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Abstract 
 
In this paper we consider the class of anti-uniform Huffman (AUH) codes for 
sources with infinite alphabet generated by Poisson distribution. Huffman 
encoding of these sources results in AUH codes. As a result of this encoding, we 
obtain sources with memory. The entropy and average cost of these sources with 
memory are derived. We perform an analogy between sources with memory and 
discrete memoryless channels, showing that the entropy of the source with 
memory is similar to the mean error of the discrete memoryless channel. The 
information quantity I(X,S) specifies for AUH codes whether they are with 
memory or not, as it differs from zero or is equal to zero, respectively. 
Keywords: Huffman coding, average codeword length, entropy. 

 

1  Introduction 
 
Consider a discrete source with infinite size alphabet 1 2: ( )ks s s    and 

associated ordered probability distribution 1 2: ( )kP p p p   , where 

1 2 ... ...kp p p    . It is well known that the Huffman encoding algorithm [1] 

provides an optimal prefix–free code for this source. A binary Huffman code is 
usually represented using a binary tree, whose leaves correspond to the source 
messages. The two edges emanating from each intermediate tree node (father) are 
labeled either 0 or 1. For related literature on Huffman coding and Huffman trees,  



 

we refer the reader to [2, 3, 4, 5, 6]. 

In contrast with the uniform Huffman code where 1k jl l   (lk denotes 

the length of the codeword associated with the message sk), a code is called anti –
uniform Huffman (AUH) [7, 8], if 1kl k  , for 0,1,2,...k  . For this the 

following condition has to be fulfilled [7, 8] 
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The class of AUH sources is known for their property of achieving 

minimum redundancy in different situations. It has been shown in [9] that AUH 
codes potentially achieve the minimum redundancy of a Huffman code of a source 
for which the probability of one of the symbols is known. The AUH codes are 
efficient codes with minimal average cost in highly unbalanced cost regime among 
all prefix – free codes [10]. These properties determine a wide range of 
applications and motivate us to study these sources from information theoretic 
perspective. Such sources can be generated by a several probability distributions. It 
has been shown that Poisson distribution is among the class of infinite alphabet 
anti – uniform sources [7, 8, 11, 12]. 

In this paper we consider the AUH structure and derive the average 
codeword length, the average information per binary symbol of the source with 
memory or code entropy Hm(X), as result of Huffman encoding of the discrete 
AUH source with Poisson distribution, as well as the average cost of the code.  
The rest of the paper is organized as follows. In Section 2 we consider an infinite 
source with Poisson distribution and compute its entropy. For this source we 
perform a Huffman encoding and derive the average codeword length. We also 
show that employing Huffman coding, a source with memory results, for which we 
compute the entropy or the average information per binary encoded symbol. The 
average cost of the code is also derived. Section 3 presents the analogy between 
sources with memory and discrete memoryless channels. The information quantity 
corresponding to mutual information for discrete channels, I(X,S), specifies for 
AUH codes whether they are with memory or not, as it differs from zero or is equal 
to zero, respectively. We conclude the paper in Section 4. 
 

2  The entropy and the average cost of AUH codes for 
sources with infinite alphabet 

 
Let there be a discrete source with infinite alphabet, characterized by Poisson 
distribution: 
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In [11] it is shown that any Poisson distribution with parameter 1   

satisfies condition (1) and leads to an AUH code. 
The source is complete, because [15,16] 
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After a binary Huffman encoding of this source, the graph in Fig. 1 results, 

that is, an infinite anti – uniform code.  

 
Fig. 1. The graph of Huffman encoding for the source   with distribution in (2) 
 

( )t
ks represents a leaf or a terminal node in the graph, corresponding to the message 
( )t
ks  of the source and ( )i

ks  represents the intermediate node “k”.  

The probabilities of terminal nodes are equal to probabilities of the source 
messages, ( )t

kp . Unlike a leaf, an intermediate node is not corresponding to a source 



 

message and, therefore no probability mass is associated. However, with slight 
abuse we can call the weight of the intermediate node also probability.  

Considering (3), the probabilities of intermediate nodes ( )i
kp  are obtained 

recursively, as the sum of the two siblings. In this way, we get: 
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Considering (2) and (4), the probabilities of terminal and intermediate nodes are 
obtained by: 
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The structure of codewords resulted from Huffman binary encoding is: 
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The length kl of the codeword associated with the message ( )t
ks  is the number of 

edges on the path between the root and the node ( )t
ks  in the Huffman tree. 

1, 0,1,2,...kl k k                                                    (7) 

The average codeword length [13] is determined with  
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The average codeword length is obtained considering (2) and (7) in (8)  

1l                                                              (9) 
The entropy of the source with the distribution given in (2) is 
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where the logarithm function log is in base 2. 
Considering (2) and (10) the entropy of the source is: 
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In obtaining relations (9) and (11) we have taken into account that 
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We note that the probabilities to deliver the symbols 1 1x   or 0 0x   depend on 

the node from which they are generated. In other words, as a result of Huffman 
encoding of the source, a source 0 1{ 0, 1}X x x   with memory is obtained. Its 

states correspond to terminal or intermediate nodes (excluding the root) in the 
graph in Fig. 1. When a terminal node is reached, the binary encoding Huffman 
procedure is resumed from the graph root. Since the source with the distribution in 
(2) is complete, the probability of the root is equal to 1.  
The graph attached to the source with memory X can be obtained from the 
Huffman encoding graph of the source  , as follows: 

a) We link the terminal nodes in the graph of the source   with the root; 

b) The branches between successive nodes have the probabilities equal to 
the ratio between the probability of the node in which the branch ends 
and the probability of the node from which it starts; 

c) Each terminal or intermediate node will represent a state ( )t
kS  or 

( ) , 0,1,2,...i
kS k   (as it is represented in Fig. 2). 

 

 
 

Fig. 2 The graph of the source with memory 



 

 
Let ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 0 1 1{ , ,..., , ,..., , ,..., , ,...}t t t t i i i i
k k k kS S S S S S S S S   be the state set of the 

source with memory.  
The probabilities of delivering the symbols 0 0x   or 1 1x   from the state 

( )
1, 1,2,...i

kS k   corresponding to an intermediate node ( )
1, 1,2,...i

ks k  , are equal 

to the probabilities of transition from the state ( )
1, 1,2,...i

kS k  to the states 
( ) , 1,2,...t
kS k  and ( ) , 1,2,...i

kS k  , respectively, i.e. 
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and 
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respectively. 
The probabilities of delivering the symbols 1 1x   or 0 0x   from the state 

( ) , 0,1,2,...t
kS k   corresponding to a terminal node ( ) , 0,1,2,...t

ks k  , are equal to 

the probabilities of transition from the state ( ) , 0,1,2,...t
kS k  in the states ( )

0
tS and 

( )
0

iS , respectively, i.e.: 
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and 

( ) ( )
0 0( / ) 1 , 0,1,2,...t i

kp x S p e k                           (15) 

 
respectively. 
The transition matrix between states is: 
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Considering (12), (13), (14) and (15), the transition matrix (16) becomes: 
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(17) 

Let ( )t
k and ( )i

k , 0,1,2,...k  , denote the state probabilities of the source with 

memory. They can be determined by means of [13, 14]: 
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Considering (8) and (17), from (18) and (19) we get the state probabilities as: 
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Considering (2) and (4) in (20) and (21), we get the state probabilities as: 
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Generally, the entropy of the source with memory is computed by [14] 
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Substituting (12)-(15), (22) and (23) in (24), we get the entropy of the source with 
memory. 
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From (7), (11) and (25) we see that  Hm(X), the average information per symbol, is 
the ratio between the source entropy and the average codeword length. 
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Let 0c and 1c  be the costs associated to the bits 0 and 1, respectively. The average 

cost of a code is defined by [10] 
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where we denote by 0 ( )n k and 1( )n k  the number of 0’s and 1’s in the codeword 

corresponding to the source symbol ( )t
ks . 

Considering (6), the average cost is 
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We obtain the average cost of the AUH code for the source with Poisson 
distribution substituting (2) in (28). 
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3 Analogy between sources with memory and discrete, 
memoryless channels  

 
If we consider that the state set S of the source with memory represents the field at 
a discrete memoryless channel input and the symbols generated by the source with 
memory represents the field at the channel output, from (24) we note that the 
entropy of the source with memory represents the mean error of the channel with 
input S and output X, that is, H(X|S). 

Making use of this analogy we can calculate for sources with memory the 
information quantities specific to discrete memoryless channels [17]. One of them, 
corresponding to mutual information, indicates whether the source is with memory 
or not, as it is different from zero or equal to zero.  
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We get the joint probability as 
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Substituting (12)-(15) and (20)-(23) in (31) and (32), we get the joint 

probabilities: 
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We compute the symbols probabilities as 
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Substituting the probabilities (33)-(36) in (37), we get the probabilities 
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Substituting (20)-(23), (33)-(36), (38) and (39) in (30), we have 
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We note that this quantity differs from zero. This indicates that the source resulted 
by binary encoding of the source with Poisson distribution is with memory. 
 

4.  Conclusions 
 
In this paper we have considered an infinite discrete memoryless AUH source with  
Poisson distribution. Performing a binary Huffman encoding of this source, we get 
a source with memory, because the probabilities of delivering the symbols x0=0 
and x1=1 in the encoding process depend on the nodes in the graph from where 
they are generated. The graph of the source with memory is obtained from the 
encoding graph by linking the terminal nodes with the graph root. The states of the 
source with memory correspond to the terminal or intermediate nodes in the 
encoding graph. We determined the state probabilities of the source with memory, 
as well as the transition probabilities between states. The average information and 
cost per binary symbol in encoding process is computed. As the entropy of the 
source that is to be encoded measures the average information per codeword, and 
the code entropy measures the average information per symbol, their ratio 
represents the average length of codewords.  
Performing the analogy between discrete sources with memory and discrete 
memoryless channels, we compute the information quantity I(X,S), which indicates 
whether the source resulted by binary Huffman encoding is with memory or not. 
The information quantity Hm(X|S) represents the entropy of the source with 
memory resulted by binary Huffman encoding.  
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