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Abstract

In this paper, we have presented a Lyapunov-based design for higher order sliding mode robust

and adaptive controllers for nonlinear SISO systems with bounded uncertainties. In the robust

control problem, the uncertainty bounds are known, whereas these bounds are unknown in the

adaptive control problem. These problems have been formulated as the finite time stabilization of a

chain of integrators with bounded uncertainties. The controllers have been developed from a class

of nonlinear controllers which guarantee finite time stabilization of pure integrator chains. In the

adaptive case, the controller design uses saturation functions. For the first controller, we prove finite

time convergence to zero as for the controller in the adaptive case, we show finite time convergence

to an arbitrary small neighborhood of the origin. The proposed controllers can be designed for any

arbitrary order sliding mode. The simulation results demonstrate the effectiveness of the proposed

techniques.

1. INTRODUCTION

Higher order nonlinear dynamic systems are difficult to characterize, and their models contain un-

certainty due to uncertain parameters or perturbations. For finite time stability of such systems, the

controller must be designed to assure finite time stabilization under a certain range of uncertainty,

where the bounds of the uncertainty might be known or unknown. Sliding mode control (SMC)

[1, 2] is a well-known method for the control of high-order nonlinear dynamic systems operating

under uncertainty conditions. The technique is based on applying discontinuous control on a system

to converge to a ”sliding surface” (a surface comprising of the system trajectories) in finite time [3].

In practice, classic SMC suffers from high frequency chattering; as the infinite switching frequency

required by ideal sliding mode is not achievable. Higher order sliding mode control (HOSMC) is
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the most effective method for chattering suppression [4]. In this method the discontinuous control

is applied on a higher time derivative of the sliding surface, therefore not only the sliding variable,

but its higher time derivatives converge in finite time as well.

Many HOSMC algorithms exist in contemporary literature for finite time stabilization of uncertain

nonlinear systems, where the bounds on uncertainty are known. These are referred to as robust

algorithms. Levant for example, has presented a method to design arbitrary order sliding mode

controllers with finite time convergence for Single Input Single Output (SISO) systems in [5, 6, 7].

Laghrouche et al. [8] have proposed a two part integral sliding mode based control to deal with the

finite time stabilization problem and uncertainty rejection problem separately. Dinuzzo et al. have

proposed another method in [3], where the problem of HOSM has been treated as Robust Fuller’s

problem. Defoort et al. [9] have developed a robust MIMO HOSM controller, using a constructive

algorithm with geometric homogeneity based finite time stabilization of an integrator chain. Har-

mouche et al. have also presented their controller in [10] based on the works of Hong [11].

In the systems where uncertainty bounds are unknown, SMC with adaptive gains is required as

simply setting the gains too high elevates chattering. Huang et al. first addressed this issue for first

order SMC in [12]. The main drawback of their technique is that the adaptation algorithm can only

increase gains, which leads to gain overestimation and chattering. Plestan et al. [13] have overcome

this problem by slowly decreasing the gains once sliding mode is achieved. In HOSMC, Shtessel et

al. [14] have presented a Second Order adaptive gain SMC, based on super twisting algorithm for

non-overestimation of the control gains. A Lyapunov-based variable gains super twisting algorithm

has also been presented in [15]. Glumineau et al. [16] have presented a different approach, based

on impulsive sliding mode adaptive control of a second order system. To the best of our knowledge,

no contemporary work on adaptive HOSMC has been published for orders greater than two.

In this paper, we have presented new robust and adaptive higher order sliding mode controllers for

finite time stabilization of higher order SISO nonlinear systems. This problem has been developed

as the finite time stabilization of a chain of integrators with bounded uncertainties. There are two

main contributions of this paper. Firstly, a robust controller has been developed from a class of
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Lyapunov-based controllers, which stabilizes an integrator chain with known bounded uncertain-

ties. Secondly, the robust controller has been extended as an adaptive controller to handle systems

where bounds on uncertainty are not known. This controller establishes real sliding mode [13], i.e.,

once the system states arrive at the sliding surface, they can leave as well. In other words, we prove

convergence in finite time of the states to any arbitrarily small neighborhood of the origin. The gain

adaptation dynamics are based on a saturation function [17, 18, 19], which results in rapid increase

of gains when the error is large, and rapid decrease when the error is reduced.

The main advantage of our work is that our controllers can be extended to any arbitrary order slid-

ing mode. Another advantage is that the adaptive gain control developed in this paper is focused on

prohibiting overestimation of gains. As mentioned before, in the controller presented in [12], the

gains can only increase, whereas in [13] the gains decrease very slowly.

The paper has been organized as follows: the problem formulation has been presented in section 2.

The design of the robust controller has been presented in section 3, and that of adaptive controller in

section 4. Simulation results have been presented and discussed in section 5 and some concluding

remarks have been given in section 6.

2. Problem Formulation

Let us consider an uncertain nonlinear system:




ẋ = f (x, t)+g(x, t)u,

y = s(x, t),
(1)

where x ∈ Rn and u ∈ R is the input control, s is a measured smooth output-feedback function

(sliding variable) and f (x, t) and g(x, t) are uncertain smooth functions. We assume the following,

H1. The relative degree r of the system (1) with respect to s is constant and known, and the asso-

ciated zero dynamics are stable.
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The control objective consists of fulfilling the constraint s(x, t) = 0 in finite time and to keep it

exact by discontinuous feedback control. The rth-order sliding mode is defined as follows:

Definition 2.1 [20, 21]. Consider the nonlinear system (1), and let the system be closed by some

possibly-dynamical discontinuous feedback. Then, provided that s, ṡ, ...,s(r−1) are continuous func-

tions, and the set Sr = {x|s(x, t) = ṡ(x, t) = ...= s(r−1)(x, t) = 0}, called ”rth-order sliding set”, is

non-empty and is locally an integral set in the Filippov sense [22], the motion on Sr is called ”rth-

order sliding mode” with respect to the sliding variable s.

The rth-order SMC approach allows the finite time stabilization to zero of the sliding variable

s and its r − 1 first time derivatives by defining a suitable discontinuous control function. If

the system (1) is extended by the introduction of a fictitious variable xn+1 = t, ẋn+1 = 1, and

fe = ( f T 1)T
,ge =

�
gT 0

�T (where the last component corresponds to xn+1), then the output s satis-

fies the equation [21]:

s(r) = ϕ(.)+ γ(.)u, with γ = LgeL
r−1
fe s and ϕ = Lr

fes.

We also assume the following.

H2. The solutions are understood in the Filippov sense [22], and system trajectories are infinitely

extendible in time for any bounded Lebesgue measurable input.

H3. Functions ϕ(.) and γ(.) are bounded uncertain functions i.e. there exist constants Km,KM > 0

and ϕ0 ≥ 0 such that

0 ≤ Km ≤ γ(x)≤ KM, |ϕ(x)|≤ ϕ0,

for x ∈ X ⊂ Rn, X being a bounded open subset of Rn within which the boundedness of the system

dynamics is ensured.

Assumption H3 implies that results in the following sections of the paper can be considered as

local. Then the rth-order SMC of (1) with respect to the sliding variable s becomes equivalent to
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the finite time stabilization of




żi = zi+1, i = 1, ...,r−1,

żr = ϕ(.)+ γ(.)u,
(2)

where z = [z1z2...zr]
T := [sṡ...s(r−1)]T .

In the following sections, we will first develop a robust controller for the system (2) under hypoth-

esis H3, for the case where the uncertainty bounds presented in H3 are known. Then, an adaptive

controller will be developed to extend the functionality of the robust controller to the case where

the bounds are not known.

Remark 1. Considering the system (1) with relative degree ρ [23] with respect to sliding variable

s, the problem of higher order SMC for r > ρ can be extended naturally by increasing the length of

integrator chain by r−ρ . For the sake of clarity, we will consider r = ρ in all further sections.

3. Design of robust higher order sliding mode controller

In this section, we will present a robust controller which stabilizes System (2), considering that

the bounds on ϕ and γ are known. This controller has been derived from a class of Lyapunov-

based controllers that guarantee finite time stabilization of pure integrator chains, and satisfy certain

additional geometric conditions. The pure integrator chain (ϕ ≡ 0 and γ ≡ 1) is represented as

follows: 



żi = zi+1, i = 1, ...,r−1,

żr = u.
(3)

Let us recall the following theorem:

Theorem 1. [24]. Consider System (3). Suppose there exists a state-feedback control law u = u0(z)

and a C1 function V1 defined on a neighborhood Û ⊂ Rr of the origin, and real numbers c > 0 and

0 < α < 1, such that

1. V1 is positive definite on Û;

2. V̇1 + cV1
α(z(t))� 0, if z(t) ∈ Û ,
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where z(·) is a trajectory of System (3) with the feedback u0(z) and V̇1 is the time derivative of

V1(z(·)) at time t ≥ 0.

Then all trajectories of System (3) with the feedback u0(z) which stay in Û converge to zero in finite

time. If Û = Rr and V1 is radially unbounded, then System (3) with the feedback u0(z) is globally

finite time stable with respect to the origin.

Based on this theorem, we now present a robust controller for System (2).

Theorem 2. Consider System (2) subject to Hypothesis H3. Then the following control law estab-

lishes higher order sliding mode with respect to s in finite time:

ū =
1

Km
(u0 +ϕ0sign(u0)), (4)

where u0(z) is any state-feedback law that satisfies Theorem 1 (i.e., u0 guarantees finite time sta-

bilization of System (3)), and in addition the Lyapunov function V1 satisfies the following further

conditions along with those of Theorem 1:

∂V1

∂ zr
(z)u0(z)≤ 0, and u0(z) = 0 ⇒ ∂V1

∂ zr
(z) = 0, ∀z ∈ Û , (5)

The global finite time stability condition of Theorem 1 exists here as well if Û = Rr and V1 is

radially unbounded.

Proof. Consider System (2) and the control law u defined in (4):






żi = zi+1, i = 1, ...,r−1,

żr = ϕ + γu

=
γu0(z)

Km
+

γϕ0

Km
sign(u0(z))+ϕ.

(6)

The time derivative of the Lyapunov function V1 provided by Theorem 1 is calculated along a

6
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trajectory of System (3) inside Û . Assume first that u0(z(t)) �= 0. We obtain

V̇1 =
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr
(ϕ + γu) ,

=
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr

�
γ

Km
u0 +

γ
Km

ϕ0sign(u0)+ϕ
�

�
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr
u0 +

∂V1

∂ zr
sign(u0)(ϕ0 − |ϕ|)

�
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr
u0 ≤−cV1

α .

(7)

If u0(z(t)) = 0, the previous inequality still holds since
∂V1

∂ zr
żr =

∂V1

∂ zr
u0(z) = 0. It can be deduced

that System (2) is finite time stable with respect to the origin as well.

The previous result becomes non empty if controllers can be identified, that verify the conditions of

Theorem 1 and condition (5). The controllers proposed by Hong [11] and Huang [25] fulfil these

conditions. For x ∈ R and α > 0, let us use �x�α to denote |x|α sign(x). Hong’s controller [11] is

expressed as:

Let k < 0 and l1, · · · , lr positive real numbers. For z = (z1, · · · ,zr), we define for i = 0, ...,r−1:

pi = 1+(i−1)k, v0 = 0, vi+1 =−li+1��zi+1�βi −�vi�βi�(αi+1/(βi), (8)

where αi =
pi+1

pi
, for i = 1, ...,r, and, for k < 0 sufficiently small,

β0 = p2, (βi +1)pi+1 = β0 +1 > 0, i = 1, ...,r−1. (9)

Consider the positive definite radially unbounded function V : Rr → R+ given by

V =
r

∑
j=1

z j�

v j−1

�s�β j−1 −
�
v j−1

�β j−1ds. (10)

It has been proved in [11] that, for a sufficiently small k, there exist li > 0, i = 1, ...,r, such that

the control law u0 = vr defined above stabilizes System (3) in finite time and there exists c > 0 and

0 < α < 1 such that u0 and V fulfill the conditions of Theorem 1. Let us now consider the following

proposition:
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Proposition 1. The Lyapunov function V defined in (10) satisfies Condition (5).

Proof. For z ∈ Rr, we obtain

∂V
∂ zr

=
∂Wr

∂ zr
= �zr�βr−1 −�vr−1�βr−1 , u0(z) = vr =−lr

�
�zr�βr−1 −�vr−1�βr−1

� αr
βr−1 .

Then,
∂V
∂ zr

u0(z) =−lr
����zr�βr−1 −�vr−1�βr−1

���
1+ αr

βr−1 ≤ 0,

and u0(z) = 0 if and only if
∂V
∂ zr

= 0.

The feedback law of [11] can be simplified by choosing all βi = 1 in (8). The following theorem

presents a formalization of this simplification:

Theorem 3. For System (3), there exist a sufficiently small k < 0 and real numbers li > 0, such that

the control law u0 = vr defined below stabilizes System (3) in finite time.

For i = 0, ...,r−1,

v0 = 0, vi+1 =−li+1�zi+1 − vi�
1+(i+2)k
1+(i+1)k . (11)

Proof. The proof of theorem 3 can be developed simply by adapting the proof presented in [11] to

the parameter choice of (11). Let fα be the closed-loop vector field obtained by using the feedback

(11) in (3). For each α > 0, the vector field fα is continuous and homogeneous of degree k < 0 with

respect to the family of dilations (p1, ..., pr), where pi = 1+(i−1)k, i = 1, ...,r. Let li, i = 1, ...,r

be positive constants such that the polynomial yr + lr(yr−1 + lr−1(yr−2 + ...+ l2(y+ l1)))...)) is

Hurwitz. It is clear that for α = 1, the vector field f1 is linear with this characteristic polynomial.

Therefore, there exists a positive-definite, radially unbounded, Lyapunov function V : Rr →R such

that L f1V is continuous and negative definite.

Let A = V−1([0,1]) and S = bdA = V−1({1}). Then A and S are compact since V is

proper. Also, 0 /∈ S as V is positive definite. Defining ϕ : (0,1]×S → R by ϕ(α,z) = L fαV (z).

Then V is continuous and satisfies ϕ(α,z) < 0 for all z ∈ S , i.e. ϕ({1}×S ) ⊂ (−∞,0). Since

S is compact, by continuity there exists ε > 0 such that ϕ((1− ε,1]×S ) ⊂ (−∞,0). It follows

that for α ∈ (1− ε,1], L fαV takes negative values on S . Thus, A is strictly positively invariant

under fα for every α ∈ (1− ε,1]. Therefore the origin is global asymptotic stable under fα , for
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α ∈ (1−ε,1]. Finally, for α ∈ (1−ε,1) i.e |k| small enough, by homogeneity, the origin is globally

finite time stable.

Remark 2. Once u0 has been determined, u can be chosen as u =
δ

Km
(u0 + µϕ0.sign(u0)), with

δ ≥ 1, µ ≥ 1.

Remark 3. It is important to note that u is not necessarily a first order sliding mode on u0, even

though once the states reach the sliding surface u0 = 0, but they can still leave it as well.

Remark 4. When Higher Order Sliding Mode is established (z1 = z2 = ..... = zr = 0) the discon-

tinuous control u is defined by the equivalent control method 1 as the solution of the equation żr = 0

[26]. The equivalent control here is given by

ueq =−ϕ
γ
.

4. Adaptive Controller

We shall now consider the case where the uncertainty bounds on ϕ and γ are unknown. In addition

to the assumptions established for the robust controller, let us now formalize the representation of

unknown bounds on system (2).

H4 Let us consider ϕ = ϕN +∆ϕ , γ = γN +∆γ .

where ϕN and γN are the nominal, known values of ϕ and γ , and ∆ϕ and ∆γ represent the uncertainty

in the knowledge of bounds on ϕ and γ . Then, System (2) becomes:

1In sliding mode theory, once sliding mode has been attained, the discontinuous control can the be replaced by an

equivalent control , without altering the system behavior (see, [26]). The equivalent control can be approximated by

linear first order filter after (4).
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żi = zi+1, i = 1, ...,r−1,

żr = ϕN + γNu+∆ϕ +u∆γ� �� �
F

. (12)

The unknown factors have been coupled into a single factor F . This factor has an unknown upper

bound F̄ i.e.:

|F | ≤ F̄ . (13)

Based on the conditions for robust controller presented in the previous section, let us define a new

control law v, obtained by the following change of variables:

u =
1
γN

(v−ϕN) (14)

then system (12) becomes: 



żi = zi+1, i = 1, ...,r−1,

żr = v+F.
(15)

The HOSMC problem becomes equivalent to finding v which can stabilize (15) in finite time. The

subsequent controllers are defined using saturation functions. Let σ(.) be the standard saturation

function given by

σ(x) =
x

max(1, |x|) ,

and, for ε > 0, let νε(·) be the real valued function defined by

νε(x) =
1
2
+

1
2

σ

�
|x|− 3

4ε
1
4ε

�
. (16)
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Theorem 4. Consider System (15) and let u0, V1 be the control law and the Lyapunov function re-

spectively provided by Theorem 2, with the associated global assumptions. Consider the following

choice of controller, defined for ε > 0:

v = u0 + F̂sign(u0) , (17)

where F̂ is solution of the Cauchy problem defined by:

F̂(0) = 0, ˙̂F = k1νε(V1)− (1−νε(V1))
�
F̂
�α

+σ(V1). (18)

Then the following holds true: there exists M > 0 such that, for ε > 0 small enough, there exist

k1 > 0 so that for every initial condition z0 �= 0, if z(·) denotes the trajectory of System (15) starting

at z0 with the above choice of controller:

(i) limsup
t→∞

V1(z(t))< ε;

(ii) limsup
t→∞

��F̂
��≤ Mmε F̄

εα , where mε = max
V1≤ε

����
∂V1

∂ zr

����.

Proof. The dynamic of F̂ can be defined explicitly by:

˙̂F =






k1 +σ(V1), V1 ≥ ε
�

V1 −
ε
2

� 2k1

ε
− (ε −V1)

2
ε
�
F̂
�α

+σ(V1),
ε
2
≤V1 ≤ ε,

−
�
F̂
�α

+σ(V1), V1 ≤
ε
2
.

We first need the following intermediate result.

Lemma 1. The function F̂ is non-negative and is defined as long as the trajectory of z is defined,

liminf
t→∞

V1(z)≤
3ε
4

and liminf
t→∞

F̂ ≤ F̄ .

Proof. It is clear that F̂ is strictly positive in an interval of the type (0,τ), since ˙̂F(0)> 0. We argue

by contradiction. Let us suppose that there exist τ1 > 0 such that F̂(τ1) < 0. Since F̂ continuous,

there exists a time τ0 ≥ 0, τ0 < τ1, such that F̂(τ0) = 0, and F̂(t)< 0, ∀t ∈ ]τ0,τ1].

In this case, V1(τ0) = 0 otherwise ˙̂F(τ0) > 0 and F̂ cannot be negative on a right interval at τ0.

In that case, there exists a right interval at τ0 (still denoted ]τ0,τ1]) where V1 <
ε
2

and then ˙̂F ≥

−�F�α +σ(V1)> 0. One then gets that

F̂(τ1) =

τ1�

τ0

˙̂Fdt > 0,

11
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which is a contradiction.

To prove the second part of the lemma, we argue by contradiction. If liminf
t→∞

V1(z) >
2ε
3

, then

V1(z(t))>
ε
5

and then ˙̂F >
k1

4
for t large enough and k1 larger than a universal constant. It implies

that F̂ > F̄ for t large enough. Since one has that

V̇1 ≤
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr
u0 +

����
∂V1

∂ zr

���� F̄ −
����
∂V1

∂ zr

���� F̂ ,

≤
r−1

∑
i=1

∂V1

∂ zi
zi+1 +

∂V1

∂ zr
u0,

≤ −c1V α1
1 ,

(19)

then V1(z) converges to zero in finite time, which is not possible.

Finally we turn to the third part of the lemma and we again argue by contradiction. In that case,

F̂ > F̄ for t large enough and by the previous computation, V1 converges to zero in finite time,

implying the same conclusion for F̂ , which is a contradiction.

We next turn to the proof of Item (i) of the theorem. We again argue by contradiction and

suppose that limsup
t→∞

V1(z) ≥ ε . Then, there exists times t1 < t2 < t3 arbitrarily large and
3
4
< l <

L < 1 so that V1(z(t1)) =
3ε
4

, V1(z(t2)) = lε , V1(z(t3)) = Lε , and

3ε
4

≤V1(z(t))≤ lε on [t1, t2], lε ≤V1(z(t))≤ Lε on [t2, t3].

Note that one has V̇1 ≤ mε F̄ , which implies that t2− t1 ≥
(l − 3

4)ε
mε F̄

. Since ˙̂F ≥ k1

4
on [t1, t2], one has

F̂(t2)≥
(l − 3

4)εk1

4mε F̄

Choosing k1 so that the right-hand side of the above inequality is equal to F̄ , one immediately

deduces that F̂ ≥ F̄ on [t2, t3] and thus V1 is strictly decreasing on that interval, which is a contra-

diction.

We next turn to the proof of Item (ii) of the theorem. Let [t1, t2] be an interval of time where

F̂(t1) = F̄ , F̂(t2) = KF̄ and F̄ ≤ F̂(t) ≤ KF̄ on [t1, t2]. Here K > 1 and will be bounded indepen-

dently of the time. From the inequality V̇1 ≤ −cV α
1 , one deduces that t2 − t1 ≤ C0ε1−α , for some

universal constant C0. Moreover, on that interval, ˙̂F ≤ k1, implying that

(K −1)F̄ ≤ k1(t2 − t1)≤
C0mε F̄

εα ,

12
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for some positive constant C0 independent of ε > 0 small enough. This ends the proof of the

theorem.

Remark 5. For both choices of controllers from [11] or Theorem 3, it is not difficult to show that

there exists C0,γ > 0 such that for sufficiently small ε > 0, we have mε ≤C0εγ with γ < α . Then,

both upper bounds for the gain value k1 and the upper bound on F̂ tend to infinity as ε tends to

zero.

5. Simulation Results

The performance of the control laws presented in the previous sections has been evaluated

through simulation. Considering an academic kinematic model of a car [5] (see Fig.1), the system

model is given by:

Figure 1: Kinematic car model.





ẋ1

ẋ2

ẋ3

ẋ4




=





wcos(x3)

wsin(x3)

w�
L tan(x4)

0




+





0

0

0

1




u (20)

where x1 and x2 are the cartesian coordinates of the rear axle middle point, x3 the orientation angle

and x4 the steering angle. u is the control input. w is the longitudinal velocity (w = 10ms−1), and

L the distance between the two axles (L = 5m). The velocity is assumed to be have an error of

δw = 5% . All the state variables are assumed to be measured.
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The goal is to steer the car from a given initial position to the trajectory x2re f = 10sin(0.05x1)+5

in finite time. Considering the sliding variable s(x) = x2 − x2re f : the relative degree of the system

w.r.t. the surface is 3. The 3rd time derivative of s is s(3) = ϕ (·)+ γ(·)u, where

ϕ (.) = [
1

800
cos

� x1

20

�
.(cos(x3))

2

− 1
40L

sin
� x1

20

�
.sin(x3) .tan(x4)]w3 cos(x3)

+[− 1
20

sin
� x1

20

�
cos(x3)sin(x3)

γ (.) =
w2

L

�
1
2

cos
� x1

20

�
sin(x3)+ cos(x3)

�

.
�
1+ tan2 (x4)

�
.

For the robust controller, the 3rd-order SMC is developed in two steps:

• Defining the control law u0, which stabilizes a three integrator chain in finite time.

• Obtaining the robust control law u via the equation (4).

The robust control law can hence be expressed as:

u =
1

Km
.(u0 +ϕ0.sign(u0)),

where u0 is determined below,

v1 = −l1��z1�β0 −0�α1/β0 ,

v2 = −l2��z2�β1 −�v1�β1�α2/β1 ,

u0 = v3 =−l3��z3�β2 −�v2�β1�α3/β2 .

(21)

In our simulation, the parameters have been tuned to the following values:

l1 = 10, l2 = 10, l3 = 70, k =−0.2,

β0 = 0.8, β1 = 1.25, β2 = 2,

α1 = 4/5, α2 = 3/4, α3 = 2/3,

Km = 500, ϕ0 = 2000.
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Fig.6 displays the convergence of states (s, ṡ and s̈) = (z1, z2 and z3) to zero. Fig.3 displays the

control u. Fig.9 displays the tracking of the desired trajectory by x2 without chattering phenom-

ena. Fig.10 displays the steering angle x4 versus time. These results show the applicability and

robustness of the controller.

For the adaptive controller, the 3rd-order SMC is designed in three steps:

• Determining a nominal model of the system

• Defining the control law u0 that stabilizes a three-integrator chain in finite time.

• Tuning the dynamics of F̂ .

The control law can hence be expressed as:

u =
1
γN

�
u0 + F̂sign(u0)−ϕN

�
,

where u0 is determined in the same way as in (21). The parameters used in adaptive simulation are

as follows:

l1 = 10, l2 = 10, l3 = 7, k =−0.2,

β0 = 0.8, β1 = 1.25, β2 = 2,

α1 = 4/5, α2 = 3/4, α3 = 2/3,

γN = 100, ϕN = 0,

k1 = 100, α = 0.5, ε = 0.1.

Fig.6 shows the convergence of states (s, ṡ and s̈) = (z1, z2 and z3) to zero. Fig.7 shows the dynamics

of F̂ . It can be seen that the states converge to zero in 4 seconds, and then F̂ starts to decrease

rapidly. During this time, the states are kept equal to zero, ensuring an ideal sliding mode. After

12 sec real sliding mode is established. Fig.8 shows the control u, the chattering of u is adaptive

with the uncertain model. Fig.9 demonstrates the tracking properties of the controller, without

chattering. Fig.10 displays the steering angle x4 versus time. These results show the applicability

and robustness of the adaptive proposed controller. Comparing figures 3 and 8, it can be seen that

after convergence, the amplitude of the control signal is significantly smaller when adaptive gains

are applied.
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6. CONCLUSIONS

In this paper, we have presented two new controllers for the stabilization of nonlinear uncertain

SISO system, where the problem was formulated by HOSM Approach, by stabilization of per-

turbed integrator chain. The first controller is based upon the transformation of a function that can

stabilize a pure integrator chain. This controller is robust, and depends upon the knowledge of the

perturbation bounds. This controller has the minimum chattering level as compared to other con-

trollers in the literature, and is simple to implement. The second controller does not need require

any quantitative knowledge of the perturbation bounds, and is adaptive in nature. It only insures

finite time convergence to an arbitrarily small neighborhood of the origin. The simulation results

illustrate the good performance and effectiveness of both these controllers. The advantage of using

adaptive controllers is also evident in the simulation results, as the controller output is much smaller

when adaptive gains are used. In real life, this results in significant improvement and longevity of

electrical and electromechanical systems in particular.

Figure 2: s(m), ṡ (ms−1) and s̈ (ms−2) versus time (s).
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Figure 3: control law u versus time (s).

Figure 4: x2 (m) and x2re f (m) versus time (s)

Figure 5: Steering angle x4 (rad) versus time (s)
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Figure 6: s(m), ṡ (ms−1) and s̈ (ms−2) versus time (s).

Figure 7: F̂ versus time (s).

Figure 8: control law u versus time (s).
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Figure 9: x2 (m) and x2re f (m) versus time (s)

Figure 10: Steering angle x4 (rad) versus time (s)
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