
HAL Id: hal-00703673
https://hal.science/hal-00703673v1

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combination of sources of evidence with different
discounting factors based on anew dissimilitary measure

Zhun-Ga Liu, Jean Dezert, Quan Pan, Grégoire Mercier

To cite this version:
Zhun-Ga Liu, Jean Dezert, Quan Pan, Grégoire Mercier. Combination of sources of evidence with
different discounting factors based on anew dissimilitary measure. Decision Support Systems, 2011,
52 (1), pp.133-141. �10.1016/j.dss.2011.06.002�. �hal-00703673�

https://hal.science/hal-00703673v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Combination of sources of evidence with different discounting factors based on a 

new dissimilarity measure

Zhun-ga Liu 
a,c,⁎, Jean Dezert b, Quan Pan 

a, Grégoire Mercier c

a School of Automation, Northwestern Polytechnical University, Xi'an, 710072, PR China
b Onera,

 

The

 

French

 

Aerospace

 

Lab,

 

F-91761

 

Palaiseau,

 

France
c

 

Telecom

 

Bretagne,

 

Technopole

 

Brest-Iroise,

 

29238,

 

France

The sources of evidence may have different reliability and importance in real applications for decision making.

The estimation of the discounting (weighting) factors when the prior knowledge is unknown have been

regularly studied until recently. In the past, the determination of the weighting factors focused only on

reliability discounting rule and it was mainly dependent on the dissimilarity measure between basic belief

assignments (bba's) represented by an evidential distance. Nevertheless, it is very difficult to characterize

efficiently the dissimilarity only through an evidential distance. Thus, both a distance and a conflict coefficient

based on probabilistic transformations BetP are proposed to characterize the dissimilarity. The distance

represents the difference between bba's, whereas the conflict coefficient reveals the divergence degree of the

hypotheses that two belief functions strongly support. These two aspects of dissimilarity are complementary

in a certain sense, and their fusion is used as the dissimilarity measure. Then, a new estimation method of

weighting factors is presented by using the proposed dissimilarity measure. In the evaluation of weight of a

source, both its dissimilarity with other sources and their weighting factors are considered. The weighting

factors can be applied in the both importance and reliability discounting rules, but the selection of the adapted

discounting rule should depend on the actual application. Simple numerical examples are given to illustrate

the interest of the proposed approach.

1. Introduction

The theories of evidence [2,16–18], also called theories of belief

functions, are widely used in information fusion for decision making

[3,8,14] as soon as the information to deal with are uncertain and

possibly conflicting and represented by basic belief assignments

(bba's). In some real applications, all the sources of evidence to be

combined may not have the same reliability, neither the same

importance, even if no prior knowledge about the reliability and

importance is known. If all the sources are considered equally reliable,

the commutative and associative Dempster-Shafer's rule (DS), which

has a low computation burden, will generate counter-intuitive results

when the sources are highly conflicting as pointed out by Zadeh in

[22]. Since few years, many works on the discounting methods for the

unreliable sources of evidence have emerged [3,12–14] to solve the

problem. The basic idea of the discountingmethod is that if one source

of evidence has the large dissimilarity with the other sources, its

reliability should be low. Evidential distance [9] is always used as

the dissimilarity measure in the discounting method. Nevertheless,

evidential distance captures only one aspect of the dissimilarity

between bba's mainly associated with a distance metric, and it is not

enough to characterize the dissimilarity precisely. The determination

of the discounting(weighting) factors (reliability or importance

factors) in many works mainly lies in the mean of dissimilarity with

the other sources without considering the influence of the weight

of those other sources. Moreover, these works only focus on the

application of the reliability discounting rule, and the notions of

importance and reliability have generally been considered as similar

until very recently. However, reliability represents ability of the

source to provide the correct assessment of the given problem, and

importance means somehow the weight of importance granted to

the source by the fusion system designer. Therefore, the reliability

and the importance of sources are quite distinct notions [19].

The dissimilarity measure between two bba's plays a crucial role in

the discounting method, but it is actually difficult to quantify it because

several aspects of dissimilarityneed tobe involvedwhen establishingan

efficient and precise measure. In previous works, important research

efforts have been done to find good scalar measures to characterize the

dissimilarity between two bba's, but all these proposed measures did

capture only one aspect of the dissimilarity. From authors opinion, the

dissimilarity between two bba's is not only characterized by a well
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chosen distance, but also by another aspect which reflects somehow

the level of conflict between the bba's. Hence both aspects must count

together when defining a good and useful measure of dissimilarity.

The evidential distance proposed in [9] is commonly considered as

an interesting distance measure, but it is not good enough to capture

the difference between bba's in some cases as it will be seen, and

its computation burden can become important. The mass of belief

committed to the empty set resulting from the conjunctive rule of

sources is generally used to measure the degree of conflict [20], but

such measure is not always very appropriate, especially for equal

and cognitively independent belief functions as shown in [13]. In

other words, the mass of belief committed to the empty set cannot

efficiently measure the divergence between distinct hypotheses

strongly supported by each source. When working in the probabilistic

framework, the focal elements are singletons and exclusive, and the

degree of the conflict and distance become easier to compute

regardless the intrinsic relationship between bba's. The well known

probabilistic transformation BetP, introduced in [21] is an easy way to

approximate any bba into a subjective probability measure and this

is the transformation we have adopted in this work. A more efficient

(but more complex) transformation can be found in [18].

In this paper, the dissimilaritymeasure between two bba's is defined

from both a distance criterion and their intrinsic level of conflict

criterion based on BetP. The distance criterion measures the total

difference between the bba's, whereas the conflict criterion reveals the

degree of divergences between the distinct hypotheses strongly

supported by each source. These two criteria aremutually compensable

in a certain sense. So the fusionof thedistance and the conflict criteria by

Hamacher T-conormes fusion rule [7] is used finally as the new scalar

dissimilarity measure. We propose also to compute the discounting

(weighting) factors of sources from the Perron–Frobenius eigenvalue

of the agreement matrix defined from the dissimilarities of bba's. The

discounting factors can be applied in the importance discounting rule or

in the reliability discounting rule. The interest of our new dissimilarity

measure and the determination of discounting factors are illustrated

through simple numerical examples. This paper is organized as follows.

In Section 2, the distance between bba's is introduced. In Section 3, the

measure of intrinsic conflict is presented. In Section 4, the new

dissimilarity measure obtained from the fusion of the distance criterion

and the conflict criterion is explained. A new method for automatic

determination of discounting factors is presented in section 5 and a

numerical example is given in Section 6. Section 7 concludes this paper.

2. Distance between bba's

Usually a distance between two bba's is defined to characterize the

dissimilarity measure between two sources of evidence. The choice

for a well-adapted distance is not easy and many distances have

been proposed as shown in [10]. In this paper, we present some

commonly used distances including Jousselme's evidential distance dJ
[9], Bhattacharyya's distance dB [15], and the MaxDiff distance

proposed in Liu.

2.1. Jousselme's distance and Bhattacharyya's distance

• Jousselme's distance

Jousselme's distance dJ[9] is commonly used because it takes into

account both the mass and the cardinality of focal elements of each

bba's. dJ between m1=m1(.) and m2=m2(.) is defined by:

dJ m1;m2ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
m1−m2ð Þ′D m1−m2ð Þ

r

ð1Þ

where D is a 2|Θ|×2|Θ| (conjectured positive) matrix with elements

given by Dij≜
jAi∩Bj j

jAi∪Bj j
, Ai, Bj∈2Θ.

In the worst case (when all elements of the power set are focal

elements), the computational complexity of this distance can become

very important when the cardinality of the frame increases. A main

drawback of such distance measure is that it cannot efficiently

consider the difference between belief of a single element and of non

specific element in some cases as clearly shown in the Example 1.

• Bhattacharyya's distance

Bhattacharyya's distance has been proposed in [15] as:

dB = 1−
ffiffiffiffiffiffiffi

m1

p

′
ffiffiffiffiffiffiffi

m1

p� �p
ð2Þ

For simplicity, we take p=1 here. This distance doesn't take

account of the relative specificity of focal elements of each bba. So it

cannot efficiently characterize the dissimilarity, especially between

the singletons and the ignorance.

Example 1. Let's consider the frame Θ={θ1, θ2, ⋯, θn} and the

following three independent bba's

m1 : m1 θ1ð Þ = m1 θ2ð Þ = ⋯ = m1 θnð Þ = 1=n
m2 : m2 Θð Þ = 1
m3 : m3 θlð Þ = 1; for some l∈ 1;2;…nf g

According to Eqs. (1) and (2), one gets:

dJ m1;m2ð Þ = dJ m1;m3ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
1−

1

n

� �

s

dB m1;m2ð Þ = 1; dB m1;m3ð Þ = 1−
1

n

In this example, one sees that m3 is absolutely confident in θl, but

m1 andm2 can be considered both as very uncertain sources. Actually

m2 corresponds to the full ignorant source, whereas the Bayesian

bba m1 has a full randomness, i.e. the maximal entropy. Although the

intrinsic nature of uncertainty of m1 and of m2 is different, from a

decision-making point of view, the decision-maker is face to the full

uncertainty for taking his/her decision. Intuitively, it is expected that

m1 is closer to m2 than to m3 because both sources m1 and m2 carry

uncertainty and they yield to the complete indeterminacy in the

decision-making problem. As we see, dJ doesn't characterize well the

difference between these two very different cases becausem1 is at the

same distance to m2 or to m3. The dB distance between m1 and m2 is

larger than between m1 and m3 which is not a good behavior in

authors opinions because m1 and m2 must be considered as quite

similar since they represent a full uncertainty decision-making state.

From such a very simple example, one sees that dJ and dB are not well

adapted to fully measure the dissimilarity between bba's.

2.2. Probabilistic-based distances

The main problem for evaluating the dissimilarity between two

bba's lies in the relationship among their focal elements. Probabilistic

transformations allow to approximate any bba into a subjective

probability measure based on an underlying frame of discernment

whose atomic elements are exhaustive and exclusive.

The probabilistic distance between m1 and m2 through their

approximate subjective probability measures is proposed here. Many

transformations exist to approximate a bba into a subjective pro-

bability including BetP, DSmP [5], etc. We concentrate only on the well

known and used transformations BetP here. Let m(⋅) be a given bba

related with Θ, and the associated BetP for any singleton Y∈Θ is given

by [21]

BetP Yð Þ = ∑
X⊂2Θ ;YpX

1

Xj j
m Xð Þ ð3Þ
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where is the cardinality of subset X. For notation convenience, we

denote Pmi
(.) ≜ BetPmi

(.)

• The MaxDiff distance

In 2006, Liu proposed MaxDiff distance in [11] as

MaxDiff m1;m2ð Þ = max
A∈Θ

jPm1
Að Þ−Pm2

Að Þ j ð4Þ

MaxDiff distance reflects the variation only by the maximal

distance between the pignistic probabilities of a pair of the individual

element. However, it is not adapted for measuring precisely the total

amount of difference between two bba's.

• Minkowski's based distance

In this paper, we propose to use the DistP distance based on

Minkowski's distance defined as follows: for t≥1, one takes

DistPt m1;m2ð Þ =

1

2
∑

θi∈Θ

jθi j=1

jPm1
θið Þ−Pm2

θið Þ j
t

0

B

@

1

C

A

1

t
ð5Þ

The coefficient
1

2
in (5) allows to have DistPt(·)∈ [0, 1]. The larger t

leads to a larger complexity burden. As shown in the example 2, such

distance is not recommended when t N1.

Example 2. Let's consider the frame Θ={θ1, θ2, …, θ2n} and the

following two independent bba's

m1 : m1 θ1ð Þ = m1 θ2ð Þ = ⋯ = m1 θnð Þ = 1=n
m2 : m2 θn + 1

� �

= m2 θn + 2

� �

= ⋯ = m2 θ2nð Þ = 1=n

In this example m1 and m2 totally contradict. The diiferent

distance measures between m1 and m2 are shown in Fig. 1.

The plots for DistP2 and dJ coincide on this figure since m1 and m2

are Bayesian bba's. The values of DistP2, DistP3 and MaxDiff tend

towards 0, meaning that m1 and m2 are closer and closer with the

increase of n, which is obviously abnormal. OnlyDistP1=1 is constant,

and it indicates that m1 and m2 are completely different. Moreover,

the computation burden is lowest when using t=1, and that is

why we choose to take t=1 in this paper. DistP characterizes the

dissimilarity by the absolute distance between their associate

subjective probabilities.

Lemma 1. Let m1, m2 be two bba's defined on 2Θ. The probabilistic-

based distance DistPt(m1, m2)∈ [0, 1].

• If m1=m2, then DistP(m1, m2)=0, but its reciprocal is not true.

• If DistP(m1, m2)=1, then m1 and m2 totally contradict and

therefore there is no compatible elements supported by the both

bba's, and its reciprocal is true.

In the example 1, one has DistP(m1, m2)=0 and DistP(m1, m3)=

DistP(m2, m3)=(n−1)/n, which indicates the distance between m1

and m2 is much smaller than that of m1 and m3.

In the dissimilarity measure, the degree of the divergence between

the distinct hypotheses strongly supported by each source must

play an important role. Unfortunately, DistP is unable to reveal such

divergence which makes it not a good candidate for a good

dissimilarity measure if we use it as sole criteria.

Lemma 2. Even if the distance/dissimilarity measure is high, it is

possible in some cases that the two bba's strongly support the same

hypothesis. Reciprocally, if the distance measure is low, it is possible in

some cases that the bba's commit the most of their masses of belief to

different incompatible elements of the frame.

This lemma is illustrated through the next Example 3.

Example 3. Let's consider the frame Θ={θ1, θ2, θ3} with Shafer's

model and the following three independent bba's

m1 : m1 θ1ð Þ = 0:5;m1 θ2ð Þ = 0:3;m1 θ3ð Þ = m1 Θð Þ = 0:1
m2 : m2 θ1ð Þ = 0:8;m2 θ3ð Þ = 0:2
m3 : m3 θ1ð Þ = 0:3;m3 θ2ð Þ = 0:5;m3 Θð Þ = 0:2

The various distances between these bba's are:

dJ m1;m2ð Þ = 0:3109; dJ m1;m3ð Þ = 0:2160
MaxDiff m1;m2ð Þ = 0:2667; MaxDiff m1;m3ð Þ = 0:2333

DistP m1;m2ð Þ = 0:3333; DistP m1;m3ð Þ = 0:2333:

Although m1 and m2 strongly support the same hypothesis θ1,

whereas m3 strongly supports θ2, the dissimilarity between m1 and

m2 is larger than that between m1 and m3 according to the distance

measures. We see that the divergence between the hypotheses

strongly supported by each source is not taken into account efficiently

with DistP and other distance measures. Thissimple example shows

that such distance measures are not good enough to properly

characterize the dissimilarity between bba's. Therefore, we propose

to use another criterion to reflect more efficiently the degree of

divergence/conflict among the belief functions. This new criterion

will be a complementary criterion of the probabilistic-based distance

measure DistP(.,.) and help to define a new refined and efficient

dissimilarity measure.

3. Intrinsic conflict of belief functions

As in [11], a qualitative definition of conflict between two beliefs

in the context of DST is given.

Definition 1. A conflict between two beliefs can be interpreted

qualitatively as the fact that one source strongly supports one

hypothesis and the other strongly supports another hypothesis, and

the two hypotheses are not compatible (their intersection is empty).

This definition is intuitively consistent, and it will be adopted here.

According this definition, the conflict mainly comes from pairs of

incompatible hypotheses which are separately strongly supported by

two different sources of evidence. So the extent of conflict should

2 4 6 8 10 12 14 16 18 20
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Fig.1. Different distance measures between m1 and m2.
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be reflected by the conflicting belief of the pair of incompatible

hypotheses strongly supported by their sources. Letm1(.) andm2(.) be

two independent bba's over Θ. Their degree of conflict, as defined by

Shafer in [17] and interpreted by Smets, is given by

m12 t
� �

≜ ∑

X1;X2∈2Θ

X1∩X2=t

m1 X1ð Þm2 X2ð Þ ð6Þ

m⊕(t)≡m12(t) is generally used to evaluate the level of conflict [20]

between the two sources of evidence. Nevertheless, m⊕(t) is the

sum of all the masses of belief committed to the empty set through

the conjunctive rule of combination. However, such measure is not

very appropriate to really characterize the conflict between bba's,

particularly in case of two equal bba's as already reported in several

published works [13,11].

Actually, one needs to pay more attention to the hypothesis which

gets the most credibility in the bba's. If two sources of evidence

commit the most plausibility to compatible or same elements, we

argue that they are consistent in the element they strongly support,

and they do not contradict with each other. Otherwise, they are

considered in conflict. In order to overcome the limitation ofm⊕(t) as

the traditional measure of the conflict, a new measure of level of

conflict, called conflict coefficient is proposed using probabilistic-based

transformations and based on the definition 1.

Definition 2 (conflict coefficient). Letm1 andm2 be two bba's on 2Θ.

Their associated subjective probabilities are Pmi
(.), i=1, 2;. The

Conflict coefficient denoted by ConfP is defined by

ConfP m1;m2ð Þ =
0; if Xm1

max∩Xm2
max≠t

Pml
Xml
max

� �

Pm2
Xm2
max

� �

; otherwise:

(

ð7Þ

where X
mi
max = argmax

x∈2Θ
Pmi

xð Þ; i = 1;2

The conflict coefficient is defined in using the maximal

approximate subjective probability of the bba's. If two sources of

evidence distribute most of their mass of belief to compatible

elements, there is no conflict between the two sources in such

conditions. Otherwise, the amount of conflict will be represented

by the product of the pair of maximal subjective probability from

different sources.

Lemma 3. Let m1 and m2 be two independent bba's on 2Θ. m⊕
12

(t)∈(0, 1), even if ConfP(m1, m2)=0. Also, m⊕
12(t)=1, if ConfP(m1,

m2)=1.

Proof. The former part of the Lemma 3 occurs in many cases, especially

when considering two equal bba's. The later part can be proved easily. If

ConfP(m1, m2)=1, it means m1 and m2 assign the mass to totally

different focal elements. Therefore, one gets m⊕
12(t)=1.

This lemma implies thatm⊕(t) is not very efficient when the bba's

are not in conflict, and m⊕(t) is similar to ConfP in case of highly

conflicting situations. The conflict coefficient reflects well the

divergence of incompatible hypotheses that two sources of evidence

commit most of their belief to. However, it ignores the other elements

of bba's. This is shown in the next example.

Example 4. Let's consider the frame Θ={θ1, θ2} with Shafer's model

and the following three independent bba's

m1 : m1 θ1ð Þ = 1
m2 : m2 Θð Þ = 1
m3 : m3 θ1ð Þ = 0:9;m3 Θð Þ = 0:1

m1 and m3 are much closer than m1 and m2, since m1 and m3

distribute most of their mass of belief to the same hypothesis θ1,

whereas m2 is fully ignorant (i.e. m2 is the vacuous belief assign-

ment). Nevertheless, from the formula (6) and (7), one gets

ConfP m1;m2ð Þ = ConfP m1;m3ð Þ = 0

m
12
⊕ t
� �

= m
13
⊕ t
� �

= 0:

So in such case, we cannot make a distinction betweenm1 andm2,

and between m1 and m3 at all only from these conflict measures.

If the proposed probabilistic-based distance is used in this

example, one gets

DistP m1;m2ð Þ = 0:5;
DistP m1;m3ð Þ = 0:05

�

Naturally, the dissimilarity between m1 and m2 is quite larger

than between m1 and m3 according to the probabilistic-based

distance measure.

Actually, the probabilistic-based distance DistP and the conflict

coefficient ConfP are complementary and they separately capture

different aspects of the dissimilarity of bba's. If the dissimilarity is only

characterized by DistP, it cannot show whether the two sources of

evidence conflict or not in the hypothesis they strongly support.

Reciprocally, if ConfP is considered as the unique criterion to measure

the dissimilarity, the level of the difference between the two bba's is

not taken into account. Taking into account both criteriaDistP and

ConfP in the elaboration of a new measure of dissimilarity seems

therefore a natural way to improve existing measures of dissimilarity

in order to capture two of its main aspects.

4. A new dissimilarity measure

In this section, we propose a new dissimilarity mixing both

DistP and ConfP to characterize more efficiently the dissimilarity

between two bba's. The new dissimilarity measure, denoted DismP,

will be defined by the fusion of DistP and ConfP complementary

measures/criteria. The fusion rule f(⋅) we propose to use to define

DismP must satisfy the two following important properties:

(1) Commutativity f(x, y)= f(y, x);

(2) Monotonicity f(x, y)≤ f(x′, y)≤ f(x′, y′)≤ f(1, 1)=1, ifx≤x′, y′≤y′;

Hence, the dissimilarity measure dismP obtained from the fusion

DistP and ConfP should be no less than any one of them. Also, DismP

cannot be larger than the sum of DistP and ConfP, nor 1, which cor-

responds to the following inequality constraints: max{x, y}≤ f(x, y)≤

min{1, (x+y)}.

Hamacher T-conorm fusion rule [7], denoted T(.), satisfies these

constraints and that's why we take f(.)=T(.). Therefore, we finally

define DismP(.,.) by

DismP m1;m2ð Þ≜T DistP m1;m2ð Þ;ConfP m1;m2ð Þð Þ

=
DistP m1;m2ð Þ + ConfP m1;m2ð Þ

1 + DistP m1;m2ð ÞConfP m1;m2ð Þ

ð8Þ

The dissimilarity measure is useful in many domains [10], for

instance for belief functions approximation algorithms [1], for

defining the agreement between sources of evidence as a basis for

discounting factors [6,3], for combination rules parameters estimation

[4,23], as well as for selecting an adapted combination rule [12],

etc. In this paper, we are interested in using it for the automatic

determination of discounting factors of the sources of evidence.

For a comparison between the different dissimilarity measures,

we now use an example drawn from [9] to show the behavior of dJ, dB,

Maxdiff, m(t), DistP, ConfP, and DismP.
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Example 5. Let Θ be a frame of discernment with element θ1, θ2, etc.

For notation conciseness, we use 1, 2, etc. to denote θ1, θ2, etc., and the

notation m(θi∪θj) is also replaced by m(i, j) in the sequel. The two

bba's are defined as follows:

m1 : m1 2;3;4ð Þ = 0:05;m1 7ð Þ = 0:05
m1 Θð Þ = 0:1;m1 Að Þ = 0:8

m2 : m2 1;2;3;4;5ð Þ = 1

A is the subset of Θ. We consider twenty cases where subset A is

progressively augmented by including a new element in it. In other

words, for case i=1, 2, 3, …, 20, Ai={1, 2, ⋯, i}.

The comparison of the aforementioned dissimilarity measures

betweenm1 and m2 for the 20 cases is graphically illustrated in Fig. 2.

As we can see, dJ and DistP present a similar behavior in this

example, but the computation of DistP is easier. In this example DismP

mainly depends on DistP since ConfP is small here, and this explains

why plots of DismP and DistP are very close. MaxDiff becomes very

small from case 2, and its value even decreases from case 8 to 13,

which is abnormal since we expect a growth of the dissimilarity

measure. dB always indicates that m1 and m2 are totally different but

in case 5, and it cannot distinguish the variation among these cases. In

case 5, A={1, 2, 3, 4, 5} is the same with the only focal element in

athbfm2, which leads dB to decrease substantially in this case. ConfP

implies that both bba's commit themost plausibility to the compatible

element from the cases 1 to 6, but m1 begins to distribute its most

belief to another element which is different from the element strongly

supported by m2 from case 7. The divergence degree, reflecting the

strong support of sources in different hypotheses, is becoming lower

and lower. Indeed, since m1 becomes more and more uncertain, all

singletons get small probability gain through the probabilistic

transformation. Nevertheless, the conflicting mass of belief m(t)

keeps a low value around 0.05 and is not representative of the

divergence between the sources.

5. Discounting factors of sources of evidence

In this section, we propose a new method for determining

the discounting(weighting) factors of the sources based on the

dissimilarity measure. The derivation of the weights of the sources

is based on the underlying (and usually well-adopted) principle

that the Truth lies in the majority opinion. When one has a set of n

sources of evidence to combine, the scalar dissimilarity measure

DismP between each pair of sources must be obtained by (8) at

first, and the mutual support degree among these sources will be

given by:

sup mi;mj

� 	

= 1−DismP mi;mj

� 	

q
� 	

1
q ð9Þ

For simplicity, one suggests to take q=1. The mutually support

degree n×n matrix is then defined by

S =

1 sup12 … sup1n
sup21 1 … sup2n
⋮ ⋮ ⋮ ⋮

supn1 supn2 … 1

2

6

6

4

3

7

7

5

ð10Þ

where supij≜sup mi;mj

� �

.

The weight of each source of evidence is denoted bywi, i=1, 2,…,

n. We argue that the weighting factors should be relative, not only

with the support degree gained from the other sources, but also with

the weights of those other sources. The problem of joint estimation of

all weighting factors consists in solving for i=1, 2, 3, ⋯, n,

λwi = w1sup1i + w2sup2i + ⋯ + wnsupni ð11Þ

or more concisely written as

λw = Sw ð12Þ

where w≜ [w1, w2, …, wn]′ and λ is the proportion coefficient. The

Perron–Frobenius vector (the eigen vector associated to the maximal

positive eigen value ) of S is used as the credibility factor, that is

λmax⋅w=S ⋅w.

The source with the largest weighting factor is considered as

totally reliable and important, and there is no need to revise it. The

other sources are discounted with the factor as

w′
i = wi = max wð Þ b 1 ð13Þ

wi is called the relative weighting factor of the source i.

In the discounting process, the reliability discounting rule and

importance discounting rule must be selected by the system designer

according to his/her application. The reliability and importance

represent two distinct notions. Reliability represents ability of the

source to provide the correct assessment of the given problem,

whereas importance means somehow the weight of importance

granted to the source.

• Reliability discounting rule

Two kinds of approaches, including the average bba's method

[3,14] and Shafer's discounted bba's method [17], have been

proposed for the combination of unreliable sources of evidence.

The average bba's method [14] combines iteratively (sequentially)

the arithmetic mean of all the bba's. Deng at al. in [3] modified this

method to compute the weighted average bba's by taking into

account the evidential distance dJ, but we know that dJ is no good

enough in all cases to precisely measure the dissimilarity. Moreover,

in the average bba's method, all the independent sources of evidence

are represented by the same average of bba's, and the distinctness of

the different sources is not taken into account efficiently. The

combination results are nothing but the iterative combination of

the average bba's. So this method is too sensitive to the weighting

factors. Since the determination of reliability factors is not robust

enough, this can lead to wrong decision. The classical Shafer's

discounting method [17] distributes the discounted mass to the

ignorance according to the corresponding reliability factor, and all

the discounted bba's remain distinct and independent. Shafer's
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discounting method seems more reasonable, and that's why it is

applied here. We recall briefly how it is applied:

m′ Að Þ = α⋅m Að Þ; A≠Θ

m′ Θð Þ = 1−∑A∈2Θ

A≠Θ

m′ Að Þ

8

<

:

ð14Þ

where α is the reliability (discounting) factor of m(⋅). The discounted

mass is committed to the ignorance m′(Θ).

• Importance discounting rule

The recent importance discounting method proposed in [19] is

defined by:

m′ Að Þ = β⋅m Að Þ; A≠t

m′ t
� �

= 1−∑A∈2Θ

A≠t

m′ Að Þ

8

<

:

ð15Þ

where β is the importance (discounting) factor of m(⋅). This

importance discounting rule allows to have m(t)≥0, and preserves

the specificity of the primary information since all focal elements are

discounted with same importance factor.

If we assume that all the sources of evidence are reliable but they

don't share the same importance, the importance discounting rule

can be applied. Otherwise, the reliability discounting rule is selected.

One can take either α=w ′i for the reliability discounting, or β=w ′i

for the importance discounting, depending on the rule we prefer to

apply in the given application under consideration. If the importance

discounting rule is applied, DS rule defined in [17] will be useless

since it will not respond to the discounting of sources towards the

empty set (see proof in [19]), and PCR5t can be used as an efficient

combination rule instead. The fusion result mPCR5t
will be normalized

by redistributing the mass of belief committed to the empty set to

the other focal elements and proportionally to their masses as it is

shown in the examples given in [19]. If the reliability discounting

rule is chosen, all the combination rules can be used, since such

discounting doesn't commit a strictly positive mass of belief to the

empty set.

6. Numerical examples

The proposed approach provides a new alternative to combine

uncertain sources of evidence with different reliability/importance

without a priori knowledge on the sources. It can be well adapted for

the fusion of highly conflicting sources of information for decision-

making support. The sources which are highly conflicting with

the majority of other sources will be automatically assigned with

a very low reliability/importance factor thanks to the new dissim-

ilarity measure in order to decrease their bad influence in the fusion

process. Two simple illustrative examples are presented in this

section to show the interest of our new approach with respect to

other methods.

The context of these examples could correspond to an automatic

target identification system using some independent sensors where

the signals arising from these sensors are supposed to have been

processed into bba's by some given methods. The construction of

bba's is application dependent and is out of the scope of this paper.

Here, we assume no prior knowledge about reliability, nor importance

about the sources of evidence.

Example 6 Bayesian bba's. In this example, we want to show how

the proposed method works for the decision making from Bayesian

bba's. Let's consider three simple Bayesian bba's over the frame Θ=

{θ1, θ2, θ3 as in Table 1. It is assumed that sources of evidence No.3 can

provide possibly two similar bba's denoted m3A and m3B, and let's see

how the small difference affects the fusion results.

After the determination of the discounting factors of each source,

both the reliability discounting rule and the importance discounting

rule will be applied and analyzed separately.

Dempster–Shafer's rule (DS) provides a good compromise be-

tween the specificity of the result and the computation burden but

this rule can lead to very counter-intuitive results in case of high

conflicting situation. Applying reliability discounting technique

(when used judiciously with proper discounting factors) can indeed

decrease the degree of conflict between the bba's by committing the

discounted the mass to ignorance. In this example, we compare DS

rule with PCR5 rule for combining discounted bba's when reliability

discounting is used. We use only PCR5t fusion rule when the

importance discounting is used because DS rule is not responding to

such kind of importance discounting. The bba's will be fused

sequentially using PCR5t as explained in details in [19]. The results

obtained for this example are shown in the Tables 2 and 3. In the first

row of the Tables 2 and 3,m1
i corresponds to the (sequential) fusion of

sources m1, m2, …, mi. This corresponds to mi
1 =Δm1⊕m2⊕⋯⊕mi,

m3A
1 =Δm1⊕m2⊕m3A , andm3B

1 =Δm1⊕m2⊕m3B, where⊕ denotes

either DS, PCR5 or PCR5t. The first column of the Tables 2 and 3

describes the method used for combining the sources of evidence and

the underlying measure of dissimilarity used to automatically derive

the discounting factors of each source. For example, average bba's &

DS″ indicates that the arithmetic mean of all the bba's are iteratively

combined by DS rule as in [14]. "dJ & DS″ means that the averaged

distance dJ has been used to compute the (reliability) discounting

factors and that DS rule has been used to combine discounted sources,

and so on.

Analysis of the results. We can see that the bba'sm2 andm3A orm3B

commit most belief on θ1, andm3A is very close tom3B, butm1, which

distributes the largest belief to θ2, highly conflicts with m2 and m3A/B.

Thus, m1 won't be considered so reliable or important as the other

ones according to our assumed underlying principle.

For decision-making purpose, the fusion results presented in

Tables 2 and 3 show that m1
3A or m1

3B are very similar except with the

average bba's method because both m3A and m3B commit the largest

mass of belief to θ1, and the difference between the different methods

is quite small. However,m1
3A obtained with the average bba's method

consider that θ1 is most likely to be true, whereasm1
3B believes that θ2

should correspond to the truth, and therefore they lead to opposite

conclusion for decision-making support. This indicates that the

average bba's method is not robust enough and it is very risky for

the decision-making support in such cases because all the sources of

evidence are considered equally in the average bba's method.

Table 1

Three bba's to be combined.

m1 m2 m3A m3B

θ1 0 0.6 0.75 0.7

θ2 0.9 0.25 0.15 0.2

θ3 0.1 0.15 0.1 0.1

Table 2

Combination results using reliability discounting rule.

m1
3A(θ1) m1

3B(θ1) m1
3A(θ2) m1

3B(θ2) m1
3A(θ3) m1

3B(θ3)

No discount & DS 0 0 0.9574 0.9677 0.0426 0.0323

No discount & PCR5 0.5489 0.5118 0.4259 0.4628 0.0252 0.0253

Average bba's & DS 0.5235 0.4674 0.4674 0.5235 0.0091 0.0091

dJ & DS 0.6498 0.6078 0.3267 0.3722 0.0235 0.0201

dJ & DS 0.7264 0.6823 0.2502 0.2968 0.0234 0.0209

Dismp & DS 0.8332 0.7958 0.1454 0.1829 0.0214 0.0213

The maximum of the belief of the element in the combination results is labeled by bold

data in Table 2, and it is similar in the following tables.
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DS rule provides the unreasonable result that θ1 is impossible to

happen, which is illogical since there are two sources among three

that consider θ1 as being most possibly true. Once the discounting

approach by dJ , dJ, or DismP is applied before the fusion of DS, we get

the largest mass of belief to θ1 as expected. The results of PCR5

suggests that θ1 takes the most mass of belief, and the results become

more specific and more efficient for decision-making when the

importance discounting method is additionally applied before the

fusion of PCR5 as shown in Table 3. Moreover, we can see that if DismP

is used as the criterion of dissimilarity coupled with the proposed

method of reliability/importance weight determination, it can

produce the most specific results for decision-making support. This

example illustrates that our proposed method can work well with

Bayesian bba's even in high conflicting cases.

Example 7. Now let's consider another set of five normalized bba's

with imprecise focal elements over the frame of discernment Θ={θ1,

θ2, θ3} as given in Table 4. In this example m3 is a Bayesian bba,

whereas all other bba's are non-Bayesian.

Analysis of the results. From the Table 4, one sees that the bba'sm1,

m2, m4 and m5 assign most of their belief to θ1, but m3 oppositely

commits its largest mass of belief to θ2. Therefore m3 is considered as

the least reliable or unimportant source based on the aforementioned

underlying principle, and it can be considered as a noisy source

(outlier).

From the Tables 5 and 6 and after the combination of all the

sources, one sees that the DS rule (without discounting process)

concludes that the hypothesis θ1 is very unlikely to happen whereas

θ2 is almost sure to happen. Such result is unreasonable since the

majority sources assign most of their belief to θ1, but only one source

distributes its largest mass of belief to θ2. Such unexpected behavior

shows that DS rule is risky to use to combine sources of evidence in a

high conflicting situation. The result of PCR5 (with no discounting

of bba's) indicates that θ1 has a higher mass of belief than θ2 (as

expected) after the sequential fusion of the five sources, even if θ2
has got a bigger mass than θ1 after some intermediate steps of the

sequential fusion process. This behavior of PCR5 rule may cause

troubles for fast decision-making support (in the case we don't want

to wait to process all the sources). To avoid such problem due to

the non-associativity property of PCR rules, it is better to combine

the sources altogether in a unique and global fusion step. Once

importance (or reliability) discounting method is applied, thbfm3

becomes strongly discounted because of its largest dissimilarity with

the other sources. One sees that the proposed dissimilarity measure

coupled with the automatic discounting factors determination

generates a more specific result than using the method proposed

in [3,13] which was only based on the mean of evidential distance

dJ to determine the reliability factor. Therefore, our new approach

improves the decision-making support. If dJ is used instead of titDismP

as the bba's distance in our method for automatic discounting factors

determination, one still gets better specific results than those

obtained with the method presented in [3,13]. These results show

the effectiveness and the interest of this new method for the

estimation of discounting factors of the sources of evidence.

The interest of the new method proposed in this work lies in the

elaboration of a more efficient dissimilarity measure which can be

used for the determination of the discounting factors of the sources

involved in the fusion process. The new dissimilarity measure is

obtained from the T-conorm fusion of two components: a distance

Table 3

Combination results using importance discounting rule.

m1
3A(θ1) m1

3B(θ1) m1
3A(θ2) m1

3B(θ2) m1
3A(θ3) m1

3B(θ3)

dJ & PCR5t 0.6233 0.5936 0.3486 0.3780 0.0280 0.0284

dJ & PCR5t 0.6730 0.6392 0.2979 0.3316 0.0291 0.0292

Dismp & PCR5t 0.8154 0.7815 0.1522 0.1860 0.0324 0.0325

Table 4

Five bba's to be combined.

m1 m2 m3 m4 m5

θ1 0.8 0.4 0 0.3 0.45

θ2 0.1 0.2 0.95 0.2 0.1

θ3 0 0.1 0.05 0.25 0

{θ1, θ2} 0 0.3 0 0.2 0

{θ2, θ3} 0 0 0 0 0.15

Θ 0.1 0 0 0.05 0.3

The fusion results obtained with the different methods are shown in Tables 5 and 6.

Table 5

Combination results using reliability discounting rule.

m1
2 m1

3 m1
4 m1

5

No discount & DS m(θ1) = 0.8451

m(θ2) = 0.0986 m(θ2) = 0.9948 m(θ2) = 0.9965 m(θ2) = 0.9971

m(θ3) = 0.0140 m(θ3) = 0.0052 m(θ3) = 0.0035 m(θ3) = 0.0029

m(θ1, θ2) = 0.0423

No discount & PCR5 m(θ1) = 0.8311 m(θ1) = 0.4076 m(θ1) = 0.4037 m(θ1) = 0.5196

m(θ2) = 0.1150 m(θ2) = 0.5850 m(θ2) = 0.5100 m(θ2) = 0.4154

m(θ3) = 0.0239 m(θ3) = 0.0068 m(θ3) = 0.0848 m(θ3) = 0.0482

m(θ1, θ2) = 0.03 m(θ1, θ2) = 0.0006 m(θ1, θ2) = 0.0015 m(θ1, θ2) = 0.0004

m(θ2, θ3) = 0.0164

dJ & DS m(θ1) = 0.7611 m(θ1) = 0.5705 m(θ1) = 0.6361 m(θ1) = 0.7086

m(θ2) = 0.1177 m(θ2) = 0.3367 m(θ2) = 0.3159 m(θ2) = 0.2662

m(θ3) = 0.0303 m(θ3) = 0.0246 m(θ3) = 0.0144 m(θ3) = 0.0097

m(θ1, θ2) = 0.0909 m(θ1, θ2) = 0.0682 m(θ1, θ2) = 0.0336 m(θ1, θ2) = 0.0155

dJ & DS m(θ1) = 0.7659 m(θ1) = 0.6239 m(θ1) = 0.6858 m(θ1) = 0.7528

m(θ2) = 0.1166 m(θ2) = 0.2791 m(θ2) = 0.2645 m(θ2) = 0.2217

m(θ3) = 0.0294 m(θ3) = 0.0252 m(θ3) = 0.0146 m(θ3) = 0.0096

m(θ1, θ2) = 0.0881 m(θ1, θ2) = 0.0718 m(θ1, θ2) = 0.0351 m(θ1, θ2) = 0.0159

DismP & DS m(θ1) = 0.7503 m(θ1) = 0.7157 m(θ1) = 0.7670 m(θ1) = 0.8254

m(θ2) = 0.1196 m(θ2) = 0.1598 m(θ2) = 0.1655 m(θ2) = 0.1424

m(θ3) = 0.0319 m(θ3) = 0.0308 m(θ3) = 0.0194 m(θ3) = 0.0120

m(θ1, θ2) = 0.0957 m(θ1, θ2) = 0.0913 m(θ1, θ2) = 0.0477 m(θ1, θ2) = 0.0198

m(Θ) = 0.0025 m(Θ) = 0.0024 m(Θ) = 0.0004 m(θ2, θ3) = 0.0002

m(Θ) = 0.0002
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measure and a new measure of the conflict between two bba's.

This new measure is larger than its two components. The sources of

evidence in high conflictwith themajority of other sources get a bigger

dissimilarity measure than the averaged evidential distance. The

discounting (weighting) factors of the sources are computed based on

the dissimilarities of the sources taken altogether. The small group

of highly conflicting sources always gets small weights, whereas the

majority of normal sources (i.e. the sources in agreement) get large

weights. The few highly conflicting sources generally get lower

weighting factors in our new method of determination of weights

than in the arithmetic average method used in [3,13]. Therefore the

majority of non (or low) conflicting sources play amore important role

in the fusion (as intuitively expected for a rational and good behavior).

Such new method can provide interesting results and valuable help

for automatic or semi-automatic decision-making support systems.

The choice of the two discounting rules (importance versus reliability)

is left to the users according to their own purposes.

7. Conclusions

In this paper, a new combination approach of sources of evidence

with different discounting (weighting) factors has been proposed

based on a new dissimilarity measure between bba's. We have shown

through simple examples that the notion of dissimilarity includes at

least two aspects represented by the difference between bba's and

also by their level of conflict. After analyzing the limitation of the

classical dissimilarity measures, a new dissimilarity measure mixing

the probabilistic-based distances with the degree of conflict was

developed. In this paper the BetP transformation was used in the

definition of the distance between two bba's tomeasure the difference

between two bba's. A new conflict coefficient was also introduced

to overcome the limitations of the classical degree of conflict

represented traditionally by the mass committed to the empty set

through the conjunctive rule. This new conflict coefficient allows to

measure more efficiently the divergence between distinct hypotheses

strongly supported by each source of evidence. The distance and

conflict measures characterize two different aspects of the dissimi-

larity between bba's. A new method for the automatic determination

of weighting factors of the sources has been also presented when

no prior knowledge is given about the reliability or the importance

of the sources. All the weighting factors are computed jointly from

a global optimization problem based on the dissimilarities among

bba's, and this makes the evaluation of weighting factors more precise

and reasonable. The weighting factors can be applied with the

reliability discounting method or with the importance discounting

method as well. The numerical examples presented in this paper

illustrate clearly the potential interest of this new approach for

applications dealing with evidential reasoning for decision-making

support. The extension of this approach can naturally be done in the

DSmT (Dezert–Smarandache Theory) framework as well, and using

DSmP transformation instead of classical Pignistic transformation.

This is left for future investigations and out of the scope of this paper.
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