These are reached using kinematics linear
relations via ABAQUS r© constraints command. Conse-
quently, sets and constraints are created in terms of the
electric degree of freedom, DOF9, to have the various con-
figurations types. Hence, there are two constraint equa-
tions for each connection type. First, the different sets are
defined for DOF9 as follows:

– Sext
P1 : all nodes of the patch 1 external surface except

a node.
– N ext

P1 : the remaining node of the patch 1 external sur-
face.

– Sint
P1 : all nodes of the patch 1 internal surface except

a node.
– N int

P1 : the remaining node of the patch 1 internal sur-
face in contact with the beam.

– Sext
P2 : all nodes of the patch 2 external surface except

a node.
– N ext

P2 : the remaining node of the patch 2 external sur-
face.

– Sint
P2 : all nodes of the patch 2 internal surface except

a node.
– N int

P2 : the remaining node of the patch 2 internal sur-
face in contact with the beam.

– N1
beam : a node of the beam in contact with the

patch 1.
– N2

beam : a node of the beam in contact with the
patch 2.

For each connection, realized wirings (OC and SC) are
represented by their equivalent linear relations (Fig. 11):

N int
P2 − N int

P1 = 0

N ext
P1 − N1

beam = 0

N ext
P2 − N2

beam = 0 (5)

N int
P2 − N int

P1 = 0

N ext
P2 − N ext

P1 = 0 (6)

N int
P2 − N int

P1 = 0 (7)

Also, applying SC or OC EBC is realized directly in the
GUI by selecting the nodes of the electrodes to apply the
EBC. Hence, for the SC condition, it is enough to se-
lect the nodes of the patches four faces and to apply on
them a nil potential. While, for the OC case, the faces of
patches are charge free. The usual way is to not apply any
electric condition. However, for physical reasons, the EP
condition has to be added by coupling the nodes of each
face of the patches. Hence, to express the equipotentiality
constraints of the patches surfaces, the following relation-
ships are used between the electric DOFs (DOF 9):

Sext
P1 − N ext

P1 = 0

Sint
P1 − N int

P1 = 0

Sext
P2 − N ext

P2 = 0

Sint
P2 − N int

P2 = 0 (8)

An easier alternative technique to simulate the electric
connections is also proposed; it is based on the polariza-
tion orientation by changing the sign of the patches in-
dividual piezoelectric matrices. For this, first, a unique
piezoelectric matrix with same signs is used for both
patches as in Figures 12a and 12b for the SP and OP con-
figurations; then, the piezoelectric matrix sign of one of
the patches is changed in order to get OP and SP ones, re-
spectively. However, this requires the definition of two dif-
ferent materials, one for each patch as in Figures 12c, 12d.
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Fig. 10. SP and OP modelling.
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Fig. 13. EP (decoupling) effect on the modal effective EMCC.

3.2 Preliminary FE analyses

Preliminary FE free vibration analyses (without mod-
els updating), using the iterative block subspace algo-
rithm, of the four configurations, shown in Figure 12, for
the OC case with or without applying the EP condition,
equation (8), and with or without the electric connections
equations (5–7), have shown that both modelling tech-
niques of the polarisation orientations are equivalent and
that the electric connection equations (5–7) have no influ-
ence on the frequencies. Also, SP and OP configurations
gave the same frequencies in contrary to the experimen-
tal results; this may be due to the patches bending layers
and the damping that have not been considered in the FE
models.

The obtained results for the first six modes are shown
in Figures 13 and 14. The latter show that the effect of
the EP condition on the frequencies is very small but
is important on the modal effective EMCC in particular
for marginally coupled modes as for the last two ones.
Moreover, the in-plane (plate) bending (3rd) and torsion
(4th) modes (see Fig. 15) become uncoupled when the
EP is applied because their potential distributions are
unsymmetric (see Fig. 14); hence, the application of the
EP constraint make their electrode potential distribution
average nil leading to identical SC and OC frequencies,
hence a nil EMCC. Figure 14 shows clearly that when
the EP is not considered in the piezoelectric FE analyses,
the electric potential is no longer uniform on the patches
electrodes; this is not consistent with the physics. This
figure was obtained under the condition that the patches-
to-beam interfaces are grounded; otherwise the uniform
potential distribution overpasses the patches areas.

First two modes (Fig. 16) modal effective EMCC FE
results (without models updating) are compared to the
experimental ones in Figure 17 which indicates that de-
viations are important for both modes. Models updating
with measurements is then necessary to reduce simula-
tions errors.

3.3 Electromechanical updating
for test/model correlation

For better correlations purpose, FE models were up-
dated both mechanically and electrically. Mechanical up-
dating was first made by removing the clamp then block-
ing only the two translations in the cross-section plan.
The translation in the beam axial direction was let free,
but a spring is added for the free DOF which stiffness
is distributed on all the face nodes using ABAQUS r©

Spring/Dashpots function. This modification allows the
first section to rotate around the y-axis; thus the clamp
is less stiff and the modal frequencies are lower. Differ-
ent updating stiffness values per node kn were tested us-
ing the classical trial and error technique (more details
can be found in [11, 37]). Using spring stiffness values of
2.05 MN/m and 2.48 MN/m for the SP and OP configura-
tions, respectively, led to relative deviations of 0% for the
fundamental frequency of both configurations and 1.22%
and 2.65% for the second mode under these configura-
tions, respectively. On the other hand, electric updating
was reached by using the computed transverse blocked di-
electric constant from the measured (see Tab. 1) SP and
OP blocked capacitances (individual) using this formula:

∈
S
33=

CS
ph

A
(9)

After electromechanical updating, computed SP and OP
OC (with EP) modal frequencies and effective EMCC are
now different as given in Table 4. When compared to
experimental results of the first two modes, a great en-
hancement of the test/model correlation can be noticed
as shown in Table 5. The latter shows higher deviations
for the second mode (slightly coupled) than for the first
one (coupled) which can be considered satisfactory; this
can be explained by the low EMCC values of the former;
that is, although the difference between SC and OC values
are very small, their squared values are amplified through
the EMCC evaluation.
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N° foc (Hz)  Electrode potential w EP foc (Hz)  Electrode potential w/o EP 

1 29.462 

 

29.465 

2 176.81 176.84 

 

3 412.59 413.22 

4 450.70 

 

450.72 

5 483.84 

 

484.01 

 

6 941.75 942.19 

 

Fig. 14. Electrodes potential distributions w vs. w/o EP for OC SP patches (grounded interfaces).
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(a)

(b)

Fig. 15. Mode shapes of the decoupled modes by the EP
constraint: (a) Mode 3. (b) Mode 4.

(a)

(b)

Fig. 16. First two mode shapes: (a) Mode 1. (b) Mode 2.

4 conclusions

This work has evaluated the experimental perfor-
mance of the piezoelectric resistive extension piezoelec-
tric shunted damping (PSD) concept on a simple labora-
tory setup. The latter consisted of a cantilever Aluminium
thin (long) beam with a single pair of same or opposite
poled small piezoceramic patches bonded on its opposite
faces near the clamp and wired electrically either in se-
ries or in parallel. Good correlations between theoretical
and experimental optimal resistances and damping ratios
were reached for the measured first two bending modes.

1
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Abaqus

0

0,2

0,4
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0,8

1
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E
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C

²(
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)

Beam mode number

Fig. 17. Experimental and FE (with EP for OC) squared
EMCC for the first two modes.

Table 4. First six FE (with EP for OC) frequencies and
EMCC after electromechanical updating (EMU).

Configuration FE (w EP)
(EMU parameters) Mode fOC (Hz) fSC (Hz) K (%)

1 26.194 26.092 8.85
SP 2 159.15 159.08 2.97

(k = 2.05 MN/m, 3 333.56 333.56 0
Cs

p = 17.9/17.6 nF) 4 441.86 441.86 0
5 443.99 443.9 2.02
6 880.52 878.85 6.17
1 26.65 26.561 8.19

OP 2 161.31 161.24 2.95
k = 2.48 MN/m, 3 343.25 343.25 0
Cs

p = 23/23.8 nF 4 442.42 442.42 0
5 448.2 448.14 1.64
6 885.91 884.63 5.38

Table 5. EMCC test/model correlation after FE models elec-
tromechanical updating (EMU).

Mode
Tests (ref.): FE w EMU: Deviation

K (%) K (%) (%)
SP (PW) OP (SW) SP OP SP OP

1 8.31 7.77 8.85 8.19 6.50 5.41
2 3.34 3.96 2.97 2.95 11.08 25.5

However, the obtained damping ratios were found to be
very low.

On the other hand, this work has presented refined (re-
alistic) finite element (FE) modelling and analyses using
ABAQUS r© commercial code of above PSD tests regard-
ing the modal effective electromechanical coupling coeffi-
cient (EMCC) which is proposed here as a PSD perfor-
mance indicator ; in particular, it was found that good
test/model correlations require: (i) to take care of the
patches poling directions and their corresponding electric
connections (wiring); (ii) to consider the equipotentiality
(EP) constraint for OC electrodes; (iii) and to conduct
electromechanical updating of the FE models.

This work has contributed to the PSD research field
by the proposed tests and their refined simulations. It
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Table A1. Materials properties.

Materials Constants (SI unit) Notations Values

PIC255 Permittivity constants at constant ∈S
11=∈S

22 8.245
(completed strain (nF/m)

properties as in ∈S
33 7.122

[37]) Stress piezoelectric e31 = e32 –7.25
coupling constants (C/m2) e33 14.41

e15 = e24 11.57
SC Young’s modulii (GN/m2) E1 = E2 62.1

E3 48.3
SC Poisson’s ratios ν12 0.32

ν13 = ν23 0.44
SC Shear modulii (GN/m2) G12 23.5

G13 = G23 21
Density (Kg/m3) ρ 7800

Aluminum Young’s modulus (GN/m2) E 69
(assumed Poisson’s ratio ν 0.3

properties) Mass density (Kg/m3) ρ 2700

was discovered, from the latter, that the physical EP con-
straint has a decoupling effect (Fig. 13, Tab. 4) and de-
creases the modal effective EMCC. A recent additional
experimental campaign has validated these findings [37].

Acknowledgements. This work has been supported by the Eu-
ropean Commission via the contract n◦ FP6 NMP3-CT-13517
(CASSEM). The authors gratefully acknowledge this financial
support.

Appendix A

The Engineering constants of the materials, used in
the 3D FE simulations are shown (from [37]) in Table A1.

In ABAQUS r© notations, these data can be put in
matrix form for GUI use as follows:

– SC elastic stiffness matrix [Dϕ]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D1111 D1122 D1133 0 0 0

D1122 D2222 D2233 0 0 0

D1133 D2233 D3333 0 0 0

0 0 0 D1212 0 0

0 0 0 0 D1313 0

0 0 0 0 0 D2323

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

105.2 58.3 55.4 0 0 0

58.3 105.2 55.4 0 0 0

55.4 55.4 85.9 0 0 0

0 0 0 23.5 0 0

0 0 0 0 21.0 0

0 0 0 0 0 21.0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GN.m−2 (A.1)

– Strain piezoelectric matrix [d] (converted by
ABAQUS r© to the stress one [e] via [e] = [d] [Dϕ])

⎡

⎢

⎣

0 0 0 0 d113 0

0 0 0 0 0 d223

d311 d322 d333 0 0 0

⎤

⎥

⎦
=

⎡

⎢

⎣

0 0 0 0 550 0

0 0 0 0 0 500

−180 −180 400 0 0 0

⎤

⎥

⎦
pC.N−1 (A.2)

– Relative blocked dielectric permittivity (at constant
strains ε) matrix [Dε]

⎡

⎢

⎣

Dε

11 0 0

0 Dε

22 0

0 0 Dε

33

⎤

⎥

⎦
=

⎡

⎢

⎣

8.245 0 0

0 8.245 0

0 0 7.122

⎤

⎥

⎦
nF.m−1 (A.3)
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