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Abstract. The late stage of the North East Atlantic (NEA)
spring bloom was investigated during June 2005 along a
transect section from 45 to 66◦ N between 15 and 20◦ W in
order to characterize the contribution of siliceous and cal-
careous phytoplankton groups and describe their distribution
in relation to environmental factors. We measured several
biogeochemical parameters such as nutrients, surface trace
metals, algal pigments, biogenic silica (BSi), particulate in-
organic carbon (PIC) or calcium carbonate, particulate or-
ganic carbon, nitrogen and phosphorus (POC, PON and POP,
respectively), as well as transparent exopolymer particles
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(TEP). Results were compared with other studies undertaken
in this area since the JGOFS NABE program. Characteris-
tics of the spring bloom generally agreed well with the ac-
cepted scenario for the development of the autotrophic com-
munity. The NEA seasonal diatom bloom was in the late
stages when we sampled the area and diatoms were con-
strained to the northern part of our transect, over the Ice-
landic Basin (IB) and Icelandic Shelf (IS). Coccolithophores
dominated the phytoplankton community, with a large distri-
bution over the Rockall-Hatton Plateau (RHP) and IB. The
Porcupine Abyssal Plain (PAP) region at the southern end
of our transect was the region with the lowest biomass, as
demonstrated by very low Chla concentrations and a com-
munity dominated by picophytoplankton. Early depletion
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of dissolved silicic acid (DSi) and increased stratification of
the surface layer most likely triggered the end of the diatom
bloom, leading to coccolithophore dominance. The chronic
Si deficiency observed in the NEA could be linked to mod-
erate Fe limitation, which increases the efficiency of the Si
pump. TEP closely mirrored the distribution of both biogenic
silica at depth and prymnesiophytes in the surface layer sug-
gesting the sedimentation of the diatom bloom in the form of
aggregates, but the relative contribution of diatoms and coc-
colithophores to carbon export in this area still needs to be
resolved.

1 Introduction

The North Atlantic is an important seasonal sink for atmo-
spheric CO2 through intense convection of cold surface wa-
ters and elevated primary productivity during spring (Watson
et al., 1991). It also appears to be a large sink for anthro-
pogenic CO2 (Gruber, 1996). The NABE (North Atlantic
spring Bloom Experiment) program (1989 and 1990) showed
that CO2 variability was strongly related to the phytoplank-
ton bloom dynamics (Ducklow and Harris, 1993).

The spring bloom starts to develop following surface
warming and stratification in March–April, and benefits from
the large nutrient stocks available following the intense win-
ter convective mixing of surface waters. It propagates north-
ward as surface stratification progresses in what has been
described as a rolling green patchwork, strongly riddled by
mesoscale and eddy activity (Robinson et al., 1993). A pro-
posed mechanism for the spring bloom in the North East At-
lantic (NEA) involves a rapid diatom growth and dominance
in the early spring, followed by a more diverse community
of prymnesiophytes, cyanobacteria, dinoflagellates and green
algae later in the season (Sieracki et al., 1993).

At high latitudes, the NEA is also the site of one of the
largest coccolithophore blooms observed anywhere in the
ocean. Satellite imagery annually reveals extensive coccol-
ithophore blooms in surface waters between 50 and 63◦ N as
well as on the Icelandic shelf (Holligan et al., 1993; Brown
and Yoder, 1994; Balch et al., 1996; Iglesias-Rodriguez et
al., 2002). It has been hypothesized that the coccolithophore
bloom frequently follows the diatom bloom as the growing
season progresses. Progressively more stratified surface wa-
ters receive stronger irradiances with correspondingly more
severe nutrient limitation. Coccolithophores have lower half-
saturation constants for dissolved inorganic nitrogen (DIN)
and phosphorus (DIP) compared to diatoms (Eppley et al.,
1969; Iglesias-Rodriguez et al., 2002), and their ability to uti-
lize a wide variety of organic nitrogen or phosphorus sources
(Benner and Passow, 2009) has been invoked as major factors
leading to this succession in surface waters.

Dissolved silicic acid (DSi) availability is also thought to
play a major role in phytoplankton community succession.

Recurrent DSi depletion has been observed in the NEA dur-
ing the NABE (1989) and POMME (2001) programs (Lochte
et al., 1993; Sieracki et al., 1993; Leblanc et al., 2005). In
these studies during the phytoplankton bloom, DIN stocks
were still plentiful while DSi was almost depleted due to
diatom uptake in early spring. Thus, the stoichiometry of
initially available nutrients following winter deep mixing
likely plays a crucial role in the structural development of
the spring bloom, which feeds back on the availability of nu-
trients in the mixed layer (Moutin and Raimbault, 2002).

The partitioning of primary production between calcifiers
and silicifiers is of major importance for the efficiency of the
biological pump. Both CaCO3 and SiO2 act as ballast min-
erals, but their differential impact on C fluxes to depth is still
a matter of debate (Boyd and Trull, 2007). The efficiency
of the biological pump is also largely a matter of packag-
ing of sinking material, e.g. in faecal pellets or as aggre-
gates with varying transparent exopolymer particles (TEP)
contents. TEP are less dense than seawater and consequently
higher concentrations of TEP result in decreased sinking ve-
locities (Passow, 2004).

The objectives of the NASB 2005 (North Atlantic Spring
Bloom) program was to describe the phytoplankton blooms
in the NEA during June 2005 and identify the relative con-
tribution of the two main phytoplankton groups producing
biominerals, namely diatoms and coccolithophores, which
are thought to play a major role in carbon export to depth.
Their distribution in the mixed layer and the strong latitudi-
nal gradients observed along the 20◦ W meridian from the
Azores to Iceland are discussed in relation to nutrient and
light availability as well as water column stratification.

Our results are compared and contrasted with previ-
ous studies carried out in this sector [BIOTRANS 1988
(Williams and Claustre, 1991), NABE 1989 (Ducklow and
Harris, 1993), PRIME 1996 (Savidge and Williams, 2001),
POMME 2001 (Ḿemery et al., 2005), AMT (Aiken and Bale,
2000)] and we discuss whether a clear scenario for the NEA
spring/summer bloom can be proposed. Our data set is used
to ask several key questions about this biogeochemically crit-
ical part of the ocean: are the coccolithophore blooms of-
ten indicated by the large calcite patches seen in satellite
images a major component of the phytoplankton bloom in
the NEA? Which environmental factors can best explain the
relative dominance of coccolithophores vs. diatoms in this
high latitude environment? What causes recurrent silicic
acid depletion in the NEA and what are the potential conse-
quences for phytoplankton composition and carbon export?
We addressed these questions by investigating the distribu-
tion of the major biogeochemical parameters such as partic-
ulate opal, calcite, algal pigments, particulate organic car-
bon (POC), nitrogen (PON) and phosphorus (POP) as well
as TEP concentrations in relation to environmental factors
such as light, nutrients and trace metals along a transect near
the 20◦ W meridian between the Azores and Iceland.
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2 Material and methods

2.1 Study area

The NASB 2005 (North Atlantic Spring Bloom) transect was
conducted on the R/VSeaward Johnson II in the NEA Ocean
between 6 June and 3 July 2005. The cruise track was lo-
cated between 15◦ W and 25◦ W, starting at 45◦ N north of
the Azores Islands and ending at 66.5◦ N west of Iceland
(Fig. 1a). The South-North transect was initially intended
to track the 20◦ W meridian but included several deviations
in order to follow real-time satellite information locating ma-
jor coccolithophore blooms and calcite patches. Ship-board
CO2, temperature and nutrient perturbation experiments ac-
companied the field measurements presented here (compan-
ion papers: Feng et al., 2009; Rose et al., 2009; Lee et al.,
2009; Benner et al., 2009).

2.2 Sample collection and analysis

2.2.1 Hydrographic data

CTD casts from the surface to 200 m depths were performed
at 37 stations along the transect to emphasize biogeochem-
ical processes in the surface layer. Physical characteristics
of the surface water will be included in a description of the
main water masses present in the area. Surface water can
greatly influence biological processes and their characteris-
tics help determine the location of fronts, eddies, vertical
stratification and hydrological provinces that were crossed.
Water samples were collected using 10 L Niskin bottles on a
rosette, mounted with a Seabird 9+ CTD equipped with pho-
tosynthetically active radiation (PAR), fluorescence and oxy-
gen detectors. Surface trace metal samples were collected
using a surface towed pumped “fish” system (Hutchins et al.,
1998). Topographical information and section plots were ob-
tained using ODV software (Schlitzer, R., Ocean Data View,
http://odv.awi.de, 2007). The depths of the mixed layer (Zm)

and the nutricline (Zn) were determined as the depth of the
strongest gradient in density and dissolved inorganic nitro-
gen (DIN) respectively between two measurements between
the surface and 200 m. Treated CTD density data averaged
every 0.5 m were used for the calculation ofZm, while nutri-
ent data collected at 12 depths on average with Niskin bot-
tles were used to computeZn over the 0–200 m layer. At the
highest concentration gradient identified between to Niskin
measurements,Zn was determined as the depth of the upper
bottle. The euphotic depth (Ze) was calculated as the 1%
light level using CTD PAR data averaged every 0.5 m.

2.2.2 Dissolved nutrients and trace metals

Concentrations of DIN (nitrate+nitrite), DIP and DSi were
determined colorimetrically on whole water samples by stan-
dard autoanalyzer techniques (Futura continuous flow ana-
lyzer, Alliance Instruments) as soon as the samples were col-

lected at each station. Near-surface water samples (∼10 m
depth) for trace metal analysis were collected with a pump
system using an all-Teflon diaphragm pump (Bruiser) and
PFA Teflon tubing attached to a weighted PVC fish (Hutchins
et al., 1998). The tubing was deployed from a boom off
the side of the ship outside of the wake, and samples were
collected as the ship moved forward into clean water at
approximately 5 knots. After flushing the tubing well, a
50 L polyethylene carboy was filled in a clean van and
used for subsampling under HEPA-filtered air (removing
particles above 0.3 µm diameter). All sampling equipment
was exhaustively acid-washed, and trace-metal clean han-
dling techniques were adhered to throughout (Bruland et al.,
1979). One-liter samples were filtered though 0.22 µm pore
size polypropylene Calyx capsule filters into low-density
polyethylene bottles, and acidified to pH<2 with ultrapure
HCl after conclusion of the cruise. Dissolved metals were
preconcentrated from 250 mL seawater using APDC/DDDC
organic solvent extraction (Bruland et al., 1979). Chloroform
extracts were brought to dryness, oxidized with multiple
aliquots of concentrated ultrapure HNO3, dried again, and
reconstituted with 2 mL of 1N ultrapure HNO3. Samples for
particulate and intracellular metals were collected onto 2 µm
polycarbonate filter membranes held in polypropylene filter
sandwiches. For intracellular metals determination, cells re-
tained by the filters were washed with 5 mL of an oxalate
solution to remove surface-adsorbed metals (Tovar-Sanchez
et al., 2003), and rinsed with filtered, Chelex-cleaned seawa-
ter (Tang and Morel, 2006). Material on the total and intra-
cellular particulate filters was digested at room temperature
with 2 mL ultrapureaqua regia and 50 µL HF. Concentrated
acids were evaporated to near dryness and reconstituted with
2 mL of 1N ultrapure HNO3. Dissolved and particulate metal
extracts were analyzed by direct injection ICP-MS (Ther-
moFisher Element2) following 10-fold dilution, with indium
as an internal standard.

2.2.3 Particulate matter

PIC, POC and PON: water samples (400 mL) were filtered
onto precombusted glass fibre filters (Whatman GF/F) and
dried at 50◦C. At the laboratory, filters were HCl fumed for
4 h in a desiccator, redried in an oven at 60◦C (Lorrain et al.,
2003) and measured on a Carlo Erba Strumentazione Nitro-
gen Analyzer 1500 to determine POC and PON concentra-
tions. A duplicate of each sample was run directly without
fuming to obtain Total Particulate Carbon (TPC). PIC con-
centrations were calculated from the difference between TPC
and POC.

POP: between 750 mL and 1 L samples were filtered onto
precombusted glass fibre filters (Whatman GF/F) and rinsed
with 2 mL of 0.17 M Na2SO4. The filters were then placed
in 20 mL precombusted borosilicate scintillation vials with
2 mL of 17 mM MnSO4. The vials were covered with alu-
minium foil, dried at 95◦C, and stored in a desiccator until
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Figure 1
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Fig. 1. (A) Map of the study area with stations sampled and main currents theoretical position according to literature. NAW: North Atlantic
Waters; MNAW: Modified North Atlantic Waters; NAC: North Atlantic Current; CSC: Continental Slope Current; NIIC: North Icelandic
Irminger Current; IC: Irminger Current; EGC: East Greenland Current; FC: Faroe Current.(B) Transect topography plotted using ODV, and
depth of the CTDs along the transect.(C) T-S diagram of the water masses between 0 and 200 m for the 37 stations sampled.

analysis. The vials were combusted at 450◦C for 2 h, and
after cooling 5 mL of 0.2 N HCl were added to each vial for
final analysis. Vials were tightly capped and heated at 80◦C
for 30 min to digest POP into inorganic phosphorus. The di-
gested POP samples were analyzed with the standard molyb-
date colorimetric method (Solorzano and Sharp, 1980).

BSi (Biogenic Silica): samples for biogenic silica mea-
surements (1 L) were filtered onto polycarbonate filters
(0.6 µm, 47 mm) and stored in plastic Petri dishes. Filters
were dried at 60◦C for 24 h and then stored at room temper-
ature. Samples were analyzed for biogenic silica following
the digestion of silica in hot 0.2 N NaOH for 45 min (Nelson
et al., 1989).

TEP: between 150 mL (surface) and 400 mL (at depth)
samples were filtered onto 0.4 µm polycarbonate filters and
directly stained with Alcian blue. Three replicates per depth
and six replicate blanks per day were prepared. Stained fil-
ters were frozen until analysis or analyzed directly according
to Passow and Alldredge (1995). Briefly, filters were soaked
in 6 mL 80% H2SO4. After 2 to 8 h the absorption of the re-
sulting solution was measured colorimetrically at 787 nm in
a 1 cm cuvette. Gum Xanthan was used for calibration, thus

this method compares the staining capability of TEP to that
of Gum Xanthan and values are expressed as Gum Xanthan
equivalent per L (µg Xeq L−1).

2.2.4 Taxonomic information

Pigments: water samples (1 L) were filtered onto glass fibre
filters (Whatman GF/F) and stored in liquid nitrogen until
analysis. Samples were analyzed on an Agilent 1100 HPLC
(High Performance Liquid Chromatography) system with
diode array and fluorescence detection. Elution gradients and
protocols were described in detail elsewhere (DiTullio and
Geesey, 2002).

Coccolithophore cell counts: water samples of 400 mL
were filtered onto cellulose nitrate filters (0.45 µm, 47 mm)
and dried at 50◦C for coccolithophore cell counts. Pieces of
the filters were sputter-coated with gold-palladium and im-
aged with a Philips XL-30 digital scanning field-emission
electron microscope (SEM). Coccolithophores were counted
from SEM images and coccolithophores L−1 were calculated
from counts, counting area, filter area and filtered volume.
Coccolithophores were only counted at selected depths at
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K. Leblanc et al.: Distribution of calcifying and silicifying phytoplankton 5

sites of elevated PIC concentrations (St. 10, 12, 19, 23, 29,
31, 33, 34).

2.2.5 Satellite images

Monthly satellite MODIS Chla and calcite composite im-
ages were obtained from the Level 3 browser available on
the NASA Ocean Biology Processing Group website (http:
//oceancolor.gsfc.nasa.gov/).

2.2.6 Statistical correlation analyses

A non-parametric two-tailed Spearman Rank correlation co-
efficient was used as a measure of correlation between the
main biogeochemical parameters as the criterion of normal
distribution was not met for any of them.

3 Results

3.1 Hydrographic data

3.1.1 Topography

The transect running east of the Mid-Atlantic Ridge, started
with stations 1 to 12 located in the Porcupine Abyssal Plain
(PAP), one of the deeper regions of the Atlantic Ocean (4000
to 5000 m) (Fig. 1a and b). St. 13 to 23 were sampled above
the Rockall-Hatton Plateau (RHP), which rises to between
300 and 1200 m. St. 24 to 30 were located above the deep
Icelandic Basin (IB) (3000 m) while the transect ended over
the Icelandic shelf (IS) in shallow waters (<250 m) with St.
31 to 37.

3.1.2 Circulation

The general surface circulation pattern is depicted in Fig. 1a
according to Hansen and Østerhus (2000), Otto and Van
Aken (1996) and Krauss (1986). Some caution in interpret-
ing these surface currents is necessary, as the direction and
flow of the diverse branches of the North Atlantic Current
(NAC) are still a matter of debate and show large interan-
nual variability. However, the near surface layers that were
sampled during this cruise can be characterized by a mean
north-eastward flow in the eastern part of the NA. To the
South, the Azores Current (AC) separates in a more south-
eastwardly drift close to the 45◦ N parallel (Krauss, 1986).
The NAC enters the northeastern Atlantic, crossing over the
Mid-Atlantic Ridge and is diverted into several branches.
The major NAC branch flows northward and is further split
into two branches, one crossing the ridge south west of Ice-
land to become the Irminger Current (IC) and the other flow-
ing through the southern part of the IB over the RHP and
towards the Farøes. Part of that second branch can recir-
culate in a cyclonic gyre over the IB and along the Mid-
Atlantic Ridge. The westernmost Atlantic waters that flow

into the Denmark Strait between Iceland and Greenland are
usually termed the North Icelandic Irminger Current (NIIC),
in probable continuity with the IC. The main NAC carries rel-
atively warm and saline waters from the open North Atlantic
to the RHP, and is bounded by a frontal jet between the RHP
and the IB. According to Hansen and Østerhus (2000), the
NAC flow is probably broad and diffuse while it approaches
the RHP and narrows over the slope region. Recirculating
flow along the plateau slope is hypothesized, but despite un-
certainties about the circulation features above the RHP, the
main trajectory of the NAC is north-eastward. NA waters
originating from the Armorican Slope off the coast of France
are diverted northward following the continental slope and
form the Continental Slope Current (CSC).

3.1.3 Water masses

From the T-S diagram of the 0–200 m layer (Fig. 1c), St. 1
to 5 show elevated salinity values (>35.5) which could indi-
cate North Atlantic Waters (NAW) originating from the slope
rather than the influence of Modified North Atlantic Waters
(MNAW), which is usually characterized by lower salinities
(St. 6 to 33). Elevated salinity values of the NAW originating
from the Armorican Slope may be a result of either mixing
with Mediterranean waters or winter cooling, but this is still
a matter of debate (Hansen and Østerhus, 2000). As the lat-
itude increases, water masses become progressively fresher
and cooler, and the first clear signature of Polar Waters (PW)
is seen at the northernmost station (St. 37), with a surface
salinity<33.5 and surface temperature as low as 2◦C.

3.1.4 Main hydrological features

Temperature and salinity profiles overlain with isopycnals
are presented in Fig. 2a and b. The southern end of the
transect, from St. 1 to 13, was sampled over the PAP and
was characterized by warm surface waters (0–200 m) rang-
ing from 11 to 15◦C and high salinities (>35.4). A core of
highly saline waters (>36) was observed at St. 4 between 150
and 200 m and may reflect an influence of Mediterranean out-
flow waters. A first frontal structure was crossed at 55.5◦ N
at St. 14 while entering the RHP, as evidenced by a steep-
ening of the 10–11◦C isotherms and of the 27.2 isopycnal,
along the steep shoaling of the bottom isobaths. St. 14 to 23,
located over the RHP, were characterized by colder (<11◦C)
water invasions below 50 m. Stations 26 to 30 were sampled
over the IB but presented similar vertical profiles to the sta-
tions over the RHP. Stations 24 and 25, located above the
northern slope of the RHP exhibited a slight upwelling of
cooler waters (<11◦ N) to the surface. From the circulation
scheme proposed in Fig. 1, it can be hypothesized that St. 24–
25 may be on the main NAC trajectory exiting the RHP. The
vertical temperature and density profiles between St. 26 and
30 exhibited an eddy-like structure, with a deepening of the
isolines at the centre of this section.

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–25, 2009
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A second frontal structure was identified between St.30
and 31 (61.6◦ to 63.2◦ N), with a sharp deepening of the
9.5◦C temperature and the 27.4 density isolines. Stations
31 to 37 were located over the IS and the last two stations
(36–37) were characterized by a clear influence of colder
(2◦C), fresher waters (salinity 34.4) from the retreat of melt-
ing sea ice. The water masses encountered between St. 31
and 35 may still be characterized as MNAW according to
Hansen and Østerhus (2000), which are defined by temper-
atures ranging from 7 to 8.5◦C and salinities between 35.1
and 35.3 over the Greenland-Scotland ridge.

3.1.5 Mixed layer, euphotic zone and nutricline depth

The depths of the mixed layer (Zm), the euphotic layer (Ze)

and the nutricline (Zn) are presented in Fig. 3. Average
Zm, Ze and Zn depths for each region are summarized in
Table 1. The deepest euphotic layers were observed over

Table 1. Mean depths (±standard deviation) of the euphotic zone
(Ze), mixed layer (Zm) and nutricline (Zn) in the PAP (Porcupine
Abyssal Plain), RHP (Rockall-Hatton Plateau), IB (Icelandic Basin)
and IS (Icelandic Shelf) regions.

Ze Zm Zn

PAP 56±12 m 23±10 m 48±24 m
RHP 30±5 m 29±8 m 23±9 m
IB 28±9 m 30±9 m 20±10 m
IS 21±4 m 26±8 m 24±6 m

the PAP, between 45 and 55◦ N, with an average depth of
56 m. Ze depths were shallower in the three northernmost
regions (RHP, IB, IS), ranging between 21 and 28 m on aver-
age. There were no significant differences in theZm depths

Biogeosciences, 6, 1–25, 2009 www.biogeosciences.net/6/1/2009/
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Fig. 3. Depths of the euphotic zone (Ze) (1% light level), mixed layer (Zm) and nitracline (Zn) vs. latitude and bottom topography.

over the whole transect, with a shallow summer stratification
signature observed between 23 and 30 m for all regions. The
depths of the nutricline (calculated from DIN vertical profiles
using the trapezoidal integration method between two niskin
measurements) were deeper in the PAP region, with an av-
erage value of 56 m, but with substantial variability between
stations (from 10 to 80 m).Zn was shallower in the three
northernmost regions, with an average value between 20 and
24 m and little variability between stations (from 10 to 40 m).
While Zn depths were calculated from bottle data spaced ev-
ery 5 to 20 m,Zm andZe were calculated from CTD data
averaged every 0.5 m. Hence, no significant correlations can
be calculated betweenZm andZn.

3.2 Nutrients and trace metal distributions

3.2.1 Major nutrients (Si, N, P) vertical distribution

The vertical distributions of DSi, DIN and DIP are presented
along the study transect in Fig. 4. For all nutrients, a pro-
gressive shoaling of isolines towards the North was observed.
The PAP was the most nutrient depleted region in early June,
with DSi concentrations in surface waters as low as 0.2 µM
at 46◦ N (St. 2) and between 50 and 52◦ N (St. 6 to 10). The
1 µM isoline was as deep as 100 m at the southern end of
the transect and rose to the surface at both frontal structures,
while remaining in the upper 30 m over the rest of the tran-
sect. In general, surface waters were severely Si depleted
while there was a constant increase in the deeper water DSi
content going from South to North. A similar distribution
pattern was observed for DIN and DIP, which were again
most depleted in the surface layer in the PAP region and over
the IS. DIN concentrations remained between 2 and 4 µM in
the upper 50 m in the PAP, but decreased to 1 µM at the three

northernmost stations west of Iceland in the upper 25 m. DIP
levels were below 0.2 µM in the mixed layer in the PAP as
well as in the IS. Differing from DSi distribution, DIN and
DIP were not as severely depleted over the RHP and the IB.
All nutrient concentrations increased at the surface at the lo-
cations of the two frontal structures at 55 ˚ N (St. 13) and
63.2◦ N (St. 31) (Fig. 2). Furthermore, a deepening of nutri-
ent concentration isolines observed at 60◦ N over the IS, also
seen in the density plots (Fig. 2), may indicate the presence
of an anticyclonic eddy.

Nutrient ratios are presented in Fig. 5. The DSi:DIN plot
(Fig. 5a) illustrates the severe Si depletion of the 0–200 m
surface layer from 45◦ N to 64.5◦ N. DSi:DIN ratios in this
region were well below 0.2–0.3 and close to 0 at several sta-
tions (2, 6, 7, 23 and 24). In the 100–200 m layers in the
northern part of the transect DSi:DIN ratios were still below
0.4. DSi only exceeded DIN concentrations at the near sur-
face at two IS stations (St. 35, 37). DIN:DIP ratios were on
average close to 15 over the central section of the transect,
from 47.5◦ to 63◦ N, but exhibited higher values at the south-
ern end of the transect (St. 2), with DIN:DIP ratios reach-
ing 43 at 46◦ N (St. 2) in the PAP. DIN:DIP ratios up to 40
were also observed in the upper 50 m over the IS at 64.5◦ N
(St. 34).

3.2.2 Surface trace metal distribution

Trace metal concentrations in the dissolved, total particulate
and intracellular fractions are shown in Fig. 6, with metal
elements ranked in order of increasing average concentra-
tions for the whole transect. In the dissolved fraction, silver
(Ag), cobalt (Co) and lead (Pb) were in the picomolar range
(Fig. 6a). Cobalt average concentration in surface waters was
28.6±13.6 pM for the whole transect, but averages for each

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–25, 2009
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of the hydrographic regions showed a constant increase from
South to North, with the lowest values in the PAP and the
highest above the IS. Cadmium (Cd), iron (Fe), zinc (Zn)
and copper (Cu) concentrations were fairly similar and in the
nanomolar range, with respective average surface concentra-
tions over the transect of 0.7, 0.8, 1.0 and 1.1 nM. Fe sur-

face concentrations were slightly higher over the IS (1.0 nM)
and the PAP (0.8 nM), while Zn concentrations were high-
est in the PAP (2.4 nM) but were highly variable. Both cop-
per and nickel concentrations were highest in the PAP (1.4
and 5.7 nM, respectively). Vanadium (V) and molybdenum
(Mo) were the most abundant dissolved metals, with average

Biogeosciences, 6, 1–25, 2009 www.biogeosciences.net/6/1/2009/
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concentrations of 25.5 and 123.3 nM respectively and little
variability between regions.

Total particulate metal concentrations showed a fairly dis-
tinct distribution pattern, with the most abundant elements
being Cu, Fe and Zn, which were in the nanomolar range
(Fig. 6b). Particulate Cu concentrations were lowest and ex-
hibited low variability from South to North (0.1±0.3 nM),
while particulate Fe concentrations increased dramatically
from South to North, from 0.4 nM in the PAP to 6.2 nM
over the IS. Particulate Zn concentrations were elevated and
highly variable (53.1±80.1 nM) and also increased strongly
from the PAP (5.1 nM) to the IB (109.6 nM), but unlike Fe,
decreased again over the IS (51.7±8.2 nM). All other partic-
ulate trace metals were in the picomolar range. Some exhib-
ited a steady increase northward similar to Fe (Mo, Ni and
Mn), while some increased from the PAP to the IB but de-
creased again over the IS, similar to Zn (Cd and V).

Intracellular metal concentrations for most elements were
lower than dissolved or total particulate concentrations and
were found in the picomolar range (Fig. 6c). Intracellu-
lar Co and Cd concentrations were very low (3.1±2.7 pM
and 8.8±8.1 pM respectively), while Cu and Mn showed a
strong increase over the IS with 165.4 and 181.6 pM, respec-
tively. Intracellular Fe and Zn were the only elements found
in the nanomolar range, with overall average concentrations
of 1.3 nM and 6.3 nM, respectively. Intracellular P from the
ICP-MS analyses is indicated as well to show the evolution of
biomass over each region, which resembles some trace met-
als patterns of increase from the PAP to the IB and decrease
over the IS.

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–25, 2009



10 K. Leblanc et al.: Distribution of calcifying and silicifying phytoplankton

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

Ag Co Pb Cd Fe CuZn Ni V Mo

D
is

s
o

lv
e

d

25

50

75

100

125

150

nM nMpM

PAP

RHP

IB

IS

All data

Cu Fe Zn

1

2

3

4

5

6

7

8

9

10

11

50

100

150

200

250

P
a

rt
ic

u
la

te

pM nM nM

0

10

20

30

40

50

Pb Co Mo Ag Cd V Ni Cu Mn Fe Zn P

100

200

300

400

500

20

40

60

80

100

In
tr

a
c
e

ll
u

la
r

nMpMpM

A

B

C

0

50

100

150

350

Pb Ag Co Mo Cd V Ni Mn

300

Fig. 6. Surface trace metals concentrations averaged by regions (PAP, RHP, IB and IS) and averaged for the entire data set (All data) and
standard deviation (error bars).(A) Dissolved trace metal concentrations,(B) Particulate trace metal concentrations,(C) Intracellular trace
metal concentrations.

3.3 Particulate matter distribution

3.3.1 Particulate organic C, N and P

POC and PON were tightly correlated (r=0.99), and the av-
erage C:N molar ratio was 5.92 (data not shown), slightly
lower than the Redfield ratio (C:N=6.6). PON and POP were
less well correlated (r=0.86), but the average N:P ratio for
all data was 16.05 (data not shown), very close to the Red-
field ratio (N:P=16). As a general trend, latitudinal transects

of POC, PON and POP (Fig. 7a, b, c) revealed a smaller ac-
cumulation of biomass in the PAP region and an increase in
concentrations northward, with a maximal accumulation of
biomass at the surface around 59.5◦ N (St. 23) at the transi-
tion between the RHP and IB. Biomass in terms of POC and
PON were slightly lower over the IS, while some variability
was observed for the POP section with two other concentra-
tions maxima at 50◦ N (St. 6) and 65◦ N (St. 35).

Biogeosciences, 6, 1–25, 2009 www.biogeosciences.net/6/1/2009/
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3.3.2 Pigment distribution

The total Chla (TChla), FUCO and HEX, and FUCO:HEX
vertical distributions are presented in Fig. 8. The maximum
TChla concentration was observed at the northern end of
the transect at 66◦ N over the IS, with 7.4 µg L−1 at 25 m

(Fig. 8a). Two smaller TChla peaks were observed at 63.2◦ N
and at 59.5◦ N with 2.8 and 2.6 µg L−1, respectively. The dis-
tribution of TChla showed a regular increase northward as
well as a steady deepening of isolines. The 0.1 µg L−1 iso-
line shoaled at 10 m between 52.5 and 56◦ N, while reaching
50 m over the IS at 66◦ N.

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–25, 2009
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The two most abundant pigments measured other than
Chla over the transect were 19’Hexanoyloxyfucoxanthin
(HEX) and fucoxanthin (FUCO). Their vertical distributions
are represented in Fig. 8b and c and the FUCO:HEX ratio in
Fig. 8d. HEX is a diagnostic pigment for prymnesiophytes,
including coccolithophores andPhaeocystis spp., both of

which were abundant along the transect based on onboard
microscopic observations. HEX was the second most abun-
dant pigment measured and was particularly abundant over
the RHP and part of the IB, between 55 and 61.6◦ N, with
a surface maximum value of 1.2 µg L−1 located at 59.5◦ N,
close to the northern edge of the RHP. Two secondary peaks

Biogeosciences, 6, 1–25, 2009 www.biogeosciences.net/6/1/2009/
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were observed in the southern part of the transect over the
PAP, at 50 and 52◦ N. Fucoxanthin is primarily indicative
of diatoms, but can also be synthesized by other chromo-
phytic algal groups (e.g.Phaeocystis pouchetii), dinoflagel-
lates and chrysophytes. The southern part of the transect,
from 45 to 56◦ N had particularly low FUCO concentrations
(Fig. 10b), which increased slightly over the northern part
of the RHP, with concentrations increasing to between 0.1
and 0.5 µg L−1. An intense subsurface peak of FUCO was
centred above the IS, with maximum values of 3.8 µg L−1 at
25 m at 66◦ N, while concentrations at the surface remained
low (0.2 µg L−1). At 63.2◦ N (St. 31), a secondary peak of
FUCO was observed and ranged from 0.5 to 0.7 µg L−1 in the
upper 30 m. An area of low FUCO concentrations was found
over the IB around 61◦ N, between the two maxima observed
over the RHP and IS. The FUCO:HEX distribution reveals
that HEX was the dominant pigment over most of the tran-
sect from the PAP to the IB, with ratios<1 (Fig. 10c). FUCO
represents the major pigment over the IS with a FUCO:HEX
ratio as high as 83 at 15 m at 66◦ N (St. 36). The FUCO:HEX
ratio is also>1 over the IB below 50 m.

3.3.3 Distribution of biominerals: BSi (SiO2), PIC
(CaCO3)

Biominerals representative of siliceous and calcareous phy-
toplankton are presented in Fig. 9a and b. Particulate In-
organic Carbon (PIC) here indicates the presence of cal-
careous organisms such as coccolithophores since pteropods
were never observed on the filters. The PIC distribution
over the transect was very patchy, and except for a region
of lower levels over the PAP between 45 and 50◦ N, showed
no clear trends with latitude (Fig. 9a). The largest accu-
mulation of PIC occurred at the surface at 52◦ N (St. 10),
with 11.6 µmol L−1. A secondary maximum was observed
over the IB, reaching 10.2 µmol L−1 at 10 m depth at 63.2◦ N
(St. 31). Comparison between the PIC and HEX peaks lo-
cated at 52◦ N and 59.5◦ N shows a good agreement, though
discrepancies were found over the rest of the transect. A no-
table peak of PIC at 63.2◦ N (St. 31) was not matched by
a HEX increase (Fig. 10). In contrast, there were two large
HEX peaks centred at 50◦ N (St. 6) and 57◦ N (St. 17) that did
not correspond to high PIC concentrations (Fig. 9). Hence,
the overall correlation between PIC and HEX distributions
was poor. The poor correlation between HEX and PIC may
be explained by the presence ofPhaeocystis pouchetii which
was observed in bioassay experiments (data not shown) or by
the presence of naked coccolithophores.

Biogenic silica distribution was very different from PIC
and showed a marked increase north of 54.2◦ N (St. 11) while
the southern part of the transect revealed very low BSi con-
centrations (Fig. 9b). The first large increase in BSi was ob-
served at 59.5 and 60◦ N (St. 23, 24) with concentrations
ranging from 0.75 to 1.27 µmol L−1 in the upper 25 m at
these two stations. A deep BSi maximum was also found

over the IB at 60.5◦ N (St. 25), with a peak of 1.08 µmol L−1

at 100 m, extending to 200 m (0.45 µmol L−1). Low BSi con-
centrations were again found over part of the IB between
61.04 and 61.43◦ N (St. 27, 29). From 63.2◦ N (St. 31)
and northward, BSi was abundant from the surface to at
least 200 m (concentrations below 200 m not measured).
Entering the IS, a large BSi accumulation was found at
63.2◦ N (St. 31) from the surface (0.86 µmol L−1) to the bot-
tom of the profile (0.78 µmol L−1), with a maximum found
as deep as 125 m (1.19 µmol L−1). The highest BSi accu-
mulation of the transect was centred above the bathymetri-
cal rise located over the IS, from 65 to 66◦ N (St. 35, 36)
and reached a maximum concentration of 1.61 µmol L−1 at
25 m at 66◦ N, while the surface concentration at this site
was moderate (0.38 µmol L−1). At the northernmost sta-
tion, at 66.55◦ N (St. 37), BSi showed an intense surface
peak (1.12 µmol L−1 at 15 m), which decreased sharply be-
low 50 m (<0.16 µmol L−1). Overall, the three stations that
presented the highest BSi concentrations corresponded to in-
creased FUCO levels (at 59.5–60, 63.2 and 66◦ N), however,
FUCO was constrained within the upper 50 m, while BSi ex-
tended much deeper, to at least 200 m, thus correlation was
poor in the deeper water column between these two parame-
ters.

3.3.4 Other taxonomic information

A few selected stations were analyzed microscopically for
coccolithophore composition and abundance based on the lo-
calization of the PIC maxima. These results are presented in
Fig. 9c. Unfortunately, no information could be derived re-
garding the two main PIC maxima at 52 and 63.2◦ N (St. 10,
31) as the most abundant species could not be clearly iden-
tified in scanning electron microscopy (SEM), due to a layer
of material obscuring a clear view. The PIC accumula-
tion over the RHP (St. 19, 23) can be attributed mainly to
the presence ofEmiliania huxleyi which dominated the coc-
colithophore assemblage numerically, while the PIC accu-
mulation measured over the IS seems to originate from a
bloom ofSyracosphaera spp. Other species such asGephy-
rocapsa spp., Coccolithus pelagicus, Calcidiscus leptoporus
andCoronosphaera spp. were also present but in small abun-
dance.Coccolithus pelagicus was only seen north of 58◦ N
(St. 19), whileGephyrocapsa spp. was only observed south
of 61.43◦ N (St. 29). Emiliana huxleyi was the most evenly
distributed species and was observed throughout the transect.
Phaeocystis spp. was also observed on board together with
coccolithophores during bioassay experiments.

3.3.5 TEP distribution

TEP distribution is presented in Fig. 10. TEP concentrations
were lowest at the southern end of the transect over the PAP,
and started to increase from 50◦ N (St. 5) and northward,
with the highest concentrations found at both edges of the IB.

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–25, 2009
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Elevated TEP concentrations were measured at the surface at
55, 59.5 and 63.2◦ N (St. 13, 23, 31), with concentrations
ranging between 300 and 420 µg Xeq L−1. TEP were mainly
found in the upper 50 m layer, but extended to 75 m on two
occasions at 60 and 63.2◦ N (St. 24, 31).

3.4 Integrated data

Average integrated data of diatom and coccolithophore in-
dicators (BSi, FUCO, PIC, HEX) and of biomass indica-
tors (TChla and POC) are presented for each provinces in

Fig. 11. We emphasize that HEX, in addition to being a
marker of coccolithophore presence, may also indicate the
presence ofPhaeocystis pouchetii during the NASB bloom.
Standard deviation bars are relatively large, highlighting the
strong mesoscale variability over the transect. Integrated BSi
ranged from 17.7 to 102.2 mmol m−2 and increased steadily
from South to North (Fig. 11a). Integrated PIC was very sim-
ilar in the three southernmost provinces, despite patchy pro-
files, with values ranging from 67.3 to 78.4 mmol m−2 but
nearly doubled over the IS with 135.1 mmol m−2 (Fig. 11a).
Integrated FUCO was lowest over the PAP in the south and
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bottom topography.

highest over the IS (from 3.5 to 34.3 mg m−2), but was sim-
ilar over the RHP and IB (Fig. 11b). Integrated HEX val-
ues were lowest over the IS (8.2 mg m−2) and highest over
the RHP (23.7 mg m−2), showing a different distribution pat-
tern than PIC (Fig. 11b). Finally, integrated TChla showed
a similar distribution pattern to FUCO, with lowest values
over the PAP (30.7 mg m−2) and highest values over the IS
(90.9 mg m−2), while integrated POC data increased steadily
from the PAP to the IB (556 to 1105 mmol m−2), but de-
creased again over the IS (802 mmol m−2) (Fig. 11c).

4 Discussion

4.1 Bloom development – general features

The North Atlantic bloom started in April south east of our
transect near the European coasts and developed towards the
northwest during May, where the spatial coverage of the
bloom was largest (Fig. 12). In June, the highest concentra-
tions of both surface Chla and calcite were detected, as evi-
denced by the composite monthly SeaWiFs images (Fig. 12c
and g). According to these satellite images, surface phyto-
plankton biomass was lower over the PAP region, around the
southern part of our transect, from 45◦ N to 52◦ N (St. 1 to
10), whereas an intense surface accumulation of both Chla

and calcite was observed from the Rockall Hatton Plateau to
the Icelandic shelf. Our data (Fig. 8a) was in good agreement
with these global features, with low concentrations of Chla

in the upper 100 m in the PAP region then increasing above
1 µg L−1 from approximately 52◦ N to 66.5◦ N. The intense
Chla accumulation south of Iceland visible on Fig. 12c coin-

cided with the slight increase of Chla surface concentrations
measured at 60◦ N, but the intense subsurface (25 m) Chla

peak measured on the IS (Fig. 8a) was not visible on the
satellite imagery, probably due to the depth of this peak. In-
deed, satellites only peer through the near surface to a depth
equivalent to 1/extinction coefficient. Overall, the monthly
Chla composite satellite data was very well matched by our
surface Chla data, both in general trends and concentrations.

The calcite surface distribution was very patchy as shown
in the composite image (Fig. 12g) making comparisons with
in situ data difficult, but the range of concentrations observed
(between 1 and 10 µmol L−1) was identical to the range of
our PIC measurements (Fig. 9a). The relative absence of cal-
cite at the southern end of the transect shown by the satel-
lite composite was in good agreement with PIC distribution,
which was below 1 µmol L−1 on average in this region (south
of 50◦ N). The strong calcite increase visible over the north-
ern half of the RHP as well as the very large peak observed
over the IS were also well reproduced by our data. However,
the highest PIC concentrations of the IS peak ranged between
2 and 10 µmol L−1, while satellite data showed calcite con-
centrations close to 30 µmol L−1 over this area. The weekly
composite image from the end of the cruise (26 June–3 July
2005) corresponding closest to the sampling period of the IS
stations showed reduced calcite levels, closer to 3 µmol L−1

which is in better agreement with our data. Weekly MODIS
composite images (not shown) reveal that the largest coc-
colithophore bloom developing west of Iceland occurred be-
tween the end of May and mid-June, and was subsiding by
the time we sampled the IS. It is also known that detached
coccoliths can accumulate in the surface layer and that these
particles have a very high reflective index, which may bias
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satellite estimations. We emphasize that comparing satellite
images to in situ data is not trivial and that monthly com-
posites cannot be expected to represent local sites sampled
during the cruise. However, weekly images were too ob-
scured by cloud cover to be useful. Our point is to show
that despite potential large meso-scale features, the general
trends of surface Chla and calcite measured during the cruise
in terms of range of concentrations and main features could
be reflected by composite satellite images. Furthermore, we
show in the following section that in situ PIC and HEX data
were poorly correlated, which suggest that satellite calcite
data cannot be directly converted to coccolithophore abun-
dance. Our cruise transect, sampled over a month, repre-
sents the South-North variability of different biological and
hydrological provinces but also integrates the bloom tempo-
ral propagation northward. Thus, regional comparisons de-
scribed below account for both spatial and temporal variabil-
ity, and cannot be considered a true synoptic view of a bloom
situation. Furthermore, care must be taken in extrapolating
surface Chla data, which are often poorly correlated to water
column integrated data, as was shown by Gibb et al. (2001)
who demonstrated that conclusions derived from latitudinal
differences in surface Chla were opposite to those derived
from integrated Chla data.

4.2 Community structure and characteristics of the
NEA phytoplankton bloom

We first present a short non-exhaustive synthesis of previous
cruises carried out in the same area during spring in order
to summarize the main characteristics of the spring/summer
phytoplankton blooms, before comparing these studies with
our results. The Biotrans site (at 47◦ N, 20◦ W) character-
ized pigments between the end of June to mid July 1988
revealing that HEX (prymnesiophytes) was the dominant
pigment for the nanoplankton size fraction while PERI (di-

noflagellates) was the major pigment in the microplankton
size class (Williams and Claustre, 1991). Relatively non-
degraded prymnesiophyte pigments were observed at depth,
suggesting aggregation and subsequent rapid sedimentation
of prymnesiophytes. One year later, Llewellyn and Man-
toura (1996) sampled stations on the 20◦ W meridian from
47◦ N to 60◦ N over the same period (first NABE cruise of
JGOFS) and found that by mid-July diatoms dominated the
spring bloom at 60◦ N while prymnesiophytes were more im-
portant at 47◦ N, where the first spring bloom was already
over.

The phytoplankton bloom was again sampled at 47◦ N
earlier in the season in 1990, and results indicated that di-
atoms (23–70%) and prymnesiophytes (20–40%) dominated
the Chla biomass in the first stage of the bloom during early
May, while prymnesiophytes became dominant (45–55%) in
the second phase from the end of May to mid-June (Barlow
et al., 1993). The latter study reported a pigment maxima at
5–15 m depth with a rapid decrease below that depth in the
development phase, while at the peak of the bloom, diatoms
dominated throughout the water column down to 300 m. In
the post-bloom phase, prymnesiophytes dominated the up-
per 20 m with diatoms more abundant in deeper waters. The
following year, in 1991, a large coccolithophore bloom was
encountered south of Iceland between 60 and 61◦ N, between
the end of June and early July (Fernandez et al., 1993).

During the PRIME program in July 1996, the surface phy-
toplankton community was dominated by prymnesiophytes
between 37 and 61.7◦ N, and a constant northward increase
in relative diatom contribution was observed (Gibb et al.,
2001). More recently, during the seasonal POMME study
carried out in 2001, prymnesiophytes dominated the phyto-
plankton during March and April between 39 and 43◦ N ex-
cept for a transition period in April when diatoms dominated
at the northernmost site (43◦ N) (H. Claustre, personal com-
munication, 2001; Leblanc et al., 2005).
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The recurrent scenario emerging from these previous stud-
ies is that diatoms dominate the early bloom stages, some-
times co-occurring with prymnesiophytes or dinoflagellates,
and tend to be outcompeted by prymnesiophytes during later
stages of the spring bloom due to changing light and nutrient
availability and possibly grazer control. This temporal suc-
cession is also accompanied by a change in vertical phyto-
plankton community structure towards the end of the spring
bloom with prymnesiophytes occupying the stratified surface
layer (0–30 m) while diatoms tend to dominate lower depths
(30–300 m) sometimes well below the MLD.

Our observations collected during the 2005 NASB study
are in good agreement with this proposed scenario. In June,
we found evidence of the propagation of the spring bloom
northward, with Chla increasing from the PAP region to the
IS (Figs. 8a and 13c). There was a general decrease in phyto-
plankton size structure from North to South, which was also
observed during NABE (Sieracki et al., 1993). The pigment
data showed a large prymnesiophyte bloom over both the
RHP and IB, while diatoms were mostly found over the IB
and IS (Figs. 10, 11 and 13b). The relative vertical distribu-
tion of diatoms and prymnesiophytes along our transect was
also similar to that observed during the PRIME study (Gibb
et al., 2001) in that HEX dominated the surface layer, while
FUCO:HEX ratios>1 were found below 50 m (Fig. 10c).

Overall, the correlation between HEX and PIC was very
poor for the entire cruise and may reflect a large contribution
of Phaeocystis pouchetii, wherever HEX was not associated
with PIC accumulation (St. 6, St. 27 to 30) and the tempo-
ral mismatch between coccolithophore biomass and coccol-
ith concentration. Another explanation would be the pres-
ence of naked coccolithophores, but we have no data to sub-
stantiate this hypothesis.

The former reason is confirmed in Table 2, which sum-
marizes the significance of correlations between the di-
atom and prymnesiophyte/coccolithophore indicators (BSi,
FUCO, PIC, HEX) with the other main biogeochemical vari-
ables such as nutrients and biomass data. The PIC data stand
out in this table as the one parameter that is most poorly cor-
related to any of the other variables. PIC and HEX were
never significantly correlated and this is true regardless of
testing the whole data set or testing each region separately. A
poor correlation was also found in another study in the North
Atlantic for a global data set (n=130) on the same transect
from 37◦ N to 59◦ N, with significant PIC-HEX correlations
found only for underway data and for data collected at 59◦ N
(but for a very small data subset,n=11) (Gibb et al., 2001).

These results emphasize the difficulties in using bulk
pigment and mineral indicators for a group such as coc-
colithophores. Both the cellular biomineral and pigment
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Table 2. Spearman-rank correlation coefficients (rs) calculated for the diatom and coccolithophore bulk indicators (BSi, FUCO, PIC, HEX)
with the other main biogeochemical data for the complete data set (All) and each region (PAP, RHP, IB and IS). Correlations are considered
significant whenp<0.01 (two-tailed). Degrees of freedom were comprised between 132 and 243 for all regions, between 27 and 64 for
the PAP region, between 45 and 124 for the RHP region, between 22 and 57 for the IB region and between 31 and 63 for the IS region.
Non-significant correlations are indicated in italic, and strong correlations (rs>0.5 or<−0.5) are indicated in bold.

DSi DIN DIP NH4 FUCO HEX TEP POC PON POP PIC BSi TChla

All BSi ns ns ns 0.279 0.794 0.234 0.623 0.463 0.412 0.520 0.306 – 0.607
Fuco −0.289 −0.358 −0.316 0.185 – 0.615 0.801 0.698 0.677 0.799 0.428 0.794 0.921
PIC ns ns ns ns 0.428 ns 0.396 0.285 0.280 0.390 – 0.306 0.420
HEX −0.507 −0.391 −0.386 ns 0.615 – 0.580 0.729 0.679 0.670 ns 0.234 0.746

PAP BSi −0.343 ns ns 0.404 0.599 0.129 ns ns ns 0.308 ns – ns
Fuco −0.684 −0.545 0.478 ns – 0.876 0.478 0.860 0.838 0.778 ns 0.599 0.904
PIC ns ns ns ns ns ns ns ns ns ns – ns ns
HEX −0.818 −0.728 −0.677 ns 0.876 – 0.655 0.777 0.827 0.834 ns ns 0.949

RHP BSi −0.562 ns −0.406 ns 0.802 0.579 0.490 0.640 0.532 0.646 ns – 0.630
Fuco −0.793 −0.675 −0.567 ns – 0.871 0.722 0.733 0.620 0.8270.381 0.802 0.906
PIC ns ns ns ns 0.381 ns ns ns ns ns – ns 0.396
HEX −0.740 −0.713 −0.638 ns 0.871 – 0.830 0.862 0.772 0.874 ns 0.579 0.944

IB BSi −0.505 ns −0.371 ns 0.746 0.431 0.647 0.391 ns 0.366 ns – 0.464
Fuco −0.511 ns −0.439 ns – 0.846 0.893 0.785 0.734 0.709 ns 0.746 0.890
PIC ns ns ns ns ns ns ns ns ns 0.652 – ns 0.540
HEX −0.560 −0.494 −0.605 ns 0.846 – 0.855 0.907 0.899 0.845 ns 0.431 0.974

IS BSi ns ns ns ns 0.563 ns 0.536 ns ns 0.423 ns – 0.545
Fuco −0.438 −0.561 −0.598 ns – ns 0.670 0.692 0.649 0.815 ns 0.563 0.950
PIC ns ns ns ns ns ns ns ns ns ns – ns ns
HEX −0.417 −0.494 ns −0.547 ns – 0.404 0.434 0.424 ns ns ns ns

contents are highly variable and depend on the cell’s phys-
iological status and species. During their growth, particu-
larly in senescence, some coccolithophores shed their coc-
coliths. These coccoliths are too small to sink and tend
to accumulate in the surface layer. This further decouples
PIC from the biomass of living coccolithophores. For in-
stance, the remnants of a coccolithophore bloom is indicated
by the presence of PIC in the surface layer from St. 31 to 35
over the IS, but with no HEX accumulation, likely reflect-
ing the presence of detached coccoliths while pigments and
organic carbon have been lost, e.g. sedimented, degraded or
grazed. Surface increases in HEX without similar PIC ac-
cumulation were also observed (for instance at St. 17) and
could indicate the presence of either uncalcifying strains of
coccolithophores or more likely an increased contribution of
Phaeocystis pouchetii. The correlation between PIC with
HEX, even though not significant, increased slightly over
the RHP and IB regions (rs=0.36 and 0.44, respectively)
where it can be hypothesized that the contribution of coc-
colithophores vs.Phaeocystis pouchetii increased.

BSi and FUCO concentrations were on the other hand al-
ways significantly correlated (Table 2), with correlation co-
efficients (rs) of 0.56 to 0.80. The entire data set showed a
very strong correlation with anrs value of 0.79, which was
also very high over the RHP (0.80) and the IB (0.75). Slightly

lower coefficients were found over the PAP (rs=0.59) and IS
(rs=0.56). These weaker correlations can be explained by
the presence of more senescent cells with low pigment con-
tents or empty diatom frustules. This was most likely the
case over the IS where high BSi concentrations extended as
deep as 200 m (Fig. 9b), well below theZe depth of∼20 m
(Fig. 3), while most of the Chla was confined to the first 50 m
(Fig. 8a). Hence it is unlikely that diatoms were still grow-
ing as deep as 200 m and this signal more probably represents
sinking diatoms. This is further confirmed by phaeophyllides
concentrations (data not shown), which were much higher in
the IB and IS regions than in the PAP and RHP regions. Some
interference with lithogenic silica (LSi) near bottom (75 m
only at St. 35 and 36) could also have occurred since BSi
data were not corrected for LSi during analysis.Phaeocys-
tis spp. is also known to produce FUCO (Schoemann et al.,
2005) and could explain differences between BSi and FUCO
comparisons. However, in our study, the presence of FUCO
was always matched by the presence of BSi, and we often ob-
served the presence of BSi without FUCO. Hence, it is likely
that in our study FUCO was mostly indicative of diatoms.

More surprisingly, FUCO and HEX were highly correlated
during our survey in the PAP, RHP and IB regions (rs=0.88,
0.87 and 0.85, respectively) but not over the IS, where FUCO
was overall dominant. Even though FUCO concentrations
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were very low in the first three regions, the patterns of dis-
tribution seemed to match closely those of HEX, with a no-
table accumulation at 59.5◦ N (St. 23) and 57◦ N (St. 17).
Hence, even though not very abundant, diatoms were co-
occurring with prymnesiophytes from 45◦ N to 63◦ N, which
were dominating the phytoplankton community, except over
the IS.

The strongest correlation was found between FUCO and
TChla, with highly significant and elevatedrs values, from
0.89 to 0.95 in the different region, and anrs value of 0.92 for
the entire data set (df =243). Significant correlations were
found between BSi and Chla for the entire transect, PAP,
RHP and IS regions (rs=0.46 to 0.63) but were not signifi-
cantly correlated over the IB. Similarly to FUCO, HEX was
highly significantly correlated to TChla, with rs values be-
tween 0.75 (all data) and 0.97 (IB), except in the IS where
the correlation was not significant. Highly significant corre-
lations were also found for both HEX and FUCO with other
biomass parameters such as POC, PON and POP. These re-
sults indicate that diatoms and prymnesiophytes were major
components of the late June–July phase of the North Atlantic
Spring Bloom, and that they co-occurred in most regions, de-
spite large differences in terms of abundance.

Pigment data were also much better correlated to Chla

and particulate C, N, P data than biominerals, which is
expected as pigments are characteristic of fresh material
whereas biominerals may persist in the water associated with
senescent cells, or remain suspended. The discrepancy in
pigment to mineral correlations indicates that the latter situa-
tions were encountered during our cruise, with large amounts
of sinking detrital opal and suspended calcium carbonate in
the water column. Hence, bulk biominerals measurements
are not a good indicator for living organisms.

Correlations between nutrients and BSi, FUCO, PIC, HEX
data generally yielded a negativers value, reflecting the
fact that biomass accumulation is inversely related to nu-
trient consumption. Both FUCO and HEX were signifi-
cantly correlated to depletion of all nutrients but the strongest
correlations occurred over the PAP and IB regions, where
biomass accumulation was highest. In general, ammonium
was not correlated to any of these parameters except in the IS
where HEX and NH4 were significantly correlated (rs=0.54).
HEX was significantly correlated to DSi depletion in all re-
gions. In particular, HEX and DSi showed strong correla-
tions (rs=0.82) in the PAP and RHP (rs=0.74) regions. Ac-
cumulation of prymnesiophytes, indicated by HEX, indeed
occurred in the surface layer where DSi appeared depleted.
This correlation corroborates the hypothesis of an earlier di-
atom bloom which led to depleted surface silicic acid levels
and a subsequent decline of diatoms, allowing the prymne-
siophytes to develop and become dominant.

Finally, the occurrence of TEP was significantly correlated
to the FUCO, HEX and BSi distribution and to a lesser de-
gree with PIC. Diatoms are known to produce large amounts
of TEP and good correlations between TEP and Chla in

diatom dominated systems are commonly found (Passow,
2002; Passow et al., 2001). The distribution patterns of BSi
and TEP (Figs. 9 and 12) also show a good overlap, partic-
ularly for the sites of high BSi concentration at the RHP/IB
and IB/IS transitions (60◦ and 63.2◦ N). Below 40 m depths
pigment concentrations were low, even when TEP and BSi
were high, suggesting that these elevated BSi signals doc-
ument the sedimentation of diatom aggregates. Unaggre-
gated TEP do not sink (Azetsu-Scott and Passow, 2004),
but form the matrix of aggregates (Passow and Alldredge,
1995), which are then prone to sink rapidly due to their
large size. TEP distribution, in particular, the extensions at
depth at St. 24, 31 and 35 closely matched the distribution of
BSi; thus their occurrence at depth is an indication of sink-
ing TEP-rich diatom aggregates. TEP also correlated well
with HEX distribution, indicating that the prymnesiophyte
bloom generated abundant amounts of TEP as well. Produc-
tion of TEP byE. huxleii has been observed in a mesocosm
experiment (Engel et al., 2004), but it has not before been
shown that TEP is produced abundantly during natural coc-
colithophore blooms.Phaeocystis is also known to produce
TEP (Riebesell et al., 1995; Hong et al., 1997) which could
explain the good agreement between HEX and TEP distribu-
tions in the areas where HEX and PIC are not well correlated
(St. 6 and St. 11 to 17).

4.3 Phytoplankton control factors

The situation encountered over the transect during the month
of June was net autotrophic (Cottrell et al., 2008). The
PAP region was characterized by the lowest phytoplankton
biomass, as well as by the highest contribution of the smaller
size-class such as nano- and picophytoplankton. In addition,
the primary production rates in this area (50 to 55◦ N) were
lower relative to the other regions along our transect (Cottrell
et al., 2008). This correlates with the deeper nutricline depths
encountered in this province (<50 m at most sites) and the
lowest nutrient availability in the euphotic layer. Light was
probably not a limiting factor, as the euphotic depth was the
deepest in this region and exceeded Zm at all sites. Temper-
ature did not seem to be controlling Chla accumulation in
June 2005 either, in contrast to phytoplankton distribution in
the Sargasso Sea as evidenced by Rowe et al. (2008). From
satellite imagery (Fig. 12), it seems that Chla accumulation
in that area was never very high during the initiation of the
spring bloom. This may reflect the shallower winter mixed
layer in the PAP compared to the northern part of the transect
which would lead to diminished nutrient inputs in the surface
layer and nutrient limitation early on in the productive sea-
son. For the year 2005, the MLD was much deeper south
of Iceland than over the central part of the NEA correspond-
ing to the PAP until April (Mercator data available at http://
bulletin.mercator-ocean.fr/html/welcomefr.jsp). From May
to July, this trend was much less obvious. Hence the latitudi-
nal trend of the MLD during winter and early spring, but also
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the highest store of nutrients towards the North (Sarmiento
and Gr̈uber, 2006) may reflect the South-North increase in
nutrient stocks in the stratified surface layer during the pro-
ductive season. DSi concentrations as low as 0.2 µM and
Si:N ratios below 0.2 (Figs. 4 and 5) also indicate Si con-
sumption by diatoms prior to our sampling period. BSi and
FUCO were however negligible, indicating that the diatom
bloom had subsided by June, and either sank out or was
grazed. The elevated N:P ratio (close to 40) at St. 2 at the
southern end of the transect (46◦ N) may reflect the potential
presence of nitrogen fixers.

The RHP and IB regions were characterized by relatively
high DIN (>4 µM) and DIP (0.2–0.4 µM) concentrations in
the upper 25 m while DSi was at the detection limit at 60◦ N,
where a large BSi accumulation was found. This coincided
with a moderate increase in FUCO, which remained low
compared to the abundance of HEX. These data suggest the
occurrence of a previous diatom bloom, and the persistence
of detrital BSi in the process of sinking out or being grazed,
as shown by the deep extension of BSi down to almost 150
m well below the euphotic layer. Increased phaeopigments
concentrations (data not shown) in the upper 50 m indicate
active grazing of biomass. Viral production was fairly con-
stant throughout the 20◦ W transect, but increased drastically
at St. 22 (59◦ N), on the southern edge of this feature (Rowe
et al., 2008) indicating potential local control of biomass
by viral lysis. This bloom seemed to have been followed
by a prymnesiophyte bloom, with large HEX concentrations
clearly confined to the surface layer, together with some ac-
cumulation of PIC. The highest BSi and HEX accumulations
coincided with the presence of a frontal structure at 60◦ N
(St. 24 and 25) and a doming of isopycnals at this site. How-
ever this accumulation feature extended across it in both di-
rection, but with more moderate biomass values.Ze depths
were shallow in both areas (20–30 m) but light did not seem
to be a limiting factor for growth.

Continuing northward, a second front was passed near the
Icelandic Shelf Break (between 61.6◦ N and 63.2◦ N) and
was characterized by a small increase in microphytoplank-
ton Chla associated with an increase in FUCO in the upper
30 m, and with a large accumulation of BSi (∼1 µmol L−1)

extending as deep as 200 m. This diatom bloom seems to
have been stimulated by the surfacing of the DSi isopleths
at St. 31 with concentrations up to 1.4–1.6 µM in the surface
layer. BSi concentrations as high as 1 µmol L−1 which ex-
tended to the sea floor of the IS together with the absence of
detectable pigments below 40 m very probably reflected the
sinking of empty diatom frustules along the very steep 27.4
isopycnal (Fig. 2), potentially mediated by TEP aggregation.
A large accumulation of phaeopigments (data not shown),
with a maximum concentration found at 50 m at 61.6◦ N
could also indicate a rapid export of BSi through zooplankton
faecal pellets. Another possible explanation would be con-
tamination by bottom sediment resuspension of previously
sedimented diatom cells, or by lithogenic silica (which was

not measured in our samples), but the similar deep extension
of TEP and BSi from the surface argue against this hypothe-
sis.

Finally the IS was characterized by the highest biomass
accumulation of the transect, which was reflected by an in-
creased surface consumption of nutrients, particularly in DIN
which showed the lowest concentrations encountered during
the cruise (<1 µM). Phytoplankton communities on the IS
were mixed both spatially and vertically, with a high sur-
face accumulation of picophytoplankton (chlorophytes and
prasinophytes, data not shown) and probably also detached
coccoliths as PIC was elevated but HEX concentrations were
moderate. This community was found between 63 and 65◦ N
(St. 31 to 35) and was present in a highly stratified water
column above the 27.3 ispopycnal (Fig. 2). The highest BSi
and FUCO concentrations of the transect were constrained
to the subsurface below 25–30 m north of 66◦ N, where di-
atoms were clearly the major contributing group. This in-
tense diatom growth seems to have occurred where cold po-
lar melt waters (PW) encountered modified North Atlantic
Waters (MNAW) over the IS.

Surface PW were not characterized by any increased nu-
trient load at the time of sampling. We hypothesize that this
diatom bloom was seeded over the shelf following the retreat
of the ice edge earlier in the season, which resulted in the de-
pletion of all nutrients by the end of June. The FUCO patch
was centred around 25–30 m north of 66◦ N and did not ex-
tend below 50 m, while BSi was found in elevated concentra-
tions all the way down to the seafloor (∼125 m). This again
would indicate that the BSi found at depth was mostly detri-
tal and in the process of sinking out of the surface layer in
aggregates similarly to what was observed at 63.2◦ N. Large
amounts of phaeopigments over the IS also suggest active
grazing control of this subsurface diatom bloom.

Regarding the role of trace metals on phytoplankton
growth in the NEA, our surface trace metal data show that
neither Fe nor Zn were highly depleted, with dissolved con-
centrations of 0.7 and 0.8 nM on average. Yet, three trace
metal addition experiments in which 2 nM Fe and 2 nM Zn
were added were carried out during the transect (at 51.5◦, 56◦

and 63.5◦ N), and all resulted in an increase of Chla after 6
days by a factor of 1.2 to 1.9 in the +Fe treatments compared
to a control, and in a stimulation of the>20 µm size fraction
(data not shown). Zn additions did not induce any increase
in Chla. Despite relatively high Fe concentrations, moderate
Fe limitation and co-limitation with DSi have already been
observed in the same region between 39 and 45◦ N in the
early stages of the spring bloom (Blain et al., 2004). More
recently, Fe limitation was similarly established in the central
North Atlantic (Moore et al., 2006).

Interestingly, particulate Fe increased drastically from
South to North, similarly to the6BSi and6FUCO patterns,
which could reflect the larger Fe requirements by diatoms,
while oceanic coccolithophores are known to have a very low
Fe requirement (Brand, 1991; Sunda and Huntsman, 1995a).
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On the other hand particulate Zn increased from the PAP to
the IB, but decreased over the IS similarly to the6HEX and
6POC patterns, which could reflect a higher utilization of
Zn by prymnesiophytes, notably over the IB region. Previ-
ous work by (Kremling and Streu, 2001) reported trace metal
concentrations along the same transect as in our study and
during the same season. More than half of their Zn measure-
ments were below the detection limit, but the authors argued
against the “Zn hypothesis” between 40 and 60◦ N because of
high Co concentrations, as Co and Zn are known to substi-
tute for one another (Sunda and Huntsman, 1995b). Our data
do not allow further interpretation, given that they are large
regional surface averages, and that complex substitutions of
metals, notably Zn, Co and Cd are also at play (Morel et
al., 2003), but moderate Fe limitation was likely preventing a
complete drawdown of surface nutrients during June between
45 and 66◦ N.

4.4 Si depletion – a general feature of the NEA

At the end of the first NABE program in the NEA, it re-
mained unclear whether the sequential depletion of Si and N
was common or if the year 1989 was an unusual year (Sier-
acki et al., 1993). Since then, several other programs such
as BIOTRANS, BOFS, PRIME and POMME conducted in
the NEA during the productive season have reported Si de-
pletion prior to N exhaustion later in the season, as well as
consistently low Si:N ratios in the surface layer (Lochte et al.,
1993; Sieracki et al., 1993; Passow and Peinert, 1993; Taylor
et al., 1993; Savidge et al., 1995; Bury et al., 2001) that were
well below the usual 1:1 requirement for diatoms (Brzezin-
ski, 1985). From earlier work during the POMME program,
it was shown that winter surface silicic acid availability be-
tween 40 and 45◦ N was already 2–3 µM lower than nitrate
and that this deficit increased with depth, with a 5–7 µM
difference between DSi and DIN concentrations at 1000 m
(Leblanc et al., 2005). Uptake kinetics measured in this re-
gion also suggested potential diatom growth limitation by
ambient Si concentrations (Leblanc et al., 2005). These low
surface Si:N ratios may reflect the deficiency in Si compared
to N of North Atlantic intermediate and deep waters, as can
be observed on the WOCE sections between 30 and 60◦ N
(Sarmiento and Gruber, 2006). Biogenic silica produced by
diatoms during the spring bloom sinks with a higher effi-
ciency to depth, while other nutrients are more readily rem-
ineralized in the water column. This process, termed the sil-
ica pump (Dugdale et al., 1995), causes a preferential loss
of Si to the sediments compared to N, P and C. Deep waters
circulating in the NA basin have only recently been formed
through winter convection and do not carry the same Si load
that older Pacific deep waters do for instance, which are at
the end of the conveyor belt circuit and received surface bio-
genic material along its path. Hence, the chronic Si defi-
ciency of the NA is likely to be a permanent feature and can
be explained by global oceanic circulation. The moderate

Fe limitation which has been invoked in the NEA and ob-
served through several enrichment experiments (Blain et al.,
2004; Moore et al., 2006; Leblanc, unpublished data) could
furthermore enhance the efficiency of the Si pump in this re-
gion. It is now accepted that Fe deficiency leads to increased
cellular Si quotas in diatoms (Hutchins and Bruland, 1998;
Hutchins et al., 1998; Takeda et al., 1998; Firme et al., 2003;
Leblanc et al., 2005b) which could then increase the vertical
decoupling of Si vs. N and P, with more heavily silicifed cells
sinking faster and less prone to dissolution in the surface wa-
ters.

Despite this the spring bloom is initiated by diatoms in
this region, which rapidly consume the available Si before
being outcompeted by coccolithophores, a group physiolog-
ically more adapted to the stratified and oligotrophic condi-
tions that occur later in the season (Iglesias-Rodriguez et al.,
2002). Even though Si availability does not directly control
the initiation of the coccolithophore bloom, it plays a ma-
jor role in structuring phytoplankton communities through-
out the productive season. Understanding the succession of
these major biomineralizing groups in this highly productive
region of the NA is the key to understanding and quantifying
the C export processes on a basin scale.

Diatoms and coccolithophores are likely to have very dif-
ferent impacts on the C export term. The respective roles of
the minerals SiO2 and CaCO3 as ballast particles and vectors
for POC export to depth is highly debated. The analyses of
a large number of sediment trap data suggested that CaCO3
was a more efficient ballast mineral for POC (François et al.,
2002; Klaas and Archer, 2002) but this assertion has recently
been contested by new experimental work (Passow and De
La Rocha, 2006; De La Rocha and Passow, 2007). Unfor-
tunately, we do not have sediment trap data in this study to
argue one way or the other. Leaving the ballast issue aside,
diatoms and coccolithophores are known to have very differ-
ent impacts on the biological pump. Diatoms tend to sed-
iment quickly, either after mass flocculation events (which
may be triggered by elevated TEP production) or through
grazers faecal pellets, while some evidence show that grazing
rates are reduced during a coccolithophore bloom (Huskin
et al., 2001; Nejstgaard et al., 1997). Calcification further-
more results in a net outgassing of CO2 towards the atmo-
sphere (albeitpCO2 solubility in surface waters increases as
we move poleward), which also depends on photosynthetic
activity and initial pCO2 levels in surface waters. Mech-
anisms of sedimentation of coccolithophores other than in
faecal pellets are not clear. In contrast to diatoms, where
the organic matter is trapped within the frustule after cell
death, coccoliths are released into the water upon cell death
(or earlier in some species), and are thus physically sepa-
rated from the organic carbon of the coccolithophore. Both
organic carbon and coccoliths could then aggregate if condi-
tions are right, but other processes may become more impor-
tant. Aggregation of whole coccolithophores has also been
postulated (Cadee, 1985), but it has never been ascertained
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if the observed structures were true aggregates or appendic-
ularian pseudo faeces. Formation of fast sinking aggregates
leads to faster export of material to depth, thus enhancing the
efficiency for C export. Hence, in our study, the presence of
TEP closely associated to diatom and coccolithophore distri-
bution may be an important vector for POC export for both
types of phytoplankton.

5 Conclusions

The seasonal succession of the spring phytoplankton bloom
in the North East Atlantic now seems better understood. The
NASB data presented here corroborates previous observa-
tions gathered during the JGOFS era and the follow-up pro-
grams carried out in this oceanic region, as well as model
scenarios for the spring bloom. The bloom is initiated by di-
atoms upon the onset of stratification and alleviation of light
limitation. Diatoms are rapidly outcompeted due to severe Si
limitation in the surface layer and potential Fe limitation may
occur despite relatively high concentrations. The intensifica-
tion of stratification (i.e. increased light and impoverished
nutrient conditions) then leads to the development of a large
coccolithophore bloom often located on the RHP and close
to Iceland.

During our study the spring diatom bloom was waning,
and abundant diatom biomass was constrained to the north-
ern part of the transect over the IS, while coccolithophores
were mainly dominant over the RHP and IB. These two phy-
toplankton groups were clearly dominating the autotrophic
community, but the presence ofPhaeocystis spp. was also
suspected to be present in some regions. We show that mea-
surements of bulk minerals or pigments are not sufficient
to clearly establish the dominance of one group, as coccol-
ithophores andPhaeocystis spp. both possess HEX while
diatoms andPhaeocystis both possess FUCO. Hence, the
need for systematic cell counts remain impossible to cir-
cumvent, but should become easier with the advent of semi-
automatized counting and imaging devices.

We conclude that the unique combination of early Si de-
pletion, along with sufficient N and P levels and water strat-
ification processes may be the reason why we observe one
of the planet’s most extensive coccolithophore blooms in the
NEA. Although the temporal succession between diatoms
and prymnesiophytes seems established, the role of the ma-
jor species succession within each group (namely the relative
contribution of coccolithophores andPhaeocystis) still needs
further assessment.

We suggest that focus now needs to be placed on export
modes of this intense phytoplankton bloom. Further studies
need to elucidate the net contribution of diatoms and coccol-
ithophores to C export through a better quantification of the
relative impact of processes such as grazing, TEP production,
flocculation events and passive sinking. Finally, a challenge
will be to understand how the dynamics of the North Atlantic

Bloom will respond to future changes in climate forcing, a
question that was addressed during our study by parallel ex-
periments examining the response of the same NAB com-
munities sampled here to increasingpCO2 and temperature
(Feng et al., 2009; Lee et al., 2009; Rose et al., 2009).
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