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Keypoint-Based Analysis of Sonar Images:

Application to Seabed Recognition

Huu-Giao Nguyen, Ronan Fablet, Axel Ehrhold, and Jean-Marc Boucher

Abstract—In this paper, we address seabed characterization
and recognition in sonar images using keypoint-based approaches.
Keypoint-based texture recognition has recently emerged as a
powerful framework to address invariances to contrast change
and geometric distortions. We investigate here to which extent
keypoint-based techniques are relevant for sonar texture analysis
which also involves such invariance issues. We deal with both the
characterization of the visual signatures of the keypoints and the
spatial patterns they form. In this respect, spatial statistics are con-
sidered. We report a quantitative evaluation for sonar seabed tex-
ture data sets comprising six texture classes such as mud, rock, and
gravely sand. We clearly demonstrate the improvement brought by
keypoint-based techniques compared to classical features used for
sonar texture analysis such as cooccurrence and Gabor features.
In this respect, we demonstrate that the joint characterization of
the visual signatures of the visual keypoints and their spatial orga-
nization reaches the best recognition performances (about 97% of
correct classification w.r.t. 70% and 81% using cooccurrence and
Gabor features). Furthermore, the combination of difference of
Gaussian keypoints and scale-invariant feature transform descrip-
tors is recommended as the most discriminating keypoint-based
framework for the analysis of sonar seabed textures.

Index Terms—Acoustic remote sensing, log-Gaussian Cox pro-
cess, maerly sand, megaripples, sonar texture, visual keypoint.

I. INTRODUCTION

IN RECENT years, the analysis of the physical properties of

the seafloor and the mapping of seabed habitats has become

increasingly important for both marine resource management

and scientific research [1]–[4]. Many projects in coastal marine

environment survey have been initiated to provide a baseline

knowledge of seafloor and marine habitats [5]–[8]. The inno-

vations in underwater acoustic signal processing have played a

major role in the emergence of sidescan sonar as the privileged

remote sensing device for in situ seabed observation. As an

example, a sidescan sonar survey of the REBENT project has

been carried out by IFREMER since 2000 [7]. An EdgeTech

DF1000 sidescan sonar is deployed to survey a 200-km2 area in

the Bay of Concarneau on the south Brittany coast at different
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times, and it resulted in a high-resolution mapping of the marine

habitats (Fig. 1). Sidescan sonar data refer to the backscatter

energy from an insonified region of the seabed. Each line

of a sonar image is built from one beam of the multibeam

sidescan sonar system. The physical and biological properties

of the seabed typically lead to the formation of textured images,

different seabed types such as rock, mud, sand corresponding to

different texture types (Fig. 4). Hence, sidescan sonar imaging

is increasingly used for a variety of applications such as en-

vironmental monitoring, marine geosciences, and biology, as

well as the oil industry or defense [9], [10], and the automated

recognition and classification of sonar images in terms of

seabed types are among the key issues [11]–[13].

Following the early development of texture descriptors in

the field of image processing, sonar texture analysis [14], [15]

usually relies on the extraction of statistics of the response to

scale-space filters, as Gabor and wavelet analysis [15]–[17] or

cooccurrence matrix [10]. However, as shown in Fig. 3, sonar

texture characteristics strongly depend on the incidence angle.

Variations of the incidence angle between the sonar beam and

the insonified surface result both in local contrast changes as

well as geometric distortions. These issues are not intrinsically

embedded in the aforementioned techniques and are usually

dealt with using texture models learned for different angular

sectors. Recently, meaningful advances have been reported for

visual texture recognition invariance to contrast and viewpoint

change [18]–[21]. They mainly involved keypoint-based tech-

niques, which primarily relied on the detection of interest points

in visual textures [22]–[25]. Visual signatures of such keypoints

also embedding such invariance properties were then proposed

for image classification and categorization issues. The resulting

texture characterization was regarded as the statistical analysis

from the descriptor vector and local position of visual keypoints

[26]–[28]. To our knowledge, the relevance of keypoint-based

schemes in sonar seabed imaging has not been investigated.

Here, we aim at evaluating to which extent keypoint-based

techniques can improve the characterization and recognition

of seabed textures. Regarding keypoint sets as realizations of

multivariate point processes, our methodological contributions

lie in the development of multivariate statistical descriptors and

models of spatial keypoint patterns for sonar texture recog-

nition. We focus on the analysis of the spatial covariance

of keypoint patterns, namely, using second-order descriptive

statistics and log-Gaussian Cox processes. These results open

the door for other application of keypoint-based approaches in

sonar imaging, e.g., registration-related issues.

This paper is organized as follows. In Section II, a

sonar texture data set for seabed classification is introduced.
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Fig. 1. Illustration of the surveyed area for marine habitat mapping as part of the REBENT project. The surveyed zone is located in the Bay of Concarneau
(Britanny, France).

Keypoint detection and characterization in sonar seabed images

are reviewed in Section III. In Section IV, we introduce key-

point statistics and associated probabilistic models, including

spatial statistics of visual keypoint patterns. The application to

sonar texture recognition and performance evaluations is re-

ported in Section V. The main contributions of the proposed ap-

proach with respect to the previous work are further outlined in

Section VI.

II. SONAR TEXTURE DATABASE

The sonar images considered in this paper were obtained

from an EdgeTech DF1000 sidescan sonar as part of project

REBENT, IFREMER. This database was used to survey coastal

benthic habitats and to evaluate biodiversity changes in a

200-km2 area in the Bay of Concarneau on the South

Brittany, France (Fig. 1). The sidescan acquisition settings were

chosen for the period from February 26, 2003, to March 21,

2003, as follows: 100-kHz backscatter signal, 110 m for swath

width, and vertical beam titled down 20◦ from the horizontal.

Moreover, 25 underwater video profile and diver observations

and 93 grab samples were collected to provide a groundtruth

knowledge of the structure of the seafloor.

Considering sidescan sonar data interpretation, acoustic

backscatter can be regarded as a function of the incidence

angle (i.e., the angle of incidence of the acoustic wavefront to

the seafloor), surface roughness, impedance contrast across the

sediment water interface, topography, and volume reverberation

[29]. Sonar images are issued from the measurements of the

backscattered echo of the seabed for successive sonar swaths.

An example of sidescan sonar images with incident angles from

−85◦ to +85◦ is shown in Fig. 2(a). The different seabeds

correspond to different textural features. Fig. 2(a) contains two

different seabed types, namely, maerly and gravelly sand and

cleanly sand. Maerl biotopes [Fig. 2(c) and (d)] can build up

over millennia to create carbonate-rich gravel deposits that

often have high benthic biodiversity and productivity [30].

Maerl beds are protected by OSPAR convention. At the north

of Mouton Island (Fig. 1), maerl beds are sculpted into a large-

scale ripple pattern [Fig. 2(a) and (b)], indicating differential

distributions of live and dead thalli between the tops of the

ridges and the bottoms of the gullies. A better discrimination

of megaripples sonar texture is important to recognize this

sensitive habitat. Each column of this sonar image corresponds

to a 25-m-wide band of the seafloor. For a given seabed type,

the mean backscatter clearly depends on various incidence

angles [9], [10]. Fig. 3(a) shows the mean backscatter evolution

of two different seabed types in Fig. 2(a). In particular, for

vertical incidences, poor discrimination among seabed types

can be expected. Moreover, textural patterns may also vary

depending on incidence angles, as shown in Fig. 3(b) and

(c), where, in the specular domain [5◦, 40◦], a loss in contrast

is observed for maerly sand megaripples compared with the

sector [80◦, 85◦].
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Fig. 2. (a) Example of sidescan sonar image (REBENT, IFREMER). Image extracted from (b) a video frame and (c) a grab observation of maerly and gravelly
sand collected at the survey areas (in blue) in the (d) Bay of Concarneau.

Fig. 3. (a) Backscatter evolution as a function of the incidence angle for two
different seabed types: maerly-gravelly (M-G) sand (dotted line) and cleanly
sand (solid line), from −85◦ to +85◦ with the incidence angle in Fig. 2. (b) and
(c) Sonar image samples of the M-G sand for two angular sectors (REBENT,
IFREMER).

Given the different physical and biological characteristics of

the surveyed area, 50 sonar images were collected (Fig. 4). Six

different seabed classes are identified for this paper, namely,

mud, sandy mud, maerly and gravelly (M-G) sand, clearly sand,

rock, and mixed sediment. Here, we used a database of 240

sonar textures images. Each class comprises 40 256 × 256

images with strong variations of incidence angles and scaling.

This image database is made available.1

III. KEYPOINT DETECTION AND CHARACTERIZATION

IN SONAR IMAGES

We aim here at evaluating to which extent visual keypoints

introduced for computer vision applications may be applied

1This database is available for download at http://perso.telecom-
bretagne.eu/ronanfablet.

to sonar seabed imaging. Numerous approaches have been

proposed to detect regions or points of interest in images.

Among the most popular, the Harris detector detects corners

[31], i.e., the points at which significant intensity changes

in two directions occur. It relies on the eigen-decomposition

of the structure tensor of the intensity function. Scale-space

approaches based on the analysis of the Hessian matrix were

also proposed to address scale adaption [32]. Scale-spaces

of difference of Gaussians (DoG) are also widely considered

as an approximation of the Laplacian [24]. More recently,

Mikolajczyk et al. [33] has combined Harris or Hessian detector

and the Laplacian operator (for scale adaption) to propose

two scale-invariant feature detectors, namely, Harris–Laplace

(Har-Lap) and Hessian–Laplace (Hes-Lap). Bay et al. [22]

presented the fast-Hessian (FH) detector based on the Hessian

matrix in the integral images. Other categories of keypoint

detectors may be cited, e.g., the maximally stable extremal

region detector [34], the edge-based region detector, the inten-

sity extrema-based region detector [35], or the entropy-based

region (such as salient regions) detector [36]. Comparisons

between the different detectors for computer vision applications

are given in [22], [33], and [37].

Given the pixel coordinates of the extracted keypoints, de-

noted by {s1, . . . , sN}, many different schemes have been

proposed to extract an invariant feature vector of each keypoint

si [18], [26], [38]. The scale-invariant feature transform (SIFT)

descriptor is certainly among the most popular. It is formed by

local distributions of the orientations of the gradient of the in-

tensity [24]. Intensity-domain features such as spin feature [37]

may also be cited. The later relies on 2-D histogram encoding

the distribution of the intensity value and the distance from the

reference point. Rather than considering gradient orientations,

the SURF descriptor [22] relies on the distribution of Haar-

wavelet responses, whereas the Daisy descriptor [25] exploits

responses to oriented Gaussian filters. The Brief descriptor
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Fig. 4. Examples of sonar texture images with the corresponding video, grab observations, and survey location for the different seabed types. (a) Mud. (b) Sandy
mud. (c) M-G sand. (d) Clearly sand. (e) Mixed sediment.

[23] was issued from a relatively small number of intensity of

different image patches using binary string.

From computer vision reviews, we investigate five robust

detector/descriptor types which were associated with the best

performance for computer vision applications in [22]–[25]

and [38], respectively: DoG+SIFT, (Har-Lap)+(SIFT–Spin),

(Hes-Lap)+Daisy, FH+SURF, and FH+Brief. We briefly

review the details of the implementation of each

combination.

1) DoG+SIFT: This combination initially relies on the DoG

detector to detect image keypoints. For each keypoint, a

set of orientation histograms computed in 4 × 4 pixel

neighborhoods with eight bins is evaluated. We therefore

obtain a 128-dimensional feature vector. The implemen-

tation of DoG+SIFT is available at David Lowe’s page.2

2) (Har-Lap)+(SIFT–Spin): Following [33], we first apply

the Har-Lap approach to detect the image keypoints. A

178-dimensional feature vector is formed from the 128-

dimensional SIFT descriptor and the 50-dimensional Spin

descriptor. The spin image is computed from the ten-

bin normalized histogram of intensity in each of the

five rings centered on the region. The implementation of

2http://www.cs.ubc.ca/~lowe/keypoints/
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Fig. 5. Illustration of image keypoints detected in a sample of maerly and gravely sand using the different approaches. (a) DoG detector. (b) Har-Lap detector.
(c) Hes-Lap detector. (d) FH detector. The mean number of keypoints per image for each method is presented in Table I.

this combination is available from the Visual Geometry

group’s page.3

3) (Hes-Lap)+Daisy: Following [25], we first apply the

Hes-Lap approach to detect the image keypoints. The

Daisy descriptor relies on histograms of oriented Gaus-

sian filters. Here, we consider eight orientations, i.e.,

(π/4)i, i = 1, 8 at three levels of rings, where each level

has eight rings with radius R = 15. The resulting fea-

ture vector is made of 8 + 8× 3× 8 = 200-dimensional,

extracted from 25 locations and 8 orientations. The im-

plementation of this descriptor was taken from E. Tola’s

page.4

4) FH+SURF: A 64-dimensional orientation histogram of

SURF descriptor is calculated from the distribution of

four bins of Harr-wavelet responses in 4 × 4 windows

around the FH keypoints. The code of this combination is

available.5

5) FH+Brief: Following [23], we first apply the FH ap-

proach to detect the image keypoints, and the Brief de-

scriptor is computed as the binary comparison between

two values of N pairs of FH keypoints. The size of

this vector descriptor is N/8. In our implementation, the

dimension of Brief descriptor is fixed to 256. The code is

available.6

As an example of the application of these keypoint detection

schemes to sonar seabed images, we report detection results

for a sonar texture corresponding to maerly and gravely sand

(Fig. 5). Visually, detection results significantly differ among

methods. While the DoG detector leads for this texture sample

to a dense and homogeneous set of keypoints, Hes-Lap and

Har-Lap detectors extract fewer points, and surprisingly, no

keypoints are detected for some subregions. To further illustrate

these aspects, we compare detection results using Har-Lap and

DoG schemes for representative samples of each seabed texture

class (Fig. 6) and report the mean number of detected points

detected in the samples of each class (Table I).

Overall, visual keypoints in sonar seabed images are typi-

cally detected along the boundaries of shadow regions [e.g.,

for the mixed sediment class, Fig. 6(f)] or high-echo zones

(e.g., for the sandy mud samples). As actual corners are not

3http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
4http://cvlab.epfl.ch/~tola/daisy.html
5http://www.vision.ee.ethz.ch/~surf/
6http://cvlab.epfl.ch/software/brief/

particularly characteristic of sonar images, the greater sensi-

tivity of the DoG detector seems to make it more suited to

the analysis of sonar images than Hessian-based detector. As

detailed in the following section, keypoint-based recognition

relies on keypoint statistics. In this respect, the DoG detector

results in the greatest number of detected points, typically 1.8

(2.7 and 6.65) times more than Hes-Lap (respective Har-Lap

and F.H) setting. This property is expected to be beneficial for

characterization and classification issues.

IV. KEYPOINT-BASED STATISTICS FOR SONAR

TEXTURE CHARACTERIZATION

Keypoint-based texture recognition typically relies on a sta-

tistical description of keypoint patterns. The first category of

approaches relies on directly learning keypoint classification

models in the feature space defined by the visual signatures of

the keypoints [19], [20], [37]. Given a set of local keypoints in

a texture image, the classification then relies on a simple voting

procedure over all detected keypoints. A drawback of such

approach is the requirement for learning classification models

from very large training databases of keypoints.

By contrast, we investigate here actual statistical texture

characterization and models for visual keypoint sets. As de-

tailed in the subsequent section, such approaches benefit from

the robustness of their visual signatures in terms of invariance

to photometric and geometric image transformations while

providing a more compact representation of the information

[39], [40]. The bag-of-keypoints (BoKs) method [39], i.e., the

distribution of the occurrences of the visual words in each

texture sample, is the first solution. Moreover, with a view to

jointly characterize the visual signatures of the keypoints along

with their spatial distribution, we consider spatial descriptive

statistics [40] and models [41] of spatial keypoint patterns.

As shown in Fig. 7, for similar relative occurrences of visual

signatures, different spatial patterns revealing differences in

visual content of the textures may be observed.

A. BoKs

BoKs were inspired by bag-of-words characteristics widely

used for text characterization and retrieval [39]. Given a set

of keypoints, the BoK method relies on the construction of

a codebook of the visual signatures of the keypoints using a

k-means-like method. A discrete value is then assigned for
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Fig. 6. Example of different spatial distributions of keypoint sets in sonar texture samples of the different seabed classes using the (left) Har-Lap detector and
(right) DoG detector. (a) Mud: (Har-Lap) 19 points; (DoG) 190 points. (b) Sandy mud: (Har-Lap) 309 points; (DoG) 921 points. (c) M-G sand: (Har-Lap) 529
points; (DoG) 2287 points. (d) Clearly sand: (Har-Lap) 160 points; (DoG) 269 points. (e) Rock: (Har-Lap) 527 points; (DoG) 1002 points. (f) Mixed sediment:
(Har-Lap) 569 points; (DoG) 1286 points.

TABLE I
MEAN NUMBER OF KEYPOINTS DETECTED FROM THE

CONSIDERED SONAR TEXTURE DATABASE

Fig. 7. Examples of different spatial distributions of marked point patterns.

each keypoint group, and the image is characterized by the

occurrence statistics of each keypoint category (often referred

to as visual words). Compared to approaches directly learning

classification models in the feature space of the keypoint de-

scriptors, each texture image is associated here with a feature

vector such that the size of the training database is equal to

the number of training images. However, BoK also ignores the

spatial organization of the visual keypoints, as shown in Fig. 7.

B. Spatial Keypoint Statistics

With a view to jointly characterize the visual signatures of the

keypoints along with their spatial distribution, we propose de-

scriptors formed by spatial statistics of keypoint patterns [40].

Our approach consists in regarding the set of visual keypoint

attached to a given sonar texture sample as the realization of a

spatial point process.

A spatial point process S is defined as a locally finite random

subset of a given bounded region B ⊂ R
2. A realization of

such a process is a spatial point pattern s = {s1, . . . , sn} of

n points contained in B. Considering a realization of the

point process, the moments of random variable are relevant

descriptive statistics. In the general case, the pth-order moment

of S is defined as

µ(p)(B1 × . . .×Bp) = E {N(B1) . . .N(Bp)} (1)

where E{.} denotes the expectation and N(Bi) is the number of

random points contained in a given Borel set Bi. The first-order

moment is evaluated with p = 1

µ(B) = E
∑

s∈S
IB(s) =

∫

B

ρ(s)ds (2)
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where IB(s) is an indicator function that takes the value of 1

when s falls in region B and ρ(s)ds is the probability that one

point falls in an infinitely small area ds of the neighborhood of

point s. The normalized first-order moment λ = µ(B)/|B| is

the mean density of expected points per surface unit, and |B| is

the surface of region B. This quantity fully characterizes Pois-

son point processes. For a homogeneous process, this density is

spatially constant. For a Poisson process, the individual points

of a realization are fully independent.

Beyond the first-order moment, with a view to encode spatial

dependences, the covariance structure of the count variable,

i.e., the descriptive statistics of the pairs of points of the finite

random set, can be characterized by the second-order moment

µ(2) of S given by

µ(2)(B1 ×B2) =E
∑

s1∈S

∑

s2∈S
IB1

(s1)IB2
(s2) (3)

=

∫

B1×B2

ρ(2)(s1, s2)ds1ds2 (4)

where the second-order density ρ(2)(s1, s2) is interpreted as

the density per surface unit of the pair of points s1 and s2
in infinitely small areas ds1 and ds2. For a stationary and

isotropic point process, this density function ρ(2)(s1, s2) states

the correlation of pairs of points and only depends on distance

‖s1 − s2‖ [42]. In the theory of spatial point processes [42]–

[44], the second-order measure µ(2) is frequently replaced by

the factorial moment measure α(2) as

α(2)(B1 ×B2) = E
∑

s1∈S

∑

s2∈S

(s2 �=s1)

IB1
(s1)IB2

(s2) (5)

where the relation between the second-order measure µ(2) and

the factorial moment measure α(2) is given by

α(2)(B1 ×B2) = µ(2)(B1 ×B2)− µ(B1 ∩B2). (6)

In our application of spatial point process to image keypoint

sets, each point of the realization is associated with a visual

signature. Such spatial patterns can be regarded as realizations

of a marked point process. A marked point processΨ is defined

as a spatial point process for which a mark mi is associated

to each point si in B. Following the BoK setting, we resort

here to discrete marks and encode the signature associated with

a given keypoint as a keypoint category. Such point processes

associated with discrete marks can be referred to as multivariate

point process [42], [44].

Similar to previous discussion, second-order moments [in

(4)] can be derived for multivariate point patterns. Considering

circular study region D(., r) with radius r [Fig. 5(f)], the

second-order spatial cooccurrence statistics (SCS) of Ψ are

characterized by the factorial moment measure as follows:

α
(2)
i,j (r)=E

⎧

⎨

⎩

∑

h

∑

l �=h

δi(mh)δj(ml)I (‖sh−sl‖≤r)

⎫

⎬

⎭

(7)

Fig. 8. Intersection cases of circular study window with the boundary of the
image are presented. A very large neighborhood compared with the size of
the image is not necessary to analyze the spatial texture pattern, i.e., we do
not consider radius values greater than the width and the height of the image.
Therefore, all cases of three-edge or four-edge effects and some particular cases
of two-edge effect are not addressed. Considering the points located near the
image’s boundary with conditions of radius r in Table II, we obtain a total of
13 configurations of edge effect. The outside region is colored in green.

TABLE II
EXPLICIT FORMULAS OF ACTUAL CIRCUMFERENCE

b = 2πr − b̃ OF THE CIRCULAR STUDY

where δi(mh) is equal to one if the mark mh of point sh is

i and zero otherwise. For statistical interpretation of second-

order moment µ(2) [42], Ripley’s K function that is usually

used to analyze the mean number of points of type j located in

a study region of radius r centered at the points of type i (which

itself is excluded) is measured as

Kij(r) =
1

λiλj

α
(2)
ij (r). (8)

1) Correction of edge effects: In practice, the computation

of the aforementioned second-order descriptive statistics

takes into account the edge effects. Several corrections

for edge effects for points located near the boundary of

the image have been proposed in the literature [45]. In

Fig. 8, we present the visualization of one-edge effect

[Fig. 8(a)] and two-edge effects [Fig. 8(b) and (c)] which

are analyzed in this paper. Let us denote with e1, e2, e3, e4
the distances between a given point and the four sides of

an image. In Table II, we present the explicit formulas

of the actual circumference of the study circle for the

intersection cases with the boundary of image.

2) Feature dimension reduction: The aforementioned de-

scriptive statistics refer to the mean occurrence of a key-

point of a given category in a ball of radius r centered at a

keypoint of the pattern associated with another keypoint

category. The feature vector size is Nrk
2-dimensional,

where Nr is the number of balls of radius r and k
is the number of keypoint categories. In practice, such

7



high-dimensional feature may affect recognition perfor-

mance, where BoK [39] leads to a k-dimensional feature

space. The spatial statistics combine cooccurrence statis-

tics, i.e., occurrence statistics of pairs of keypoint cate-

gories in an image, and both spatial dependences through

varying ball radii. A dimensional reduction procedure

of second-order statistics was introduced in [40] from

the determination of categories of keypoint pairs. The

codebook of keypoint pairs, denoted by u = M(sh, sl),
is issued from an adapted clustering technique applied

for each set of two categorized keypoints sh and sl. The

second-order SCS in (7) are calculated as

α(2)
u (r) = E

⎧

⎨

⎩

∑

h

∑

l �=h

δu (M(sh, sl)) I (‖sh − sl‖ ≤ r)

⎫

⎬

⎭

.

(9)

C. LGCM

The proposed second-order spatial statistics are the sufficient

statistics describing the log-Gaussian Cox model (LGCM).

Beyond their theoretical interest, parametric forms of these

point process models provide a more compact representation

of the spatial keypoint patterns.

A Cox process X with random intensity function Z is a point

process such that X|Z is a Poisson process with intensity func-

tion Z [42], [46]. For a univariate log-Gaussian Cox processX
on a locally finite subset S ⊂ R

2, the random intensity function

is given by Z = exp(Y ), where Y is a Gaussian field on S
characterized by its mean µ = EY (s) and covariance functions

c(r) = Cov(Y (s1), Y (s2)), where r = ‖s1 − s2‖ is defined

and finite for all bounded B ⊂ S. The mean and covariance

structure of Gaussian field Y relate to the first- and second-

order moments of the point process [46]. More precisely, the

following relations hold for intensity function ρ and pair corre-

lation function g (see the Appendix):
{

ρ(s) = λ = exp(µ+ σ2/2)
ρ(2)(s1, s2)/ (ρ(s1)ρ(s2)) = g(r) = exp (c(r))

(10)

where σ2 = Var(Y (s)) is the variance of the Gaussian

process.

The extension to a multivariate log-Gaussian Cox process

is derived as follows. Cox processes {Xi} are conditionally

independent w.r.t. a multivariate intensity field Z = {Zi}, and

Xi|Zi is a Poisson process with intensity measure {Zi}. Z
relates to a multivariate Gaussian field Y as Zi = exp(Yi). The

multivariate Gaussian random field is characterized by its mean

µi(s) and covariance functions cij(r) = Cov(Yi(s1), Yj(s2)).
Moreover, the intensity and pair correlation function

become
{

λi = exp
(

µi + σ2
i /2

)

gij(r) = exp (cij(r)) .
(11)

Fitting a stationary parametric log-Gaussian Cox process

comes to the estimation of the mean and covariance parameters

of the associated Gaussian field. Following [42] and [46], the

proposed estimation procedure relies on the relation between

TABLE III
COVARIANCE FUNCTIONS OF L(β, r)

the pair correlation function gij and the K function of Gaussian

processes as

Kij(R) = 2π

R
∫

0

rgij(r)dr (12)

where R is a predefined value of the radius. Combining (8) and

(12), the pair correlation function can be estimated as

gij(r) =
1

2πrλiλj

∑

h

∑

l �=h

δi(mh)δj(ml)ξ (‖sh − sl‖, r) bsh

(13)

where ξ(.) is a kernel (here, a Gaussian kernel is considered),

λi is the intensity for class i estimated from (2), and bsh is

the proportion of the circumference of the study circle lying

within the image. Considering the edge effect correction for the

computation of the descriptive statistics as detailed in the previ-

ous section, gij is not symmetric in i and j. The nonparametric

estimation of the covariance function is then defined as
{

cii(r) = log (gii(r))

cij(r) = log
(

λigij(r)+λjgji(r)
λi+λj

)

.
(14)

To resort to a compact probabilistic model for the represen-

tations of visual textures, we investigate the parametric forms

of the covariance function c. Given a chosen parameterization

L(β, r) in Table III, the model parameters are estimated from

the minimization of the following criterion:

R
∫

0

{

σ2
ijL(βij , r)− cij(r)

}2
dr. (15)

A gradient-based optimization procedure is applied to solve

this minimization. The proposed probabilistic keypoint-based

texture model is eventually given by intensity parameters λi,

variances σij , and scale parameters βij . The feature vector size

is reduced from k(k + 2) to 3k∗, where k and k∗ are the number

of categories of keypoints or pairs of keypoints.

1) Feature dimension reduction: The log-Gaussian Cox

covariance model estimation gives a feature vector of di-

mensionality k(k + 2). The same procedure of complex-

ity reduction as SCS is applied, i.e., the nonparametric

estimation of the covariance function is calculated for the

pairs of keypoint categories as

cu(r) = log

⎛

⎝

1

2πrλu

∑

h

∑

l �=h

δu (M(sh, sl))

×ξ (‖sh − sl‖, r) bsh) (16)

and the estimation of intensity parameter λu, variances

σu, and scale parameters βu for each category of keypoint

pairs follows as that previously from minimization (15).
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Fig. 9. Scaling effect on the estimation of the parameters of the LGCM of
visual keypoint sets. (a) Reference image Iref and (b) test image Itest at two
scale factors. The dotted lines are the values of (c) and (d) variances σu and
(e) and (f) scale parameters βu of the reference image Iref in all plots. The
results of parameter estimation without (or with) scale adaption of the test
image Itest are, respectively, showed on the second (or third) lines. These
experiments were carried out with feature dimensionality reduction.

D. Invariance Properties

For the proposed approach based on the statistics of visual

keypoint sets, invariance issues should be further analyzed.

In all cases, invariance to contrast change is fully inher-

ited from the definition of the keypoints and their visual

signatures.

This is also the case for the invariance to geometric dis-

tortions of the BoK representation. For spatial statistics and

associated models, image scaling clearly affects the second-

order moments of the spatial patterns, where the radius value

of the circular study region can be viewed as a scale-space

parameter. Assuming that the detection and characterization

of visual keypoints are scale invariant, scale adaption can be

addressed. It should be stressed that this assumption is linked to

the robustness of keypoint and characterization which is widely

acknowledged in computer vision applications. Scale adaption

proceeds here as follows. A scale factor is estimated from the

rate of average point densities per surface unit compared to

this rate for a reference image (corresponding to the reference

(typically one) scale factor). The actual radius values Ri of

the proposed estimation scheme were chosen depending on its

scale factor. Fig. 9 shows the stability of the proposed scale-

adapted features for different image scalings in the case of the

log-Gaussian model.

V. EXPERIMENTAL EVALUATION

Given the textural features defined in the previous section,

an application to sonar texture classification is addressed, i.e.,

an unknown texture sample is assigned to one of a set of

known texture classes using a discriminative classifier. The

evaluation of the proposed descriptor involves the computation

of classification performances for models learned from Nt

training texture samples per class. Training images are ran-

domly selected among the 40 samples per class. The remaining

40−Nt images per class are used as test images. The random

selection of training samples is repeated 50 times to evaluate

the mean and the standard deviation of the correct classification

rate. The reported experiments comprise both an evaluation of

different parameter settings, particularly in terms of considered

type of keypoint and discriminative classifiers. Moreover, a

comparison to state-of-the-art techniques is also carried out.

The later involves both standard sonar texture descriptors based

on cooccurrence statistics and Gabor features [17], [47] as

well as state-of-the-art techniques for invariant visual texture

recognition [21], [38].

A. Discriminative Classifiers

These experiments were carried out using different discrim-

inative classifiers. We selected the K nearest-neighbor (k-NN)

classifier for its nonparametric nature and its simplicity, support

vector machine (SVM) [48], and random forest (RF) [49],

which are among the most accurate classification schemes [50].

The following parameter settings were considered.

1) The nonparametric k-NN classifier was implemented

with a varied k parameter depending on the number of

training samples Nt

{

k = Nt if Nt ≤ 5
k = 5 if Nt > 5.

(17)

2) Regarding SVM classifiers [48], a one-versus-all strategy

is exploited to train a multiclass SVM, and a Gaussian

kernel is chosen

G(H,K) = exp

(

−d(H,K)

2σ2

)

(18)

where H and K are the feature vectors of the texture

sample and σ is the standard deviation of the Gaussian

distribution.

3) The RF classifier relies on the construction of an en-

semble of classification trees using some form of ran-

domization. A texture sample is classified by sending

it down every tree and by aggregating the reached leaf

distributions. The RF classifier uses a voting rule to assign

a class to an unknown texture sample [49]. We used the

RF with 500 trees (default value), and 100 features were

randomly selected for the optimization of each split of the

tree (mtry = 100).

SVM and k-NN classifiers require the definition of a distance

in the considered feature space. We investigate here different

distances accounting for the characteristics of the considered

9



TABLE IV
RECOGNITION PERFORMANCE OF THE LGCM TEXTURE FEATURE COMBINED WITH DIFFERENT CLASSIFIERS

(K-NN, SVM, AND RF) AND SIMILARITY MEASURES (EUCLIDEAN, χ2, AND JEFFREY DIVERGENCE)

TABLE V
RECOGNITION PERFORMANCE OF THE LGCM TEXTURE FEATURE USING DIFFERENT DETECTOR/DESCRIPTOR TYPES, NAMELY, DOG+SIFT,

FH+SURF, (HAR-LAP)+(SIFT–SPIN), (HES-LAP)+DAISY, AND FH+BRIEF. AN RF CLASSIFIER WAS TRAINED IN EACH CASE

descriptive statistics and models. Namely, three different dis-

similarity measures are evaluated:

1) the Euclidean distance: dE(H,K) =
∑

i |hi − ki|2;

2) the χ2 distance: dχ2(H,K) =
∑

i((hi −mi)
2/mi);

3) the Jeffrey divergence

dJ(H,K) =
∑

i

(

hi log
hi

mi

+ ki log
ki
mi

)

(19)

where mi = (hi + ki)/2.

B. Parameter Setting of the Evaluated Texture Descriptors

Overall, we evaluated eight texture feature sets, namely,

cooccurrence matrix [47] and Gabor [17] features which are

classically used for sonar texture classification and state-of-

the-art techniques for visual texture recognition such as Xu’s

method [21], BoK [39], Zhang’s method [38], and Ling’s

method [51]. The most discriminative features from the dif-

ferent settings of each method were reported. The following

parameter settings were considered.

1) Gabor features [17]: Gabor features are extracted as

the statistics of the response to Gabor scale-space filters.

The Gabor texture features were considered in this paper

at orientations θ = {0,±(π/2), π} and frequencies f =
{0, 4, 8}.

2) Cooccurrence features [47]: Cooccurrence matrix eval-

uates the occurrences of pairs of intensity values for

neighboring pixels. Considered neighborhoods were pa-

rameterized by a distance d = {1, 2, 4} of an orientation

θ = {0,±(π/4),±(π/2),±(3π/4), π}.

3) BoK [39]: The BoK method exploits relative occurrence

statistics of the different visual words based on the SIFT

descriptor. The number of classes of visual keypoints was

set to k = {35, 50, 60}. We used the same k-means-like

technique as that for spatial statistics.

4) Ling’s method [51]: Ling’s feature is a histogram of

cooccurrence statistics of pair visual keypoint categories.

We extend Ling’ feature to a set of logarithmically

increased neighborhood sizes Nr = 128 log(x), where

x varies between 1 and exp(1) according to a 0.05

linear step.

TABLE VI
RECOGNITION PERFORMANCE OF THE LGCM TEXTURE FEATURE WITH

AND WITHOUT SCALE ADAPTION AND DIMENSION REDUCTION

SCHEMES. HERE, A COMPLETE MODEL IS OBTAINED WHEN

TWO OF THE AFOREMENTIONED SCHEMES ARE APPLIED

TABLE VII
RECOGNITION PERFORMANCE OF THE LGCM TEXTURE

FEATURE FOR DIFFERENT COVARIANCE MODELS

5) Xu’s method [21]: Xu’s approach relies on a mul-

tifractal description of textures invariant to viewpoint

changes, nonrigid deformations, and local affine contrast

change. We tested different parameter settings for Xu’s

method: density level ind = {1, 8}, dimension of MFS

f = {16, 64}, and iteration level ite = {8, 10}.

6) Zhang’s method [38]: Zhang et al. proposed a technique

of texture classification using SVM classifier and earth

move distance for the combination of two keypoint de-

tectors (Har+Lap) and two local descriptors (SIFT+Spin)

with the same number of clusters of visual keypoints

k = {35, 50, 60}.

7) SCS [40]: The same parameter setting as the Ling’s

method was used for the SCS approach. However, SCS

involves a correction of edge effects and scale adaption

as well as a feature dimension reduction with k∗ = 30
categories of visual keypoint pairs.

8) LGCM [41]: LGCM was implemented with k =
{35, 50, 60} and k∗ = 30, which are the categories of

visual keypoints and visual keypoint pairs.
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TABLE VIII
CLASSIFICATION RATES AND STANDARD DEVIATIONS OF THE EVALUATED TEXTURE RECOGNITION METHOD FOR THE CONSIDERED

SONAR TEXTURE DATABASE, NAMELY, GABOR FEATURE, COOCCURRENCE FEATURE, BOKS, KEYPOINT COOCCURRENCE

STATISTICS [51], MULTIFRACTAL FEATURE [21], KEYPOINT CLASSIFIER [38], SCS, AND LGCM

C. Performance Result

We first evaluated the importance of the parameter set-

ting (keypoint types, dimension reduction, scaling invariance,

classifier type, and associated parameterization) for the pro-

posed spatial keypoint statistics and models. We detail here

these experiments for the descriptors issued from the LGCMs.

Similarly, results were obtained for the SCS. Considering the

performances of the different classifiers and similarity measures

in Table IV, Jeffrey divergence improves the classification

performance with an approximate gain greater than 1.5% (3%)

compared to χ2 distance (respectively, Euclidean distance)

when five (or ten) training images were used. SVM and RF clas-

sifiers lead to similar recognition performances for our sonar

data set, but the gain compared to k-NN classifier was greater

than 2%. We further evaluated the relevance of the different

types of visual keypoints (Table V). It should be pointed out

that recognition performances appeared relevant whatever the

considered keypoint type is. DoG+SIFT descriptors however

outperform the other keypoint types, with a gain slightly greater

than 1% over (Har-Lap)+(SIFT–Spin) and (Hes-Lap)+Daisy

and 2% over FH+SURF and FH+Brief. These results might be

explained by the greater number of keypoints using DoG+SIFT

schemes compared to the other combinations such that a finer

characterization of the textures can be reached as well as a more

robust estimation of the considered statistics.

Selecting DoG+SIFT descriptors as the reference keypoint

setting, we emphasize the relevance of the proposed scale

adaption and dimension reduction schemes in Table VI. While

scale adaption leads to a gain of about 2%, dimension re-

duction also improves the correct classification rate by about

1.5% when 5–10 training images are available. The choice

of the covariance model also affects recognition performance

(Table VII). The best performances were obtained with a Gaus-

sian covariance model with 97.14 ± 0.37 versus 96.81 ± 0.48

for a cardinal sine model and 96.12 ± 0.58 for a hyperbolic

model when ten training images are used.

The comparison of the different categories of texture descrip-

tors is reported in Table VIII. These results clearly stressed the

relevance of the proposed spatial keypoint statistics for sonar

texture recognition. Compared to classical cooccurrence and

Gabor texture features, the gains were, respectively, greater than

16% and 27%. These improvements were direct benefits from

the robustness and invariance of visual keypoints for the analy-

sis of sonar textures which depicted local contrast variations as

well as geometric distortions. It should be pointed out that, even

Fig. 10. Confusion matrix of sonar texture classification using the LGCM
texture feature. These experiments were carried out using five training images
per class.

with the increase of the number of training samples available for

each class, cooccurrence and Gabor features would not lead to

such high recognition performances greater than 95%. In this

respect, all methods exploiting visual keypoints [38], [39], [51]

or invariant local features [21] reached correct classification

rates greater than 90% when five training images or more are

available.

This quantitative evaluation also demonstrated the mean-

ingfulness of the considered spatial keypoint statistics. They

outperformed by, respectively, 5% and 2% the BoK feature

and the most popular local keypoint (H+L)(SIFT+Spin) method

of Zhang’s method. Where these two approaches only rely

on the discrimination of visual keypoint signatures, spatial

keypoint statistics jointly characterize the visual information

conveyed by these visual keypoint signatures as well as the

spatial distributions of the keypoints. As expected from the

observation of keypoint distributions in sonar textures (Fig. 6),

the spatial organization of keypoint sets is also a discriminative

information that is used to distinguish seabed types. It might

be noted that straighforward keypoint cooccurrence statistics

proposed by Ling et al. [51] were significantly outperformed

(97.14% versus 91.92% when ten training images were consid-

ered). The combination of scale adaption, dimension reduction,

and edge effect corrections explained these improvements.

The proposed spatial statistics, namely, SCS and esti-

mated covariance models, led to very similar recognition
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performances, although covariance models were slightly more

robust, e.g., 97.14% ± 0.37 versus 96.67% ± 0.35 when ten

training images were considered. Covariance models should

however be preferred as they provide a more compact repre-

sentation (typically, covariance models lead to 3k∗-dimensional

feature space when the dimensionality of the SCS reach (Nr +
1)k∗, where k∗ is the size of the codebook of keypoint pairs

and Nr is the number of bounded regions; here, Nr = 20, and

k∗ = 30) and benefit from a solid theoretical background.

We further detail the class-by-class recognition performances

issued from the parametric LGCM when five training images

were used (Fig. 10). The reported confusion matrix was nicely

balanced over seabed classes, with the mean correct classifica-

tion rate ranging from 87.35% to 93.65%. The greatest confu-

sions retrieved between clearly sand and sandy mud (5.75%)

were consistent in terms of visual similarities of the sonar

images.

VI. CONCLUSION

This paper has addressed the development of invariant

descriptors of sonar textures for seabed classification using

keypoint-based approaches. We have showed that visual key-

points, developed for computer vision applications and visual

texture analysis, also provide meaningful signatures of sonar

images to deal with local contrast change and geometric dis-

tortions observed in the sonar observations of the seabed. In

this respect, statistical descriptors and models of the covariance

structure of the multivariate spatial patterns formed by keypoint

sets in sonar textures were highly relevant to improve sonar

texture characterization and recognition.

The analysis of keypoint detection statistics for various

seabed types indicated that DoG keypoints may be more ap-

propriate to deal with the structures observed in sonar images.

Whereas visual keypoints were initially developed as corner

detectors in natural images, sonar images do not intrinsically

involve such corner-like structures. They are rather charac-

terized by the presence of highly reflective areas along with

shadow zones. Whereas some keypoint detectors seem too

conservative to spatially cover all the structures of interest (e.g.,

sand ripples in Fig. 2), the detection of the DoG keypoints

appears highly correlated to the geometric structures of interest

in sonar images. This qualitative evaluation was confirmed

by the reported results for seabed recognition. These results

open the door for other applications of keypoint-based sonar

imaging, including autonomous underwater vehicle navigation

[52] and mine detection [53]. Future work might also pursue

the development of sonar-specific local signatures.

Regarding the application to seabed recognition, we have

reported a quantitative evaluation for a sonar data set involving

six different types of seabed, namely, mud, sandy mud, maerly

and gravelly sand, clearly sand, rock, and mixed sediment. We

have demonstrated that keypoint-based sonar texture charac-

terization can actually achieve very high recognition perfor-

mances compared to classical cooccurrence and Gabor texture

features, which are typically exploited in sonar imaging, while

only considering a few training images to learn seabed texture

models (typically, 5–10 training samples per class). This aspect

is of critical importance for operational applications, in which

only a limited subset of the acquired sonar data set is generally

groundtruthed by an expert. We believe that this paper could

provide a reference benchmarked database for future work on

sonar texture analysis. In this respect, the sonar data set is made

freely available to the community through a Web access.7

From a methodological point of view, we have shown that

spatial point processes provide a mathematically sound frame-

work to analyze the spatial organization and the visual signa-

tures of keypoint sets in sonar images. These descriptors that

are invariant to local contrast change as well as geometric dis-

tortions, especially scaling, provided significant improvements

over state-of-the-art techniques. The advantages of parametric

point process models were further pointed out in their ability

to provide more compact representation of the sonar texture

patterns. In future work, the potential of such models will

be further explored. Compared to simple descriptive statistics,

they can be associated with powerful statistical tools, including

goodness-of-fit or hypothesis test. Such tools are of key inter-

est for marine seabed applications to statistically evaluate the

significance of the changes of seabed textures over time [54].

Other classes of statistical models may also be investigated,

such as Neyman–Scott, shot-noise Cox, or Gibbs processes

[42], [55], keeping in mind that we should balance model

flexibility and complexity. Combining spatial keypoint process

and advanced segmentation schemes is also among the key

issues that should be addressed in future work.

APPENDIX

INTENSITY AND PAIR CORRELATION

FUNCTION COMPUTATION

Considering a univariate log-Gaussian Cox process X on

a locally finite subset S ⊂ R
2, the random intensity function

is given by Z = exp(Y ) and covariance functions c(r) =
Cov(Y (s1), Y (s2)), where Y is a Gaussian field on S and

r = ‖s1 − s2‖.

1) The intensity function

ρ(s) =E[Z] =

∫

B

exp(y)
1√
2πσ2

exp

(

− (y − µ)2

2σ2

)

dy

=
1√
2πσ2

∫

B

exp

(

−y2 − 2y(µ+ σ2) + µ2

2σ2

)

dy

= exp

(

− µ2

2σ2

)

exp

(

(µ+ σ2)
2

2σ2

)

A1

= exp(µ+ σ2/2) (20)

where A1 = (1/
√
2πσ2)

∫

B
exp(−((y − (µ+ σ2))

2
/

2σ2))dy = 1.

2) The pair correlation function:

Regarding the case of µ = 0 with r̂ as the correla-

tion coefficient of the Gaussian field, the second-order

7The sonar image database is made available from the authors’ Web page.

12



moment is given by

ρ(2)(s1, s2)

= E[Z1, Z2]

=

∫

B1×B2

exp(y1 + y2) exp

(

− (y2
1−r̂y1y2+y2

2)
(1−r̂2)σ2

)

2πσ2
√
1− r̂2

dy1dy2

=

∫

B1×B2

exp
(

− A2

(1−r̂2)σ2

)

2πσ2
√
1− r̂2

dy1dy2 (21)

where A2=y21−(2r̂y1y2+2(1−r̂2)σ2(y1+y2))+y22 .

Considering the identification

y21 −
(

2r̂y1y2 + 2(1− r̂2)σ2(y1 + y2)
)

+ y22

= (y1 − κ)2 − 2r̂ ((y1 − κ)(y2 − κ)) + (y2 − κ)2 +A3

= y21 − (2r̂y1y2 − (2r̂κ− 2κ)(y1 + y2))

+ y22 +A3 + 2κ2 − 2r̂κ2. (22)

We get
{

2(1− r̂2)σ2 = −2(r̂ − 1)κ
A3 + 2κ2 − 2r̂κ2 = 0

(23)

{

κ = σ2(1 + r̂)
A3 = 2κ2(r̂ − 1) = 2r̂4(r̂2 − 1)(r̂ + 1).

(24)

Replacing κ and A3 into (21), we have

ρ(2)(s1, s2) = exp

(

− A3

2(1− r̂2)σ2

)

= exp
(

(1 + r̂)σ2
)

.

(25)

The correlation function is given by

g(s1, s2) =
ρ(2)(s1, s2)

ρ(1)(s1)ρ(1)(s2)
=

exp
(

(1 + r̂)σ2
)

exp(σ2/2) exp(σ2/2)

= exp(r̂σ2) = exp (c(r)) (26)

where r̂σ2 = E[Y1, Y2] = c(r).
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