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COUPLING TECHNIQUES FOR NONLINEAR HYPERBOLIC

EQUATIONS. IV. WELL-BALANCED SCHEMES FOR SCALAR

MULTIDIMENSIONAL AND MULTI-COMPONENT LAWS

BENJAMIN BOUTIN, FRÉDÉRIC COQUEL, AND PHILIPPE G. LEFLOCH

Abstract. This series of papers is devoted to the formulation and the ap-
proximation of coupling problems for nonlinear hyperbolic equations. The

coupling across an interface in the physical space is formulated in term of

an augmented system of partial differential equations. In an earlier work,
this strategy allowed us to develop a regularization method based on a thick

interface model in one space variable for coupling scalar equations. In the

present paper, we significantly extend this framework and, in addition, en-
compass equations in several space variables. This new formulation includes

the coupling of several distinct scalar conservation laws and allows for a pos-

sible covering in space. Our main contributions are, on one hand, the design
and analysis of a well–balanced finite volume method on general triangulations

and, on the other hand, a proof of convergence of this method toward entropy
solutions, extending Coquel, Cockburn, and LeFloch’s theory (restricted to a

single conservation law without coupling). The core of our analysis is, first,

the derivation of entropy inequalities as well as a discrete entropy dissipation
estimate and, second, a proof of convergence toward the entropy solution of

the coupling problem.

1. Introduction

Objective of this paper. This is a continuation of [11, 12, 13] devoted to coupling
techniques for nonlinear hyperbolic equations. In the present paper, we deal with
the coupling of multi-dimensional hyperbolic equations, based on an arbitrary parti-
tion of the physical domain. The main motivation stems from the study of complex
systems resulting from the combination of elementary components modeled by dif-
ferent equations. Indeed, each component may be subject to physical phenomena
involving fairly different time and space scales. Tackling this multiscale problem
with sufficient accuracy and efficiency requires to consider distinct physical models
for the description of each component, so as to end up with a suitable description of
the whole physical system. For instance, large–scale power plants provide a typical
example of interest [29]. Describing the evolution in time requires the exchange of
transient informations at each physical boundary separating two distinct hyperbolic
models. These transient informations or boundary conditions are referred hereafter
to as coupling conditions.

This problem seems to be rather new in the applied mathematical community.
Its analysis was initiated by Godlewski and Raviart [28] for scalar equations in one
space variable. Therein, the coupling problem is formulated in terms of two initial
boundary value problems (IBVP) supplemented with coupling boundary conditions
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at a given (infinitely thin) interface. These boundary conditions are stated in such
a way that in “most cases” they ensure the continuity of the main unknown, at
least, roughly speaking, as long as no wave from the left– and right–hand problems
interact at the interface. If this condition does not hold, one says that the interface
is resonant. In Ambroso et al. [2, 4, 5], quite general continuity conditions based
on a nonlinear transformation of the unknown were investigated. Following earlier
investigations by LeFloch and collaborators [23, 31, 34, 35, 36, 37] on undercompres-
sive shocks and interfaces, nonconservative hyperbolic systems, and boundary value
problems, we stress that additional information coming from physical modeling is
necessary in order to single out the relevant continuity conditions (or transmission
condition) at the interfaces. Various conditions were introduced and studied in a
variety of physical frameworks, ranging from gas dynamics [2] to multiphase flows
[1, 4].

Thin interface versus thick interface. We briefly mention some transmission condi-
tions of interest when the coupling invoves two Euler systems with distinct pressure
laws. Typically, one imposes the continuity of the density ρ, velocity component
u, and pressure p, or else the continuity of the convervative variables (ρ, ρu, ρE)
(where E denotes the total energy). These conditions determine the class of con-
stant solutions in the time and the space variables, and have either constant density,
velocity, and pressure, or else constant density, momentum, and total energy. In
both cases, the proposed coupling conditions are nonconservative, since the total
mass of density, momentum, and total energy do vary with time. A fully conser-
vative coupling may turn relevant in some applications, as was addressed in [5]
(following [28]) via suitable a relaxation method.

The resonance phenomena, likely to take place around thin interfaces, brings a
main difficulty in the mathematical analysis of coupled initial boundary value prob-
lems. Solutions can be shown to exist under general conditions but resonance gen-
erally comes at the expense of uniqueness. We refer the reader to [9] for a discussion
of scalar equation and to [2] for a distinct behavior exhibited for characteristic but
non-resonant interfaces. A selection criterion for discontinuous solutions, therefore,
is required. Recall that, for the fully conservative coupling, several distinct entropy
criteria have been proposed, each selecting a distinct weak solution in agreement
with the physical context. (See [14] for a review and [41, 30, 7]).

To deal with general transmission conditions, a macroscopic selection principle
analogous to the entropy inequalities is not available and one needs a detailed de-
scription of microscopic mechanisms coming with suitable regularizing procedures.
In [10, 11, 12], we introduced an alternative modeling for the coupling problem
associated with two hyperbolic equations in one space variable. This alternative
method relies on the introduction of an augmented PDE (partial differential equa-
tions) formulation that avoids the need of a detailed description of the interfaces.
The proposed formalism is based on an additional unknown, the color function
which takes values in the range [0, 1]. Extreme values 0 and 1 are devoted to re-
store the left– and right– problems to be coupled, while intermediate values may
serve to model a smooth transition from one problem to the other.

Outline of this paper. The interest in this augmented formulation comes from its
very capability to support various regularization mechanisms. Viscous perturba-
tions were introduced by the authors [11, 12] for scalar problems and, specifically,
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a self–similar approach was developed, which allows for the study of the existence
and uniqueness of solutions to the coupled Riemann problem in the limit of van-
ishing viscosity. The analysis has been carried out for a general class of systems
[11] and led to an existence theory under fairly general assumptions. In [12], the
analysis of the internal structure of resonant interfaces was performed and led us
to a characterization of the set of admissible Riemann solutions. Despite of the
viscous mechanisms a failure of uniqueness may be observed for resonant infinitely
thin interfaces.

Riemann solutions may be indeed understood as describing the long time as-
ymptotic of the solutions of the Cauchy problem. Failure of uniqueness for thin
interfaces just reflects the property that distinct regularizations of thin interfaces
may give rise to different solutions and thus with a distinct long time behavior.
This observation has motivated a second regularization procedure based on thick
interfaces.

Thick interfaces within the augmented PDE framework are based on a regular-
ization of the discontinuous color function, considered in the thin regime. This
approach has been introduced by the authors first within the framework of two
coupled conservation laws in one space variable [13]. Existence and uniqueness
for the coupled Cauchy problem was proven for general initial data with bounded
sup–norm. One of the main ingredients of proof was the design of a well–balanced
finite volume method. The well-balanced property means that the exact constant
solutions selected by a given transmission condition are exactly preserved at the
discrete level, whatever choice is made for the regularized color function. This
consistency property is of central importance.

In the present paper, we introduce a framework which covers coupling problems
in several space variables and with distinct scalar hyperbolic equations, allowing
for possible covering in space. An outline of this paper is as follows.

• In Section 2, we show how to extend the two existing coupling frameworks
in one space variable to the coupling of two distinct hyperbolic equations
in several space variables. We then show how to extend the augmented
PDE formalism to encompass the case of several hyperbolic equations with
possible covering. In our approach, a vector–valued color map is introduced
so that each component is associated with one of the equations and takes
values in the interval [0, 1]. The specific definition of the regularized color
function provides us with a transition from an equation to another (possibly
more than one).
• We check the existence and uniqueness of entropy solutions to the coupled

Cauchy problem (with initial data in L∞) under fairly general assumptions
on the transmission conditions and the equations under consideration.
• Next, in Section 3, we design a robust and flexible finite volume framework

based on general triangulations. Importantly, by construction, the proposed
method is well–balanced and our strategy for achieving the well–balanced
property is an extension of the subcell reconstruction approach (analyzed
by Bouchut in a different context [8]). In particular, we introduce two
distinct meshes: the first one, the primal mesh, describes the main coupled
unknown. The second mesh, referred to as the dual one, is built from
the primal mesh and carries the approximation of the color function. A
comprehensive derivation of this dual mesh is also proposed.
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• In Sections 4 and 5, we then derive a sup–norm estimate, and observe that
a uniform estimate on the total variation seems to be out of reach, due
to the subcell reconstruction procedure. Consequently, we propose to use
DiPerna’s framework based on entropy measure–valued solutions and, by
deriving suitable entropy inequalities and entropy dissipation bounds, we
establish the strong convergence of the proposed method.
• Finally, in Section 6, numerical experiments are presented which concern

problems with covering in space and, therefore, highlight the interest of the
new coupling strategy.

2. A framework for multi–dimensional coupling

2.1. Coupling of two systems.

Pasting together two initial boundary value problems. In this section, we introduce
the coupling problem associated with two hyperbolic equations coupled at a given
interface. At this stage, it suffices to think of an hyperplane, say {x1 = 0}. We will
extend two distinct coupling strategies that have been developed in a single space
variable. The first procedure consists in modeling the coupling problem as two
initial boundary value problems (IBVP) with time dependent boundary conditions
prescribing the evolution of traces of the coupled solutions on both sides of the
hyperplane {x1 = 0}. In contrast, the second strategy introduced in [11, 12, 13]
is based on augmented PDE systems, and handles the coupling problem as an
initial data problem written over the entire space Rd. This new framework brings
mathematical and numerical advantages, pointed out at the end of this section.

Consider an hyperplane of Rd with unit normal vector ν ∈ Rd, we denote H =
{x ∈ Rd/x.ν = 0}, partitioning Rd into two half-domains D− = {x ∈ Rd/x.ν < 0}
and D+ = {x ∈ Rd/x.ν > 0}. In each open subdomain, a distinct conservation law
is prescribed:

(2.1) ∂tw +

d∑
i=1

∂xia
±
i (w) = 0, w(t, x) ∈ R, t > 0, x ∈ D±,

where the flux-functions A± : R→ Rd, with components (a±i )i=1,...,d, are assumed
to be twice differentiable for definiteness. An initial data w(0, x) = w0(x) supple-
ments this formulation, but obviously some extra-condition, the coupling condition,
must be prescribed at the interface H. For simplicity, we restrict ourselves in this
introductory section to piecewise smooth solutions w with bounded left and right
traces at the interface H: w(t, y±) := limz→0+ w(t, y±zν), y ∈ H. Then, it sounds
natural that the coupling condition we seek should relate these traces

(2.2) C(w(t, y−), w(t, y+)) = 0, t > 0, y ∈ H,
for some nonlinear mapping C to be specified. The implicit function theorem is
assumed to apply so as to recast (2.2) in the more tractable form w(t, y−) =
c(w(t, y+)), t > 0, y ∈ H, for some function c mapping R onto R. Assuming from
now on c to be strictly monotone, we re-express the above coupling condition in
terms of two nonlinear monotone functions θ− and θ+ with c = θ−1

− ◦ θ+:

(2.3) θ−(w(t, y−)) = θ+(w(t, y+)), t > 0, y ∈ H.
Here and without loss of generality, θ− and θ+ are assumed to be strictly increasing
and to map R onto R, and their inverse functions are denoted by γ− and γ+. On the
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basis of this pair of functions, we introduce the following useful change of unknown:

(2.4) u(t, x) =

{
θ−(w(t, x)), t > 0, x ∈ D−,
θ+(w(t, x)), t > 0, x ∈ D+,

so that the coupling condition (2.3) resumes to:

(2.5) u(t, y−) = u(t, y+), y ∈ H.
Observe that in the new unknown, (2.5) just reads as a continuity condition for u.

It is worth underlining that (2.5) defines the constant solutions of the coupling
problem (2.1)-(2.3), i.e. time independent functions w = w(x) which solve (2.1) and
(2.5). Such functions clearly obey

(2.6) u(w(x)) = u?, t > 0, x ∈ Rd \ H,
for some real u? ∈ R (here, the notation u(w) reminds of the change of unknown
(2.4)). This observation actually just opens a path toward the mathematical study
of perturbed solutions of the trivial solution (2.6). We refer the reader to the work
[11] devoted to the existence of self–similar coupled solutions for systems.

Observe that the coupling condition (2.3) plays the role of a pair of transient
boundary conditions for the interface H. In other words, the coupling framework
we address merely takes the form of two nonlinear hyperbolic IBVPs linked via the
transient boundary condition (2.3). It becomes clear that the coupling condition
(2.3) is actually expressed in a strong sense, since it is formulated without reference
to the signature of the wave speeds at the interface H. It is nevertheless well-known
that the sign of the wave velocities at a boundary directly affects the boundary
condition to be prescribed. Hence, the coupling condition (2.3) or its equivalent
form (2.5) must be stated in a weak sense.

We follow the approach for coupled problem in one space variables, originally
developed in Godlevski, Raviart, and collaborators (cf. [27, 28] and [2, 4, 15]). In
these papers, a weak form of the coupling condition (2.3) is formulated in terms of
an admissible boundary set, proposed by Dubois and LeFloch [24] and based on the
notion of Riemann solutions. Such a notion here readily extends since the coupling
condition expressed in (2.3) just links the traces of the coupled solution w in the
normal direction ν and thus essentially concerns the quasi-one dimensional form of
(2.3) written for plane wave solution in the ν-direction. Thus it turns natural to
consider the coupled problem in one space variable (up to some shift in the space
variable z)

(2.7) ∂tw + ∂zA
±
ν (w) = 0, t > 0, ±z > 0,

where we have set A±ν (w) = A±(w) · ν. In order to state the weak form of the
boundary condition θ−(w(t, y−)) = θ+(w(t, y+)), y ∈ H, we first recall the Dubois-
LeFloch framework for say the right IBVP:

∂tw + ∂zA
+
ν (w) = 0, t > 0, z > 0,(2.8)

w(t, 0+) = b, t > 0,(2.9)

for some prescribed real b. Following Dubois and LeFloch, a weak formulation
of (2.9) is stated in terms of Riemann solutions associated with (2.8), that is,
W(·;wL, wR) (for left– and right–hand states wL, wR):

(2.10) w(t, 0+) ∈ O+
ν (b) =

{
W(0+; b, w), w ∈ R

}
.
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Observe that the analogous of (2.10) for the left IBVP built from A−ν would read

w(t, 0−) ∈ O−ν (b) =
{
W(0−;w, b), w ∈ R

}
.

These considerations naturally yield us to the following coupled boundary condi-
tions (2.3) at any point y ∈ H and for t > 0:

(2.11)
w(t, y+) ∈ O−ν (θ−1

+ ◦ θ−(w(t, y−))),

w(t, y−) ∈ O+
ν (θ−1
− ◦ θ+(w(t, y+))).

This simple problem, based of two coupled equations at a given hyperplane, can
be easily extended to more general interfaces resulting from a partition of Rd into
two non–overlapping open sets D+ and D− such that D−∪D+ = Rd, separated by a
smooth boundary ∂D = D− ∩D+. Smoothness allows to define without ambiguity
an unit normal vector ν(y) for all y ∈ ∂D so that left and right traces at ∂D for
piecewise smooth solutions of the coupled problem (2.3) may be defined as follows:

w(t, y±) = lim
z→0+

w(t, y ± zν(y)), y ∈ ∂D.

The expected coupling condition just takes the weak form (2.11).

Coupling technique based on an augmented PDE’s system. As already emphasized,
an alternative coupling framework has been introduced by the authors in [11].
Instead of dealing with two IBVPs coupled at a given interface via boundary con-
ditions, our new approach treats the coupling problem as a single initial value
problem, over the entire space Rd via an augmented PDE formulation. This strat-
egy was introduced by the authors [11, 12, 13] for problems in one space variable.
In order to encompass problems in several space variables, we perform hereafter a
comprehensive derivation.

The derivation starts from the characteristic functions of the two open sets D−
and D+, we denote by

v− = χD− , v+ = χD+
.

It heavily makes use of the change of unknown u introduced in (2.4), we rephrase
as:

u(t, x) =

{
θ−(w(t, x)), if v−(x) = 1,

θ+(w(t, x)), if v−(x) = 0, i.e. if v+(x) = 1,
t > 0, x /∈ ∂D.

Equipped with these notation, we recast the two distinct hyperbolic equations in
D± in terms of u:

γ′±(u)∂tu+
∑d
i=1 γ

′
±(u)a±i

′
(γ±(u))∂xi

u = 0, t > 0, x ∈ D±,
restricting ourselves to smooth solutions in a first stage. Recall that γ+ (respectively
γ−) denotes the inverse function of θ+ (resp. θ−). We further proceed by rewritting
the above two equations in term of a single equation in x ∈ Rd \ ∂D:(
v−γ

′
−(u)+v+γ

′
+(u)

)
∂tu+

d∑
i=1

(
v−γ

′
−(u)a−i

′
(γ−(u))+v+γ

′
+(u)a+

i

′
(γ+(u))

)
∂xi

u = 0,

At this stage, it must be noticed that the two characteristic functions v− and
v+ in the above equation may be replaced by a single function say v, by setting for
instance v−(x) = 1− v(x) and v+(x) = v(x) for x ∈ Rd \ ∂D with v = χD+ . In the
following, such a function v will be refered to as a color function. For the moment v
is nothing but a step function taking values in {0, 1} but it is important to conceive
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v as a function taking values in the interval [0, 1] so that the value 0 restores the
equation set in D− while the value 1 restores the equation set in D+. Intermediate
values of v then may be thought as modeling a smooth shift from one problem to
the other. Keeping this in mind we now recast the equations above in the form of
an augmented PDE system with unknown u and v, for t > 0 and x ∈ Rd \ ∂D:

(2.12)

(
(1− v)γ′−(u) + vγ′+(u)

)
∂tu

+
(

(1− v)γ′−(u)∇A−(γ−(u)) + vγ′+(u)∇A+(γ+(u))
)
· ∇xu = 0,

∂tv = 0.

We stress that the 1–dimensional form of these equations written for plane wave
solutions in the direction ν reads (t > 0, x ∈ Rd \ ∂D, or ±z > 0):

(2.13)

(
(1− v)γ′−(u) + vγ′+(u)

)
∂tu

+
(

(1− v)γ′−(u)∇A−(γ−(u)) · ν + vγ′+(u)∇A+(γ+(u)) · ν
)
∂zu = 0,

∂tv = 0.

This system is easily seen to be hyperbolic if (and only if) the following quantity
is not zero

(2.14) (1− v)γ′−(u)∇A−(γ−(u)) · ν + vγ′+(u)∇A+(γ+(u)) · ν 6= 0.

For such states, the standing wave associated with the additional unknown v can
be seen to admit u as a Riemann invariant. In other words, as long as the non–
degeneracy condition (2.14) is valid, u stays continuous at the jumps of the color
function v, namely across the coupling boundary ∂D at which the value of v shifts
from 0 to 1. In other words and whenever (2.14) is valid, the coupling condition
(2.5) is satisfied in the strong sense across the standing wave

(2.15) u(t, y−) = u(t, y+), y ∈ ∂D.
Violation of the condition (2.14) at a point of jump for v, namely at the interface
∂D, expresses that waves from the left and right propagate with opposite sign at
the interface; the first order system (2.13) is then only weakly hyperbolic. This
is the resonance phenomena for which we refer the reader to, for instance, Goatin
and LeFloch [26] and the references cited therein. As far as the coupling issue
is concerned, the continuity condition (2.15) is no longer satisfied and the weak
form (2.11) of the coupling condition must be addressed. Turning considering the
augmented formulation (2.13), resonance phenomena has been studied in depth in
[11] in the scalar case thanks to a self-similar viscous perturbation. The Riemann
solutions for (2.13) defined in the limit of vanishing viscosity satisfy (2.11) when
resonance takes place. To sum up, weak solutions of the augmented equations (2.13)
and thus their multi–dimensional form (2.12) naturally encode the weak form of
the coupling condition.

We now generalize the rather special form of the augmented equation and adopt
the general framework introduced by the authors in [11] (which also applies to
systems in one space variable). We thus introduce coupling functions C0 : R ×
[0, 1] → R and Ci : R × [0, 1] → R with i ∈ {1, . . . , d} satisfying the following
consistency properties:

(2.16)
limv→0 C0(u, v) = γ−(u), limv→1 C0(u, v) = γ+(u),
limv→0 Ci(u, v) = a−i (γ−(u)), limv→1 Ci(u, v) = a+

i (γ+(u)),
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so as to consider in place of (2.12) the general augmented equations:

(2.17)
∂uC0(u, v)∂tu+

d∑
i=1

∂uCi(u, v)∂xiu = 0,

∂tv = 0,

t > 0, x ∈ Rd,

which equivalently recasts as:

∂tC0(u, v) +

d∑
i=1

∂xi
Ci(u, v)−

d∑
i=1

∂vCi(u, v)∂xi
v = 0,

∂tv = 0.

t > 0, x ∈ Rd.

In the following, the coupling functions C0 and (Ci)1≤i≤d are smooth and

C0, (Ci)1≤i≤d ∈ C2(R× [0, 1]),

and C0, in addition, obeys ∂uC0(u, v) > 0, u ∈ R, v ∈ [0, 1], which is a non–
degeneracy condition for the time arrow in (2.17).

The resonance phenomenon is the main difficulty in the coupling problematic
and has made the matter of previous works especially in the one–dimensional case
[11, 12, 13]. In this one-dimensional setting, the analysis proves that if the res-
onance occurs for (2.17) the self–similar weak solutions obtained via self–similar
regularization satisfy the coupling relation (2.15). Nevertheless in the general case
where resonance may appear, uniqueness then generaly fails for the initial value
problem.

The central interest of the augmented formulation (2.17) over more classical
coupling approaches built from a collection of IBVPs stems from the fact it can be
supplemented with a variety of regularizing mechanisms at the coupling interfaces.
These regularization mechanisms are intended to handle the resonance phenomena
which is likely to take place at the interfaces. A first regularization procedure
relies on introduction of suitable viscous mechanisms. Such mechanisms yield a
non trivial internal structure to resonant interfaces which proves to be useful in the
selection of discontinuous solutions. It turns that discontinuous solutions may not
be unique for thin interfaces. The augmented formulation (2.17) actually allows
for another regularization mechanism based on thick interfaces. The color function
which is naturally discontinuous (for the description of thin interfaces) is regularized
in the thick regime. Such a regularization technique has been analyzed in one space
variable, and existence and uniqueness of a solution for the Cauchy problem has
been established. In the next section, we show how to extend this regularization
procedure to several space variables.

Remark 2.1. A canonical example of coupling functions satisfying the above con-
ditions is

C0(u, v) = (1− v)γ−(u) + vγ+(u),

Ci(u, v) = (1− v)a−i (γ−(u)) + va+
i (γ+(u)), 1 ≤ i ≤ d.

2.2. A framework for multi–component coupling problems.

Multi-component coupling of initial boundary value problems. We are in a position
to present the general coupling framework we intend to analyze in this paper. The
proposed extension treats the coupling of (L + 1), L ≥ 1, distinct conservation
laws in several space dimensions, with possible covering. The coupling modeling
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via augmented PDEs relies on a partition of the space Rd in a finite number of
non–overlapping, non–empty and open sets (Dl)0≤l≤L:

(2.18)

L⋃
l=0

Dl = Rd.

The set of boundaries B are given by

(2.19) B =
⋃
k 6=l
Dk ∩ Dl.

An interface Hkl is by definition the part of the boundary of Dk which is only
shared with Dl (see also Fig. 1 for an example with N = 2 and L = 3):

(2.20) Hkl = (Dk ∩ Dl) \
⋃
i 6=k,l
Di.

These interfaces Hkl are supposed to be smooth enough so that they admit an unit
normal vector νkl(y), which is well–defined except at some “exceptional” points
(like corners, etc.). We suppose the set of boundaries B to be of d-dimensional
Lebesgue measure zero, and, more precisely, the remaining set B \ (∪k 6=lHkl) has
only components of Hausdorff dimension less than or equal to (d − 2) (see for
example the four points underlined in Figure 1).

D0
D0D1 D2 H02

Figure 1. Boundaries (in bold-face H02, circle points being excluded)

In each domain Dl, the unknown w is governed by a specific conservation law
with flux-function Al = (ali)1≤i≤d : w ∈ R 7→ Al(w) ∈ Rd:

(2.21) ∂tw +

d∑
i=1

∂xi
ali(w) = 0, w(t, x) ∈ R, t > 0, x ∈ Dl.

Following the description introduced in the previous section, we start focusing
the discussion on the definition of constant states (2.4)–(2.5)–(2.6) for the global
problem set on the whole space Rd. These solutions are recovered through a certain
change of variable in each subdomain Dl, for l = 0, . . . , L,

(2.22) u(t, x) = θl(w(t, x)), t > 0, x ∈ Dl,
so that the stationnary solutions w(x) for the coupled problem (2.21) are the real
constants u? in the u variable:

(2.23) u(w(x)) = u?, x ∈ Rd \ B.
The coupling functions θl are supposed to map increasingly R onto itself and we

denote once again γl the inverse functions:

(2.24) γl = θ−1
l , l = 0, . . . , L.
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Observe that a different outlook where the coupling functions would be associated
to the interfaces Hkl rather than to the domains themselves could only be local in
space and therefore would not allow a matching of local constant solutions so as to
define a global constant solution. Here we take advantage of the local formulation
at each interface in terms of the traces of w, say w(t, yk) and w(t, yl) on the Dk–
and Dl–side of Hkl, respectively (relatively to its normal νkl(y)):

θk(w(t, yk)) = θl(w(t, yl)), t > 0, y ∈ Hkl.

The following augmented PDE formulation is based on a vector-valued color
function that merges the description of the coupling problem. In this multi-domain
approach, this function is based on the set of characteristic functions of each domain:

(2.25) v∅ = χD0 , v1 = χD1 , . . . , vL = χDL
,

so that the change of variable (2.22) may be also rewritten

(2.26) u(t, x) = θl(w(t, x)), x ∈ Rd \ B such that vl(x) = 1.

Observe that since the (L+1) domains are a partition of the whole space Rd, only L
of the above characteristic functions are useful to complete the coupling description
of the (L + 1) domains. Up to some relabeling we choose v1, . . . , vL, so that v∅ is
recovered thanks to

(2.27) v∅(x) = 1−∑L
l=1 vl(x), x ∈ Rd \ B.

Multi-component coupling based on an augmented PDE’s system. In the following
we make use of the vector-valued color function v = (v1, . . . , vL). At this stage, it
takes values in the discrete set {0} ∪ {e1} ∪ . . . ∪ {eL} where el stands for the l-th
canonical vector of RL. This color function is intended to be regularized and to take

values in the convex hull BL+ =
{
v = (v1, . . . , vL) ∈ RL

/
vl ≥ 0,

∑L
l=1 vl ≤ 1

}
.

The problem (2.21) is then understood in the augmented form (with t > 0, x ∈ Rd)

(2.28)
∂uC0(u, v)∂tu+

d∑
i=1

∂uCi(u, v)∂xi
u = 0,

∂tv = 0,

where the coupling functions C0 and Ci are assumed to restore the formulation
(2.21) in terms of u in each open set Dl, that is:

(2.29)
limv→0 C0(u, v) = γ0(u), limv→el C0(u, v) = γl(u),
limv→0 Ci(u, v) = a0

i (γ0(u)), limv→el Ci(u, v) = ali(γl(u)), 1 ≤ i ≤ d.
The following smoothness and monotonicity assumptions are required

(2.30) C0, Ci ∈ C2(R× BL+),

(2.31) ∂uC0(u, v) > 0, u ∈ R, v ∈ BL+.

This last property ensures the validity of the change of variable u 7→ C0(u, v) for
any fixed v, and the non–degenerate nature of the time-arrow in the augmented
equations (2.28).



COUPLING TECHNIQUES FOR NONLINEAR HYPERBOLIC EQUATIONS. IV. 11

In this context, the augmented system in the main unknown u reads

(2.32)
∂tC0(u, v) +

d∑
i=1

∂xiCi(u, v)−
d∑
i=1

L∑
l=1

∂vlCi(u, v)∂xivl = 0,

∂tv = 0.

In the following, it will be useful to consider the same system written in the
variable w = C0(u, v) (denoted by w(u, v), and with inverse u(w, v) for each fixed
v). Equipped with such a change of unknown, (2.32) becomes

(2.33)
∂tw +

d∑
i=1

∂xifi(w, v)−
d∑
i=1

L∑
l=1

`li(w, v)∂xivl = 0,

∂tv = 0,

where fi(w, v) = Ci(u(w, v), v) and `li(w, v) = ∂vlCi|u(u(w, v), v) with i ∈ {1, . . . , d}
and l ∈ {1, . . . , L} (i.e. ` = ∇vC). Hereafter and to shorten the notation, we write

(2.34)
∂tw +∇ · f(w, v)− `(w, v) : ∇v = 0,

∂tv = 0,

with obvious notation.

Entropy stability and well-posedness. As already emphasized, in this work we pro-
pose a regularization mechanism based on thick interfaces that are modeled by
any suitable regularized version of the discontinuous vector-valued color function
v introduced in (2.25)-(2.27). For definiteness, we shall consider color functions
v in W 2,∞(R+ × Rd,BL+). Obviously, it suffices to choose the initial data v0 in

W 2,∞(Rd,BL+) so as to inherit from the required smoothness in the v solution of
the augmented equations (2.34). In turn and arguing about this smoothness prop-
erty, the equations under consideration reduce to an inhomogeneous scalar equation
in w:

(2.35) ∂tw +∇ · f(w, v(x)) = `(w, v(x)) : ∇v(x),

where the right–hand side just plays the role of a classical source term; namely this
term does not contribute to the definition of the possible discontinuities of w. At a
point of jump, (2.35) just resumes to the classical Rankine-Hugoniot condition

(2.36) −σ(w+ − w−) +

d∑
i=1

(
fi(w

+, v)− fi(w−, v)
)

= 0.

A selection criterion of the admissible weak solutions w is of course needed, and we
recast the balance law (2.35) in the main variable u:

(2.37) ∂tC0(u, v) +

d∑
i=1

∂uCi(u, v)∂xi
u = 0

for all smooth solutions. For such solutions, additional equations are deduced
and based on any (strictly) convex function $ 7→ U($), by multiplying (2.37)
by U ′(C0(u, v)),

(2.38) ∂tU(C0(u, v)) +
∑d
i=1 ∂uQi(u, v)∂xi

u = 0,
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where

(2.39) Qi(u, v) =

∫ u

U ′(C0(θ, v))∂θCi(θ, v)dθ, 1 ≤ i ≤ d.

We thus get from (2.38) the equivalent form for smooth solutions u:

(2.40) ∂tU(C0(u, v)) +

d∑
i=1

∂xi
Qi(u, v) =

d∑
i=1

L∑
l=1

∂vlQi(u, v)∂xi
vl.

Observe that the above right–hand side is nothing but a classical source term since
we again emphasize that the color function v is smooth. As a consequence, the
weak form of (2.40) for discontinuous solutions u reads:

(2.41) ∂tU(C0(u, v)) +

d∑
i=1

∂xi
Qi(u, v) ≤

d∑
i=1

L∑
l=1

∂vlQi(u, v)∂xi
vl,

which naturally plays the role of an (inhomogenous) entropy inequality for selecting
the relevant weak solutions. Hereafter, we shall make use of the inequalities (2.41)
for all convex entropy U . These will be alternatively invoked (essentially when the
color function is locally constant) in the w variable:

(2.42) ∂tU(w) +

d∑
i=1

∂xiFi(w, v)−
d∑
i=1

L∑
l=1

Lli(w, v)∂xivl ≤ 0,

with

(2.43) Fi(w, v) = Qi(u(w, v), v), Li(w, v) = ∂vQi|u(u(w, v), v), 1 ≤ i ≤ d.
To shorten the notation, equation (2.42) are written as

(2.44) ∂tU(w) +∇ · F(w, v)− L(w, v) : ∇v ≤ 0.

The inhomogeneous scalar conservation law (2.35) supplemented with all the en-
tropy inequalities (2.42) naturally falls within Kruzkov’s theory of entropy solu-
tions, since the color function v belongs to W 2,∞(Rd,BL+). Therefore, Kruzkov’s
uniqueness theorem for scalar conservation law with smooth inhomogeneities ap-
plies and asserts the uniqueness of the entropy weak solution of the Cauchy problem
(2.35)-(2.42) with initial data w0 ∈ L1(Rd) ∩ L∞(Rd).

Hereafter, we shall prove existence and uniqueness of a solution to the cou-
pled problem (2.35)-(2.42) thanks to a multidimensional well-balanced finite vol-
ume method formulated on general triangulations. Here, the well-balanced property
means that the solutions in the u variable is kept constant in time and space as soon
as the initial data u0 is chosen constant whatever the definition of the (smoothly
varying in space) color function v. This well-balanced property is obviously a con-
stancy property of primary importance.

3. A well-balanced finite volume scheme for coupling problems

3.1. Terminology and assumptions. Before stating our main result, we intro-
duce some notation and motivate our formulation of the finite volume method under
consideration. To meet the well–balancing property, the finite volume framework
we develop uses two families of triangulations. The first triangulation, denoted by
Th, is made of general polyhedra and will be referred to as the primal mesh. Then
a closely related triangulation is of concern, the dual mesh Th?, whose polyhedra
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are derived from the edges of the primal one. As we shall see, dual meshes may not
uniquely defined from Th and it will turn that a given choice essentially affects the
closed-form of expression of the CFL restriction in the (time explicit) finite volume
method.

Equipped with these primal and dual meshes, approximate solutions uh and vh
of the Cauchy problem (2.32) with initial data (u0, v0), are sought as piecewise
constant functions. In constrast with the usual approach, constant values for uh
and vh will not be co–localized: uh (and vh, respectively) will assume constant
values in each polyhedron of the primal mesh (and the dual mesh, resp.).

To facilitate the derivation of the proposed well-balanced scheme, we shall take
advantage of the regularity of the color function v, which provides some room for
the specific definition of the discrete approximation vh: it may range from a local
averaged form to a point-wise evaluation. Without real loss of generality, we use
an average value of v along each edge of the primal mesh. This choice allows to
bypass the definition of the dual mesh from the edges of the primal one: a convex
sequence of reals, in turn, provide sufficient information on the dual mesh. On the
ground of this observation, we shall give a first brief but sustained mathematical
presentation of the finite volume method under consideration. We shall then be in
a position to state the main result of this paper. At last, we shall close this section
with a comprehensive construction of the proposed finite volume approximation
when deriving dual meshes from the primal one.

The primal mesh, Th, is a general (locally finite) triangulation of Rd made of
non–overlapping, non–empty, and open polyhedra : ∪K∈ThK = Rd. We assume
that for every pair of distinct polyhedra K,K ′ ∈ Th the set K ∩ K ′ is either an
edge e of both K and K ′ or a set with Haussdorf dimension less than or equal to
d− 2. The set of edges of a polyhedron K is denoted by ∂K; and for each e ∈ ∂K,
νK,e ∈ Rd represents the outward unit normal vector to the edge e (see Figure 2).
The volume of K and the (d−1)-measure of e are denoted |K| and |e|, respectively.
Given an edge e in K, Ke denotes the unique polyhedron in Th that shares the
same edge e with K. We set h = supK∈Th hK , where hK is the exterior perimeter
of the polyhedron K, and assume that the triangulation Th satisfies the following
non degeneracy condition

(3.1) sup
K

hK pK
|K| ≤ C

for some constant C > 0. Here, pK denotes the perimeter of K defined by pK =∑
e∈∂K |e|.
It is unnecessary, at this stage, to provide a comprehensive derivation of the dual

mesh Th? that one could define from the edges e in the primal mesh Th. Recall
that, by design, a dual mesh is made of non–overlapping, non–empty, and open
polyhedra denoted by K?(e) with ∪e∈ThK?(e) = Rd. By construction, both sets
K?(e)∩K and K?(e)∩Ke are non–empty for all pair (K,Ke) of adjacent polyhedra
parametrized by the edges e in Th. Note that the set K?(e) ∩K is a subcell of K.
Then, the only information about Th? that is required in this section is a given
convex sequence of reals prescribed in each polyhedron K in Th; we denote by
{αK,e}{e,e∈∂K}, that satisfies (for any K in Th)

(3.2) 0 < αK,e < 1 (e ∈ ∂K),
∑
e∈∂K

αK,e = 1.
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We will see later that the coefficient αK,e is nothing but the ratio of the volume of
K?(e) ∩K to the volume of K, where K?(e) stands for the dual polyhedron of K
attached to any edge e in ∂K:

(3.3) αK,e =
|K?(e) ∩K|
|K| , e ∈ ∂K.

At last, the time increment, denoted by τ , is assumed to satisfy τ
h ≤ C and the

primal mesh to be constrained by

(3.4) C1 ≤
|e|
h
≤ C2

for some constants C,C1, C2 > 0. Whereas the latter is probably not an optimal
condition, it sufficies to ensure the non degeneracy of the mesh: all one-dimensional
characteristic lengths are of order h. A key property for the forthcoming CFL
condition, is that under these assumptions the area |K?(e)∩K| is not smaller than
O(h2): there exists a positive constant c such that

(3.5) ch2 ≤ |K?(e) ∩K|.
We use the notation tn = nτ . As already underlined, we will seek at each time

level tn approximate solutions uh and vh of the Cauchy problem (2.32) with initial
data (u0, v0), under the form of piecewise constant functions with:

(3.6)
uh(x, tn) = unK , x ∈ K, K ∈ Th,

vh(x, tn) = vh(x) = ve, x ∈ K?(e), e ∈ Th.
Here and since the solution v in the Cauchy problem (2.32) does not depend on
time, it seems natural to set vh(x, tn) = v(x) = vh

0(x) ∈ RL for all time level tn,
for some discrete approximation vh

0 of the smooth function v0. We introduce

(3.7) vh(x) = ve =
1

|e|

∫
e

v0(y)dy, x ∈ K?(e), e ∈ Th,

while the discrete version of the possibly discontinuous initial data u0 is chosen
according to the usual full averaging procedure over each polyhedron K:

(3.8) u0
h(x) = u0

K =
1

|K|

∫
K

u0(y)dy, x ∈ K, K ∈ Th.

Remark 3.1. Since v0 is regular, any other consistent definition for the constant
value ve in K?(e) would have been relevant. The interest in the particular choice
(3.7) stems from the following Green formula, valid for each polygonal domain K:

X
∑
e∈∂K

velνK,e|e| =
∫
K

∇ · (vl(x)X)dx = X

∫
K

∇vl(x)dx,

where X denotes any fixed vector in Rd and vel (and vl, respectively) the l-th com-
ponent of the vector ve ∈ RL (and v, resp.). Hence the proposed average value
in (3.7) comes with the identity:

∫
K
∇vl(x)dx =

∑
e∈∂KvelνK,e|e|. In a tensorial

notation, we thus get
∫
K
∇v(x)dx =

∑
e∈∂Kve ⊗ νK,e|e|.

The evolution in time of the discrete solution uh will rely on a family of numerical
flux-functions, associated with each edge e of any polyhedron K in Th. Besides other
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properties, these numerical flux functions must meet some consistency property
with the exact equation for governing u in (2.34), namely:

(3.9) ∂tw(u, v)+∇·f(w(u, v), v)−`(w(u, v), v) : ∇v = 0, x ∈ K, t ∈ (tn, tn+1).

Observe that in the neighborhood K?(e) of each edge e, where vh reduces to a
constant value ve, the above equation boils down to the scalar equation in the
unknown w = w(u, ve):

(3.10) ∂tw +∇ · f(w, ve) = 0, x ∈ K?(e) ∩K, t ∈ (tn, tn+1).

This in turn leads us to define the required numerical flux function at each edge e in
Th as a locally Lipschitz continuous two-point flux-function ge,K(., .; ve) : R×R→ R
that satisfies the consistency property:

(3.11) ge,K(w,w; ve) = f(w, ve) · νK,e,
the conservation property:

(3.12) ge,K(w,we; ve) = −ge,Ke
(we, w; ve),

for all reals w and we, and the monotonicity property

(3.13)
∂g(w,we; ve)

∂w
≥ 0,

∂g(w,we; ve)

∂we
≤ 0.

In addition, we assume that the numerical flux depend (locally) Lipschitz continu-
ously in the variable ve.

Standard 3–point monotone schemes in the scalar framework obey (3.11)–(3.13)
and that the main results in this paper are easily extended to all E-schemes (Osher
[40]). For clarity, the dependence in the parameter ve appears explicitly in the
numerical flux-function ge,K(., .; ve).

Remark 3.2. Since the function g(., .; .) : R3 → R is locally Lipschitz continuous
in its three arguments, for all compact K ⊂ R3, there exists some positive constant

CK such that for all triple (w(1), w
(1)
e , v

(1)
e ) and (w(2), w

(2)
e , v

(2)
e ) in K, the following

estimate holds true:

|ge,K(w(2), w(2)
e ; v(2)

e )− ge,K(w(1), w(1)
e ; v(1)

e )|
≤ CK

(
|w(2) − w(1)|+ |w(2)

e − w(1)
e |+ |v(2)

e − v(1)
e |
)
.

3.2. Definition of the well-balanced scheme. We are now in a position to
define the finite volume approximation of (3.9). Assuming that the approximate
solution uh(., tn) is known at time tn, we determine the evolution up to the next
time level tn+1 as follows:

• Subcell reconstruction. At each time tn in each polyhedron K of Th, we
consider any edge e ∈ ∂K and introduce the subcell state

(3.14) wnK,e = C0(unK , ve), e ∈ ∂K,
as well the following average over all edges of K

(3.15) wnK =
∑
e∈∂K

αK,ew
n
K,e.
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• Evolution in time. In order to the discrete solution uh at time tn+1, we
define (in each polyhedron K) un+1

K to be the unique solution of

(3.16)
∑
e∈∂K

αK,e C0(un+1
K , ve) = wn+1

K ,

where the state wn+1
K is given by the finite volume scheme

(3.17)

wn+1
K = wnK −

τ

|K|
∑
e∈∂K

ge,K(wnK,e, w
n
Ke,e; ve)|e|+

τ

|K|
∑
e∈∂K

f(wnK,e, ve) · νK,e|e|.

This completes the description of our numerical method. The proposed finite
volume method is explicit in time and, for the sake of stability, we need to impose
a CFL (Courant, Friedrichs, Lewy) condition which reads, for all polyhedra K in
Th and edges e ∈ ∂K,

(3.18)
τ

|K|
|e|
αK,e

sup
u∈[m,M ]

∣∣∣∂f(w(u, ve), ve)

∂w

∣∣∣ ≤ 1,

where m = inf
x∈Rd

u0(x) and M = sup
x∈Rd

u0(x).

Due to the dimensional hypothesis (3.2)–(3.4)–(3.5) the ratio |K|αK,e/|e| satisfies

|K|αK,e|e| =
|K?(e) ∩K|

|e| ≥ c

C2
h,

so that the CFL condition can not imply the degeneracy of the time step τ , that
decreases at most as O(h). We will see in Section 4 how to build suitable primal
and dual meshes.

Several comments are in order. First observe that the constitutive assump-
tions (2.30)–(2.31) on the coupling function C0(., .) immediately yields existence
and uniqueness of a solution to the nonlinear equation (3.14) so that the finite
volume method (3.14)–(3.17) is well defined. The formulas (3.14) and (3.16) ob-
viously express the same identity at the times tn and tn+1, and are redundant:
the finite volume method essentially reduces to (3.16)–(3.17). As they stand, they
nevertheless ease the description of the method.

Next, it is worth observing that the consistency condition (3.11) allows
in (3.17) to recast the flux balance

∑
e∈∂Kf(wnK,e, ve)νK,e|e| as∑

e∈∂Kge,K(wnK,e, w
n
K,e; ve)|e|. Here we stress that at each edge e in ∂K, both the

numerical flux-function ge,K(wnK,e, w
n
Ke,e

; ve) and its counterpart f(wnK,e, ve) · νK,e
are evaluated thanks to the subcell values wnK,e (3.14) and not to their averaged

form wnK in (3.15). The motivation is twofold. In a first hand, the two flux bal-
ances involved in (3.17), namely

∑
e∈∂Kge,K |e| and

∑
e∈∂Kf(wnK,e, ve) · νK,e|e|,

make the proposed formula to be a consistent finite volume approximation of the
exact equation (3.9) for governing u: namely, the first one will be seen hereafter to
be consistent with ∇ · f(w, v) while the second one actually provides a consistent
approximation of the source term `(w, v) : ∇v. In a second hand, the discretization
of the source term is seen to be well–balanced.

Proposition 3.3 (Well-balanced property). When the initial data u0 for (3.9) is
a constant function u0(x) = u?(x ∈ Rd), then, for any choice of the color function
v in (3.9), the discrete solution uh of (3.14)–(3.17) is also constant, with

(3.19) uh(x, tn) = u0(x) = u?, x ∈ Rd



COUPLING TECHNIQUES FOR NONLINEAR HYPERBOLIC EQUATIONS. IV. 17

for all time level tn.

In other words, the finite volume method (3.14)–(3.17) is well-balanced with
respect to all the natural equilibria of (3.9).

Proof. The discrete initial data (3.8) clearly reads u0
h(x) = u? for all x in Rd so

that at the first subcell reconstruction step, we get w0
K,e = C0(u?, ve) = w0

Ke,e
for

any edge e of an arbitrary polyhedron K in Th. Consequently, the numerical flux
ge,K(w0

K,e, w
0
Ke,e

; ve) at any edge e boils down to f(w0
K,e, ve) · νK,e in view of the

consistency condition (3.11). Namely the two flux balances in the updating formula
(3.17) cancel out and we end up with w1

K = w0
K =

∑
e∈∂KαK,eC0(u?, ve) thanks to

the definition (3.15). Arguing about uniqueness, we thus get when solving (3.16)
u1
K = u? for any polyhedron K of Th: namely uh(x, t1) = u? for all x in Rd. An

immediate recursion extends the result to the subsequent time levels. �

To conclude this paragraph, it is worth illustrating that the last flux-balance en-
tering the finite volume approximation (3.17) actually provides a consistent approx-
imation of the source term `(w, v) : ∇v. For the sake of simplicity, we temporarily
adopt (cf. Remark 2.1):

C0(u, v) = (1− v)γ−(u) + vγ+(u),
Ci(u, v) = (1− v)a−(γ−(u)) + va+(γ+(u)), 1 ≤ i ≤ d,

so that f(w, v) and `(w, v) in (3.9) read f(w(u, v), v) = (1 − v)A−(γ−(u)) +

vA+(γ+(u)), and `(w(u, v), v) =
(
A+(γ+(u))−A−(γ−(u))

)
. It can be then readily

computed:∑
e∈∂K

f(wnK,e, ve) · νK,e|e|

=
∑
e∈∂K

(
(1− ve)A−(γ−(unK)) + veA

+(γ+(unK))
)
· νK,e|e|

=
(
A+(γ+(unK))−A−(γ−(unK))

)
·
∑
e∈∂K

ve|e|νK,e +A−(γ−(unK)) ·
( ∑
e∈∂K

|e|νK,e
)

which is nothing else a consistent discretization of `(w(u, v)) : ∇v, in view of the
representation formula in Remark 3.1 (for ∇v) and the identity

∑
e∈∂K |e|νK,e = 0.

These straightforward calculations allows to bridge the finite volume formula
(3.17) to the governing equation (3.9) for w(u, v), expressed over K, namely where
vh does achieve distinct values. The gap in between (3.9) and its reduced version
(3.10) (i.e. with x ∈ K?(e) ∩K) will be definitely closed when revisiting the finite
volume approximation (3.14)–(3.17) with primal–dual meshes (in Section 4).

3.3. Main convergence result. We are now in a position to state the main result
of this paper.

Theorem 3.4. (Well–balanced finite volume method for multi–dimensional cou-
pling problems). Consider the Cauchy problem (2.32)–(2.41) with initial data u0 ∈
L∞(Rd) and v0 ∈W 2,∞(Rd) under the constitutive assumptions (2.30)–(2.31). Let
uh be the sequence of approximate solutions defined by the finite volume method
(3.7)–(3.8) and (3.14)–(3.17) with numerical flux-functions satisfying the condi-
tions (3.11)–(3.13). Then under the CFL restriction (3.18), the sequence uh is
uniformly bounded in L∞(R+ ×Rd) and converges (when h→ 0) in the Lploc norm
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strongly (1 ≤ p <∞) to the unique entropy solution u to the problem (2.32)–(2.41):
namely for all time T > 0 and for all compact K in Rd

lim
h→0
||u− uh||Lp((0,T )×K) = 0.

The rest of this paper is devoted to a proof of this theorem.

4. Finite volume approximations on primal-dual meshes

4.1. A convex combination. One of our objectives in this section is explain-
ing how the coefficients αK,e should be determined. Arguing about the formula-
definitions (3.14)–(3.15) at time tn and the consistency condition (3.11), we obtain
the following statement.

Lemma 4.1 (Edge values and convex combination). For any polyhedron K of Th
and edge e in ∂K, let us define the following subcell states:

(4.1) wn+1,−
K,e = wnK,e −

|e|
αK,e

τ

|K|
(
ge,K(wnK,e, w

n
Ke,e; ve)− ge,K(wnK,e, w

n
K,e; ve)

)
.

Then wn+1
K in (3.17) are recovered by the following averaging procedure:

(4.2) wn+1
K =

∑
e∈∂K

αK,ew
n+1,−
K,e .

Observe that the finite volume formula (4.1) for wn+1,−
K,e is nothing but a consis-

tent approximation of the one dimensional conservation law: ∂tw+∇·f(w, ve) = 0.

The reason for calling wn+1,−
K,e a subcell state will be explained in this paragraph

and is at the core of the re-interpretation of the finite volume formula (3.17) with
primal–dual meshes.

To further proceed, let us underline that the identity (4.2) just expresses that

wn+1
K actually is a convex decomposition of the subcell states wn+1,−

K,e . When un-

derstood in their quasi-one dimensional form (4.1), the latter can be recognized as
extensions to the present inhomogenous setting of partial states entering similar
convex decompositions that have proved well suited in the analysis of homogeneous
multidimensional finite volume methods [18, 19]. Indeed, the interest in such a
convex decomposition primary stems from the fact that many of the basic stability
properties satisfied by the scheme (4.1) in one space variable are right away in-
herited in several space variables thanks to convexity under some CFL restriction.
Observe that the relevant CFL condition for (4.1) reads

(4.3)
τ

|K|
|e|
αK,e

∣∣∣ge,K(wnK,e, w
n
Ke,e

; ve)− ge,K(wnK,e, w
n
K,e; ve)

wnKe,e
− wnK,e

∣∣∣ ≤ 1,

and hence the CFL restriction (3.18).
At last and arguing about the definition (4.1), the subcell reconstruction step

(3.15) at time tn+1 and the formula (3.16), we deduce the (seemingly trivial) iden-
tities

(4.4)
∑
e∈∂KαK,ew

n+1
K,e = wn+1

K =
∑
e∈∂KαK,ew

n+1,−
K,e .

In other words, all the steps involved in the method are locally conservative: this
natural property will play a central role in the forthcoming analysis.
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4.2. A reformulation of the scheme. The derivation of a dual mesh Th? from the
edge of the primal one Th may be performed as follow. For any (open) polyhedron
K, the idea is to pick an internal node xK in K which choice is left arbitrary at
this stage. Such a procedure is given below a systematic definition independent
of the mesh refinement h. Equipped with the node xK , we define for any edge e
in K the convex hull of e and xK . The interior of this convex hull, we denote by
E(xK , e), yields a non–empty open polyhedron made of (d+1) edges. Observe that
the following properties are met by construction: for any pair of distinct edges e, e′

in ∂K with K an arbitrary polyhedron in Th
(4.5) E(xK , e) ∩K = E(xK , e), E(xK , e) ∩ E(xK , e

′) = ∅,
while

⋃
e∈∂K E(xK , e) = K modulo a null set. Then, the required definition of the

polyhedron K?(e) of the dual mesh Th?, attached to any edge e in Th with adjacent
polyhedron K and Ke, follows from

(4.6) K?(e) = E(xK , e) ∪ E(xKe
, e).

We refer the reader to Figure 2 for an illustration.

e

K

Ke

Th

⌫K,e

e

xK

xKe

K⇤(e)

T ?
h

Figure 2. Primal and dual meshes, edges and vertices.

The constructive procedure for defining the internal node xK independently of h
relies on the set of vertices ϑ of the polyhedron K, together with a convex sequence
of reals {βK,ϑ}{ϑ,ϑ∈K} satisfying:

0 < βK,ϑ < 1, ϑ ∈ K;
∑
ϑ∈K

βK,ϑ = 1.

The required internal node xK in K is then defined by its coordinates in Rd:
xK =

∑
ϑ∈K βK,ϑ xϑ, where xϑ stands for the coordinates of the vertex ϑ. This

construction ensures the correct behavior of the primal and dual meshes with the
definition of the αK,e and with the previous non–degeneracy assumptions (3.3)-
(3.5), the CFL condition (3.18) is then only modified according to the choice of the
function v and its discrete representation.

To further proceed in the comprehensive derivation of the finite volume frame-
work, some additional notation is in order. For any K in Th and e in ∂K, an edge
of a dual polyhedron K?(e) ∈ Th? or of the subcell K?(e) ∩K of K will be indif-
ferently denoted by e?. Observe that with little abuse in the notation, an edge e of
some cell K of the primal mesh Th is also a dual edge of the subcell K?(e)∩K: see
indeed Figure 2. At last νK?(e),e? ∈ Rd stands for the outward unit vector normal
to the edge e?.
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Equipped with these notation, we are in a position to re-interpret the quasi-
one dimensional state wn+1,−

K,e introduced in (4.1) in term of a state in the subcell

K?(e) ∩K of K, thanks to the following simple but key identity:∑
e?∈K?(e)∩K

|e?|νK?(e),e? = 0, i.e. |e|νK,e = −
∑

e?∈K?(e)∩K, e? 6=e
|e?|νK?(e),e? .

It is then straightforward to recast wn+1,−
K,e according to:

(4.7)

wn+1,−
K,e = wnK,e −

τ

αK,e|K|
ge,K(wnK,e, w

n
Ke,e; ve)|e|+

τ

αK,e|K|
f(wnKe

) · νK,e|e|,

= wnK,e −
τ

|K?(e) ∩K|
(
ge,K(wnK,e, w

n
Ke,e; ve)|e|

+
∑

e?∈K?(e)∩K
e? 6=e

f(wnK,e, ve) · νK?(e),e? |e?|
)
,

where we have used the interpretation (3.3) of αK,e. Introducing the numerical flux
formula:

(4.8) ge?,K?(e) =

{
ge,K(wnK,e, w

n
Ke,e

; ve), if e? = e;

f(wnK,e, ve) · νK?(e),e? , otherwise,

wn+1,−
K,e thus reads

(4.9) wn+1,−
K,e = wnK,e −

τ

|K?(e) ∩K|
∑

e?∈K?(e)∩K
ge?,K?(e)|e?|.

We can clarify the origin of the definition ge?,K?(e) = f(wnK,e, ve) · νK?(e),e? for
edges e? distinct from e. For such an edge e?, it is worth introducing the adjacent
subcell K?(e′)∩K to K?(e)∩K in K: i.e. with e′ in ∂K such that K?(e′)∩K?(e) =
e?. Note that e? is of course distinct from e′. We then successively rewrite the
left– and right–hand numerical flux at e?, say ge?,K?(e) (respectively ge?,K?(e′)), as
follows:

f(w(unK , ve), ve) · νK?(e),e? , respectively :− f(w(unK , ve
′), ve

′) · νK?(e),e? ,

since by definition (3.14) wnK,e = w(unK , ve) and wK,e′ = w(unK , ve
′) and, equiva-

lently,
(4.10)(

f(w(u, v), v) · νK?(e),e?

)
(ω(0−)), resp.:−

(
f(w(u, v), v) · νK?(e),e?

)
(ω(0+)),

where ω(0∓) stands for the left and right traces at ξ = 0 of the self-similar function
ω : ξ ∈ Rξ → (u(ξ), v(ξ)) ∈ R× RL given by

(4.11) ω(ξ) =

{
(unK , ve), ξ < 0,

(unK , ve
′), ξ > 0.

From Section 2, recall that the Riemann solution of
(4.12)

∂tw + ∂x

(
f(w(u, v), v) · νK?(e),e?

)
(u, v)− ∂v

(
f(w(u, v), v) · νK?(e),e?

)
: ∇v = 0,

∂tv = 0
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(with initial data ((unK , ve), x < 0, (unK , ve
′), x > 0)) consists in a standing wave

separating (unK , ve) from (unK , ve
′), and thus coincides with ω(ξ) in (4.11). It is

therefore clear that the flux–functions in (4.10) actually results from the Godunov
method applied to the augmented system (4.12) at the edge e?. In other terms, the
finite volume formula (4.8)–(4.9) in each subcell K?(e) ∩K may be understood as
an approximation of the balance law for governing u in (3.9):

∂tw(u, v) +∇ · f(w(u, v), v)− `(w(u, v), v) : ∇v = 0, x ∈ K, t ∈ (tn, tn+1).

This interpretation closes the gap in between the governing equation (3.9) for u
and its reduced form (3.10) expressed in w:

∂tw +∇ · f(w, ve) = 0, x ∈ K?(e) ∩K, t ∈ (tn, tn+1).

4.3. Sup-norm estimates. Throughout the upcoming sections, the assumptions
of Theorem 3.4 are tacitly assumed to be valid. Their formulations are thus skipped
over in any forthcoming statements. The main result of this section ensures that
the sequence of approximate solutions uh stays uniformly bounded in L∞(R+×Rd)
as a consequence of the following result.

Proposition 4.2 (Maximum principle). The finite volume method satisfies the
following inequalities (in the variable u):

(4.13) min
(
unK , min

e∈∂K
unKe

)
≤ un+1

K ≤ max
(
unK , max

e∈∂K
unKe

)
in each polyhedron K in Th and at all time level tn.

Since v0 ∈W 2,∞ immediately implies a sup–norm estimate for vh given by (3.7),
we easily deduce, from the maximum principle (4.13), an additional uniform sup-
norm estimate but for wh = C0(uh, vh) arguing about the regularity properties
(2.30) of C0:

(4.14) ||wh||L∞(R+×Rd) ≤ O(1).

Besides the monotonicity assumption (3.13) met by the numerical flux functions,
we stress that the preservation of conservativity (4.4) in the subcell reconstruction
procedure plays a central role in the validity of the reported maximum principle, as
highlighted in the proof. The latter will be carried out using a recursion procedure
based on subsequent partitions of the set of edges e in K. To fix the notation and
up to some relabeling, {e1, . . . , eJK} represents the full set of edges e ∈ ∂K so that
here the index JK is given by #{e, e ∈ ∂K}. Subsets of the form {e1, ..., eJ}, with
increasing index J ∈ {1, ..., JK}, will be of concern as follows. Being given J with
1 ≤ J ≤ K, let us attach to the subset {e1, ..., eJ} the solution un+1−

K,{e1,...,eJ} of the

following nonlinear equation:

(4.15)
∑

1≤j≤J
αK,ejC0(un+1−

K,{e1,...,eJ}, vej ) =
∑

1≤j≤J
αK,ejw

n+1−
K,ej

,

where the subcell states wn+1−
K,ej

are defined in (4.1), Lemma 4.1. Again, the consti-

tutive assumptions (2.30)–(2.31) ensure existence and uniqueness of a solution to
(4.15).

Arguing about the conservation property (4.4) satisfied at the subcell reconstruc-
tion step, it is worth observing that un+1−

K,{e1,...,eJK
} can be identified with the final

state un+1
K at time tn+1 in the finite volume approximation (3.14)–(3.17). There-

fore, the recursion under consideration naturally ends up as soon as the index J
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reaches the value JK . In order to initiate the recursion and propagate it, we need
the following statement concerned with the values un+1−

K,{eJ}, 1 ≤ J ≤ JK , solutions

of C0(un+1−
K,{eJ}, veJ ) = wn+1−

K,eJ
.

Lemma 4.3 (Local maximum principle). The maximum principle holds true at
any edge eJ in ∂K:

min(unK , u
n
KeJ

) ≤ un+1−
K,{eJ} ≤ max(unK , u

n
KeJ

), 1 ≤ J ≤ JK .

Then the maximum principle “propagates” to sets {e1, ..., eJ}, as follows.

Lemma 4.4. The solution un+1−
K,{e1,...,eJ} to (4.15) with J ∈ {1, ..., JK}, obeys the

following maximum principle:

min
(
unK , min

1≤j≤J
(unKej

)
)
≤ un+1−

K,{e1,...,eJ} ≤ max
(
unK , max

1≤j≤J
(unKej

)
)
.

The proposed lower and upper bounds for un+1−
K,{e1,...,eJK

}, i.e. the estimate in the

lemma with J = JK , just reads the expected local maximum principle (4.13) for
un+1
K , since again un+1

K coincides with un+1−
K,{e1,...,eJK

} by construction.

Proof of Lemma 4.3. To alleviate the notation we skip the index J and first point
out an estimate valid under the CFL restriction (3.18) for any edge e in ∂K:

(4.16) min(wnK,e, w
n
Ke,e) ≤ w

n+1,−
K,e ≤ max(wnK,e, w

n
Ke,e)

as a well-known consequence of the monotonicity assumptions (3.13) satisfied by the
numerical flux function ge,K(., .; ve). We then recall that the subcell reconstruction

step (3.14) builds wnK,e = C0(unK , ve) while the identity wn+1−
K,e = C0(un+1−

K,{e}, ve)
holds from our definition. We can thus recast (4.16) as:

min(C0(unK , ve), C0(unKe
, ve)) ≤ C0(un+1−

K,{e}, ve) ≤ max(C0(unK , ve), C0(unKe
, ve)),

from which we immediately deduce the desired estimate, namely

min(unK , u
n
Ke

) ≤ un+1−
K,{e} ≤ max(unK , u

n
Ke

), e ∈ ∂K
since the function C0 is by assumption (2.31) strictly increasing in its first argument.

�

Proof of Lemma 4.4. The desired lower-upper bounds with J = 1 are stated in
Lemma 4.3. Then, assuming the validity of the maximum principle at rank J ,
1 ≤ J < JK , this one is proved to hold at the rank (J + 1) starting from (4.15):∑

1≤j≤(J+1)

αK,ejC0(un+1−
K,{e1,...,e(J+1)}, vej )

=
∑

1≤j≤J
αK,ejw

n+1−
K,ej

+ αK,e(J+1)
wn+1−
K,e(J+1)

,

=
∑

1≤j≤J
αK,ejC0(un+1−

K,{e1,...,eJ}, vej ) + αK,e(J+1)
C0(un+1−

K,e(J+1)
, ve(J+1)

).

We recast the above identity as follows:∑
1≤j≤J αK,ejC0(un+1−

K,{e1,...,e(J+1)}, vej )−∑1≤j≤J αK,ejC0(un+1−
K,{e1,...,eJ}, vej )

= − αK,e(J+1)

(
C0(un+1−

K,{e1,...,e(J+1)}, ve(J+1)
)− C0(un+1−

K,e(J+1)
, ve(J+1)

)
)
.
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To condense the notation, we introduce the two functions

u 7→ ΨJ(u) =
∑

1≤j≤J
αK,ejC0(u, vej ) and u 7→ ψ(J+1)(u) = αK,e(J+1)

C0(u, ve(J+1)
)

so as to deduce:(
ΨJ(un+1−

K,{e1,...,e(J+1)})−ΨJ(un+1−
K,{e1,...,eJ})

)
·(

ψ(J+1)(u
n+1−
K,{e1,...,e(J+1)})− ψ(J+1)(u

n+1−
K,e(J+1)

)
)
≤ 0.

since by assumption (3.2) αK,e(J+1)
> 0. But the monotonicity hypothesis (2.31)

on C0 together with again assumption (3.2) imply that both functions u 7→ ΨJ(u)
and u 7→ ψ(J+1)(u) strictly increase with u so that the above inequality yields

min(un+1−
K,{e1,...,eJ}, u

n+1−
K,e(J+1)

) ≤ un+1−
K,{e1,...,e(J+1)} ≤ max(un+1−

K,{e1,...,eJ}, u
n+1−
K,e(J+1)

).

Lemma 4.3 implies

min(unK , u
n
Ke(J+1)

) ≤ un+1−
K,e(J+1)

≤ max(unK , u
n
Ke(J+1)

),

and the proof is completed. �

5. Entropy inequalities

5.1. Preliminaries. Proposition 4.2 asserts sup–norm boundedness for the se-
quence uh which in the absence of an a priori strong compactness argument, leads
us to study the structure of the Young measure µ associated with {uh}h>0. Recall
that such a Young measure represents all the composite weak-star limits a(uh) of
uh with continuous functions a ∈ C0(R), namely for all continuous functions in a
single variable

a(uh) −⇀ < µ, a >=

∫
R
a(λ)dµ(λ),

weakly-star in L∞. We propose to establish that the measure µ under consideration
reduces to a Dirac measure, and hence to prove the strong convergence of uh,
invoking DiPerna’s uniqueness theorem [22] for entropy measure–valued solutions.

In this section we derive the required discrete entropy inequalities together with
the a priori estimates that are needed to handle the passage to the limit in the
sense of measure valued solutions. In this respect, the main issue is to assess the
relevance of the Young measure µ in such a limit. Indeed, discrete entropy inequal-
ities generically involve numerical flux functions, that are continuous functions but
of (at least) two arguments: the sequence uh(.) itself and its shift ∆huh = uh(.+h).
Nonlinear superposition of possible discrete oscillations in uh and its shift ∆huh
may prevent the usual Young measure µ to represent the composite weak-star limit
of G(uh,∆huh). Counterexamples have been constructed in Coquel and LeFloch
[19]. Some weak control over possible discrete oscillations is therefore mandatory
in order to justify the applicability of µ in the limiting form of discrete entropy
inequalities.

The requisite weak estimate corresponds to some estimate of the discrete en-
tropy dissipation rate in the finite volume approximation. The derivation of several
specific estimates with distinctive features have been the matter of a large litera-
ture following Coquel and LeFloch [18]. (The reader is referred to the introduction
where several subsequent contributions were quoted.) The estimates we derive now
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generalize the ones in Cockburn, Coquel, and LeFloch [16]. The entropy dissipation
estimate does not allow actually to pass to the weak limit in arbitrary numerical
entropy–flux functions, but nevertheless turns out to be sufficient in order to handle
discrete entropy inequalities. The main interest in such an estimate stems from the
simplicity of its derivation.

5.2. Discrete entropy estimates. We first focus on the derivation of the discrete
entropy inequalities and then the required weak estimate. The passage to the limit
in the discrete inequalities is the subject of the following section. After Crandall
and Majda [21], assumptions (3.11)–(3.13) on the numerical flux functions ge,K are
known to yield a full set of discrete entropy inequalities for scalar conservation laws.
Here and in the light of Section 2, the scalar conservation laws of concern have to
be found locally at each edge e in Th, and take the generic form

(5.1) ∂tw +∇ · f(w, v) = 0,

for a given v ∈ R. Associated entropy pairs were defined earlier in (2.39)–(2.43).

The inequalities stated below are naturally built from the subcell states wn+1,−
K,e (4.1)

of Lemma 4.1 and in this regard may be understood as subcell entropy inequalities.

Lemma 5.1 (Entropy inequalities per cell). Let (U ,F) : R→ R×Rd be any convex
entropy pair for the scalar conservation law (5.1), where e denotes any edge in ∂K
for an arbitrarily K in Th. Then there exists a numerical entropy flux function
Ge,K : R2 → R that satisfies the consistency property

(5.2) Ge,K(w,w; ve) = F(w, ve) · νK,e,
the conservation property

(5.3) Ge,K(w,we; ve) = −Ge,Ke(we, w; ve)

for all reals w and we, so that the following discrete entropy inequality holds
(5.4)

U(wn+1,−
K,e )− U(wnK,e) +

1

αK,e

τ |e|
|K|

(
Ge,K(wnK,e, w

n
Ke,e; ve)−F(wnK,e, ve) · νK,e

)
≤ 0.

We refer the reader to [21] for a proof of this classical result. As already claimed,
the weak estimate will not allow to pass weakly to the limit in arbitrary numerical
entropy flux-functions. We thus propose to merge inequalities (5.4) in such a way
that solely exact entropy flux–functions F(w, ve) · νK,e enter the weak form.

Lemma 5.2. Let φ be any non–negative test function in D(R∗+ × Rd). Define for
any edge e in Th, the average

(5.5) φne =
1

τ |e|

∫ tn+1

tn

∫
e

φ(x, t)dxdt.

Then, the following discrete weak inequality holds

(5.6)
∑

K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

− τ
∑

K∈Th

∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e| ≤ 0.

The proof is postponed to the end of this section. We shall easily deduce from
the discrete inequality (5.6) the following continuous (in space) inequality.
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Proposition 5.3. The finite volume approximation (3.14)–(3.17) obeys at each
time level tn the following (discrete in time) entropy inequality

(5.7)

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

−
∫∫

]tn,tn+1[×Rd

Q(unh, v(x)) · ∇φ(x, t) + φ(x, t)∂vQ(unh, v(x)) : ∇v(x)dxdt

≤ O(h)τ ||φ||W 1,∞(]tn,tn+1[×Rd)|supp(φ)|.

The proof, at the end of this section, essentially makes use of the uniform sup–
norm estimate (4.13) for the sequence uh together with the regularity assumption
v0 ∈W 2,∞.

Clearly, the Young measure µ can tackle the weak limit of the space derivatives
involved in inequality (5.7) extended to any time interval (0, T ), T > 0. Such a
claim then naturally rises the question of passing to the weak limit in the discrete
time derivative. The latter is conveniently decomposed as

(5.8)

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

=
∑

K∈Th

(
U(wn+1

K )− U(wnK)
)
φnK |K|

−
∑

K∈Th

∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
φne |K|

−
∑

K∈Th

∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne |K|,

where

(5.9) φnK =
∑
e∈∂K

αK,eφ
n
e .

The last two error terms entering the righ–hand side of (5.8) are devoted to sum
up

(5.10)

∑
n≥0

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
φne |K|

+
∑
n≥0

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne |K|,

with other error terms in the right–hand side of the discrete entropy inequalities
(5.7). The former must therefore be proved to go to zero with h.

Lemma 5.4. For any polyhedron K in Th, one has

(5.11)
∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne ≤ O(h2)‖φ‖W 1,∞(]tn,tn+1[×K),
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while

(5.12)

∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
φne

≤ −σU
( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2
)
φnK

+O(h)
( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |
)
‖∇φ‖L∞(]tn,tn+1[×K),

where σU denotes some convexity-like modulus of U : U ′′(u) ≥ σU > 0, for all u ∈
(m,M) where the bounds m,M were introduced in (3.18) in agreement with the
maximum principle (4.13).

Proof of Lemma 5.2. Let e be any edge in Th and K,Ke the associated pair of
adjacent polyhedra. Multiplying the subcell entropy inequality (5.4) valid for K by
αK,e|K| and the companion inequality for Ke by αK,e|Ke|, we get

αK,e|K|
(
U(wn+1,−

K,e )− U(wnK,e)
)

+ αKe,e|Ke|
(
U(wn+1,−

Ke,e
)− U(wnKe,e)

)
− τ
(
F(wnK,e, ve) · νK,e + F(wnKe,e, ve) · νKe,e

)
|e| ≤ 0,

thanks to the conservation property (5.3) satisfied by the numerical entropy flux–
functions. Multiplying the above inequality by the discrete test function φne (5.5),
then summing over the edges e in ∂K and the polyhedra K in Th yields∑

K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

+
∑

K∈Th

∑
e∈∂K

αKe,e

(
U(wn+1,−

Ke,e
)− U(wnKe,e)

)
φne |Ke|

− τ
∑

K∈Th

∑
e∈∂K

(
F(wnK,e, ve) · νK,e + F(wnKe,e, ve) · νKe,e

)
φne |e| ≤ 0.

To conclude the proof, we notice the following two identities∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

=
∑

K∈Th

∑
e∈∂K

αKe,e

(
U(wn+1,−

Ke,e
)− U(wnKe,e)

)
φne |Ke|,

and ∑
K∈Th

∑
e∈∂K

F(wnKe,e, ve) · νKe,eφ
n
e |e| =

∑
K∈Th

∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e|.

�

Proof of Proposition 5.3. We begin with the discrete inequality (5.6) of Lemma 5.2
and specifically considerb the flux balance

∑
K∈Th

∑
e∈∂KF(wnK,e, ve) · νK,eφne |e|.

Our purpose is to shift the mathematical expressions under consideration from
the w to the u variable. Hence let us write F(wnK,e, ve) = F(w(unK , ve), ve) =

Q(unK , ve) with Q(u, v) the exact entropy flux introduced in (2.39), which we repeat
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component-wise as Qi(u, v) =
∫ u U ′(C0(θ, v))∂θCi(θ, v)dθ, 1 ≤ i ≤ d. We then

recast the flux balance as

(5.13)

∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e| = Q(unK , vK) ·
∑
e∈∂K

φne |e|νK,e

+
∑
e∈∂K

(
Q(unK , ve)−Q(unK , vK)

)
· νK,eφne |e|,

where the average of the states ve is defined by vK =
∑
e∈∂KαK,eve. In view of a

representation formula for ∇φ (similar to the one in Remark 3.1 derived for ∇v),
the average form (5.5) for φne yields
(5.14)∑
e∈∂K

φne |e|νK,e =
1

τ

∫ tn+1

tn

( ∑
e∈∂K

∫
e

φ(x, t)νK,edx
)
dt =

1

τ

∫ tn+1

tn

∫
K

∇φ(x, t)dxdt,

so that, from (5.13),

(5.15)

∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e| =
1

τ

∫ tn+1

tn

∫
K

Q(unK , vK) · ∇φ(x, t)dxdt

+
∑
e∈∂K

(
Q(unK , ve)−Q(unK , vK)

)
· νK,eφne |e|.

The treatment of the last remaining discrete term relies on the following identity:

Q(unK , ve)−Q(unK , vK) =

∫ 1

0

∂vQ(unK , vK + s(ve − vK))ds (ve − vK)

which leads us to rewrite (5.15):
(5.16) ∑

e∈∂KF(wnK,e, ve) · νK,eφne |e| −
1

τ

∫ tn+1

tn

∫
K

Q(unK , vK) · ∇φ(x, t)dxdt

= ∂vQ(unK , vK) :
(∑

e∈∂Kφ
n
e (ve − vK)⊗ νK,e|e|

)
+
∑
e∈∂Kφ

n
e

( ∫ 1

0

(
∂vQ(unK , vK + s(ve − vK))− ∂vQ(unK , vK)

)
ds
)

:
(

(ve − vK)⊗ νK,e
)
|e|.

The matrix (ve− vK)⊗ νK,e|e| with size L× d appears as a discrete representation
for the continuous function ∇v. The first term in the above right–hand side is
rewritten as:

(5.17)

∂vQ(unK , vK) :
( ∑
e∈∂K

φne (ve − vK)⊗ νK,e|e|
)

= φnK ∂vQ(unK , vK) :
( ∑
e∈∂K

(ve − vK)⊗ νK,e|e|
)

+
( ∑
e∈∂K

(φne − φnK)∂vQ(unK , vK) :
(
(ve − vK)⊗ νK,e

)
|e|
)
,

where the discrete flux function φnK is obtained by averaging: φnK =
∑
e∈∂KαK,eφ

n
e .

On one hand, owing to the identity
∑
e∈∂K(ve−vK)⊗νK,e|e| =

∑
e∈∂Kve⊗νK,e|e|
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we get

(5.18)

∂vQ(unK , vK) :
( ∑
e∈∂K

(ve − vK)⊗ νK,e|e|
)

= ∂vQ(unK , vK) :

(
1

τ

∫ tn+1

tn

∫
K

∇v(x)dtdx

)
,

again thanks to the representation formula in Remark 3.1 (for ∇v). On the other
hand, the latter error term in (5.17) is described by

(5.19)

∣∣∣ ∑
e∈∂K

(φne − φnK)∂vQ(unK , vK) : ((ve − vK)⊗ νK,e)|e|
∣∣∣

≤ O(1) sup
e∈∂K

|(φne − φnK)(ve − vK)|)pK

≤ O(h2
K)‖∇φ‖L∞(]tn,tn+1[×K)pK ≤ O(hK) ||∇φ||L∞(]tn,tn+1[×K)|K|.

Here, we have successively used the sup–norm estimate (4.13) satisfied by uh, the
definition of the perimeter pK of K, the estimate

(5.20) |ve − vK | ≤
∑
e′∈∂K

αK,e|ve − ve′ | ≤ O(hK)

from the definition of vK and the regularity property v0 ∈ W 2,∞, a similar esti-
mate |φne − φnk | ≤ O(hK) and finally the non degeneracy assumption (3.1) on the
triangulation Th. Involving (5.18)-(5.19), the identity (5.17) yields the following
estimate

(5.21)

∣∣∣∂vQ(unK , vK) :
( ∑
e∈∂K

φne (ve − vK)⊗ νK,e|e|
)

− 1

τ

∫ tn+1

tn

∫
K

φnK∂vQ(unK , vK) : ∇v(x)dtdx
∣∣∣

≤ O(hK) ||∇φ||L∞(]tn,tn+1[×K)|K|.
For the final error term in the flux balance (5.16), we have the following bounds:∣∣∣ ∑

e∈∂K
φne

∫ 1

0

(∂vQ(unK , vK + s(ve − vK))− ∂vQ(unK , vK))ds : ((ve − vK)⊗ νK,e)|e|
∣∣∣

≤ O(1) sup
e∈∂K

|ve − vK |2
(
pK ||φ||L∞(]tn,tn+1[×K)

)
≤ O(hK)||φ||L∞(]tn,tn+1[×K)|K|,

where we have used the regularity of the entropy flux Q, the sup–norm estimate
(4.13), the estimate (5.20) satisfied by |ve−vK |, and the non-degeneracy assumption
(3.1) on the triangulation Th.

To summarize, we have obtained the estimate for the flux balance on a single
cell:

(5.22)

∣∣∣1
τ

∫ tn+1

tn

∫
K

(
Q(unK , vK) · ∇φ(x, t) + φnK∂vQ(unK , vK) : ∇v(x)dtdx

)
−
∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e|
∣∣∣

≤ O(h)||φ||W 1,∞(]tn,tn+1[×K)|K|.
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From the discrete weak entropy inequality (5.6) we recall that∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K| − τ

∑
K∈Th

∑
e∈∂K

F(wnK,e, ve) · νK,eφne |e| ≤ 0,

the sum of (5.22) over all cells K on the triangulation Th gives∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

−
∫ tn+1

tn

( ∑
K∈Th

∫
K

Q(unK , vK) · ∇φ+ φ∂vQ(unK , vK) : ∇vdx
)
dt

≤ O(h)τ
∑

K∈Th
||φ||W 1,∞(]tn,tn+1[×K)|K| ≤ O(h)τ ||φ||W 1,∞(]tn,tn+1[×Rd)|supp(φ)|.

�

Proof of Lemma 5.4. We first establish the estimate (5.11) and consider the follow-
ing decomposition involving again the {αK,e}{e,e∈∂K}-average φnK of the φne (5.9):∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne

=
∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
(φne − φnK) + φnK

( ∑
e∈∂K

αK,eU(wnK,e)− U(wnK)
)
,

from which we deduce the following bound:
(5.23)∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne ≤ O(hK)||∇φ||L∞(]tn,tn+1[×K) sup

e∈∂K
|wnK,e − wnK |

+ O(1) ||φ||L∞(]tn,tn+1[×K)

( ∑
e∈∂K

αK,eU(wnK,e)− U(wnK)
)
,

in view of the sup-norm estimate (4.13) satisfied by uh, the estimate |φne − φnK | ≤
O(hK) and the convexity of the entropy U(w). The first error term in (5.23) is
given the following bound:

(5.24)

|wnK,e − wnK | ≤
∑
e′∈∂K

αK,e′
∣∣C0(unK , ve′)− C0(unK , ve)

∣∣
≤ O(1) sup

e′∈∂K
|ve′ − ve| ≤ O(hK),

while the second one may be handled as follows:

(5.25)

∑
e∈∂K

αK,eU(wnK,e)− U(wnK) = U ′(wnK)
( ∑
e∈∂K

αK,ew
n
K,e − wnK

)
+
∑
e∈∂K

αK,e

∫ 1

0

U ′′(wnK,e + s(wnK − wnK,e))ds(wnK,e − wnK)2

≤ O(1) sup
e∈∂K

|wnK,e − wnK |2 ≤ O(h2
K),

in view of (3.15) wnK =
∑
e∈∂K αK,ew

n
K,e and the estimate (5.24). Gathering bounds

(5.24) and (5.25) yield the expected estimate (5.11) in Lemma 5.4.
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We now derive the companion estimate (5.12), by starting from the decomposi-
tion∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
φne = φnK

(
U(wn+1

K )−
∑
e∈∂K

αK,eU(wn+1,−
K,e )

)
+
∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)(
φne − φnK

)
,

and observing, on one hand,∣∣∣ ∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)(
φne − φnK

)∣∣∣
≤ O(1)

∑
e∈∂K

αK,e|φne − φnK ||wn+1,−
K,e − wn+1

K |

≤ O(hK)
( ∑
e∈∂K

αK,e|wn+1,−
K,e − wn+1

K |
)
‖∇φ‖L∞(]tn,tn+1[×K)

and, on the other hand,∑
e∈∂K

αK,eU(wn+1,−
K,e )− U(wn+1

K ) = U ′(wn+1
K )

( ∑
e∈∂K

αK,ew
n+1,−
K,e − wn+1

K

)
+
∑
e∈∂K

αK,e

∫ 1

0

U ′′(wn+1,−
K,e + s(wn+1

K − wn+1,−
K,e ))ds(wn+1,−

K,e − wn+1
K )2.

Finally, in view of the convex decomposition (4.2) stating

wn+1
K =

∑
e∈∂K

αK,ew
n+1,−
K,e ,

we get

U(wn+1
K )−

∑
e∈∂K

αK,eU(wn+1,−
K,e ) ≤ −σU

∑
e∈∂K

αK,e|wn+1,−
K,e − wn+1

K |2,

where σU denotes the convexity like-modulus of U introduced in Lemma 5.4. This
concludes the proof. �

5.3. Entropy dissipation rate and strong convergence. The proposed esti-
mates obtained in Lemma 5.4 deserve a few comments. Plugging first estimate
(5.11) in (5.10) will be easily seen to yield the following upper-bound∑
n≥0

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK)

)
φne |K| ≤ O(h)‖φ‖W 1,∞(R+×Rd)|supp(φ)|

that obviously suffices to conclude. By contrast and turning considering (5.12), a
crude upper-bound based on the sup-norm estimate (4.14), say∑

e∈∂K
αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
φne ≤ O(h)‖φ‖W 1,∞(]tn,tn+1[×K)

would result in the useless estimate∑
n≥0

∑
K∈Th

∑
e∈∂K

αK,e

(
U(wn+1

K )−U(wn+1,−
K,e )

)
φne |K| ≤ O(1)‖φ‖W 1,∞(R+×Rd)|supp(φ)|.

Proving that the error term of concern in (5.10) actually vanishes with h requires

therefore in turn a sharper control in (5.12) of the oscillations of the wn+1,−
K,e around
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their mean value wn+1
K . Such a control over these discrete oscillations results from

a sharp evaluation of the discrete entropy rate of dissipation.

Proposition 5.5. Let T > 0 be any fixed time and let NT ∈ N be the floor of T/τ
we denote [T/τ ]. Then, for any (time independent) non negative test function ψ ∈
D(Rd), the finite volume approximation (3.14)–(3.17) obeys the following estimate
on the discrete oscillations:

(5.26)

NT∑
n=0

∑
K∈Th

∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2ψK |K| ≤ O(1),

where ψK reads ψK =
∑
e∈∂KαK,eψe, ψe = 1

|e|
∫
e
ψ(x)dx.

Equipped with (5.26) we obtain the following entropy dissipation rate.

Corollary 5.6. The sequence uh satisfy the entropy like inequality
(5.27)∫∫

R+×Rd

U(C0(uh, v))∂tφ(x, t) +Q(uh, v) · ∇φ+ φ∂vQ(uh, v) :∇vdxdt ≥ O(h1/2),

for any (smooth) convex entropy pair (U ,Q) : R→ R×Rd introduced in (2.41) and
(2.39).

Equipped with the above inequality valid for any entropy pair (U ,Q), we easily
deduce that the Young measure µ = µt,x associated with the sequence (uh)h>0 is an
entropy satisfying measure valued solution. In other words the uniformly bounded
L∞ sequence (uh)h>0, as announced at the beginning of this section, it is easy to
check that the inequation (5.27) becomes as h tends to 0 the following inequation
satisfied in the weak sense:

(5.28) ∂t〈µ,U(C0(·, v))〉+∇x〈µ,Q(·, v)〉 − 〈µ, ∂vQ(·, v)〉 :∇v ≤ 0.

Relying on a direct extension of DiPerna’s uniqueness theorem [13], we can deduce
that the entropy measure–valued solution µt,x reduces to a Dirac measure δu(t,x)

concentrated on a function u = u(t, x) since the initial data µ0 coincides with the
Dirac measure δu0

(where u0 is the initial data in the Cauchy problem (2.32)).
Proving that the inital data u0 is correctly handled amounts to show that for every
compact subset K of R we have

(5.29) lim
t→0+

∫ t

0

∫
K
〈µs,x, |id− u0(x)|〉 dxds = 0.

The condition (5.29)-(5.28) reduces to a Dirac measure concentrated at u(t, x), the
Kruzkov entropy solution of (2.32)-(2.41) with same initial data u0. In other words,
for all time T > 0 and for all compact K in R, the scheme converges strongly in
Lploc((0, T )×K) to the solution u. Theorem 3.4 of this paper is thus now established.

Proof of Proposition 5.5. We start from the discrete in time weak formulation (5.7)
stated in Proposition 5.3:∑

K∈Th
∑
e∈∂KαK,e

(
U(wn+1,−

K,e )− U(wnK,e)
)
φne |K|

−
∫∫

]tn,tn+1[×Rd

Q(unh, v(x)) · ∇φ(x, t) + φ(x, t)∂vQ(unh, v(x)) :∇v(x)dxdt

≤ O(h)τ ||φ||W 1,∞(]tn,tn+1[×Rd)|supp(φ)|,
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in which we plug the decomposition (5.8)-(5.9). A discrete test function ψK given
for any given time-independent test function ψ ∈ D(Rd) is considered. We then get∑

K∈Th

(
U(wn+1

K )− U(wnK)
)
ψK |K|

−
∫∫

]tn,tn+1[×Rd

Q(unh, v(x)) · ∇ψ(x) + ψ(x)∂vQ(unh, v(x)) :∇v(x)dxdt

≤
∑

K∈Th

∑
e∈∂K

αK,e

(
U(wn+1

K )− U(wn+1,−
K,e )

)
ψe|K|

+
∑

K∈Th

∑
e∈∂K

αK,e

(
U(wnK,e)− U(wnK))

)
ψe|K|

+ O(h)τ ||ψ||W 1,∞(Rd)|supp(ψ)|.

Invoquing estimates (5.11)-(5.12) then yields∑
K∈Th

(
U(wn+1

K )− U(wn+1,−
K,e )

)
ψK |K|+ σU

∑
K∈Th

∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2ψK |K|

≤ O(h)τ ||ψ||W 1,∞(Rd)|supp(ψ)|+ O(h)
∑

K∈Th
||∇ψ||L∞(K)|K|

+ O(h2)
∑

K∈Th
||ψ||W 1,∞(K)|K|

+

∫∫
]tn,tn+1[×Rd

Q(unh, v(x)) · ∇ψ(x) + ψ(x)∂vQ(unh, v(x)) :∇v(x)dxdt.

Observe that due to the estimate (4.13), the last contribution in the above right–
hand side can be given the following crude estimate O(τ)‖ψ‖W 1,∞(Rd). Henceforth,
we deduce that∑
K∈Th

(
U(wn+1

K )− U(wnK)
)
ψK |K|+ σU

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2
)
ψK |K|

≤ O(h)‖ψ‖W 1,∞(Rd).

Summing over time indices n ∈ [0, NT ] with NT = [T/τ ] for a fixed time T > 0, we
get

∫
Rd

U(wh(x, T ))ψh(x)dx+ σU

NT∑
n=0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2
)
ψK |K|

≤
∫
Rd

U(w0(x))ψh(x)dx+O(1)T‖ψ‖W 1,∞(Rd),

which is the required result. �

Proof of Corollary 5.6. We start from (5.7)-(5.8)-(5.9) and consider the following
discrete in time weak formulation for the time dependent test function φ ∈ D(R+

∗ ×
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Rd) and its discrete representation φnK∑
K∈Th

(
U(wn+1

K )− U(wnK)
)
φnK |K|

−
∫∫

]tn,tn+1[×Rd

Q(unh, v(x)) · ∇φ(x, t) + φ(x, t)∂vQ(unh, v(x)) :∇v(x)dxdt

≤ O(h)τ ||φ||W 1,∞(]tn,tn+1[×Rd)|supp(φ)|+O(h2)
∑

K∈Th
||φ||W 1,∞(]tn,tn+1[×K)|K|

+ O(h)
∑

K∈Th

∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e | ||∇φ||L∞(]tn,tn+1[×K)|K|.

where we have used estimates (5.11)-(5.12). Summing this inequality over time
indices gives
(5.30)

−
∑
n≥0

∑
K∈Th

U(wn+1
K )

φn+1
K − φnK

τ
τ |K|

−
∫∫

R+×Rd

Q(unh, v(x)) · ∇φ(x, t) + φ(x, t)∂vQ(unh, v(x)) :∇v(x)dxdt

≤ O(h)||φ||W 1,∞(R+×Rd)

+O(1)
∑
n≥0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e | χφ||∇φ||L∞(]tn,tn+1[×K)|K|τ
)
,

making use of the characteristic function χφ of
⋃

0<t<T supp(φ(·, t)), a compact

subset of Rd, where T is a finite time such that supp(φ(·, t)) = ∅ for t ≥ T .
Cauchy-Schwarz’s inequality then yields the following crude upper bound for the
last term:∑

n≥0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e | χφ
)
||∇φ||L∞(]tn,tn+1[×K)|K|τ

≤
(∑
n≥0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e | χφ
)2|K|τ)1/2

·
(∑
n≥0

∑
K∈Th

||∇φ||2L∞(]tn,tn+1[×K)|K|τ
)1/2

≤ O(1)
(∑
n≥0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e |2
)
χφ|K|τ

)1/2

as a consequence of the convexity property of the αK,e−average. The estimate
(5.26) then yields with ψ = χφ∑
n≥0

∑
K∈Th

( ∑
e∈∂K

αK,e|wn+1
K − wn+1,−

K,e | χφ
)
||∇φ||L∞(]tn,tn+1[×K)|K|τ ≤ O(h1/2).

Then routine arguments give the conclusion from (5.30). �

6. Numerical experiments

6.1. A two domain coupling problem. In this first test, we consider an hetero-
geneous medium which occupies the spatial domain [−1, 1]2 and is constituted by a
background domain D0 and a ring-shaped inclusion D1 centered at the origin (0, 0)
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with external radius
√

0.2 and with internal radius
√

0.1. In these two domains,
the following respective flux functions are considered in term of the scalar unknown
w = w(t, x):

f0(w) =
w2

2

(
1
1

)
, f1(w) =

(w − 0.9)2

2

(
1
1

)
.

The regularized color function v plotted in Figure 3b provides us with a regularized
version of the characteristic function of the domain D1. The coupling condition
between D0 and D1 takes here the form

2w−(t, x) = w+(t, x), x ∈ ∂D1,

where w±(t, x) = limθ→0+ w(t, x±θνx) and νx the exterior unit normal at x ∈ ∂D1.
The initial data plotted in Figure 3a is piecewise constant:

w0(x, y) =

{
1, x < −0.8,

0, x ≥ −0.8.

The computations are performed on a Cartesian grid with 100 × 100 meshes, and
the CFL number is chosen to be 0.5.

In an homogeneous domain with flux function f0, such an initial data would
develop a shock front moving with the speed vector 0.5(1, 1)T . In the present
heterogeneous domain, this shock front has the same behavior until it reaches the
interface between both domains (see Figures 4a). The coupling condition at this in-
terface is such that the value w = 2 arises then inside the domain D+. In this second
domain, where the flux under consideration is f1, we observe then a (curved) shock
wave connecting the states w = 2 and w = 0 and moving at the fixed speed given
by the Rankine–Hugoniot relation, that is, 0.605(1, 1)T (see Figures 4b and 4c).
Finally, the shock front goes outside the whole domain [−1, 1]2 (see Figure 4d). In
Figures 4a, 4b, 4c, and 4d) (right figures), we plot the u–variable, which is found
to remain constant at each interface, as expected by the theory.

(a) Initial data w0 (b) Color function v

Figure 3. Initial data for the multidimensional test.
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(a) Solution at t = 0.5

(b) Solution at t = 1.5

(c) Solution at t = 2.5

(d) Solution at t = 4.5

Figure 4. Two domain test case. Evolution of the solution: w
(left) and u (right).
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6.2. A three domain coupling problem. In this second test, we consider three
different domains, as represented in Figure 5: the domain D1 is again ring-shaped
and the inclusion D2 is an isosceles triangle. The flux functions under consideration
are now

(6.1) f0(w) =
w2

2

(
1
0

)
, f1(w) =

w2

2

(
0.5
0

)
, f2(w) =

w2

2

(
0
1

)
,

and the coupling relations are given by the change of unknown (2.22) with

(6.2) θ0(w) = w, θ1(w) = w/2, θ2(w) = w/3.

We consider the same initial data as previously and, thus, we expect the state
w = 2 to appear in D1 and the state w = 3 in D2. The results are represented in
Figures 6a to 6f for successive time steps. Once again, the limiting solution as the
time grows satisfies the expected coupling relation.

D0
D0D1 D2

x−
1

0 0.85
1

y

−1

−0.425

0

0.6
0.4

1

Figure 5. Geometry of the three domains.
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38 BENJAMIN BOUTIN, FRÉDÉRIC COQUEL, AND PHILIPPE G. LEFLOCH

[11] Boutin B., Coquel F., and LeFloch P.G., Coupling techniques for nonlinear hyperbolic

equations. I. Self-similar diffusion for thin interfaces, Proc. Roy. Soc. Edinburgh Sect. A,

141 (2011), 921–956.
[12] Boutin B., Coquel F., and LeFloch P.G., Coupling techniques for nonlinear hyperbolic

equations. II, in preparation.

[13] Boutin B., Coquel F., and LeFloch P.G., Coupling techniques for nonlinear hyperbolic
equations. III. A regularization method based on thick interfaces, SIAM J. Numer. Anal. 51

(2013), 1108–1133.

[14] Bürger R. and Karlsen K.H., Conservation laws with discontinuous flux: a short intro-
duction, J. Engrg. Math. 60 (2008), 241–247.

[15] Chalons C., Raviart P.-A., and Seguin N., The interface coupling of the gas dynamics

equations, Quart. Appl. Math. 66 (2008), 659–705.
[16] Cockburn B., Coquel F., and LeFloch P.G., Convergence of finite volume methods for

multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), 687–705.
[17] Cockburn B., Coquel F., and LeFloch P.G., An error estimate for finite volume methods

for multidimensional conservation laws, Math. of Comp. 63 (1994), 77–103.

[18] Coquel F. and LeFloch P.G., Convergence of finite difference schemes for conservation
laws in several space dimensions, C.R. Acad. Sci. Paris Ser. I 310 (1990), 455–460.

[19] Coquel F. and LeFloch P.G., Convergence of finite difference schemes for conservation

laws in several space dimensions: a general theory, SIAM J. Numer. Anal. 30 (1993), 675–
700.

[20] Coquel F. and LeFloch P.G., Convergence of finite difference schemes for conservation

laws in several space dimensions: the corrected antidiffusive flux approach, Math. of Comp.
57 (1991), 169–210.

[21] Crandall, Michael G. and Majda, Andrew, Monotone difference approximations for

scalar conservation laws, Math. of Comp. 34 (1980), 1–21.
[22] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal.

88 (1985), 223–270.
[23] Dal Maso G., LeFloch P.G., and Murat F., Definition and weak stability of nonconser-

vative products, J. Math. Pures Appl. 74 (1995), 483–548.

[24] Dubois F. and LeFloch P.G., Boundary conditions for nonlinear hyperbolic systems of
conservation laws, J. Differential Equations 71 (1988), 93–122.
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Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France.
E-mail address: contact@philippelefloch.org


