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Introduction

Consider a discrete source with infinite size alphabet ... ... k p p p     . It is well known that the Huffman encoding algorithm [START_REF] Huffman | A method for the construction of minimumredundancy codes[END_REF] provides an optimal prefix-free code for this source. A binary Huffman code is usually represented using a binary tree, whose leaves correspond to the source messages. The two edges emanating from each intermediate tree node (father) are labeled either 0 or 1. For related literature on Huffman coding and Huffman trees, we refer the reader to [START_REF] Linder | Existence of optimal prefix codes for infinite source alphabets[END_REF][START_REF] Capocelli | A note on D-ary Huffman codes[END_REF][START_REF] Gallager | Variations by a theme of Huffman[END_REF][START_REF] Johnsen | On the redundancy of binary Huffman codes[END_REF][START_REF] Khorsavifard | A tree based algorithm for generating all possible binary compact codes with N codewords[END_REF].

In contrast with the uniform Huffman code where 1 k j l l   (l k denotes the length of the codeword associated with the message s k ), a code is called antiuniform Huffman (AUH) [START_REF] Esmaeili | On antiuniform and partially antiuniform sources[END_REF][START_REF] Esmaeili | On information theory parameters of infinite anti-uniform sources[END_REF], if 1 k l k   , for 0,1, 2,... k 

. For this the following condition has to be fulfilled [START_REF] Esmaeili | On antiuniform and partially antiuniform sources[END_REF][START_REF] Esmaeili | On information theory parameters of infinite anti-uniform sources[END_REF] 2 3 2 ... , 1

i i k i k i p p p p i            (1) 
The class of AUH sources is known for their property of achieving minimum redundancy in different situations. It has been shown in [START_REF] Mohajer | Tight bounds on the redundancy of Huffman codes[END_REF] that AUH codes potentially achieve the minimum redundancy of a Huffman code of a source for which the probability of one of the symbols is known. The AUH codes are efficient codes with minimal average cost in highly unbalanced cost regime among all prefix -free codes [START_REF] Mohajer | Anti -uniform Huffman codes[END_REF]. These properties determine a wide range of applications and motivate us to study these sources from information theoretic perspective. Such sources can be generated by a several probability distributions. It has been shown that Poisson distribution is among the class of infinite alphabet anti -uniform sources [START_REF] Esmaeili | On antiuniform and partially antiuniform sources[END_REF][START_REF] Esmaeili | On information theory parameters of infinite anti-uniform sources[END_REF][START_REF] Humblet | Optimal source coding for a class of integer alphabets[END_REF][START_REF] Gallager | Optimal source coding for geometrically distributed integer alphabets[END_REF].

In this paper we consider the AUH structure and derive the average codeword length, the average information per binary symbol of the source with memory or code entropy H m (X), as result of Huffman encoding of the discrete AUH source with Poisson distribution, as well as the average cost of the code. The rest of the paper is organized as follows. In Section 2 we consider an infinite source with Poisson distribution and compute its entropy. For this source we perform a Huffman encoding and derive the average codeword length. We also show that employing Huffman coding, a source with memory results, for which we compute the entropy or the average information per binary encoded symbol. The average cost of the code is also derived. Section 3 presents the analogy between sources with memory and discrete memoryless channels. The information quantity corresponding to mutual information for discrete channels, I(X,S), specifies for AUH codes whether they are with memory or not, as it differs from zero or is equal to zero, respectively. We conclude the paper in Section 4.

The entropy and the average cost of AUH codes for sources with infinite alphabet

Let there be a discrete source with infinite alphabet, characterized by Poisson distribution: 

( ) ( ) ( ) ( ) 0 1 2 2 ( ) ( ) ( ) ( ) 0 1 2 : 1! 2! ! t t
                              , (2) 
In [START_REF] Humblet | Optimal source coding for a class of integer alphabets[END_REF] it is shown that any Poisson distribution with parameter 1   satisfies condition (1) and leads to an AUH code.

The source is complete, because [START_REF] Larsen | An Introduction to Mathematical Statistics and its Applications[END_REF][START_REF] Corduneanu | Chapters of mathematical analysis[END_REF] ( )

0 0 0 1 ! ! k k t k k k k p e e e e k k                      (3) 
After a binary Huffman encoding of this source, the graph in Fig. 1 results, that is, an infinite anti -uniform code. The probabilities of terminal nodes are equal to probabilities of the source messages, ( ) t k p . Unlike a leaf, an intermediate node is not corresponding to a source message and, therefore no probability mass is associated. However, with slight abuse we can call the weight of the intermediate node also probability. Considering (3), the probabilities of intermediate nodes ( ) i k p are obtained recursively, as the sum of the two siblings. In this way, we get:

( ) ( ) 0 1 ; 0,1,2,... k i t k j j p p k      (4) 
Considering ( 2) and ( 4), the probabilities of terminal and intermediate nodes are obtained by:

( ) ( ) 0 ; 1 ; 0,1, 2,... ! ! k j k t i k k j p e p e k k j             (5) 
The structure of codewords resulted from Huffman binary encoding is: 

 0 0 1 1 2 
k k k s c s c s c s c                    (6) 
The length k l of the codeword associated with the message ( ) t k s is the number of edges on the path between the root and the node ( ) t k s in the Huffman tree.

1, 0,1, 2,...

k l k k    (7)
The average codeword length [START_REF] Munteanu | Elements of Information Theory[END_REF] is determined with

( ) 0 t k k k l p l     (8) 
The average codeword length is obtained considering ( 2) and ( 7) in ( 8)

1 l    (9)
The entropy of the source with the distribution given in ( 2) is

( ) ( ) 0 ( ) log t t k k k H p p       (10) 
where the logarithm function log is in base 2. Considering ( 2) and ( 10) the entropy of the source is:

1 ( ) log log log( !) ! k k H e e k k              (11) 
In obtaining relations ( 9) and [START_REF] Humblet | Optimal source coding for a class of integer alphabets[END_REF] we have taken into account that

0 1 ! k k e k        and 0 ! k k ke k         .
We note that the probabilities to deliver the symbols 1 1

x  or 0 0 x  depend on the node from which they are generated. In other words, as a result of Huffman encoding of the source, a source 

0 1 { 0, 1 } X x x    with

S k 

(as it is represented in Fig. 2). Fig. 2 The graph of the source with memory 

Let ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 1 0 1 1 { , ,
( ) 1 1 ( ) 1 1 0 ! ( / ) , 1, 2,... 1 ! k t i k k j i k k j e p k p x S k p e j                ) 
and

( ) 0 ( ) 0 1 ( ) 1 1 0 1 ! ( / ) , 1, 2,... 1 ! j k i j i k k j i k k j e j p p x S k p e j                   (13)
respectively.

The probabilities of delivering the symbols 1 1

x  or 0 0 x  from the state ( ) , 0,1,2,... 

respectively. The transition matrix between states is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 2 0 1 ( ) ( ) 0 0 ( ) ( ) 0 0 ( ) ( ) 0 0 ( ) ( ) 1 1 ( ) ( ) 0 0 ( ) ( ) ( ) ( ) 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 T t t
                                                                ( ) 0 
( ) 1 
( ) ( ) 0 
( ) 1 t t t k i i k S S S S S                                                    (16) 
Considering ( 12), ( 13), ( 14) and ( 15), the transition matrix ( 16) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 2 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 ! ! 0 0 0 0 0 1 1 ! ! T t t t t i i i k k j k k j j j k k j j S S
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( ) 1 
( ) ( ) 0 ( ) 1 t t t k i i k S S S S S                                             (17) Let ( ) t k  and ( ) i k  , 0,1, 2,... k 
, denote the state probabilities of the source with memory. They can be determined by means of [START_REF] Munteanu | Elements of Information Theory[END_REF][START_REF] Cover | Elements of Information Theory[END_REF]:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 1 0 1 0 1 [ ... ... ... ...] [ ... ... ... ...]T t t t i i i t t t i i i k k k k              (18)   ( ) ( ) 0 1 t i k k k        (19)
Considering ( 8) and ( 17), from ( 18) and ( 19) we get the state probabilities as:

( ) ( ) 1 , 0,1,2,... t t k k p k l    (20) ( ) ( ) ( ) 0 1 1 1 k i i t k k j j p p l l             (21) 
Considering ( 2) and ( 4) in ( 20) and ( 21), we get the state probabilities as:

( ) 1 , 0,1,2,... ! k t k e k k l             (22) ( ) 0 1 1 , 0,1, 2,... 
! j k i k j e k j l                (23) 
Generally, the entropy of the source with memory is computed by [START_REF] Cover | Elements of Information Theory[END_REF]        

1 1 ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 ( ) log log t t t i i i m k j k j k k j k j k k j k j H X p x S p x S p x S p x S               

 

(24) Substituting ( 12)-( 15), ( 22) and ( 23) in (24), we get the entropy of the source with memory.

1 1 ( ) log log log( !) 1 ! k m k H X e e k k                     (25) 
From ( 7), ( 11) and (25) we see that H m (X), the average information per symbol, is the ratio between the source entropy and the average codeword length.

( ) ( )

m H H X l   (26) 
Let 0 c and 1 c be the costs associated to the bits 0 and 1, respectively. The average cost of a code is defined by [START_REF] Mohajer | Anti -uniform Huffman codes[END_REF]  

( ) 0 0 1 1 0 ( ) ( ) t k k C p n k c n k c      , ( 27 
)
where we denote by 0 ( ) n k and 1 ( ) n k the number of 0's and 1's in the codeword corresponding to the source symbol ( )

t k s .
Considering [START_REF] Khorsavifard | A tree based algorithm for generating all possible binary compact codes with N codewords[END_REF], the average cost is  

( ) 0 1 0 t k k C p kc c      (28) 
We obtain the average cost of the AUH code for the source with Poisson distribution substituting ( 2) in (28).

 

0 1 0 1 0 1 0 0 0 ! ! ! k k k k k k C e kc c c ke c e c c k k k                          (29)
3 Analogy between sources with memory and discrete, memoryless channels

If we consider that the state set S of the source with memory represents the field at a discrete memoryless channel input and the symbols generated by the source with memory represents the field at the channel output, from (24) we note that the entropy of the source with memory represents the mean error of the channel with input S and output X, that is, H(X|S). Making use of this analogy we can calculate for sources with memory the information quantities specific to discrete memoryless channels [START_REF] Gray | Source Coding Theory[END_REF]. One of them, corresponding to mutual information, indicates whether the source is with memory or not, as it is different from zero or equal to zero. 

( ) ( ) 1 1 ( ) ( ) ( ) ( ) 0 0 0 0 log ( , ) log ( , ) ( , ) ( , ) ( , ) ( ) ( 
( ) ( ) ( ) ( , ) ( | ) i i i j k k j k p x S p x S   (31) 
Substituting ( 12)-( 15) and ( 20)-( 23) in ( 31) and (32), we get the joint probabilities:

( ) 2 1 1 ( , ) , 0,1, 2,... ! k t k p x S e k k l      (33) ( ) 1 1 ( , ) , 1, 2,... ! k i k p x S e k k l      (34) ( ) 0 1 ( , ) (1 ) 
, 0,1, 2,... ! k t k p x S e e k k l         (35) ( ) 0 0 1 ( , ) 1 , 1,2,... ! j k i k j p x S e e k j l                 (36) 
We compute the symbols probabilities as

( ) ( ) 0 0 ( ) ( , ) ( , ), 0,1 t i j j k j k k k p x p x S p x S j          (37) 
Substituting the probabilities (33)-( 36) in (37), we get the probabilities 0 ( )

1 p x     (38) 1 1 ( ) 1 p x    . ( 39 
)
Substituting ( 20)-( 23), ( 33)-( 36), ( 38) and ( 39) in (30), we have

0 1 ( , ) ( 1)log 
( 1) log log( !) 1 ! k k I S X e e k k                       (40) 
We note that this quantity differs from zero. This indicates that the source resulted by binary encoding of the source with Poisson distribution is with memory.

Conclusions

In this paper we have considered an infinite discrete memoryless AUH source with Poisson distribution. Performing a binary Huffman encoding of this source, we get a source with memory, because the probabilities of delivering the symbols x 0 =0 and x 1 =1 in the encoding process depend on the nodes in the graph from where they are generated. The graph of the source with memory is obtained from the encoding graph by linking the terminal nodes with the graph root. The states of the source with memory correspond to the terminal or intermediate nodes in the encoding graph. We determined the state probabilities of the source with memory, as well as the transition probabilities between states. The average information and cost per binary symbol in encoding process is computed. As the entropy of the source that is to be encoded measures the average information per codeword, and the code entropy measures the average information per symbol, their ratio represents the average length of codewords.

Performing the analogy between discrete sources with memory and discrete memoryless channels, we compute the information quantity I(X,S), which indicates whether the source resulted by binary Huffman encoding is with memory or not.

The information quantity H m (X|S) represents the entropy of the source with memory resulted by binary Huffman encoding.
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 1 Fig. 1. The graph of Huffman encoding for the source  with distribution in (2)
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  memory is obtained. Its states correspond to terminal or intermediate nodes (excluding the root) in the graph in Fig.1. When a terminal node is reached, the binary encoding Huffman procedure is resumed from the graph root. Since the source with the distribution in (2) is complete, the probability of the root is equal to 1. The graph attached to the source with memory X can be obtained from the Huffman encoding graph of the source   , as follows: a) We link the terminal nodes in the graph of the source   with the root;b) The branches between successive nodes have the probabilities equal to the ratio between the probability of the node in which the branch ends and the probability of the node from which it starts; c) Each terminal or intermediate node will represent a state( ) 
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