
HAL Id: hal-00703607
https://hal.science/hal-00703607

Submitted on 4 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Generic Model for Situational Method
Engineering

Jolita Ralyte, Rebecca Deneckere, Colette Rolland

To cite this version:
Jolita Ralyte, Rebecca Deneckere, Colette Rolland. Towards a Generic Model for Situational Method
Engineering. CAISE, 2003, Velden, Austria. pp.95-110, �10.1007/3-540-45017-3_9�. �hal-00703607�

https://hal.science/hal-00703607
https://hal.archives-ouvertes.fr

Towards a Generic Model for Situational Method

Engineering

Jolita Ralyté, Rébecca Deneckère, Colette Rolland

CUI, University of Geneva, Bd. Du Général Dufour, 24, CH1211 Geneva, Switzerland

CRI, University of Paris Sorbonne, 90 rue de Tolbiac, 75013 Paris, France

ralyte@cui.unige.ch, {denecker, rolland}@univ-paris1.fr

Abstract. The work presented in this paper is related to the area of Situational

Method Engineering (SME), which focuses on project-specific method

construction. We propose a generic process model supporting the integration of

different existing SME approaches. This model shall help the method engineer

either selecting one SME approach or combining several approaches that best

fit the situation of the method engineering project at hand. The generic model

presented in this paper already contains three SME techniques: (1) to assemble

method chunks (2) to extend an existing method and (3) to generate a method

by abstraction/instantiation of a model/meta-model. The paper presents and

illustrates these three techniques and show how other SME techniques could be

integrated in the model.

1. Introduction

The need for a better productivity of system engineering teams, as well as a better

quality of products motivates the development of solutions to adapt methods to the

project situation at hand. This is known as Situational Method Engineering (SME).

Whereas SME promotes the construction of a method by assembling reusable method

fragments stored in some method base [9, 3, 18, 19, 23, 29, 26], in this paper we

propose a generic process model to capture a large variety of approaches supporting

“on the fly” method construction.

As the selection of the suitable method engineering approach for the project at

hand is not easy, our generic process model guides the method engineer in the

definition of his/her project method engineering goal and in the selection of the

approach which best allow him/her to achieve it. Besides, as in some cases a

combination of several approaches could be the most suitable engineering solution in

order to construct or adapt a method, the generic process model guides the method

engineer in selecting the appropriated set of approaches.

We use a strategic process meta-model called Map to represent our generic SME

process model. Map provides a representation system based on a non-deterministic

ordering of intentions and strategies. A map is a labeled directed graph with

intentions as nodes and strategies as edges between intentions. A triplet <source

intention, target intention, strategy> in the map is called a section. Each section is

defined by an intention achievement guideline, which provides advice to fulfil the

target intention following the strategy given the source intention has been achieved.

The directed nature of the graph shows which intentions can follow which one. An

edge enters a node if its strategy can be used to achieve the intention of the node.

Since, there can be multiple edges entering a node, the map is capable of representing

the many strategies that can be used for achieving an intention. Thus, Map allows us

to integrate different approaches as different method engineering strategies in the

same SME process model and to combine the application of these approaches in the

construction of a new method or the adaptation of a given one.

In previous papers we presented a process model for assembly based situational

method engineering [19], an approach for method extension based on the use of

patterns [5, 6] and more recently, an abstraction based approach [24] responding to

the needs of a large method engineering project in industry. All these approaches use

different techniques for method construction but their objective is the same – to

support the construction of a method matching the requirements of a given, specific

situation.

Our belief is that it will be useful to investigate the problem of integrating different

approaches in a single SME process model. This is the objective we aim at in this

paper. We propose a generic SME process model, which integrates the three above-

mentioned approaches. We also show that this model is flexible enough to integrate

other approaches than the three that are integrated and illustrated in this paper.

The paper is organised as follows: section 2 describes our generic process model

for situational method engineering. Sections 3, 4 and 5 present and illustrate

respectively three method engineering approaches, named Assembly-based,

Extension-based and Paradigm-based, all being integrated in our generic model.

Section 6 considers the similarities and the differences of these approaches and the

possibility of their parallel us in the construction of a single method whereas section 7

draws some conclusions and discuss about our future work.

2. Generic Process Model for Situational Method Engineering

We consider that any SME process is made of two main tasks: setting the method

engineering goal and then, constructing a method that matches this goal. In other

words, there are two core intentions that the method engineer has in mind:

1. Set Method Engineering Goal that is to identify the kind of method he/she needs,

2. Construct a Method allowing him/her to satisfy this goal.

These intentions are the nodes of the map presented in Fig.1. As shown in this

figure, the Map representation formalism allows us to propose several different

strategies to support the realisation of these intentions.

The achievement of the first intention, namely Set Method Engineering Goal

depends of the method situation of the project at hand. In some project situation the

method engineer may perhaps consider that a specific method could be applicable but

requires some adaptations whereas in other situations, he or she may be convinced

that any of the available methods is suitable for the project. In the first case, the

method engineering (ME) goal of the method engineer refers to the adjustments of the

selected method: enhancement, extension or restriction. We call the corresponding

strategy the Method driven strategy. In the second case, he or she decides to construct

a completely new method and the corresponding strategy is called the From scratch

strategy.

The achievement of the intention Construct a Method depends of the applied

method construction technique. Thanks to the map structure it is easy to integrate in

the same model different method construction techniques as different strategies to

reach the intention Construct a method. The map of Fig. 1 proposes three SME

techniques. The first one is based on the reuse of method components extracted from

existing methods and stored in some method base. This technique helps to select and

assemble different method components in order to construct a new method or to

enrich an existing one. As a consequence, the corresponding strategy in our SME

process model is called Assembly-based strategy. The second technique is used for

extending a method by applying extension patterns and therefore it is referred to in

the map by the Extension-based strategy. Finally, the third technique is relevant when

a new fresh method must be constructed either by abstracting from a given model or

by instantiating a meta-model. This new method develops its own paradigm and this

is why the corresponding strategy is called the Paradigm-based strategy. It is obvious

that these three strategies can be combined in order to construct the method best

fitting the situation of the project at hand.

Once the required method has been constructed it is necessary to validate it. For

this, we propose the Evaluation strategy, which implements different method

evaluation techniques. Our Generic Process Model for SME is shown in Fig. 1.

Stop

"From scratch“

strategy
Method based

strategy

Extension-based

strategy

Assembly-based

strategy

Comparison

strategy

Paradigm-based

strategy

Start

Evaluation

strategy

Set
Method Engineering

Goal

Completeness

strategy

Construct
a Method

Fig. 1. Generic Process Model for Situational Method Engineering

It is obvious, that other SME techniques could be integrated in our generic SME

process model as other strategies to achieve the intention Construct a method. In this

paper we concentrate on the three method construction techniques introduced in the

map above and we present and illustrate them in the following sections.

3. Assembly-Based Method Engineering

Our approach for assembly-based SME aims at constructing a method ‘on the fly’ in

order to match as well as possible the situation of the project at hand. It consists in the

selection of method components (that we call method chunks) from existing methods

that satisfy some situational requirements and their assembly.

Our approach is requirements-driven, meaning that the method engineer must start

by eliciting requirements for the method. Next, the method chunks matching these

requirements can be retrieved from the method base. And finally, the selected chunks

are assembled in order to compose a new method or to complete an existing one.

As a consequence, the three key intentions in the assembly-based method

engineering process are: Specify method requirements, Select method chunks and

Assemble method chunks. Several strategies are provided in this process model in

order to achieve these intentions. Fig. 2 depicts our assembly-based process model for

situational method engineering.

Specify method
requirements

Start

Process driven

strategy

Intention driven

strategy

Stop

Assemble
method chunks

Requirements driven

strategy

Integration

strategy

Completeness

strategy

Aggregation

strategy

Decomposition

strategy

Aassociation strategy

Refinement

strategy

Evaluation

strategy
Select

method chunks

Fig. 2. Assembly-Based Process Model for Situational Method Engineering

3.1 Method requirements specification

The elicitation of method requirements must be done in the light of the method

engineering goal set previously (see Fig.1) that might be to adapt an existing method

or to construct a new one. We identified two different strategies for requirements

elicitation, namely Intention driven strategy and Process driven strategy (Fig. 2).

The first strategy is suitable for method adaptation. There are different types of

method adaptation. The method in use can be strong in terms of its product model but

weak with respect to its process model, which will be the subject of adaptation and

enhancement. The adaptation can be to simply add a new functionality to the existing

method, which is relevant in its other aspects. Vice versa, the project at hand could

not need some functionality offered by the method. In all these cases, the

requirements elicitation process is driven by the identification of the ME intentions

such as ‘add event concept’, ‘complete completeness checking step’ etc., which will

allow to complete, enhance or limit the method initially selected. For this reason, wee

call this strategy Intention driven strategy (Fig. 2).

The second strategy is relevant in the case of a new method construction. In such

ME situation the requirements is not only to produce the list of ME intentions that

will permit to adapt the selected method but to identify the full set of engineering

intentions that shall be fulfilled by the new method. For this reason we call the

corresponding strategy Process driven strategy.

Both of these strategies lead to a set of requirements expressed as a map that we

call the requirements map. More information about the guidelines supporting these

two strategies to Specify method requirements can be found in [21].

(b) Requirements map(a) Use case model map

Stop

Completeness

strategy

Include

strategy

Start

Normal case

first

strategy

Actor driven

discovery

strategy

Extension

strategy

Reuse

strategy

Abstraction

strategy

Elicit
use cases

Conceptualise
use cases

Stop

Completeness

strategy

Include

strategy

Start

Normal case

first

strategy

Actor driven

discovery

strategy

Extension

strategy

Reuse

strategy

Abstraction

strategy

Elicit
use cases

Conceptualise
use cases

Rank-based

elicitation

strategy

Rank-based

writing

strategy

Organisation

strategy

Stop

Completeness

strategy

Include

strategy

Start

Normal case

first

strategy

Actor driven

discovery

strategy

Extension

strategy

Reuse

strategy Abstraction

strategy

Elicit
use cases

Conceptualise
use cases

Classify
use cases

Fig. 3. Requirements Map for the Use Case Model Enhancement

As an example, let’s assume that the goal of the method engineer is to enhance the

use case approach proposed by Jacobson in [11] by some scenario classification &

authoring guidelines in order to improve the quality of use case conceptualisation.

This is a case of method adaptation and therefore, the Intention driven strategy is the

more appropriated one. This strategy supports the identification of adaptation

requirements expressed as intentions and strategies as shown in Fig. 3. The initial map

for use case construction is shown in Fig. 3 (a) whereas Fig. 3 (b) highlights the

requirements for enhancement expressed through three new sections (in colour) and

the deletion of the section <Elicit use case, Conceptualise use case, Normal case first

strategy> which is replaced by the added features.

3.2 Method chunks selection

Once the method requirements have been specified, the selection of the method

chunks matching these requirements can start. The Requirements driven strategy

helps the method engineer to select the best fitting chunks. The chunk selection

queries must be formulated by giving values to the attributes of the descriptors and

interfaces of method chunks (see [15, 23]). The validation of the retrieved chunks is

supported by the Evaluation strategy, which helps in evaluating the degree of

matching of the candidate chunk to the requirements. This is done by applying

similarity measures between the requirements map and the process model of the

selected chunk. More details about these similarity measures could be found in [19].

The Decomposition, Aggregation and Refinement strategies help to refine the

candidate chunk selection by analysing more in depth if the chunk matches the

requirements. If the selected method chunk is an aggregate one, i.e. it is composed of

several chunks, the Decomposition strategy drives the selection of the sub-chunks,

which are relevant and eliminate the ones, which are inadequate. Vice-versa, the

Aggregation strategy is applicable when the retrieved chink matches partly the

requirements. This strategy proposes to look for an aggregate chunk containing the

candidate one based on the assumption that the aggregate chunk might provide a

solution for the missing requirements. The Refinement strategy proposes to search for

another chunk satisfying the same intention but providing different guidelines to

achieve it. In our example, the query for the method chunk selection will include

parameters as follows:

Application domain = ‘Information System’ AND Design activity
= ‘Requirements specification’ AND Situation = ‘Use cases’

AND Intention = ‘Classify use cases’

3.3 Method chunks assembly

When at least two chunks have been selected, the method engineer can progress in the

assembly of these chunks following one of the two proposed strategies in the map,

namely the Association strategy and the Integration strategy (Fig. 2).

The Association strategy is relevant when the method chunks to assemble

correspond to two different system engineering functionalities, i.e. they allow to

achieve different engineering intentions and the result of one chunk is used as a

source product by the second one. Such method chunks generally do not have

common elements in their product and process models and the assembly process is

therefore mainly dealing with making the bridge between the two chunks. More

precisely, the product models of the chunks must be connected by defining links

between their different concepts whereas the connection of their process models

consists in defining their execution order. The connection of the product model is

possible thanks to the ADD_LINK and ADD_CONCEPT operators [22]. The

MERGE_INTENTION operator is applied to connect the process models and consist

in identifying in the first chunk the intention producing the source product for the

second chunk. Some method chunk adaptation could be required before their

assembly in order to avoid concepts name ambiguity. This may be done by applying

different RENAME operators. For example, the chunk producing use cases and the

chunk constructing the system object structure can be assembled to get a method with

a larger coverage than any of the two initial ones.

The Integration strategy is relevant to assemble chunks that have similar

engineering goals but provide different ways to satisfy it. In such a case, the process

and product models are overlapping, that is containing the same or similar elements.

The assembly process consists in identifying the common elements in the chunks

product and process models and merging them. Therefore, the integration process is

mainly based on the application of different MERGE operators: For example,

MERGE_INTENTION and MERGE-STRATEGY for the integration of process

models, MERGE_CONCEPT and MERGE_LINK for the integration of product

models. Each of these operators deals with the integration of similar elements

belonging to the initial chunks into a new one in the integrated chunk. The

SPECIALISE and GENERALISE operators define respectively the specialisation and

generalisation links between the concepts of the chunks product models. Their

application is useful to build a model of the integrated method chunk which is richer

than those of the initial chunks.

Like in the previous case, the method chunks adaptation task must precede their

integration. The RENAME operators are used to modify the names of intentions,

strategies, concepts, properties and links. Other operators such as OBJECTIFY_LINK

and OBJECTIFY_PROPERTY may be required for performing more complex

transformation tasks.

For example, the Integration strategy will be necessary to satisfy the method

requirements defined in Fig. 3 as the method engineering objective is to enhance the

use case conceptualisation process by new way of working. Let’s suppose that the

method engineer selects the use case conceptualisation guidelines proposed by

Cockburn [4]. This approach proposes two complementary use case classification

techniques: one is based on a three level goal hierarchy; other defines a design scope

to capture in a use case typology. These two techniques cover the section <Elicit use

cases, Classify use cases, Organisation strategy> in the requirements map. The

guidelines supporting elicitation of other use cases of the lower or higher abstraction

level are also provided by this approach and cover the section <Classify use cases,

Elicit use cases, Rank-based elicitation strategy> in the requirements map. Moreover,

this approach proposes different templates for use case writing as well as the content

guidelines depending on the use case goal level and design scope. It covers the section

<Classify use cases, Conceptualise use cases, Rank-based writing strategy>. The

obtained method (Fig. 4) will provide guidelines richer than those of each chunk used

separately.

Cockburn’s scope-based

classification strategy

Cockburn’s

template-based

writing strategy

Cockburn’s

goal-based

classification strategy

Cockburn’s

goal-based

elicitation

strategy

Stop

Completeness

strategy

Include

strategy

Start

Actor driven

discovery

strategy

Extension

strategy

Reuse

strategy
Abstraction

strategy

Elicit
use cases

Classify
use cases

Conceptualise
use cases

Fig. 4. The enhanced use case model map.

4. Extension-Based Method Engineering

This approach for extension-based SME [5, 6] corresponds to a method

engineering goal that is to adapt locally a method to the contingency of the project at

hand. The approach guides the method engineer by providing extension patterns that

help identifying typical situations of extension and provide advises to perform the

extension required in these situations.

Stop

Select
a meta-pattern

Domain driven

strategy

Completeness

strategy
Pattern based strategy

Start Pattern matching

strategy

Extend a method

Fig. 5. Extension-Based Process Model for Situational Method Engineering

The map, which models the process underlying this approach, is presented in Fig.

5. It can be seen that we advocate two different ways to extend a method: (a) directly

through the Pattern matching strategy or (b) using some generic knowledge related to

the domain for which the extension is to be done through the path Select a meta-

pattern, Extend a method with the pattern based strategy. The former helps to match

extension patterns stored in a library to the extension requirements whereas the latter

selects first, a meta-pattern corresponding to the extension domain and then, guides

the method extension by applying the patterns suggested by the meta-pattern.

Both ways-of-working use a library of extension patterns but do it in different

ways. The domain centric way exploits the fact that a set of patterns and their use can

be embodied in a meta-pattern that is suitable for method extension in this domain

(e.g. temporal data structures). If the required extension does not clearly correspond to

a certain type of extension, a well-identified extension domain, then the pattern

matching approach shall be selected by the method engineer.

4.1 Domain driven adaptation

This path in the process of Fig. 5 comprises to Select a meta-pattern with the

domain driven strategy and then, to Extend a method with the pattern matching

strategy. The guideline to Select a meta-pattern helps the method engineer in

recognising if the extension he/she has in mind corresponds to one of the so-called

extension domains. One typical example of such domain is temporal data structures.

The adaptation of any method implied by this domain includes extensions such as the

integration in the product model of the method of a time model with the appropriated

calendar(s) (Gregorian, week-based, working-day-based etc.), the integration of

temporal events and of temporal expressions for defining event occurrence conditions

etc. These extensions are captured in patterns and organised in a meta-pattern. Meta-

patterns for the different domains for which knowledge about the extension and how

to perform it has been defined, are stored in a repository together with the

corresponding patterns.

Once the method engineer has selected the meta-pattern relevant for the extension

domain at hand, the pattern-based strategy guides him/her in the systematic

application of the patterns associated to the meta-pattern. Table 1 shows the meta-

pattern, which guides temporal method extension.

Table 1. Meta-pattern “Extend a method with temporal concepts”

Concept Pattern Arguments
Temporal

Event

Extend a method

with temporal

events

Applications often need to trigger operations following a specific

time data. This pattern allows the insertion of temporal events in the

method. They use a time model and the temporal domains in order to

define the specific moment to trigger the operations.

Time model

with discrete

time point

Extend a method

with a discrete

time point data

structure

Temporal databases need to use precise knowledge on events. This

pattern allows defining a time model (linear or having a tree

structure) defined as a set of time points (or instants). These points

have an asymmetric and transitive time precedence relationship.

Time model

with interval

Extend a method

with temporal

types

Some applications need to manage fuzzy or imprecise temporal data.

This pattern allows defining a time model seen as a set of intervals.

It helps to describe three temporal types: instants, intervals, and

periods, defined to manipulate the time.

Temporal

domain

Extend a method

with temporal

Classic methods usually use the Date, Time and Time zone domains

linked to an attribute. However, these domains are very poor and

domains don’t allow the representation of relative or periodic attribute. This

pattern aims at supporting the generation of these temporal domains.

The time used may be valid, transaction or user-defined [30].

Object

history

Extend a method

with temporal

classes for object

histories

Histories are sometimes needed by applications in order to look at

the data evolution and to execute the replay functions required for

tracking decisional process of an organization. Therefore, the

application should provide information for each object state when it

is/was true as well as when it is/was exploitable. This pattern permits

to integrate the time management into the class definition and group

properties that evolve at the same time and that are linked to the

same temporal dimension.

Object

versioning

Extend a method

with temporal

classes for object

versioning

Rollback operations are more and more required in order to come

back to previous states of the database. This pattern permits the

creation of object histories supporting the application of rollback

operations without endangering the database coherency.

Documentation operations help the engineer to keep track of the

different versions.

Time

constraint

Extend a method

with time

constraint

The necessity to handle time introduces another problem that is to

constrain data evolution. Models must include concepts helping the

engineer to define which constraints are related to the time in order

to keep the data coherency. This pattern uses a classification of

constraints into intra-object and inter-object constraints [7] and the

distinction between intra-time and inter-time constraints [2] in order

to help the engineer to constrain the data evolution.

4.2 Pattern-matching based extension

The pattern matching approach to Extend a method (Fig. 5) guides the method

engineer in the selection of the extension patterns, which better match his/her

requirements. Therefore, the process map, which models this approach, is centred

around two core intentions: Specify extension requirements and Select & Apply a

pattern. This is shown in Fig. 6 as well as the strategies to attain these process

intentions.

Stop

Specify extension
requirement

Select
and Apply
a pattern

Product extension

strategy

Completeness

strategy

Requirements

elicitation strategy

Start

Requirements

elicitation strategy

Process extension

strategy

Fig. 6. Process Model for Pattern Matching Based Method Extension

The Requirement elicitation strategy helps the method engineer to construct a map

representing the method extension requirements. This map is called requirements

map. Introduce time model could be such an intention (the requirement), interval

based could be a strategy attached to this intention in the requirements map. Discrete

time point could be another strategy associated to the same intention. Two different

requirements maps can included the same intention, Introduce time model but with

different strategies. However, the same requirements map might include both,

meaning that the method extension shall handle both point based and interval

temporal reasoning.

In the repository extension patterns are grouped into product extension patterns and

process extension patterns. The former indicate how to extend a product model

whereas the latter describes a process model extension. This is reflected in the map of

Fig. 6 by the two strategies to Select & Apply pattern, namely the: Product extension

strategy and Process extension strategy. Both strategies are supported by guidelines

which actually try to match the requirements map intentions and strategies with the

situation of the pattern. Some of the similarities introduced in section 3 are applicable

here to help in finding the ‘best’ fit between the requirements and the pattern

situation.

5. Paradigm-Based Method Engineering

This approach uses meta-modelling as its underlying method engineering technique. It

is the most generic of the three approaches to Construct a Method that we propose in

our generic model for situational method engineering shown in Fig. 1. The hypothesis

of this approach is that the new method is obtained either by abstracting from an

existing model or by instantiating a meta-model. Our generic model offers different

meta-models (i.e. different paradigms) and supports the instantiation of the one best

fitting the requirements of the method engineer.

Meta-modelling is known as a technique to capture knowledge about methods. It is

a basis for understanding, comparing, evaluating and engineering methods. One of the

results obtained by the meta-modelling community is the definition of any method as

composed of a product model and a process model [16]. The product model defines

the set of concepts, their properties and relationships that are needed to express the

outcome of the process. The process model comprises the set of goals, activities and

guidelines to support process goal achievement and action execution. Therefore,

method construction following the meta-modelling technique is centred on the

definition of these two models. This is reflected in the map, which refines the

Paradigm-based strategy of Fig.1 by the two core intentions Construct a product

model and Construct a process model (see Figure 6.).

A number of product meta-models [8, 10, 17, 28] as well as process meta-models

[12, 25, 27] are available and our approach is based on some of them. Fig. 7 shows

our paradigm-based process model and highlights a number of different strategies to

achieve each of the two core intentions. Every section in the map is supported by a

guideline, which helps to achieve the target intention in the process.

Stop

Construct a
product model

Construct a
process model

Abstraction

strategy

Instantiation

strategy

Strategic strategy

Tactical strategy

Simple strategy

Refinement

strategy

Completeness

strategy

Pattern-based

strategy

Start

Utilization

strategy

Adaptation

strategy

Fig. 7. Paradigm-based process model for situational method engineering

The construction of the product model depends of the method engineering (ME)

goal. For example, the ME goal could be to construct a method:

• by raising (or lowering) the level of abstraction of a given model,

• by instantiating a selected meta-model,

• by adapting a meta-model to some specific circumstances,

• by adapting a model.

Each of these cases defines a strategy to Construct a product model, namely the

Abstraction, Instantiation, Adaptation and Utilisation strategies. Each of them is

supported by a guideline. For example, the map of Fig. 8 expresses the guideline

supporting the product model construction following the Abstraction strategy.

According to this guideline, the product model construction consists in defining

different product model elements such as objects, links and properties. It starts by the

abstraction of some elements from the paradigm model. After that, the model under

construction is refined thanks to the Generalisation, Specialisation, Aggregation,

Decomposition and Transformation strategies, which help to apply the corresponding

product model construction operators.

The process model definition must conform to the product model. This is the

reason why in the map of Fig. 7 the intention Construct a process model follows the

one to Construct a product model. We know that a process model can take multiple

different forms. It could be a simple informal guideline, a set of ordered actions or

activities to carry out, a set of process patterns to be followed or a multi-process

guideline combining several different alternative ways of working. These four cases

are represented in our paradigm-based process model by four strategies: Simple,

Tactical, Pattern-based and Strategic. Simple and Tactical process models are based

on the NATURE process modelling formalism [12, 25] whereas the Strategic process

model, also called Map formalism, was proposed by [27] (see the introduction of this

paper). The guidelines supporting the application of these strategies can be found in

[1, 20].

Aggregation

strategy

Decomposition

strategy

Transformation

strategy

Generalisation

strategy
Define

product element

Start
Abstraction

strategy

Specialisation

strategy
Stop

Completeness

strategy

Fig. 8. Abstraction Strategy for Product Model Construction

Fig. 9 is an illustration of the use of the Abstraction strategy to Construct a product

model in the Lyee1 industrial project. The guideline of Fig. 7 was followed for the

definition of the Lyee User Requirements Model (LURM) by abstracting from the

Lyee Software Requirements Model (LSRM) [24]. The latter is used by the LyeeAll

CASE tool [13, 14] in order to generate programs, provided a set of well-formatted

software requirements are given. These requirements are expressed in rather low-level

terms such as screen layouts and database accesses. Moreover they are influenced by

the LyeeALL internals such as the Lyee identification policy of program variables,

the generated program structure and the Lyee program execution control mechanism.

Experience with LyeeAll has shown the need to acquire software requirements from

relatively high level user-centric requirements. The meta-model of the LSRM

presented in the bottom part of Fig. 9 has been used as a baseline paradigm model for

the more abstract LURM construction shown in the top part of Fig. 9. It is obvious

that the Abstraction strategy was in this case, the more appropriated strategy to

Construct a product model.

The central concept in the LSRM is called a Word. A Word corresponds to a

program variable: input words represent values captured from the external world

whereas output words are produced by the system by applying specific formulae. The

execution of formulae is controlled by the Process Route Diagram (PRD). A PRD is

composed of Scenario Functions (SF), composed of Pallets, which are made of

Vectors. In order to carry out the generated program control the function generates its

own Words, such as the Action words related to Vectors and Routing words to

distribute the control over the various SFs of a PRD.

1 Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a

methodology for software development used for the implementation of business software

applications. Lyee was invented by Fumio Negoro.

In order to comply with the Lyee paradigm, the LURM should be centred on a

notion, which abstracts from the concept of Word. Obviously Words required by the

Lyee processing mechanism are not relevant at this level. On the contrary, the concern

is only with Domain words. Besides, there is a need to provide the requirements

holder with a means to grasp a ‘set of words’ conceptually associated with one

another. The notion of ‘system interaction’ is proposed for that purpose. An

interaction delineates a number of input and output data, logically assembled together.

Each word of an interaction is defined as a model element called Item by applying the

Abstraction strategy (Fig. 8). The concept of Defined is proposed as an aggregation of

logically related Items thanks to the Aggregation strategy (Fig. 8). The Specialisation

strategy is applied in order to specialise the Item into Output and Input. An Output is

produced by the system whereas the Input is captured from the user. In the same

manner, the Input is specialised into Active and Passive. The former triggers the

system actions whereas the latter represents values captured from the user. Similarly,

the concept of PSG, the Precedence Succedence Graph was obtained by abstraction

of the PRD concept from the LSRM. It specifies the ordering conditions between

Defineds as the PRD do it with Words.

1
1..*

{complete, or}

source

target

PSG

PSGName

PSG

PSGName
0..*

0..*

1..*

1..*

1..*

1..*

1..* 0..*

0..1

Action Word

W04

W02

PNTEPNTE

LogicalID

Device

Logical Unit

SFID

1

1

1

NextpalletID

Routing Word

NextpalletID

Routing Word
Word

WordID

Domain Word

L3-condition

L4-formula

Name

Domain
PRD1PRD1

POP1POP1

PCL1PCL1

PCR1 PCR2 PBOX PWT1PWT1

Word in

Pallet/Unit

Word in

Pallet/Unit1..*

PNTA PNTM

IntraSF

PNTNPNTN

PNTCPNTC

PRD

PRDName

PRD

PRDName

{complete, or}

Name

Type

Defined

Name

Type

Defined

Scenario Function
Lyee Software

Requirements Model

1
1..*

Link
ConditionCondition

Link
ConditionCondition

DuplexDuplexDuplexDuplexDuplex ContinuousContinuous MultiplexMultiplex

{complete, or}

1..*

1..*

0..1

Action Word

W04

W02

PNTR

1

1..*

PCR1 PCR2 PBOX

Pallet

PalletI

D

Pallet
PalletI

D

Pallet

PalletI

D

Pallet

PalletI

D

Pallet
PalletI

D

Name

Domain

ItemItem

Name

Domain

ItemItem
Lyee User

Requirements

Model

BeginBegin EndEnd IntermediateIntermediate

Condition

Formula

Output

Condition

Formula

Output InputInput

Node

NodeID

Node

NodeID

InterSF

Condition

InterSF

Condition

PNTDPNTD

PassivePassive ActiveActive

Fig. 9. Lyee Product Models for Software Requirements and for User Requirements

The process part of the LURM was defined by following the Pattern-based

strategy (Fig. 7). A set of patterns have been defined to take into account different

situations in the user requirements definition. Each pattern provides an advice to

capture and formulate requirements. More about these patterns, their definition and

application could be found in [24].

6. Generic Features

The paper demonstrates that meta-modelling remains the core technique in SME. All

approaches presented above are based on meta-modelling. In the assembly-based

SME approach every method chunks must be instance of a specific meta-model for

modular methods [20]. The extension-based approach depends of the model of the

method to extend, which is itself instance of a specific meta-model and proposes

patterns to extend this model. The patterns are generated from the meta-patterns,

which are also defined at the meta level. The paradigm-based approach is typically

based on meta-modelling.

All these approaches deal with the definition, instantiation, transformation or

assembly of method models and meta-models. The corresponding method

construction activities can be generalised by the means of a set of generic operators.

As all these approaches explicitly separate the notions of product model and process

model, we classify these operators in operators for process model construction and

operators for product model construction. The former generalise the actions to be

performed on the product models and deal with elements such as concepts, links and

properties. The later generalise the actions to be performed on the process models and

deal with elements such as intentions and strategies.

An other classification of these operators relates to the type of action they perform.

Such a classification is as follows:

• Unification operators are used in order to unify the terminology of the product and

the process models before their integration, extension or adaptation. They generally

allow to rename different elements in the process and product models. Some

examples of such operators are RENAME_CONCEPT, RENAME_LINK,

RENAME_INTENTION, etc.

• Transformation operators deal with the conversion of one type of product model

element into another type. For example, the OBJECTIFY_LINK operator permits

to transform a link between two classes of objects into a new object.

• Abstraction/instantiation operators deal with the different abstraction levels of the

models. They can be used for the product model instantiation from a meta-model

or its abstraction from another one.

• Specialisation/generalisation operators can be used for a connection of two

product models having some concepts with similar semantics but different

structures. A new concept can be generalised in order to preserve the two initial

concepts in the integrated model.

• Aggregation/decomposition operators operate with different granularity levels and

allow to combine or to split different product and process model elements.

AGGREGATE_CONCEPTS, DECOMPOSE_CONCEPT or DECOMPOSE_

SECTION are examples of these.

• Addition operators can help to add supplementary elements in the product and

process models. This might be required to connect models or to complete a model

in order to fulfil some method engineering requirements.

• Cancellation operators such as REMOVE_LINK or REMOVE _STRATEGY

eliminate the inadequate elements in the product model or the process.

We are aware of the fact that this list of operators is not an exhaustive one and we are

currently working on it.

The last point that we propose to raise in this section concerns the requirements

matching problem. The specificity of SME approaches is that they are requirements-

driven. Any method construction technique proposed by such an approach must take

into account the definition of the method requirements and the selection of the

solutions that satisfy them. As a consequence, the matching mechanism between the

requirements model and the solution model is paramount. Our belief is that such a

mechanism must include similarity measures. The method engineer needs to be able

to measure the similarity of different elements from the process models like

intentions, sections or entire maps as well as the similarity of different product models

elements like concepts or links.

Currently every approach integrated in our generic process model proposes its own

manner to resolve the requirements matching problem. Our objective is to propose

some generic process and product similarity measures, witch could be adapted or

instantiated in different SME approaches.

7. Conclusion

In this paper we proposed a generic process model for SME. This process model

allows us to capture different approaches for project specific method construction and

to provide guidelines to assist the method engineer in the selection of the approach

best fitting the project situation.

Our generic process model already contains three SME approaches that can be

applied separately or combined in order to construct a new method or to adapt an

existing one. As this model is defined as a map with associated guidelines it is

possible to include other SME approaches in a rather simple manner. They can be

integrated as different strategies to satisfy the intention Construct a method (Fig. 1).

In order to provide a strong methodological support with our generic SME process

model we propose a set of generic method construction operators. We are also

working on different similarity measures which are necessary to evaluate the

similarity between different method elements as well as for evaluating the matching

conditions of a given method chunk with the method requirements.

Our future preoccupation is to complete this generic SME process model by

integrating other approaches and to validate it through real projects. We will also

continue refining the definition of the generic method construction operators and the

metrics for process and product models similarity measurement. In some cases

distance measures might be more appropriated than the similarity ones. We will also

consider this solution.

References

1. Benjamen A., Une Approche Multi-démarches pour la modélisation des démarches

méthodologiques. PhD dissertation. University of Paris 1 - Sorbonne, 1999.

2. Böhlen M.H. Valid time integrity constraint. Report TR 94-30. 1994.

3. Brinkkemper S., M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering.

Proc. of CAiSE’98. Pisa Italy, 1998.

4. Cockburn A., Writing Effective Use Cases. Addison-Wesley, 2001.

5. Deneckere, R., Approche d’extension de méthodes fondée sur l’utilisation de composants

génériques, PhD thesis, University of Paris 1-Sorbonne, 2001.

6. Deneckere, R., Souveyet, C., Patterns for extending an OO model with temporal features.

Proceedings of OOIS’98 conference. Springer-Verlag, Paris (France), 1998.

7. Gehani N., Jagadish H.V. Ode as an active database: constraints and triggers. Proceedings

of the 17th VLDB, Barcelona, Spain, pp. 327-336. 1991.

8. Grundy, J.C., J.R. Venable, Towards an integrated environment for method engineering,

Proc. IFIP WG 8.1 Conf. on ‘Method Engineering’, Chapman and Hall, pp 45-62, 1996.

9. Harmsen A.F., Situational Method Engineering. Moret Ernst & Young , 1997.

10. Hofstede, A.H.M. Ter., Information modelling in data intensive domains, Dissertation,

University of Nijimegen, The Netherlands 1993.

11. Jacobson I., M. Christenson, P. Jonsson, G. Oevergaard, Object Oriented Software

Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

12. Jarke M., C. Rolland, A. Sutcliffe, R. Domges, The NATURE requirements Engineering.

Shaker Verlag, Aachen 1999.

13. Negoro, F. Methodology to Determine Software in a Deterministic Manner. Proceedings of

ICH, Beijing, China, 2001.

14. Negoro, F. A proposal for Requirement Engineering, Proceedings of ADBIS, Vilnius,

Lithuania, 2001.

15. Plihon V., J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, P. Heymans, A

Reuse-Oriented Approach for the Construction of Scenario Based Methods. Proc. of the Int.

Software Process Association's 5th Int. Conf. on Software Process (ICSP'98), Chicago,

Illinois, US, 1998.

16. Prakash, N., On Method Statics and Dynamics. Information Systems. Vol.34, No.8, pp 613-

637. 1999.

17. Prakash, N., M. P. S. Bhatia. Generic Models for Engineering Methods of Diverse

Domains. Proc. of CAISE’02, Toronto, Canada, LNCS Volume 2348, pp. 612., 2002.

18. Punter H.T., K. Lemmen, The MEMA model: Towards a new approach for Method

Engineering. Information and Software Technology, 38(4), pp.295-305, 1996.

19. Ralyté J., C. Rolland, An Assembly Process Model for Method Engineering. Proceedings of

the 13th CAISE’01, Interlaken, Switzerland, 2001.

20. Ralyté J., C. Rolland, An approach for method reengineering. Proceedings of the 20th

International Conference on Conceptual Modeling, ER2001, Yokohama, Japan, 2001.

21. Ralyté J., Requirements Definition for the Situational Method Engineering, IFIP

TC8/WG8.1 Working Conference on Engineering Information Systems in the Internet

Context, Kanazawa, Japan, 2002.

22. Ralyté J., C. Rolland, V. Plihon, Method Enhancement by Scenario Based Techniques.

Proceedings of the 11th CAiSE’99, Germany, 1999.

23. Ralyté J., Reusing Scenario Based Approaches in Requirement Engineering Methods:

CREWS Method Base. Proc. of the First Int. Workshop on the RE Process - Innovative

Techniques, Models, Tools to support the RE Process, Florence, Italy, September 1999.

24. Rolland, C. A User Centric View of Lyee Requirements. In New Trends in Software

Methodologies, Tools and Techniques, H. Fujita, P. Johannesson (Eds.). IOS Press,

Ohmsha, 2002.

25. Rolland, C., C. Souveyet, M. Moreno, An Approach for Defining Ways-of-

Working, Information Systems Journal, 1995.
26. Rolland C., V. Plihon, J. Ralyté, Specifying the reuse context of scenario method chunks.

Proc. of the 10th Conf. on Advanced Information Systems Engineering, Pisa Italy, 1998.

27. Rolland, C., N. Prakash, A. Benjamen : A Multi-Model Vew of Process Modelling,

Requirements Engineering Journal (4)(4), pp169-187, 1999.
28. Saeki, M., K. Wen-yin, Specifying Software Specification and Design Methods, Proc.

CAISE’94, LNCS 811, Springer Verlag, pp 353-366, Berlin, 1994.

29. Saeki M., K. Iguchi, K Wen-yin, M Shinohara, A meta-model for representing software

specification & design methods. Proc. of the IFIP¨WG8.1 Conference on Information

Systems Development Process, Come, pp 149-166, 1993.

30. Snodgrass, I. Ahn. A ytaxonomy of time in databases. Proceedings of ACM SIGMOD

conference. 1985.

