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Non-asymptotic Oracle Inequalities for the Lasso and Group Lasso in high dimensional logistic model

We consider the problem of estimating a function f 0 in logistic regression model.

We propose to estimate this function f 0 by a sparse approximation build as a linear combination of elements of a given dictionary of p functions. This sparse approximation is selected by the Lasso or Group Lasso procedure. In this context, we state non asymptotic oracle inequalities for Lasso and Group Lasso under restricted eigenvalue assumption as introduced in [4].

Introduction

During the last few years, logistic regression problems with more and more high-dimensional data occur in a wide variety of scientific fields, especially in studies that attempt to find risk factors for disease and clinical outcomes. For example in gene expression data analysis or in genome wide association analysis the number p of predictors may be of the same order or largely higher than the sample size n (thousands p of predictors for only a few dozens of individuals n, see for instance [START_REF] Garcia-Magariños | Lasso logistic regression, GSoft and the cyclic coordinate descent algorithm: application to gene expression data[END_REF] or [START_REF] Wu | Genome-wide association analysis by lasso penalized logistic regression[END_REF]). In this context the considered model is often what we call here "usual " logistic regression. It is given by

P(Y i = 1) = π(z T i β 0 ) = exp(z T i β 0 ) 1 + exp(z T i β 0 ) , (1) 1 
where one observes n couples (z 1 , Y 1 ),. . . ,(z n , Y n ) ∈ R d × {0, 1}, and β 0 is the unknown parameter to estimate. Throughout the paper, we consider a fixed design setting (i.e z 1 , . . . , z n are considered deterministic).

In this paper, we consider a more general logistic model described by

P(Y i = 1) = exp(f 0 (z i )) 1 + exp(f 0 (z i )) , (2) 
where the outputs Y i ∈ {0, 1}, i = 1, . . . , n are independent and f 0 (not necessarily linear) is an unknown function (see [START_REF] Hastie | Non-parametric logistic regression[END_REF]). We aim at estimating f 0 by constructing a suitable approximation. More precisely we estimate f 0 by a sparse approximation of linear combination of elements of a given dictionary of functions D = {φ 1 , . . . , φ p }: f (.) := p j=1 βj φ j (.). Our purpose expresses the belief that, in many instances, even if p is large, only a subset of D may be needed to approximate f 0 well. This construction can be done by minimizing the empirical risk. However, it is well-known that with a large number of parameters in high dimensional data situations, direct minimization of empirical risk can lead to Overfitting: the classifier can only behave well in training set, and can be bad in test set. The procedure would also be unstable: since empirical risk is data dependent, hence random, small change in the data can lead to very different estimators. Penalization is used to overcome those drawbacks.

One could use ℓ 0 penalization, i.e. penalized by the number of non zero coefficients (see for instance AIC, BIC [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF][START_REF] Schwarz | Estimating the dimension of a model[END_REF]). Such a penalization would produce interpretable models, but leads to non convex optimization and there is not efficient algorithm to solve this problem in high dimensional framework. Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] proposes to use ℓ 1 penalization, which is a regularization technique for simultaneous estimation and selection. This penalization leads to convex optimization and is important from computational point of view (as well as from theoretical point of view). As a consequence of the optimality conditions, regularization by the ℓ 1 penalty tends to produce some coefficients that are exactly zero and shrink others, thus the name of Lasso (Least Absolute Shrinkage and Selection Operator). There exist some algorithms to solve this convex problem, glmnet (see [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]), predictor-corector (see [START_REF] Young | L 1 -regularization path algorithm for generalized linear models[END_REF]) among the others.

A related Lasso-type procedure is the Group Lasso, where the covariates are assumed to be clustered in groups, and instead of ℓ 1 -penalty (summing the absolute values of each individual loading) the sum of Euclidean norms of the loadings in each group is used. It shares the same kind of properties as the Lasso, but encourages predictors to be selected in groups. This is useful when the set of predictors is partitioned into prescribed groups, only few being relevant in the estimation process. Group Lasso has numerous applications : when categorical predictors (factors) are present, the Lasso solution is not adequate since it only selects individual dummy variables instead of whole factors. In this case, categorical variables are usually represented as groups of dummy variables. In speech and signal processing for example, the groups may represent different frequency bands (see [START_REF] Mcauley | Subband correlation and robust speech recognition[END_REF]).

Previously known results. Recently, a great deal of attention has been focused on ℓ 1 -penalized based estimators. Most of this attention concerns regression models and ℓ 1penalized least squares estimator of parameters in high dimensional linear and non linear additive regression. Among them one can cite [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF][START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF][START_REF] Massart | The Lasso as an ℓ 1 -ball model selection procedure[END_REF][START_REF] Peter L Bartlett | L1-regularized linear regression: persistence and oracle inequalities[END_REF][START_REF] Gareth | Dasso: connections between the dantzig selector and lasso[END_REF], who have studied the Lasso for linear model in nonparametric setting and proved sparsity oracle inequalities. Similar sparsity oracle inequalities are proved in [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF], and those results hold under the so-called restricted eigenvalue assumption on the Gram matrix. Those kind of results have been recently stated for the variants of the Lasso. For instance Lounici et al. [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] under a group version of restricted eigenvalue assumption stated oracle inequalities in linear gaussian noise model under Group sparsity. Those results lead to the refinements of their previous results for multi-task learning (see [START_REF] Lounici | Taking advantage of sparsity in multi-task learning[END_REF]). The behavior of the Lasso and Group Lasso regarding their selection and estimation properties have been studied in : [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF][START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF][START_REF] Osborne | A new approach to variable selection in least squares problems[END_REF][START_REF] Zhang | The sparsity and bias of the LASSO selection in high-dimensional linear regression[END_REF][START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF] for Lasso in linear regression; [START_REF] Chesneau | Some theoretical results on the grouped variables lasso[END_REF][START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF] for Group Lasso in linear regression; [START_REF] Ravikumar | Sparse additive models[END_REF][START_REF] Meier | High-dimensional additive modeling[END_REF][START_REF] Huang | Variable selection in nonparametric additive models[END_REF] for additive models. Few results on the Lasso and Group Lasso concern logistic regression model. Most of them are asymptotic results and concern the "usual" logistic regression model defined by [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Zou [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] shows consistency in variable selection for adaptive Lasso in generalized linear models when the number of covariables p is fixed. Huang et al. [START_REF] Huang | The iterated lasso for high-dimensional logistic regression[END_REF] prove sign consistency and estimation consistency for high-dimensional logistic regression. Meir et al. [START_REF] Meier | The group Lasso for logistic regression[END_REF] shown consistency for the Group Lasso in "usual " logistic model (1). To our knowledge there are only two non asymptotic results for the Lasso in logistic model : the first one is from Bach [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF], who provided bounds for excess risk (generalization performance) and estimation error in the case of "usual " logistic regression model under restricted eigenvalue assumption on the weighted Gram matrix. The second one is from van de Geer [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF], who established non asymptotic oracle inequality for Lasso in high dimensional generalized linear models with Lipschitz loss functions. Non asymptotic results concerning Group Lasso for logistic regression model have been established by Negahban et al. [START_REF] Sahand | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF], with the assumption that f 0 is linear.

In this paper, we state general non asymptotic oracle inequalities for the Lasso and Group Lasso in logistic model within the framework of high-dimensional statistics. We do not assume that f 0 is linear. We first state "slow" oracle inequalities (see Theorem 1.1 and Theorem 2.1) with no assumption on the Gram matrix, on the regressors nor on the margin. Secondly we provide "fast" oracle inequalities (see Theorem 1.2 and Theorem 2.2) under restricted eigenvalue assumption and some technical assumptions on the regressors. In each case, we give, as a consequence, the bounds for excess risk, L 2 ( 1 n n i=1 δ z i ) and estimation errors for Lasso and Group Lasso in the "usual" logistic regression. Our non asymptotic results lead to an adaptive data-driven weighting of the ℓ 1 -norm (for the Lasso) and group norm (for the Group Lasso). This paper is organized as follows. In Section 1, we describe our weighted Group Lasso estimation procedure and state non asymptotic oracle inequalities for the Group Lasso estimator. In Section 2 we describe our weighted Lasso estimation procedure and state non asymptotic oracle inequalities for the Lasso estimator. In Section 1.3 and Section 2.3 we give as a consequence the bounds for excess risk, L 2 ( 1 n n i=1 δ z i ) and estimation errors for Lasso and Group Lasso in the "usual " logistic regression [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] . The proofs are gathered in Section 4 and Appendix.

Definitions and notations

Consider the matrix X = (φ j (z i )) 1≤i≤n, 1≤j≤p and {G l , l = 1, . . . , g} the partition of {1, . . . , p}.

For any β = (β 1 , . . . , β p ) T = (β 1 , . . . , β g ) T ∈ R p , where β l = (β j ) j∈G l for l = 1, . . . , g. Let f β (.) = p j=1 β j φ j (.) = g l=1 j∈G l β j φ j (.). With our notations

(f β (z 1 ), . . . , f β (z n )) T = Xβ.
We define the group norm of β as

β 2,q =   g l=1 j∈G l β 2 j q 2   1 q = g l=1 β l q 2 1 q , for every 1 ≤ q < ∞. For β ∈ R p K(β) = {j ∈ {1, .
. . , p} : β j = 0} and J(β) = {l ∈ {1, . . . , g} : β l = 0}, respectively the set of relevant coefficients (which characterizes the sparsity of the vector β) and the set of relevant groups. For all δ ∈ R p and a subset I ⊂ {1, . . . , p}, we denote by δ I the vector in R p that has the same coordinates as δ on I and zero coordinates on the complement I c of I. Moreover |I| denotes the cardinality of I.

For all h, f, g : R d → R, we define the scalar products

f, h n = 1 n n i=1 h(z i )f (z i ),
and

f, h g = 1 n n i=1 h(z i )f (z i )π(g(z i ))(1 -π(g(z i )))
, where π(t) = exp(t) 1 + exp(t) .

We use the notation

q f (h) = 1 n n i=1 h(z i )(Y i -π(f (z i ))), h ∞ = max i |h(z i )| and h n = h, h n = 1 n n i=1 h 2 (z i ) which denote the L 2 ( 1 n n i=1 δ z i ) norm (empirical norm).
We consider empirical risk (logistic loss) for logistic model

R(f ) = 1 n n i=1 log(1 + exp(f (z i ))) -Y i f (z i ). (3) 
We denote by R the expectation of R with respect to the distribution of Y 1 , . . . , Y n , i.e

R(f ) = IE( R(f )) = 1 n n i=1 log(1 + exp(f (z i ))) -IE(Y i )f (z i ).
It is clear that R(.) is a convex function and f 0 is a minimum of R(.) when the model is well-specified (i.e. when (2) is satisfied). Note that with our notations

R(f ) = IE( R(f )) = R(f ) + q f 0 (f ). ( 4 
)
We shall use both the excess risk of f β , R(f β ) -R(f 0 ) and the prediction loss f β -f 0 2 n to evaluate the quality of the estimator. Note that R(f β ) corresponds to the average Kullback-Leibler divergence to the best model when the model is well-specified, and is common for the study of logistic regression.

1 Group Lasso for logistic regression model

Estimation procedure

The goal is not to estimate the parameters of the "true" model (since there is no true parameter) but rather to construct an estimator that mimics the performance of the best model in a given class, whether this model is true or not. Our aim is then to estimate f 0 in Model (2) by a linear combination of the functions of a dictionary D = {φ 1 , . . . , φ p }, where φ j : R d → R and p possibly >> n. The functions φ j can be viewed as estimators of f 0 constructed from independent training sample, or estimators computed using p different values of the tuning parameter of the same method. They can also be a collection of basis functions, that can approximate f 0 , like wavelets, splines, kernels, etc... We implicitly assume that f 0 can be well approximated by a linear combination

f β (.) = p j=1 β j φ j (.),
where β has to be estimated.

In this section we assume that the set of relevant predictors have known group structure, for example in gene expression data these groups may be gene pathways, or factor level indicators in categorical data. And we wish to achieves sparsity at the level of groups. This group sparsity assumption suggests us to use the Group Lasso method. We consider the Group Lasso for logistic regression (see [START_REF] Meier | The group Lasso for logistic regression[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]), where predictors are included or excluded in groups. The logistic Group Lasso is the minimizer of the following optimization problem

f βGL := argmin f β ∈Γ R(f β ) + r g l=1 ω l β l 2 , (5) 
where

Γ ⊆ f β (.) = g l=1 j∈G l β j φ j (.), β ∈ R p .
The tuning parameter r > 0 is used to adjust the trade-off between minimizing the loss and finding a solution which is sparse at the group level, i.e., to a vector β such that β l = 0 for some of the groups l ∈ {1, . . . , g}. Sparsity is the consequence of the effect of non-differentiable penalty. This penalty can be viewed as an intermediate between ℓ 1 and ℓ 2 type penalty, which has the attractive property that it does variables selection at the group level. The weights ω l > 0, which we will define later, are used to control the amount of penalization per group.

Oracle inequalities

In this section we state non asymptotic oracle inequalities for excess risk and L 2 ( 1 n n i=1 δ z i ) loss of Group Lasso estimator. Consider the following assumptions :

There exists a constant 0 < c 1 < ∞ such that max 1≤i≤n |f 0 (z i )| ≤ c 1 . (B 1 )
There exists a constant 0 < c 2 < ∞ such that max

1≤i≤n max 1≤j≤p |φ j (z i )| ≤ c 2 . (B 2 )
There exists a constant C 0 such that the set

Γ = Γ (C 0 ) = {f β , max 1≤i≤n |f β (z i )| ≤ C 0 } is non-empty. (B 3 )
Assumptions (B 1 ) and (B 3 ) are technical assumptions useful to connect the excess risk and

the L 2 ( 1 n n i=1 δ z i ) loss (see Lemma 4.1
). An assumption similar to (B 1 ) has been used in [START_REF] Bunea | Aggregation for Gaussian regression[END_REF] to prove oracle inequality in gaussian regression model. The same kind of assumption as (B 3 ) has been made in [START_REF] Tarigan | Classifiers of support vector machine type with l 1 complexity regularization[END_REF] to prove oracle inequality for support vector machine type with ℓ 1 complexity regularization.

Theorem 1.1. Let f βGL be the Group Lasso solution defined in (5) with r ≥ 1 and

ω l = 2 |G l | n 1 2 max j∈G l n i=1 φ 2 j (z i ) (x + log p) + 2c 2 |G l | 3n (x + log p) , (6) 
where x > 0. Under Assumption (B 2 ), with probability at least 1 -2 exp(-x) we have

R(f βGL ) -R(f 0 ) ≤ inf β∈R p R(f β ) -R(f 0 ) + 2r β 2,1 max 1≤l≤g ω l . (7) 
The first part of the right hand of Inequality [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF] corresponds to the approximation error (bias). The selection of the dictionary can be very important to minimize this approximation error. It is recommended to choose a dictionary D such that f 0 could well be approximated by a linear combination of the functions of D. The second part of the right hand of Inequality ( 7) is the variance term and is usually referred as the rate of the oracle inequality. In Theorem 1.1, we speak about "slow" oracle inequality, with the rate at the order β 2,1 log p/n for any β. Moreover this is a sharp oracle inequality in the sense that there is a constant 1 in front of term inf β∈R p {R(f β ) -R(f 0 )}. This result is obtained without any assumption on the Gram matrix (Φ n = X T X/n). In order to obtain oracle inequality with a "fast rate" of order log p/n we need additional assumption on the restricted eigenvalue of the Gram matrix, namely the restricted eigenvalue assumption.

For some integer s such that 1 ≤ s ≤ g and a positive number a 0 , the following condition holds

(RE 1 ) µ 1 (s, a 0 ) := min K⊆{1,...p}:|K|≤s min ∆ =0: ∆ K c 2,1 ≤a 0 ∆ K 2,1 X∆ 2 √ n ∆ K 2 > 0.
This is a natural extension to the Group Lasso of restricted eigenvalue assumption introduced in [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF] (or Assumption (RE 3 ) used below) for the usual Lasso. The only difference lies on the set where the minimum is taken : for the Lasso the minimum is taken over {∆ = 0 :

∆ K c 1 ≤ a 0 ∆ K 1 } whereas for the Group Lasso the minimum is over {∆ = 0 : ∆ K c 2,1 ≤ a 0 ∆ K 2,1 }.
This assumption has already been used in [START_REF] Lounici | Taking advantage of sparsity in multi-task learning[END_REF][START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] to prove oracle inequality for linear gaussian noise model under Group sparsity and for multi-task learning. To emphasize the dependency of Assumption (RE 1 ) on s and a 0 we will sometimes refer to it as RE(s, a 0 ).

Theorem 1.2. Let f βGL be the Group Lasso solution defined in [START_REF] Boucheron | Concentration inequalities. Advanced Lectures on Machine Learning[END_REF] with ω l defined as in [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF]. Fix η > 0 and 1 ≤ s ≤ g, assume that (B 1 ), (B 2 ), (B 3 ) and (RE 1 ) are satisfied, with a 0 = 3 + 4/η. Thus with probability at least 1 -2 exp(-x) we have

R(f βGL ) -R(f 0 ) ≤ (1 + η) inf f β ∈Γ          R(f β ) -R(f 0 ) + c(η)|J(β)|r 2 max 1≤l≤g ω l 2 c 0 ǫ 0 µ 1 (s, a 0 ) 2          , (8) 
and

f βGL -f 0 2 n ≤ c ′ 0 4c 0 ǫ 0 (1 + η) inf f β ∈Γ          f β -f 0 2 n + 4c(η)|J(β)|r 2 max 1≤l≤g ω l 2 c ′ 0 c 0 ǫ 2 0 µ 1 (s, a) 2          . ( 9 
)
Where c(η) is a constant depending only on η; c 0 = c 0 (C 0 , c 1 ) and c ′ 0 = c ′ 0 (C 0 , c 1 ) are constants depending on C 0 and c 1 ; ǫ 0 = ǫ 0 (c 1 ) is a constant depending on c 1 ; and r ≥ 1 .

In Theorem 1.2, the variance terms are of order log p/n. Hence we say that the corresponding non asymptotic oracle inequalities have "fast rates". For the best of our knowledge, Inequalities [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF], ( 8) and ( 9) are the first non asymptotic oracle inequalities for the Group Lasso in logistic regression model. These inequalities allow us to bound the prediction errors of Group Lasso by the best sparse approximation and a variance term. The major difference with existing results concerning Group Lasso for logistic regression model (see [START_REF] Sahand | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Meier | The group Lasso for logistic regression[END_REF]) is that f 0 is not necessarily linear.

Remark 1.1. Our results remain true if we assume that we are in the "neighborhood" of the target function. If we suppose that there exists

ζ such that max 1≤i≤n |f β (z i ) -f 0 (z i )| ≤ ζ, then Lemma 4.1 is still true. Remark 1.2.
The choice of the weights ω ℓ comes from Bernstein's inequality. We could also use the following weights

ω ′ l = 2 |G l | n 2max j∈G l n i=1 E[φ 2 j (z i )ǫ 2 i ] (x + log p) + 2 |G l | max 1≤i≤n max j∈G l |φ j (z i )| 3n (x + log p) ,
where

ǫ i = Y i -E[Y i ], i = 1 . . . n. Theorems 1.
1 and 1.2 still hold true with such weights ω ′ l . But these weights depend on the unknown function f 0 to be estimated through

IE(ǫ 2 i ) = π(f 0 (z i )(1 -π(f 0 (z i ))
. This is the reason for using weights ω l slightly greater than ω ′ l . We also note that our weights are proportional to the square root of groups sizes, which is in acordance with the weights previously proposed for grouping strategies (see [START_REF] Meier | The group Lasso for logistic regression[END_REF]).

Special case : f 0 linear

In this section we assume that f 0 is a linear function i.e. f 0

(z i ) = f β 0 (z i ) = g l=1 j∈G l β j z ij .
Denote by X = (z ij ) 1≤i≤n,1≤j≤p , the design matrix. Let z i = (z i1 , . . . , z ip ) T be the ith row of the matrix X and z (j) = (z 1j , . . . , z nj ) T is jth column. For i = 1, . . . , n

P(Y i = 1) = exp(z T i β 0 ) 1 + exp(z T i β 0 ) . ( 10 
)
This corresponds to the "usual " logistic regression (1) i.e. logistic model that allows linear dependency between z i and the distribution of Y i . In this context, the Group Lasso estimator of β 0 is defined by βGL := argmin

β: f β ∈Γ 1 n n i=1 log(1 + exp(z T i β)) -Y i z T i β + r g l=1 ω l β l 2 . ( 11 
)
Corollary 1.1. Let assumption RE 1 (s,3) be satisfied and |J(β 0 )| ≤ s, where 1 ≤ s ≤ g. Consider the Group Lasso estimator f βGL defined by [START_REF] Garcia-Magariños | Lasso logistic regression, GSoft and the cyclic coordinate descent algorithm: application to gene expression data[END_REF] with

ω l = 2 |G l | n 1 2 max j∈G l n i=1 z 2 ij (x + log p) + 2c 2 |G l | 3n (x + log p) (12) 
where x > 0. Under the assumptions of Theorem 1.2, with probability at least 1 -2 exp(-x)

we have

R(f βGL ) -R(f β 0 ) ≤ 9sr 2 max 1≤l≤g ω l 2 µ 2 (s, 3)c 0 ǫ 0 ( 13 
)
f βGL -f β 0 2 n ≤ 9sr 2 max 1≤l≤g ω l 2 µ 2 (s, 3)c 2 0 ǫ 2 0 (14) βGL -β 0 2,1 ≤ 12rs max 1≤l≤g ω l 2 µ 2 (s, 3)c 0 ǫ 0 ( min 1≤l≤g ω l ) (15) βGL -β 0 q 2,q ≤      12rs max 1≤l≤g ω l 2 µ 2 (s, 3)c 0 ǫ 0 ( min 1≤l≤g ω l )      q for all 1 < q ≤ 2. ( 16 
)
Remark 1.3. In logistic regression model [START_REF] Sahand | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF], if vector β 0 is sparse, i.e. |J(β 0 )| ≤ s, then Assumption (RE 1 ) implies that β 0 is uniquely defined. Indeed, if there exists β * such that for

i = 1, . . . , n, π(z T i β 0 ) = π(z T i β * ), it follows that Xβ 0 = Xβ * and |J(β * )| ≤ s.
Then according to assumption RE(s, a 0 ) with a 0 1, we necessarily have

β 0 = β * . Indeed if RE(s, a 0 ) is satisfied with a 0 1, then min{ Xβ 2 : |J(β)| ≤ 2s, β = 0} > 0.
Remark 1.4. (Theoretical advantage of Group Lasso over the Lasso) Concerning results on oracle inequality for the Group Lasso few results exist. The first oracle inequality for the Group Lasso in the additive regression model is due to [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF]. Since then, some of these inequalities have been improved in Lounici et al. (2011) [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF], concerning in particular the gain on order rate. More precisely, Lounici et al. (2011) [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] have found a rate of order log g/n for Group Lasso in gaussian linear model, which is better than is corresponding rate for the Lasso, log p/n (since g ≤ p). This improvement seems mainly based on the assumption that the noise is gaussian. In our case (see proof of Theorem 1.1, formula [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF])

the empirical process involves non gaussian variables and thus their method should not apply in our context. However the probability that their results are true depends on g whereas the probability that our results hold does not depend on g.

We can find the rate of order log g/n by choosing this constant x in the weights in a certain manner. Indeed, let us assume (without loss of generality) that the groups are all of

equal size |G 1 | = • • • = |G g | = m
, so that p = m.g. Since the weights in ( 6) are defined for all x > 0, if we take x = q log g -log m > 0 where q is a positive constant such that g q > m.

Then the weights in [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF] become

ω l = 2 |G l | n 1 2 max j∈G l n i=1 φ 2 j (z i ) [(1 + q) log g] + 2c 2 |G l | 3n [(1 + q) log g] ,
thus

ω 2 l ∼ log g n ,
and the results in Theorem 1.1 and Theorem 1.2 hold with probability at least

1 -2 m g q .
In the special case where the g > 2m these results are true for all q > 0.

Non bounded functions

The results of Corollary 1.1 are obtained (as the consequence of Theorem 1.2) with the assumptions that f β 0 and all f β ∈ Γ are bounded. In some situations these assumptions could not be verified. In this section we will establish the same results without assuming (B 1 ) or (B 3 ) i.e. neither f β 0 nor f β is bounded. We consider the Group Lasso estimator defined in [START_REF] Garcia-Magariños | Lasso logistic regression, GSoft and the cyclic coordinate descent algorithm: application to gene expression data[END_REF] and the following assumption :

For some integer s such that 1 ≤ s ≤ g and a positive number a 0 , the following condition holds

(RE 2 ) µ 2 (s, a 0 ) := min K⊆{1,...p}:|K|≤s min ∆ =0: ∆ K c 2,1 ≤a 0 ∆ K 2,1 ∆ T X T DX∆ n ∆ K Theorem 1.3.
Consider the Group Lasso estimator f βGL defined by [START_REF] Garcia-Magariños | Lasso logistic regression, GSoft and the cyclic coordinate descent algorithm: application to gene expression data[END_REF] with w l defined as in [START_REF] Hastie | Non-parametric logistic regression[END_REF] where

x > 0. Set v = max 1≤i≤n max 1≤l≤g z l i 2 .
Let Assumptions (B 2 ) and (RE 2 ) be satisfied with

a 0 = 3 max 1≤l≤g ω l min 1≤l≤g ω l . If r(1 + a 0 ) 2 max 1≤l≤g ω l ≤ µ 2 2 3v|J|
, with probability at least 1 -2 exp(-x) we have

R(f βGL ) -R(f β 0 ) ≤ 9(1 + a 0 ) 2 J(β 0 )|r 2 max 1≤l≤g ω l 2 µ 2 2 (s, 3) (17) 
βGL

-β 0 2,1 ≤ 6(1 + a 0 ) 2 |J(β 0 )|r max 1≤l≤g ω l µ 2 2 (s, 3) (18) βGL -β 0 q 2,q ≤     6(1 + a 0 ) 2 |J(β 0 )|r max 1≤l≤g ω l µ 2 2 (s, 3)     q for all 1 < q ≤ 2. ( 19 
)
Moreover if we assume that there exists 0 < ǫ 0 ≤ 1/2 such that

ǫ 0 ≤ π(f β 0 (z i ))[1 -π(f β 0 (z i ))]
for all i = 1, . . . , n then,

X βGL -Xβ 0 2 n ≤ 36(1 + a 0 ) 2 |J(β 0 )|r 2 max 1≤l≤g ω l 2 µ 2 (s, 3)ǫ 0 . (20) 
Inequalities ( 18) and ( 19) are the extensions of the results in [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] for the Lasso to Group Lasso in logistic regression model.

In this section we studied some properties of the Group Lasso. However the Group Lasso is based on prior knowledge that the set of relevant predictors have known group structure.

If this group sparsity condition is not satisfied, the sparsity can be achieve by simply using the Lasso. We will show in the next section how to adapt the results of this section to the Lasso.

2 Lasso for logistic regression

Estimation procedure

The Lasso estimator f βL is defined as a minimizer of the following ℓ 1 -penalized empirical risk

f βL := argmin f β ∈Γ R(f β ) + r p j=1 ω j |β j | , (21) 
where the minimum is taken over the set

Γ ⊆ f β (.) = p j=1 β j φ j (.), β = (β 1 , . . . , β p ) ∈ R p
and ω j are positive weights to be specified later. The "classical" Lasso penalization corresponds to ω j = 1, where r is the tuning parameter which makes balance between goodnessof-fit and sparsity. The Lasso estimator has the property that it does predictors selection and estimation at the same time. Indeed for large values of ω j , the related components βj are set exactly to 0 and the other are shrunken toward zero.

Oracle inequalities

In this section we provide non asymptotic oracle inequalities for the Lasso in logistic regression model.

Theorem 2.1. Let f βL be the ℓ 1 -penalized minimum defined in [START_REF] Mcauley | Subband correlation and robust speech recognition[END_REF]. Let Assumption (B 2 ) be satisfied.

A-) Let x > 0 be fixed and r ≥ 1. For j = {1, . . . , p}, let

ω j = 2 n 1 2 n i=1 φ 2 j (z i )(x + log p) + 2c 2 (x + log p) 3n . ( 22 
)
Thus with probability at least 1 -2 exp(-x) we have

R(f βL ) -R(f 0 ) ≤ inf β∈R p R(f β ) -R(f 0 ) + 2 β 1 r max 1≤j≤p ω j . B-) Let A > 2 √ c 2 .
For j = {1, . . . , p}, let ω j = 1, and

r = A log p n .
Thus with probability at least 1 -2p 1-A 2 /4c 2 we have

R(f βL ) -R(f 0 ) ≤ inf β∈R p R(f β ) -R(f 0 ) + 2A β 1 r log p n .
As previously, the variance terms are of order β 1 log p/n for any β. Hence these are sharp oracle inequalities with "slow" rates. These results are obtained without any assumption on the Gram matrix. To obtain oracle inequalities with a "fast rate", of order log p/n, we need the restricted eigenvalue condition.

For some integer s such that 1 ≤ s ≤ p and a positive number a 0 , the following condition holds

(RE 3 ) µ(s, a 0 ) := min K⊆{1,...p}:|K|≤s min ∆ =0: ∆ K c 1 ≤a 0 ∆ K 1 X∆ 2 √ n ∆ K 2 > 0.
This assumption has been introduced in [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF], where several sufficient conditions for this assumption are described. This condition is known to be one of the weakest to derive "fast rates" for the Lasso. For instance conditions on the Gram matrix used to prove oracle inequality in [START_REF] Bunea | Aggregation and sparsity via l 1 penalized least squares[END_REF][START_REF] Bunea | Aggregation for Gaussian regression[END_REF][START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF] are more restrictive than restricted eigenvalue assumption. In those papers either Φ n is positive definite, or mutual coherence condition is imposed. We refer to [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF] for a complete comparison of the assumptions used to prove oracle inequality for the Lasso. Especially it is proved that restricted eigenvalue assumption is weaker than the neighborhood stability or irrepresentable condition.

Theorem 2.2. Let f βL be the ℓ 1 -penalized minimum defined in [START_REF] Mcauley | Subband correlation and robust speech recognition[END_REF]. Fix η > 0 and 1 ≤ s ≤ p. Assume that (B 1 ), (B 2 ), (B 3 ) and (RE 3 ) are satisfied, with a 0 = 3 + 4/η.

A-) Let x > 0 be fixed and r ≥ 1. For j = {1, . . . , p}, ω j defined as in [START_REF] Meier | High-dimensional additive modeling[END_REF]. Thus with probability at least 1 -2 exp(-x) we have

R(f βL ) -R(f 0 ) ≤ (1 + η) inf f β ∈Γ          R(f β ) -R(f 0 ) + c(η)|K(β)|r 2 max 1≤j≤p ω j 2 c 0 ǫ 0 µ 2 (s, 3 + 4/η)          , (23) 
and

f βL -f 0 2 n ≤ c ′ 0 4c 0 ǫ 0 (1 + η) inf f β ∈Γ          f β -f 0 2 n + 4c(η)|K(β)|r 2 max 1≤j≤p ω j 2 c ′ 0 c 0 ǫ 2 0 µ 2 (s, 3 + 4/η)          . (24) 
B-) Let A > 2 √ c 2 . For j = {1, . . . , p}, let ω j = 1, and

r = A log p n .
Thus with probability at least 1 -2p 1-A 2 /4c 2 we have

R(f βL ) -R(f 0 ) ≤ (1 + η) inf f β ∈Γ R(f β ) -R(f 0 ) + A 2 c(η) c 0 ǫ 0 µ 2 (s, 3 + 4/η) |K(β)|r 2 log p n , (25) 
and

f βL -f 0 2 n ≤ c ′ 0 4c 0 ǫ 0 (1 + η) inf f β ∈Γ f β -f 0 2 n + 4c(η)A 2 c ′ 0 c 0 ǫ 2 0 µ 2 (s, 3 + 4/η) |K(β)|r 2 log p n . (26) 
In both cases c(η) is a constant depending only on η; c 0 = c 0 (C 0 , c 1 ) and c ′ 0 = c ′ 0 (C 0 , c 1 ) are constants depending on C 0 and c 1 ; and ǫ 0 = ǫ 0 (c 1 ) is a constant depending on c 1 .

In this theorem the variance terms are of order |K(β)| log p/n. Such order in sparse oracle inequalities usually refer to "fast rate". This rate is of same kind of the one obtain in [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF] for linear regression model. For the best of our knowledge, [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF] and ( 26) are the first non asymptotic oracle inequalities for the L 2 ( 1 n n i δ z i ) norm in logistic model. Some non asymptotic oracle inequalities for excess risk like [START_REF] Meier | The group Lasso for logistic regression[END_REF] or [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF] have been established in [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] under different assumptions. Indeed, she stated oracle inequality for high dimensional generalized linear model with Lipschitz loss function, where logistic regression is a particular case. Her result assumes to be hold in the "neighborhood" of the target function, while our result is true for all bounded functions. Note also that our results hold under RE condition, which can be seen as empirical version of Assumption C in [START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF]. The confidence (probability that result holds true) of Inequality [START_REF] Meier | The group Lasso for logistic regression[END_REF] does not depend on n or p while the confidence of her results depends on n and p. Moreover, the weights we proposed from Bernstein's inequality are different and easy to interpret.

Special case : f 0 linear

In this section we assume that f 0 is a linear function that is f 0

(z i ) = f β 0 (z i ) = p j=1 β 0j z ij = z T i β 0
, where z i = (z i1 , . . . , z ip ) T . Denote X = (z ij ) 1≤i≤n,1≤j≤p the design matrix. Thus for i = 1, . . . , n

P(Y i = 1) = π(z T i β 0 ) = exp(z T i β 0 ) 1 + exp(z T i β 0 ) . ( 27 
)
The Lasso estimator of β 0 is thus defined as βL := argmin

β: f β ∈Γ 1 n n i=1 log(1 + exp(z T i β)) -Y i z T i β + r p j=1 ω j |β j | . ( 28 
)
When the design matrix X has full rank, the solution of optimization Problem ( 28) is usually unique. When p >> n this infimum might not be unique.

Corollary 2.1. Let assumption RE(s,3) be satisfied and |K(β 0 )| ≤ s, where 1 ≤ s ≤ p.

Consider the Lasso estimator f βL defined by [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] with

ω j = 2 n 1 2 n i=1 z 2 ij (x + log p) + 2c 2 (x + log p) 3n 
Under the assumptions of Theorem 2.2 with probability at least 1 -exp(-x) we have

R(f βL ) -R(f β 0 ) ≤ 9sr 2 max 1≤j≤p ω j 2 µ 2 (s, 3)c 0 ǫ 0 ( 29 
)
f βL -f β 0 2 n ≤ 9s 2 r 2 max 1≤j≤p ω j 2 µ 2 (s, 3)c 2 0 ǫ 2 0 (30) βL -β 0 1 ≤ 12sr max 1≤j≤p ω j 2 µ 2 (s, 3)c 0 ǫ 0 min 1≤j≤p ω j (31) βL -β 0 q q ≤      12sr max 1≤j≤p ω j 2 µ 2 (s, 3)c 0 ǫ 0 min 1≤j≤p ω j      q for all 1 < q ≤ 2. ( 32 
)
If r = A log p/n and ω j = 1 for all j ∈ {1, . . . , p} we have the same results with probability

at least 1 -2p 1-A 2 /4c 2 .
Line [START_REF] Osborne | A new approach to variable selection in least squares problems[END_REF] and Line [START_REF] Ravikumar | Sparse additive models[END_REF] of the corollary are similar to those of Theorem 5 in [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]. Note that, up to differences in constant factors, the rates obtained in this corollary are the same as those obtained in Theorem 7.2 in [START_REF] Peter | Simultaneous analysis of lasso and Dantzig selector[END_REF] for linear model with an s-sparse vector. Remark 1.3 remains true in this section.

Conclusion

In this paper we stated non asymptotic oracle inequalities for the Lasso and Group Lasso.

Our results are non asymptotic : the number n of observations is fixed while the number p of covariates can grow with respect to n and can be much larger than n. The major difference with existing results concerning Group Lasso or Lasso for logistic regression model is that we do not assume that f 0 is linear. First we provided sharp oracle inequalities for excess risk, with "slow" rates, with no assumption on the Gram matrix, on the regressors nor on the margin. Secondly, under RE condition we provided "fast" oracle inequalities for excess risk and L 2 ( 1 n n i=1 δ z i ) loss. We also provided as a consequence of oracle inequalities the bounds for excess risk, L 2 ( 1 n n i=1 δ z i ) error and estimation error in the case where the true function f 0 is linear ("usual " logistic regression (1)).

Proofs of main results

Proof of Theorem 1.1

Since βGL is the minimizer of R(f β ) + r g l=1 ω l β l 2 , we get

R(f βGL ) - 1 n ε T X βGL + r g l=1 ω l βl GL 2 ≤ R(f β ) - 1 n ε T Xβ + r g l=1 ω l β l 2 ,
where ǫ = (ǫ 1 , . . . , ǫ n ) T with ǫ i = Y i -E[Y i ] for i = 1, . . . , n. By applying Cauchy-Schwarz inequality, we obtain

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + g l=1 1 n j∈G l n i=1 φ j (z i )ǫ i 2 ( βGL -β) l 2 +r g l=1 ω l β l 2 -r g l=1 ω l βl GL 2 . ( 33 
)
Set

Z l = n -1 j∈G l ( n i=1 φ j (z i )ǫ i ) 2
, for l ∈ {1, . . . , g} and the event

A = g l=1 {Z l ≤ rω l /2} . ( 34 
)
We state the result on event A and find an upper bound of P(A c ).

On the event A :

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + r g l=1 ω l ( βGL -β) l 2 + r g l=1 ω l β l 2 -r g l=1 ω l βl GL 2 .
This implies that

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2r g l=1 ω l β l 2 .
We conclude that on the event A we have

R(f βGL ) -R(f 0 ) ≤ inf β∈R p R(f β ) -R(f 0 ) + 2r β 2,1 max 1≤l≤g ω l .
We now come to the bound of P(A c ) and write

P(A c ) = P   g l=1 { j∈G l n i=1 φ j (z i )ǫ i 2 > nrω l /2}   (35) 
≤ g l=1 P   j∈G l n i=1 φ j (z i )ǫ i 2 > nrω l /2   . (36) 
For j ∈ G l set T l j = n i=1 φ j (z i )ǫ i , we have

P(A c ) ≤ g l=1 P   j∈G l (T l j ) 2 > nrω l /2   = g l=1 P j∈G l (T l j ) 2 > (nrω l ) 2 /4 .
Using the fact that, for all l ∈ {1, . . . , g}

j∈G l (T l j ) 2 > (nrω l )/4 ⊂ ∪ j∈G l (T l j ) 2 > (nrω l ) 2 4|G l | , (37) 
it follows that

P(A c ) ≤ g l=1 j∈G l P |T l j | > nrω l 2 |G l | . For j ∈ G l , set v l j = n i=1 IE(φ 2 j ǫ 2 i ). Since n i=1 φ 2 j (z i ) 4v l j , we have P(|T l j | > nrω l 2 |G l | ) ≤ P |T l j | > 2v l j (x + log p) + c 2 3 (x + log p) , r ≥ 1. 
By applying Bernstein's inequality (see Lemma 6.3) to the right hand side of the previous inequality we get

P(|T l j | > nω l 2 |G l | ) ≤ 2 exp (-x -log p) .

It follows that

P(A c ) ≤ g l=1 j∈G l P |T l j | > nω l 2 |G l | ≤ 2 exp(-x). (38) 
This ends the proof of the Theorem 1.1.

Proof of Theorem 1.2

Fix an arbitrary

β ∈ R p such that f β ∈ Γ . Set δ = W ( βGL -β) where W = Diag(W 1 , . . . , W p )
is a block diagonal matrix, with W l = Diag(ω l , . . . , ω l ). Since βGL is the minimizer of R(f β )+

r g l=1 ω l β l 2 , we get R(f βGL ) - 1 n ε T X βGL + r g l=1 ω l βl GL 2 ≤ R(f β ) - 1 n ε T Xβ + r g l=1 ω l β l 2 .
On the event A defined in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], adding the term r 2 g l=1 ω l ( βGL -β) l 2 to both sides of Inequality (33) yields to

R(f βGL ) + r 2 g l=1 ω l ( βGL -β) l 2 ≤ R(f β ) + r g l=1 ω l ( ( βGL -β) l 2 -βl GL 2 + β l 2 ). Since ( βGL -β) l 2 -βl GL 2 + β l 2 = 0 for for l / ∈ J(β) = J, we have R(f βGL ) -R(f 0 ) + r 2 g l=1 ω l ( βGL -β) l 2 ≤ R(f β ) -R(f 0 ) + 2r l∈J ω l ( βGL -β) l 2 . ( 39 
)
we get from Equation (39) that

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2r l∈J ω l ( βGL -β) l 2 (40) 
Consider separately the two events :

A 1 = {2r l∈J ω l ( βGL -β) l 2 ≤ η(R(f β ) -R(f 0 ))},
and

A c 1 = {η(R(f β ) -R(f 0 )) < 2r l∈J ω l ( βGL -β) l 2 }. (41) 
On the event A ∩ A 1 , we get from ( 40)

R(f βGL ) -R(f 0 ) ≤ (1 + η)(R(f β ) -R(f 0 )), (42) 
and the result follows. On the event A ∩ A c 1 , all the following inequalities are valid. On one hand, by applying Cauchy Schwarz inequality, we get from [START_REF] Zhao | On model selection consistency of Lasso[END_REF] that

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2r |J(β)| l∈J ω 2 l ( βGL -β) l 2 2 ≤ R(f β ) -R(f 0 ) + 2r |J(β)| δ J 2 . ( 43 
)
On the other hand we get from Equation (39) that 1 2

g l=1 ω l ( βGL -β) l 2 ≤ R(f β ) -R(f 0 ) + 2r l∈J ω l ( βGL -β) l 2 ,
and using (41) we obtain

1 2 l∈J ω l ( βGL -β) l 2 + 1 2 l∈J c ω l ( βGL -β) l 2 ≤ 2 η l∈J ω l ( βGL -β) l 2 +2 l∈J ω l ( βGL -β) l 2 ,
which implies

δ J c 2,1 ≤ (3 + 4/η) δ J 2,1 .
We can therefore apply Assumption (RE 1 ) with a 0 = 3 + 4/η, and conclude that

µ 2 1 δ J 2 2 ≤ Xδ 2 2 n = 1 n ( βGL -β) T W X T XW ( βGL -β) ≤ ( max 1≤l≤g ω l ) 2 f βGL -f β 2 n . (44) 
Gathering Equations ( 43) and (44) we get

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2r( max 1≤l≤g ω l ) |J(β)|µ -1 1 f βGL -f β n ≤ R(f β ) -R(f 0 ) + 2r( max 1≤l≤g ω l ) |J(β)|µ -1 1 ( f βGL -f 0 n + f β -f 0 n ).
We now use Lemma 4.1 which compares excess risk to empirical norm.

Lemma 4.1. Under assumptions (B 1 ) and (B 3 ) we have

c 0 ǫ 0 f β -f 0 2 n ≤ R(f β ) -R(f 0 ) ≤ 1 4 c ′ 0 f β -f 0 2 n .
where c 0 and c ′ 0 are constants depending on C 0 ; and ǫ 0 is a constant depending on c 1 and c 2 . (See the Appendix for the proof of Lemma 4.1).

Consequently

R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2r( max 1≤l≤g ω l ) |J(β)|µ -1 1 √ c 0 ǫ 0 R(f βGL ) -R(f 0 ) + 2r( max 1≤l≤g ω l ) |J(β)|µ -1 1 √ c 0 ǫ 0 R(f β ) -R(f 0 ). Using inequality 2uv < u 2 /b + bv 2 for all b > 1, with u = r( max 1≤l≤g ω l ) √ |J(β)|µ -1 1 √ c 0 ǫ 0 and v being either R(f βGL ) -R(f 0 ) or R(f β ) -R(f 0 ) we have R(f βGL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + 2b   r( max 1≤l≤g ω l ) |J(β)|µ -1 1 √ c 0 ǫ 0   2 + R(f βGL ) -R(f 0 ) b + R(f β ) -R(f 0 ) b .
This implies that

R(f βGL ) -R(f 0 ) ≤ b + 1 b -1    R(f β ) -R(f 0 ) + 2b 2 r 2 ( max 1≤l≤g ω l ) 2 |J(β)| (b + 1)µ 2 1 c 0 ǫ 0    . ( 45 
)
Now taking b = 1 + 2/η leads to

R(f βGL ) -R(f 0 ) ≤ (1 + η)    R(f β ) -R(f 0 ) + c(η)r 2 ( max 1≤l≤g ω l ) 2 |J(β)| µ 2 1 c 0 ǫ 0    . ( 46 
)
According to Inequalities (42) and ( 46) we conclude that on event A,

R(f βGL ) -R(f 0 ) ≤ (1 + η)    R(f β ) -R(f 0 ) + c(η)r 2 ( max 1≤l≤g ω l ) 2 |J(β)| µ 2 1 c 0 ǫ 0    , (47) 
where c(η) = 2(1 + 2/η) 2 /(2 + 2/η). Inequality (8) of the Theorem 1.2 follows. Inequality [START_REF] Chesneau | Some theoretical results on the grouped variables lasso[END_REF] follows from Lemma 4.1. This ends the proof of the Theorem 1.2 by considering [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF].

Proof of Corollary 1.1

Set δ = W ( βGL -β 0 ), Line (13) of Corollary 1.1 follows directly from Equation (47) with β = β 0 and η = 1. Note that on the event A defined in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], we have

δ J(β 0 ) c 2,1 ≤ 3 δ J(β 0 ) 2,1 . (48) 
Indeed, since βGL is the minimizer of R(f

β ) + r g l=1 ω l β l 2 , R(f βGL ) -R(f β 0 ) + r g l=1 ω l βl GL 2 ≤ 1 n ε T X( βGL -β 0 ) + r g l=1 ω l β l 0 2 which implies r W βGL 2,1 ≤ g l=1 1 n j∈G l n i=1 (z ij )ǫ i 2 ( βGL -β 0 ) l 2 + r W β 0 2,1
On the event A we have

W ( βGL ) J(β 0 ) 2,1 + W ( βGL ) J c (β 0 ) 2,1 ≤ 1 2 ( W ( βGL -β 0 ) J(β 0 ) 2,1 + W ( βGL ) J c (β 0 ) 2,1 ) + W (β 0 ) J(β 0 ) 2,1 .
This yields to (48). Line [START_REF] Huang | The iterated lasso for high-dimensional logistic regression[END_REF] follows from Line (13) by applying Lemma 4.1. Line [START_REF] Gareth | Dasso: connections between the dantzig selector and lasso[END_REF] follows from Line ( 14) by using Equation (44) and δ 2 2,1 ≤ 16s δ J(β 0 ) 2 2 . Line ( 16) is the consequence of the Lemma 6.2 with a l = ( βGL -β 0 ) l 

Proof of Theorem 1.3

On the event A defined in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], using Inequality [START_REF] Tarigan | Classifiers of support vector machine type with l 1 complexity regularization[END_REF] with

β = β 0 yields R(f βGL ) -R(f β 0 ) ≤ g l=1 3rω l 2 ( βGL -β 0 ) l 2 . (49) 
By Lemma 5.1 we have,

h, h f β 0 h 2 ∞ (exp(-h ∞ ) + h ∞ -1) ≤ R(f βGL ) -R(f β 0 ) (50) 
where

h(z i ) = (f βGL -f β 0 )(z i ) = g l=1 j∈G l ( βGL,j -β 0j )z ij .
One can easily verify that h ∞ ≤ v δ ′ 2,1 with δ ′ = βGL -β 0 . Equation (50) and the decreasing of t → exp(-t)+t-1

t 2 lead to δ ′ T X T DXδ ′ n(v δ ′ 2,1 ) 2 (exp(-v δ ′ 2,1 ) + v δ ′ 2,1 -1) ≤ R(f βGL ) -R(f β 0 ). Now, Inequality (48) implies δ ′ J(β 0 ) c 2,1 ≤ 3 max 1≤l≤g ω l min 1≤l≤g ω l δ ′ J(β 0 ) 2,1 .
We can therefore apply Assumption (RE 2 ) with a 0 = 3( max 1≤l≤g ω l )/ min 1≤l≤g ω l and get that

µ 2 2 δ ′ J 2 2 v 2 δ ′ 2 2,1 (exp(-v δ ′ 2,1 ) + v δ ′ 2,1 -1) ≤ R(f βGL ) -R(f β 0 ). We can use that δ ′ 2 2,1 ≤ (1 + a 0 ) 2 |J| δ ′ J 2
2 , with J = J(β 0 ) to write

µ 2 2 (1 + a 0 ) 2 |J|v 2 (exp(-v δ ′ 2,1 ) + v δ ′ 2,1 -1) ≤ R(f βGL ) -R(f β 0 ).
According to Equation (49) we have

exp(-v δ ′ 2,1 ) + v δ ′ 2,1 -1 ≤ 3r(1 + a 0 ) 2 max 1≤l≤g ω l v 2 |J| 2µ 2 2 δ ′ 2,1 . (51) 
Now, a short calculation shows that for all a ∈ (0, 1], e -2a

1-a + (1 -a) 2a 1 -a -1 0 (52) Set a = v δ ′ 2,1 /(v δ ′ 2,1 + 2). Thus v δ ′ 2,1 = 2a/(1 -a) and we have e -v δ ′ 2,1 + v δ ′ 2,1 -1 v 2 δ ′ 2 2,1 v δ ′ 2,1 + 2 . ( 53 
)
This implies using Equation (51) that

v δ ′ 2,1 ≤ 3r(1 + a 0 ) 2 max 1≤l≤g ω l |J|v/µ 2 2 1 -3r(1 + a 0 ) 2 max 1≤l≤g ω l |J|v/2µ 2 2 . Now if r(1 + a 0 ) 2 max 1≤l≤g ω l ≤ µ 2 2 3v|J| , we have v δ ′ 2,1 ≤ 2 and consequently exp(-v δ ′ 2,1 ) + v δ ′ 2,1 -1 v 2 δ ′ 2 2,1 1/4. Now, Inequality (51) implies δ ′ 2,1 ≤ 6(1 + a 0 ) 2 |J|r max 1≤l≤g ω l µ 2 2 .
This proves the Line [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF]. Line [START_REF] Lounici | Taking advantage of sparsity in multi-task learning[END_REF] follows from (18) by using Inequality (49). Line [START_REF] Massart | Concentration inequalities and model selection[END_REF] is the consequence of Lemma 6.2 taking a l = ( βGL -β 0 ) l 2 and b 1 = 6(1+a 0 ) 2 |J|r( min 1≤l≤g ω l )/µ 2 2 (s, 3). Line [START_REF] Massart | The Lasso as an ℓ 1 -ball model selection procedure[END_REF] follows from Line [START_REF] Lounici | Taking advantage of sparsity in multi-task learning[END_REF] and Inequality (50).

Proof of Theorem 2.1

Note that Lasso can be derived by Group Lasso by taking one predictor per group i.e p = g and G j = {j} for j ∈ {1, . . . , p}. This implies, using [START_REF] Tarigan | Classifiers of support vector machine type with l 1 complexity regularization[END_REF] that

R(f βL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + p j=1 1 n n i=1 φ j (z i )ε i | βL,j -β j | + r p j=1 ω j |β j | -r p j=1 ω j | βL,j |.
For 1 ≤ j ≤ p, set S j = n i=1 φ j (z i )ε i and let us denote by E, the event

E = p j=1 {|S j | ≤ nrω j /2} . (54) 
We state the results on the event E and then find an upper bound of P(E c ).

On the event E :

R(f βL ) -R(f 0 ) ≤ R(f β ) -R(f 0 ) + r p j=1 ω j | βL,j -β j | + r p j=1 ω j |β j | -r p j=1 ω j | βL,j | ≤ R(f β ) -R(f 0 ) + 2r p j=1 ω j |β j |.
We conclude that on the event E we have

R(f βL ) -R(f 0 ) ≤ inf β∈R p R(f β ) -R(f 0 ) + 2r β 1 max 1≤j≤p ω j .
Now we are going to find an upper bound of P(E c ) :

P(E c ) ≤ P p j=1 {| n i=1 φ j (z i )(Y i -IE(Y i ))| > rω j n/2} ≤ p j=1 P(| n i=1 φ j (z i )(Y i -IE(Y i ))| > rω j n/2). For j ∈ {1, . . . , p}, set v j = n i=1 IE(φ 2 j ǫ 2 i ). Since n i=1 φ 2 j (z i ) 4v j , we have P(|S j | > nrω j /2) ≤ P |S j | > 2v j (x + log p) + c 2 3 (x + log p) , r ≥ 1.
By applying Bernstein's inequality (see [START_REF] Boucheron | Concentration inequalities. Advanced Lectures on Machine Learning[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF]) to the right hand side of the previous inequality we get

P(|S j | > nrω j /2) ≤ 2 exp(-x -log p).
It follows that

P(E c ) ≤ p j=1 P(|S j | > rω j n/2) ≤ 2 exp(-x). (55) 
When ω j = 1, for all j ∈ {1, . . . , p} and r = A log p n , we apply Hoeffding's inequality (see [START_REF] Boucheron | Concentration inequalities. Advanced Lectures on Machine Learning[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF]). This leads to

P(E c ) = P p j=1 {| n i=1 φ j (z i )(Y i -IE(Y i ))| > rn/2} ≤ p j=1 P(| n i=1 φ j (z i )(Y i -IE(Y i ))| > rn/2) ≤ 2p exp - 2(rn/2) 2 n i=1 2c 2 = 2p exp - r 2 n 4c 2 = 2p 1-A 2 4c 2 . ( 56 
)
This ends the proof of Theorem 2.1.

Proof of Theorem 2.2

Fix an arbitrary β ∈ R p such that f β ∈ Γ, and set δ = W ( βL -β), where W = Diag(w 1 , . . . , w p ).

It follows from Inequality (47) that

R(f βL ) -R(f 0 ) ≤ (1 + η)          R(f β ) -R(f 0 ) + c(η)r 2 max 1≤j≤p ω j 2 |K(β)| µ 2 c 0 ǫ 0          , (57) 
where c(η) = 2(1+2/η) 2 /(2+2/η). This ends the proof of Inequality (23) of the Theorem 2.2.

Inequality [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF] follows from Lemma 4.1. To prove Inequalities ( 25) and ( 26) we just replace ω j by A log p n . This ends the proof of the Theorem 2.2 by using (55) and (56).

Proof of Corollary 2.1

Set δ = W ( βL -β 0 ). The result (29) directly comes by taking β = β 0 and η = 2 in (57).

Note that, on the event E defined in (54), we have

δ K(β 0 ) c 1 ≤ 3 δ K(β 0 ) 1 . (58) 
Indeed, since βL is the minimizer of R(f β ) + r p j=1 ω j |β j |, then

R(f βL ) -R(f β 0 ) + r p j=1 ω j | βL,j | ≤ 1 n ε T X( βL -β 0 ) + r p j=1 ω j |β 0j |, which implies that r W βL 1 ≤ p j=1 1 n n i=1 φ j (z i )ε i | βL,j -β j | + r W β 0 1 .
On the event E we have

W ( βL ) K(β 0 ) 1 + W ( βL ) K c (β 0 ) 1 ≤ 1 2 ( W ( βL -β 0 ) K(β 0 ) 1 + W ( βL ) K c (β 0 ) 1 ) + W (β 0 ) K(β 0 ) 1 .
Thus (58) follows. Line [START_REF] Young | L 1 -regularization path algorithm for generalized linear models[END_REF] 

Appendix

The proof of Lemma 4.1 are based on property of self concordant function (see for instance [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]), i.e., the functions whose third derivatives are controlled by their second derivatives. A one-dimensional, convex function g is called self concordant if

|g ′′′ (x)| ≤ Cg ′′ (x) 3/2 .
The function we use (g(t) = R(g+th)) is not really self concordant but we can bound his third derivative by the second derivative times a constant. Our results on self-concordant functions are based on the ones of [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]. He has used and extended tools from convex optimization and self-concordance to provide simple extensions of theoretical results for the square loss to logistic loss. We use the same kind of arguments and state some relations between excess risk and prediction loss in the context of nonparametric logistic model, where f 0 is not necessarily linear as assumed in [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF]. Precisely we extend Proposition 1 in [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] to the functions which are not necessarily linear (see Lemma 5.1). This allows us to establish Lemma 4.1.

Lemma 5.1. For all h, f : R d → R, we have

h, h f h 2 ∞ (exp(-h ∞ ) + h ∞ -1) ≤ R(f + h) -R(f ) + (q f -q f 0 )(h), (59) 
R(f + h) -R(f ) + (q f -q f 0 )(h) ≤ h, h f h 2 ∞ (exp( h ∞ ) -h ∞ -1), (60) 
and

h, h f e -h ∞ ≤ h, h f +h ≤ h, h f e h ∞ . ( 61 
)
6 Proof of Lemma 5.1

We use the following lemma (see [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] Lemma 1) that we recall here : Lemma 6.1. Let g be a convex three times differentiable function g : R → R such that for all t ∈ R |g ′′′ (t)| ≤ Sg ′′ (t), for some S ≥ 0. Then , for all t ≥ 0 : 

g ′′ ( 
We refer to Appendix A of [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] for the proof of this lemma. Since l ′′′ (u) ≤ l ′′ (u) we have,

|g ′′′ (t)| = 1 n n i=1 h 3 (z i )l ′′′ ((f + th)(z i )) ≤ 1 n n i=1 h 2 (z i )l ′′ ((f + th)(z i )) h ∞ = h ∞ g ′′ (t).
We now apply Lemma 6.1 to g(t) with S = h ∞ , taking t = 1. Using Equation ( 4) we get the first and second inequality of Lemma 5.1. Now by considering g(t) = h, h f +th , a short calculation leads to |g ′ (t)| ≤ h ∞ g(t) which implies g(0)e -h ∞t ≤ g(t) ≤ g(0)e h ∞t .

By applying the last inequality to g(t), and taking t = 1 we get the third inequality of Lemma 5.1.

Proof of Lemma 4.1

Set h 0 = f β -f 0 from Lemma 5.1 below,

h 0 , h 0 f 0 h 0 2 ∞ (exp(-h 0 ∞ ) + h 0 ∞ -1) ≤ R(f β ) -R(f 0 ).
Using Assumptions (B 3 ), (B 1 ) and the decreasing of t → exp(-t)+t-1 t 2

, we claim that there exists c 0 = c 0 (C 0 , c 1 ) > 0 such that

c 0 ≤ exp(-h 0 ∞ ) + h 0 ∞ -1) h 0 2 ∞ .
According to Assumption (B 1 ), there exists 0 ≤ ǫ 0 ≤ 1/2 such that for 1 ≤ i ≤ n ǫ 0 ≤ π(f 0 (z i ))(1 -π(f 0 (z i ))) ≤ 1 -ǫ 0 .

The proof of the left hand side of Lemma 4.1 follows from the fact that ǫ 0 h 0 2 n ≤ h 0 , h 0 f 0 . From the second line of Lemma 5.1 we have

R(f β ) -R(f 0 ) ≤ h 0 , h 0 f 0 h 0 2 ∞ (exp( h 0 ∞ ) -h 0 ∞ -1).
Using assumption (B 3 ) and increasing of t → exp(t)-t-1

t 2
thus there exists c ′ 0 = c ′ 0 (C 0 , c 1 ) > 0 such that

R(f β ) -R(f 0 ) ≤ c ′ 0 h 0 , h 0 f 0 ≤ c ′ 0 1 4 h 0 2 n .
This end the proof of the right hand side of the Lemma 4.1.

Lemma 6.2. If we assume that p i=1 a j ≤ b 1 with a j > 0, this implies that p i=1 a q j ≤ b q 1 , with 1 ≤ q ≤ 2. .

Since p i=1 a 2 j ≤ ( p i=1 a j ) 2 ≤ b 2 1 , thus p i=1 a q j ≤ b 2-q 1 b 2q-2 1 = b q 1 . (63) 
This ends the proof.

Lemma 6.3 (Bernstein's inequality). Let X 1 , . . . , X n be independent real valued random variables such that for all i ≤ n, X i ≤ b almost surely, then we have

P n i=1 X i -E(X i ) √ 2vx + bx/3 ≤ 2 exp(-x),
where v = n i=1 E(X 2 i ).

This lemma is obtain by gathering Proposition 2.9 and inequality (2.23) from [START_REF] Massart | Concentration inequalities and model selection[END_REF].

Lemma 6.4 (Hoeffding's inequality). Let X 1 , . . . , X n be independent random variables such that X i takes its values in [a i , b i ] almost surely for all i ≤ n. Then for any positive x, we have

P n i=1 X i -E(X i ) x ≤ 2 exp(- 2x 2 n i=1 (b i -a i ) 2 ).
This lemma is a consequence of Proposition 2.7 in [START_REF] Massart | Concentration inequalities and model selection[END_REF].

2 µ 2

 22 (s, 3)c 0 ǫ 0 ( min 1≤l≤g ω l ).

2 2. 2 µ 2

 222 follows from Line (29) by applying Lemma 4.1. Line (31) follows from Line(30) by using Inequality (44) and δ 2 1 ≤ 16s δ K(β 0 ) The last line follows from Lemma 6.2 in Appendix with a j = | βL,j -β 0j | and (s, 3)c 0 ǫ 0 min 1≤j≤p ω j .

0) S 2

 2 (exp(-St) + St -1) ≤ g(t) -g(0) -g ′ (0)t ≤ g ′′ (0) S 2 (exp(St) -St -1).

h 2 h 3

 23 Setg(t) = R(f + th) = 1 n n i=1 l((f + th)(z i )) -Y i (f + th)(z i ), f, h ∈ H, where l(u) = log(1+exp(u)). A short calculation leads to l ′ (u) = π(u), l ′′ (u) = π(u)(1-π(u)), l ′′′ (u) = π(u)[1 -π(u)][1 -2π(u)]. It follows that g (z i )l ′′ ((f + th)(z i )) = h, h f +th , (z i )l ′′′ ((f + th)(z i )).

6. 2 2 We

 22 Proof of Lemma 6.

2 > 0, where D = Diag (var(Y i )) .This is an extension of the Assumption RE 1 to the weighted Gram matrix X T DX/n.
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