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In this paper, we present Lyapunov-based robust and adaptive Higher Order Sliding Mode (HOSM) controllers for nonlinear SISO systems with bounded uncertainty. The proposed controllers can be designed for any arbitrary sliding mode order. The uncertainty bounds are known in the robust control problem whereas they are partially known in the adaptive control problem. Both these problems are formulated as the finite time stabilization of a chain of integrators with bounded uncertainty. The controllers are developed from a class of nonlinear controllers which guarantee finite time stabilization of pure integrator chains. The robust controller establishes ideal HOSM i.e. the sliding variable and its r -1 time derivatives converge exactly to the origin in finite time. The adaptive controller establishes real HOSM, which means that the sliding variable and its r -1 time derivatives converge to a neighborhood of the origin. Saturation functions are used for gain adaptation, which do not let the states exit the neighborhood after convergence. The effectiveness of these controllers is illustrated through simulations.

INTRODUCTION

Nonlinear dynamic physical systems suffer from parametric uncertainty and are difficult to characterize. Parametric uncertainty arises from varying operating conditions and external perturbations that affect the physical characteristics of systems. The variation limits or the bounds of this uncertainty might be known or unknown. This needs to be considered during control design so that the controller counteracts the effect of variations and guarantees performance under different operating conditions. Sliding mode control (SMC) [START_REF] Utkin | Sliding Mode Control and Optimization[END_REF][START_REF] Slotine | Sliding controller design for nonlinear systems[END_REF] is a well-known method for control of nonlinear systems, renowned for its insensitivity to parametric uncertainty and external disturbance. This technique is based on applying discontinuous control on a system which ensures convergence of the output function (sliding variable) in finite time to a manifold of the state-space, called the sliding manifold [START_REF] Young | A control engineers guide to sliding mode control[END_REF]. In practice, SMC suffers from chattering; the phenomenon of finite-frequency, finite-amplitude oscillations in the output which appear because the high-frequency switching excites unmodeled dynamics of the closed loop system [START_REF] Utkin | Sliding mode in control in electromechanical systems[END_REF]. Higher Order Sliding Mode Control (HOSMC) is an effective method for chattering attenuation [START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF]. In this method the discontinuous control is applied on a higher time derivative of the sliding variable, such that not only the sliding variable converges to the origin, but also its higher time derivatives. As the discontinuous control does not act upon the system input directly, chattering is automatically reduced.

Many HOSMC algorithms exist in contemporary literature for control of uncertain nonlinear systems, where the bounds on uncertainty are known. These are robust because they preserve the insensitivity of classical sliding mode, and maintain the performance characteristics of the closed loop system so long as it remains inside the defined uncertainty bounds. Levant for example, has presented a method of designing arbitrary order sliding mode controllers for Single Input Single Output (SISO) systems in [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF]. In his recent works [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF][START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], homogeneity approach has been used to demonstrate finite time stabilization of the proposed method. Laghrouche et al. [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] have proposed a two part integral sliding mode based control to deal with the finite time stabilization problem and uncertainty rejection problem separately. Dinuzzo et al. have proposed another method in [START_REF] Dinuzzo | Higher Order Sliding Mode Controllers with Optimal Reaching[END_REF], where the problem of HOSM has been treated as Robust Fuller's problem. Defoort et al. [START_REF] Defoort | A novel higher order sliding mode control scheme[END_REF] have developed a robust Multi Input Multi Output (MIMO) HOSM controller, using a constructive algorithm with geometric homogeneity based finite time stabilization of an integrator chain. Harmouche et al. have also presented their homogeneous controller in [START_REF] Harmouche | Robust Homogeneous Higher Order Sliding Mode Control[END_REF] based on the works of Hong [START_REF] Hong | Finite-time stabilization and stabilizabil-ity of a class of controllable systems[END_REF].

The case where the bounds on uncertainty exist, but are unknown, is still an open problem in the field of arbitrary HOSMC. In this problem, the controller must possess two essential properties, (a) non-requirement of the uncertainty bounds and (b) avoidance of gain overestimation [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF]. In recent years, adaptive sliding mode controllers have attracted the interest of many researchers for this case. Adaptive gains have been used with success in the past for chattering suppression. For example, Bartolini et al. [START_REF] Bartolini | Adaptive reduction of the control effort in chattering free sliding mode control of uncertain nonlinear systems[END_REF] have extended Utkin's concept of equivalent control for second order sliding mode control gain adaptation, to suppress residual oscillations due to digital controllers with time delay. Similarly, an equivalent control based adaptive controller is described in [START_REF] Xu | Sliding mode control with closed-loop filtering architecture for a class of nonlinear systems[END_REF], in which the equivalent control estimation is improved, using double low pass filters. A concise survey of these methods can be found in [START_REF] Lee | Chattering suppression methods in sliding mode control systems[END_REF]. Huang et al. [START_REF] Huang | Adaptive sliding-mode control for nonlinear systems with uncertain parameters[END_REF] were the first to use dynamic gain adaptation in SMC for the problem of unknown uncertainty bound. They presented an adaptation law for first order SMC, which depends directly upon the sliding variable; the control gains increase until sliding mode is achieved. Once the sliding variable has converged to zero, the gains become constant. This method works without a-priori knowledge of uncertainty bounds, however it does not solve the gain overestimation problem as the gains stabilize at unnecessarily large values. Plestan et al. [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF][START_REF] Plestan | Sliding mode control with gain adaptation -application to an electropneumatic actuator[END_REF] have overcome this problem by slowly decreasing the gains once sliding mode is achieved. This method yields convergence to a neighborhood of the sliding surface. However it does not guarantee that the states would remain inside the neighborhood after convergence; the states actually overshoot in a known region around the neighborhood. In the field of HOSMC, Shtessel et al. [START_REF] Shtessel | A novel adaptive gain supertwisting sliding mode controller: methodology and application[END_REF] have presented a Second Order adaptive gain SMC for non-overestimation of the control gains, based on supertwisting algorithm. The states overshoot in this case as well, but unlike [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF], the magnitude is unknown. A Lyapunov-based variable gains super twisting algorithm has also been presented in [START_REF] Dávila | Variable Gains Super-Twisting Algorithm, A Lyapunov based design[END_REF]. Glumineau et al. [START_REF] Glumineau | Impulsive sliding mode adaptive control of second order system[END_REF] have presented a different approach, based on impulsive sliding mode adaptive control of a double integrator system. The gain of the impulsive control is adapted to minimize the convergence time of the double integrator dynamics. To the best of our knowledge, no contemporary work on adaptive HOSMC has been published for orders greater than two.

In this paper, we present Lyapunov-based robust and adaptive Higher Order Sliding Mode Controllers for nonlinear SISO systems with bounded uncertainty. This problem has been formulated as the stabilization of a chain of integrators with bounded uncertainties which is equivalent to the stabilization of the following r th differential equation in finite time [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF],

s (r) = ϕ(t) + γ(t)u,
where s(x, t) is a smooth output-feedback function (sliding variable) and s (r) is its r th time derivative. The term u is the control input and ϕ(t) and γ(t) are bounded uncertain functions.

There are two main contributions in this paper. First, a Lyapunov-based approach for arbitrary HOSMC is developed. The controller establishes sliding mode of any arbitrary order under the condition that the bounds of ϕ(t) and γ(t) are known. The advantage of our method is that robust HOSM controllers are developed from a class of finite-time controllers for pure integrator chains. To the best of our knowledge, this is the first work on a Lyapunov based approach for arbitrary HOSMC. Lyapunov design is a powerful tool for control system design that allows to estimate an upper bound on convergence time [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]. The second contribution in this paper is the extension of the robust controller to an adaptive controller for the case where the bounds on ϕ(t) are unknown. The proposed adaptive controller guarantees finite time convergence to an adjustable arbitrary neighborhood of origin, i.e. it establishes real HOSM. The gain adaptation dynamics are based on a saturation function [START_REF] Chitour | On the l p -stabilization of the double integrator subject to input saturation[END_REF][START_REF] Laghrouche | Path following for a target point attached to a unicycle type vehicle[END_REF][START_REF] Harmouche | Target-point based path following controller for cartype autonomous vehicle using saturated inputs[END_REF], which results in rapid increase of gains when the sliding variable and its derivatives are outside the neighborhood, and rapid decrease when they are inside the neighborhood. The advantage of this adaptive controller design, compared to other algorithms mentioned before, is that this controller can be extended to any arbitrary order and the adaptation rates are fast in both directions. Therefore, the amplitude of the discontinuous control decreases faster as compared to [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF]. In addition, the states are confined inside the neighborhood after convergence and cannot escape. As a result, there are no state overshoots and no gain overestimation in this controller, and the neighborhood of convergence can be chosen as small as possible. The limiting factor of this design as compared to [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF][START_REF] Huang | Adaptive sliding-mode control for nonlinear systems with uncertain parameters[END_REF][START_REF] Shtessel | A novel adaptive gain supertwisting sliding mode controller: methodology and application[END_REF] is that the bounds of γ(t) still need to be known. We therefore propose an initial step for the open problem of a complete adaptive arbitrary HOSMC controller.

The paper has been organized as follows: the problem formulation has been presented in section 2. The design of the robust controller has been presented in section 3, and that of adaptive controller in section 4. Simulation results have been presented and discussed in section 5 and some concluding remarks have been given in section 6.

Problem Formulation

Let us consider an uncertain nonlinear system:

ẋ = f (x, t) + g(x, t)u, y = s(x, t), (1) 
where x ∈ R n is the state vector and u ∈ R is the input control. The sliding variable s is a measured smooth output-feedback function and f (x, t) and g(x, t) are uncertain smooth functions. Let us assume:

H1. The relative degree r of the System (1) with respect to s is constant and known, and the associated zero dynamics are stable.

The control objective is to fulfil the constraint s(x, t) = 0 in finite time and to keep it exact by discontinuous feedback control. The r th -order sliding mode is defined as follows:

Definition 2.1 [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. Consider the nonlinear System (1), and let the system be closed by some possiblydynamical discontinuous feedback. Then, provided that s, ṡ, ..., s (r-1) are continuous functions, and the set S r = {x|s(x, t) = ṡ(x, t) = ... = s (r-1) (x, t) = 0}, called "r th -order sliding set", is non-empty and is locally an integral set in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], the motion on S r is called "r th -order sliding mode" with respect to the sliding variable s.

The r th -order SMC approach allows the finite time stabilization to zero of the sliding variable s and its r -1 first time derivatives by defining a suitable discontinuous control function. If the system (1) is extended by the introduction of a fictitious variable x n+1 = t, ẋn+1 = 1, and f e = (f T 1) T , g e = g T 0 T (where the last component corresponds to x n+1 ), then the output s satisfies the equation [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF]:

s (r) = φ(s) + γ(s)u, with γ(s) = L ge L r-1 fe s and φ(s) = L r fe s. For x ∈ X ⊂ R n , X being a bounded open subset of R n
containing the origin, the functions φ, γ are bounded and it is also customary to assume that γ has a positive lower bound that depends only on X. Then the r thorder SMC of (1) with respect to the sliding variable s becomes equivalent to the finite time stabilization of the

following system, żi = z i+1 , i = 1, ..., r -1, żr = ϕ(t) + γ(t)u, (2) 
where z = [z 1 z 2 ...z r ] T := [s ṡ... s (r-1) ] T . The functions ϕ and γ are subject to the following hypothesis:

H2. The functions ϕ(t) and γ(t) are bounded uncertain functions i.e. there exist constants K m , K M > 0 and

ϕ 0 ≥ 0 such that 0 < K m ≤ γ(t) ≤ K M , |ϕ(t)| ≤ ϕ 0 , ∀t ≥ 0,
This hypothesis implies that results in the proceeding sections of the paper can be only be local to the origin when applied to the r th -order SMC approach, unless appropriate global boundedness assumptions are imposed on L ge L r-1 fe s and L r fe s.

Remark 1 r th -order sliding mode can also be established on a system with a relative degree ρ < r by increasing the length of integrator chain by r -ρ integrators [START_REF] Isidori | Nonlinear control systems: An introduction[END_REF]. In other words, r th -order sliding mode can be established by applying the discontinuous control on the (r -ρ) th time derivative of the control input. For the sake of clarity, we will consider r = ρ in all further sections.

In the following sections, a robust controller is developed first for the system (2) under hypothesis H2, considering that the uncertainty bounds presented in H2 are known.

Then, an adaptive controller is developed to extend the functionality of the robust controller to the case where the bounds of ϕ are not known.

Design of robust Higher Order Sliding Mode Controller

In this section, we present a robust controller which stabilizes System (2), considering that the bounds on ϕ and γ are known. This controller has been derived from a class of Lyapunov-based controllers that guarantee finite time stabilization of pure integrator chains, and satisfy certain additional geometric conditions. The pure integrator chain (ϕ ≡ 0 and γ ≡ 1) is represented as follows:

żi = z i+1 , i = 1, ..., r -1, żr = u. (3) 
Let us recall the theorem:

Theorem 1 [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] Consider System [START_REF] Young | A control engineers guide to sliding mode control[END_REF]. Suppose there exists a continuous state-feedback control law u = u 0 (z), a positive definite C 1 function V 1 defined on a neighborhood Û ⊂ R r of the origin and real numbers c > 0 and 0 < α < 1, such that the following condition is true for every trajectory z of system (3),

V1 + cV 1 α (z(t)) 0, if z(t) ∈ Û , ( 4 
)
where V1 is the time derivative of V 1 (z). Then all trajectories of System (3) with the feedback u 0 (z) which stay in Û converge to zero in finite time. If Û = R r and V 1 is radially unbounded, then System (3) with the feedback u 0 (z) is globally finite time stable with respect to the origin.

Based on this theorem, we now present a robust controller for System (2).

Theorem 2 Consider System (2) subject to Hypothesis H2. Then the following control law establishes Higher Order Sliding Mode with respect to s in finite time:

u = 1 K m (u 0 + ϕ 0 sign(u 0 )), ( 5 
)
where u 0 (z) is any state-feedback control law that satisfies Theorem 1 and obeys the following further conditions:

∂V 1 ∂z r (z)u 0 (z) ≤ 0, and u 0 (z) = 0 ⇒ ∂V 1 ∂z r (z) = 0, ∀z ∈ Û . (6) If Û = R r and V 1 is radially unbounded, then System (2)
with the feedback u(z) is globally finite time stable with respect to the origin.

For a ∈ R, the function sign(a) is defined as follows, sign(a)

   = a |a| , a = 0, ∈ [-1, 1] , a = 0. ( 7 
)
Therefore the solutions of System (2) with the feedback law (5) are the solutions of a differential inclusion and are understood in Filippov's sense. Note that u is discontinuous only when u 0 = 0.

Proof. Consider System (2) and the control law u defined in (5):

         żi = z i+1 , i = 1, ..., r -1, żr = ϕ + γu = γu 0 (z) K m + γϕ 0 K m sign(u 0 (z)) + ϕ. (8) 
The time derivative of the Lyapunov function V 1 provided by Theorem 1 is calculated along a trajectory of System (8) inside Û . Let us assume first that u 0 (z(t)) = 0. We obtain:

V1 = r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r (ϕ + γu) , = r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r γ K m u 0 + γ K m ϕ 0 sign(u 0 )+ϕ r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r u 0 + ∂V 1 ∂z r sign(u 0 ) (ϕ 0 -|ϕ|) r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r u 0 ≤ -cV 1 α .
(9) This inequality still holds true if u 0 (z(t)) = 0, since according to condition [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF],

∂V 1 ∂z r sign (u 0 (z)) = 0 is not de- pendant upon the value of sign(u 0 ) ∈ [-1, 1]
. This implies that if the trajectory z reaches zero, it must stay there. Moreover the Lyapunov function V 1 strictly decreases along any non trivial trajectory of ( 6) and reaches zero in finite time according to [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF].

The previous result becomes non empty if controllers satisfying Theorem 1 and Condition ( 6) can be identified. It can be verified that the controllers proposed by Hong [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] and Huang [START_REF] Huang | Global finitetime stabilization of a class of uncertain nonlinear systems[END_REF] fulfill these conditions. Let us consider Hong's controller as an example.

For simplicity, let us introduce ⌊a⌉ κ to denote |a| κ sign(a) for a ∈ R and κ > 0. Then Hong's controller [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] is defined as follows.

Let k < 0 and l 1 , • • • , l r positive real numbers. For z = (z 1 , • • • , z r ), we define for i = 0, ..., r -1:

p i = 1 + (i -1)k, v 0 = 0, v i+1 = -l i+1 ⌊⌊z i+1 ⌉ βi -⌊v i ⌉ βi ⌉ (αi+1/(βi) , (10) 
where α i = p i+1 p i , for i = 1, ..., r, and, for k < 0 sufficiently small,

β 0 = p 2 , (β i + 1)p i+1 = β 0 + 1 > 0, i = 1, ..., r -1. (11) Consider the positive definite radially unbounded func- tion V 1 : R r → R + given by V 1 = r j=1 zj vj-1 ⌊s⌉ βj-1 -⌊v j-1 ⌉ βj-1 ds. ( 12 
)
It has been proved in [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] that for a sufficiently small k, there exist l i > 0, i = 1, ..., r, such that the control law u 0 = v r defined above stabilizes System (3) in finite time and there exists c > 0 and 0 < α < 1 such that u 0 and V 1 fulfill the conditions of Theorem 1. Moreover,

∂V 1 ∂z r = ⌊z r ⌉ βr-1 -⌊v r-1 ⌉ βr-1 , u 0 (z) = v r = -l r ⌊z r ⌉ βr-1 -⌊v r-1 ⌉ βr-1 αr β r-1 . (13) 
It can be verified that ∂V 1 ∂z r u 0 (z) ≤ 0 and u 0 (z) = 0 ⇒ ∂V 1 ∂z r = 0.

The feedback law of [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] can be simplified by choosing all β i = 1 in (10) as explained below:

Proposition 1 For System (3), there exist a sufficiently small k < 0 and real numbers l i > 0, such that the control law u 0 = v r defined below stabilizes System (3) in finite time.

For i = 0, ..., r -1,

v 0 = 0, v i+1 = -l i+1 ⌊z i+1 -v i ⌉ 1+(i+2)k 1+(i+1)k . ( 14 
)
Proof. The proof of Theorem 1 can be developed simply by adapting the proof presented in [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] to the parameter choice of [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF]. Let λ = 1 + (r + 2)k 1 + (r + 1)k and f λ be the closed-loop vector field obtained by using the feedback ( 14) in (3). For each λ > 0, the vector field f λ is continuous and homogeneous of degree k < 0 with respect to the family of dilations (p 1 , ..., p r ), where p i = 1 + (i -1)k, i = 1, ..., r. Let l i , i = 1, ..., r be positive constants such that the polynomial y r + l r (y r-1 + l r-1 (y r-2 + ... + l 2 (y + l 1 )))...)) is Hurwitz. If k = 0 the vector field is linear and therefore λ = 1. Therefore, there exists a positive-definite, radially unbounded, Lyapunov function V : R r → R such that L f1 V is continuous and negative definite.

Let A = V -1 ([0, 1]) and S = bdA = V -1 ({1}),
where bdA is the boundary of the set A , i.e. A = {z ∈ R r |V (z) ∈ [0, 1]} and S = {z ∈ R r |V (z) = 1}. Then A and S are compact since V is proper. Also, 0 / ∈ S as V is positive definite. Defining φ : (0, 1] × S → R by φ(λ, z) = L f λ V (z). Then V is continuous and satisfies φ(λ, z) < 0 for all z ∈ S, i.e. ϕ({1} × S) ⊂ (-∞, 0). Since S is compact, by continuity there exists ǫ > 0 such that φ((1 -ǫ, 1] × S) ⊂ (-∞, 0). It follows that for λ ∈ (1 -ǫ, 1], L f λ V takes negative values on S. Thus, A is strictly positively invariant under f λ for every λ ∈ (1 -ǫ, 1]. Therefore the origin is global asymptotic stable under f λ , for λ ∈ (1 -ǫ, 1]. Finally, for λ ∈ (1 -ǫ, 1) i.e |k| small enough, by homogeneity, the origin is globally finite time stable.

Adaptive Controller

We shall now consider the case for System [START_REF] Slotine | Sliding controller design for nonlinear systems[END_REF] where the uncertainty bound on ϕ is unknown. More precisely, according to the definitions given in H2, the control design requires the a-priori knowledge of K m only whereas ϕ 0 and K M need not be known.

For any a ∈ R, let σ(a) be the standard saturation function defined by

σ(a) = a max(1, |a|) . ( 15 
)
For ε > 0, a ∈ R, we define ν ε (a) by

ν ε (a) = 1 2 + 1 2 σ |a| -3 4 ε 1 4 ε . ( 16 
)
Our main result for the adaptive case is given by the following theorem.

Theorem 3 Consider System (2), subject to assumption H1 and H2, and let u 0 , V 1 be the control law and the Lyapunov function respectively, provided by Theorem 1.Then the following holds true, ∃M > 0 such that ∀ε > 0 small enough and 0 < η < 1, ∃k ε > 0 such that, for every non zero initial condition z 0 ∈ Û ; if u ε is the controller defined by:

u ε = 1 K m (u 0 + φε sign(u 0 )) , ( 17 
)
where (z, φε ) is the solution of the Cauchy problem defined by (2) starting at (z 0 , 0) (i.e. z(0) = z 0 and φε (0) = 0) with the controller u ε and the dynamics

φ = k ε ν ε (V 1 (z(t))) -(1 -ν ε (V 1 (z(t)))) ⌊ φε ⌉ η + σ(V 1 ), (18 
) then we have:

(i) lim sup t→∞ V 1 (z(t)) ≤ ε; (ii) lim sup t→∞ | φε | ≤ M m ε ϕ 0 ε α , where m ε = max V1≤ε ∂V 1 ∂z r .
Remark 2 As u ε is discontinuous when u 0 = 0, the solutions of System (2) with the controller u ε are solutions of a differential inclusion and must be understood in Filippov's sense.

Remark 3 Inequality (i) of Theorem 3 is equivalent to

Levant's concept of real Higher Order Sliding Mode, defined as

∃t 1 > 0 : ∀t > t 1 , |z i (t)| ≤ µ i , i = 1, • • • , r -1,
where µ i is an arbitrarily small positive number. This is equivalent to practical stability of z 1 , • • • , z r . Details on real sliding mode and real HOSM can be found in Section 2 of [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF].

Proof. The dynamics of φε are defined by:

φε =          k ε + σ(V 1 ), V 1 ≥ ε V 1 - ε 2 2k ε ε -(ε -V 1 ) 2 ε ⌊ φε ⌉ η +σ(V 1 ), ε 2 ≤ V 1 ≤ ε, -⌊ φε ⌉ η + σ(V 1 ), V 1 ≤ ε 2 . ( 19 
)
We first need the following intermediate result.

Lemma 1

The function φε is non-negative and is defined as long as the trajectory of z is defined,

lim inf t→∞ V 1 (z) ≤ 3ε 4 and lim inf t→∞ φε ≤ ϕ 0 .
Proof. It is clear that φε is strictly positive in an interval of the type (0, τ ), since φε (0) > 0. We argue by contradiction. Let us suppose that there exist τ 1 > 0 such that φε (τ 1 ) < 0. Since φε continuous, there exists a time τ 0 ≥ 0, τ 0 < τ 1 , such that φε (τ 0 ) = 0, and φε (t) < 0, ∀t ∈ ]τ 0 , τ 1 ]. In this case, V 1 (τ 0 ) = 0 otherwise φε (τ 0 ) > 0 and φε cannot be negative on a right interval at τ 0 . In that case, there exists a right interval at τ 0 (still denoted ]τ

0 , τ 1 ]) where V 1 < ε 2 and then φε ≥ -⌊ φε ⌉ η + σ(V 1 ) > 0. We therefore obtain φε (τ 1 ) = τ1 τ0 φε dt > 0,
which is a contradiction.

To prove the second part of the lemma, we argue again by contradiction. If lim inf

t→∞ V 1 (z) > 3ε 4
, then according to the dynamics of φε in Equation [START_REF] Plestan | Sliding mode control with gain adaptation -application to an electropneumatic actuator[END_REF]. After a sufficiently large time t and for k ε larger than a universal constant, we get φε > k ε 4 . This implies that φε is increasing and after a sufficiently large time t, we obtain φε > ϕ 0 . Since we have:

V1 ≤ r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r γ K m u 0 + ∂V 1 ∂z r ϕ 0 - ∂V 1 ∂z r γ K m φε , ≤ r-1 i=1 ∂V 1 ∂z i z i+1 + ∂V 1 ∂z r u 0 , ≤ -cV α 1 , (20) 
then V 1 (z) converges to zero in finite time, which contradicts the hypothesis lim inf

t→∞ V 1 (z) > 3ε 4 .
Finally we turn to the third part of the lemma and we again argue by contradiction. In that case, φε > ϕ 0 for t large enough and by the previous computation, V 1 converges to zero in finite time, implying the same conclusion for φε , which is a contradiction.

We next turn to the proof of Item (i) of Theorem (3). We again argue by contradiction and suppose that lim sup

t→∞ V 1 (z) ≥ ε.
Then, there exists times

t 1 < t 2 < t 3 arbitrarily large and 3 4 < l < L < 1 so that V 1 (z(t 1 )) = 3ε 4 , V 1 (z(t 2 )) = lε, V 1 (z(t 3 )) = Lε, and 
3ε 4 ≤ V 1 (z(t)) ≤ lε on [t 1 , t 2 ], lε ≤ V 1 (z(t)) ≤ Lε on [t 2 , t 3 ].
Note that we have V1 ≤ m ε ϕ 0 , which implies that t 2 -

t 1 ≥ (l -3 4 )ε m ε ϕ 0 . Since φε ≥ k ε 4 on [t 1 , t 2 ], we have φε (t 2 ) ≥ (l -3 4 )εk ε 4m ε ϕ 0 .
Choosing k ε so that the right-hand side of the above inequality is equal to ϕ 0 , it can be immediately deduced that φε ≥ ϕ 0 on [t 2 , t 3 ] and thus V 1 is strictly decreasing on that interval, which is a contradiction.

We now consider the proof of Item (ii) of the theorem (3). Let [t 1 , t 2 ] be an interval of time where φε (t 1 ) = ϕ 0 , φε (t 2 ) = Kϕ 0 and ϕ 0 ≤ φε (t) ≤ Kϕ 0 on [t 1 , t 2 ].

Here K > 1 and will be bounded independently of the time. From the inequality V1 ≤ -cV α 1 , one deduces that t 2 -t 1 ≤ C 0 ε 1-α , for some universal constant C 0 . Moreover, on that interval, φ ≤ k ε , implying that

(K -1)ϕ 0 ≤ k ε (t 2 -t 1 ) ≤ C 0 m ε ϕ 0 ε α ,
for some positive constant C 0 independent of ε > 0 small enough. This ends the proof of the theorem.

Remark 4 For both choices of controllers from [START_REF] Hong | Stabilization of Uncertain Chained Form Systems Within Finite Settling Time[END_REF] or Theorem 1, it is not difficult to show that there exists C 0 , γ > 0 such that for sufficiently small ε > 0, we have m ε ≤ C 0 ε γ with γ < α. Then, both upper bounds for the gain value k ε and the upper bound on φε tend to infinity as ε tends to zero.

Simulation Results

The performance of the control laws presented in the previous sections has been evaluated through simulation. Let us consider an academic kinematic model of a car [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF] (see Fig. 1), given by:

N N N " N ! l Fig. 1. Kinematic car model.        ẋ1 ẋ2 ẋ3 ẋ4        =        w cos (x 3 ) w sin (x 3 ) w / L tan (x 4 ) 0        +        0 0 0 1        u, (21) 
where x 1 and x 2 are the cartesian coordinates of the rear axle middle point, x 3 is the orientation angle, x 4 is the steering angle and u is the control input. w is the longitudinal velocity (w = 10ms -1 ), and L is the distance between the two axles (L = 5m). All the state variables are assumed to be measured and the velocity is assumed to have an uncertainty of δw = 5% .

The goal is to steer the car from a given initial position to the trajectory x 2ref = 10sin(0.05x 1 ) + 5 in finite time. Considering the sliding variable s = x 2 -x 2ref : the relative degree of the system w.r.t. s is 3. The 3rd time derivative of s is s (3) = ϕ + γu, where

ϕ = [ 1 800 cos x 1 20 .(cos(x 3 )) 2 - 1 40L sin x 1 20 . sin (x 3 ) .tan(x 4 )]w 3 cos (x 3 ) +[- 1 20 sin x 1 20 cos (x 3 ) sin (x 3 ) , γ = w 2 L 1 2 cos x 1 20 sin (x 3 ) + cos (x 3 )
. 1 + tan 2 (x 4 ) .

We first develop a 3 rd -order SMC robust controller in two steps:

• Defining the control law u 0 , which stabilizes a three integrator chain in finite time. • Obtaining the robust control law u via the Equation [START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF].

The robust control law can hence be expressed as

u = 1 K m (u 0 + ϕ 0 sign(u 0 )),
where u 0 is determined below,

v 1 = -l 1 ⌊⌊z 1 ⌉ β0 -0⌉ α1/β0 , v 2 = -l 2 ⌊⌊z 2 ⌉ β1 -⌊v 1 ⌉ β1 ⌉ α2/β1 , u 0 = v 3 = -l 3 ⌊⌊z 3 ⌉ β2 -⌊v 2 ⌉ β1 ⌉ α3/β2 . (22) 
In our simulation, the parameters have been tuned to the following values:

l 1 = 5, l 2 = 10, l 3 = 40, k = -0.2, β 0 = 0.8, β 1 = 1.25, β 2 = 2, α 1 = 4/5, α 2 = 3/4, α 3 = 2/3, K m = 200, ϕ 0 = 1000.
Figures 2 to 5 illustrate the simulation results of the robust controller on the car model. Fig. 2 shows that the sliding variable s and its first two time derivatives ṡ and s converge exactly to zero. Fig. 3 shows the discontinuous control u. Fig. 4 shows that x 2 converges to the desired trajectory. As HOSM has been established, it can be seen that there is no chattering in this figure. Fig. 5 displays the steering angle x 4 versus time. These results show the applicability and robustness of the controller. We will now develop a 3 rd -order SMC adaptive controller, which requires three steps:

• Determining a nominal model of the system.

• Defining the control law u 0 that stabilizes a threeintegrator chain in finite time. • Tuning the dynamics of φε .

The control law can hence be expressed as:

u = 1 K m (u 0 + φε sign(u 0 )) ,
where u 0 is determined in the same way as in [START_REF] Glumineau | Impulsive sliding mode adaptive control of second order system[END_REF]. The parameters used in adaptive simulation are as follows:

l 1 = 5, l 2 = 10, l 3 = 40, k = -0.2, β 0 = 0.8, β 1 = 1.25, β 2 = 2, α 1 = 4/5, α 2 = 3/4, α 3 = 2/3, K m = 200, k ε = 50, η = 0.5, ε = 1.
Fig. 6 shows the convergence of s, ṡ and s under the adaptive controller. Fig. 8 shows the dynamics of φε . It can be seen that the states converge to zero in 4 seconds, and then φε starts to decrease rapidly. During this time, the states are kept equal to zero, ensuring an ideal HOSM. This is because the gains are overestimated in this duration. In Fig. 7, it can be seen that real HOSM is established after 11 sec because the gains are just sufficient to counteract the uncertainty. The states converge to neighborhood of zero defined by V 1 ≤ ε, i.e. V 1 ≤ 1. Fig. 9 shows the control u where the amplitude of the discontinuous part of u adapts to counteract the uncertainty. Fig. 10 shows the convergence of x 2 to the desired trajectory x 2ref . Fig. 11 displays the steering angle x 4 versus time. Comparing Figures 3 and9, it can be seen that after convergence, the amplitude of the control signal is significantly smaller when adaptive gains are applied.

CONCLUSIONS

In this paper, we have presented two HOSMC controllers for the stabilization of nonlinear uncertain SISO systems. The first controller has been developed from a class of Lyapunov based controllers for the stabilization of a pure integrator chain. This controller is robust and depends upon the knowledge of the perturbation bounds.

The second controller is adaptive, as it does not require any quantitative knowledge of the perturbation bounds of the uncertain function ϕ, while the bounds of the uncertain function γ need to be known. It establishes real HOSM. The simulation results illustrate the good performance and effectiveness of both these controllers. The advantage of using adaptive controllers can also be seen in the simulation results, as the controller output is much smaller when adaptive gains are used. Today, arbitrary adaptive Higher Order Sliding Mode Controller is an open problem, where the general problem is to obtain an adaptive controller that ensures establishment of HOSM without the knowledge of the bounds of both ϕ and γ. In future works, we aim to address this issue and develop adaptive controllers which are completely independent of the knowledge of the bounds. s (1) (m/s) s (2) (m/s 2 ) Fig. 2. s(m), ṡ (ms -1 ) and s (ms -2 ) versus time (s). 
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