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Abstract. The pattern notion defines techniques allowing the existing 

knowledge reuse. Usually, the knowledge encapsulated in these patterns 

is stored in classic library repositories that quickly become 

overcrowded. To solve this problem, [1] proposes the use of process 

maps in order to organize and select them. But the completeness of the 

maps is a very important problem that has to be solved in order to offer 

a useful guidance to the method engineer. This paper proposes a 

guideline pattern construction technique guiding engineers when 

creating the maps. 

1 Introduction and State of Art 

The pattern notion has been widely used these last years. As a result, the 

patterns repositories number increases and it is more and more difficult to 

manage them. A way to solve this problem is the process map technique 

utilization that helps the method engineer to organize and select patterns. This 

section described these concepts.  

The concept of pattern is very present in the literature and in a lot of different 

domains [2][3][4][5][6][7][8]. In [9] a pattern is described as “a problem which 

occurs over an over again in our environment and then describes the core of the 

solution to that problem, in such a way that you can use this solution a million 

times over, without ever doing the same twice". In Method Engineering, generic 

patterns aim at proposing a mean for constructing situation specific methods. 

Such patterns allow to know which are the best processes in a specific situation 

and they guide the method engineer in the construction of a specific method. 

A pattern description must include the problem for which the pattern proposes 

a solution and the recurring set of situations in which the pattern applies [10]. 

We use here the formalism detailed in [11][12]. A pattern contains two parts: 

the reusable knowledge (the body) and the application aspects of this pattern 

(the signature). The pattern’s body encapsulates the process description to 

apply on the product under modification. The signature is described to 

represent the situation before the modification, the intention to achieve and the 



target of that modification. We also call this concept interface [12]. It is seen 

as a triplet <situation, intention, target> associated to a body. 

Following the appearance of a lot of transformation patterns catalogues, we 

have pointed out in [1] the problems of storing these patterns without order. 

Firstly, the patterns are stored in a library but this one may rapidly become 

overcrowded as engineers add new patterns as time goes by, and, secondly, 

some patterns have precedence relationships and require a way to introduce 

and execute them in predefined order. [1] has proposed an organizational 

technique to solve these problems by using process maps. 

These maps are a formalization of the utilization process of the patterns that 

help the engineer with a guidance of each transformation. [1] uses the 

technique of process map [14][15] in order to sort the patterns in a catalogue. It 

is a labeled graph composed of nodes and edges. Nodes represent intentions 

that the engineer wants to reach and edges manners for reaching these 

intentions. The directed nature of the graph shows possible intentions 

dependencies. An edge enters a node if its manner can be used to achieve its 

intention. Since there can be multiple edges entering a node, the map is able to 

represent all the manners that can be used for achieving an intention. An 

execution path, determined by a map, always starts by the intention Start and 

ends by the intention Stop. 

In [1], we have defined that a pattern, contextually to a specific map, may be 

represented by a defined section. Each of these sections (i.e. each of these 

patterns) represents a specific way to reach a target intention, from a node in 

the map, by the execution of a particular manner. The next figure shows the 

equivalence between concepts of Section and Pattern using the representation 

of two sections of a map. 

 

Manner 1 

Manner 2 

Source Intention Target Intention I 

Section 1 

Section 2 

Pattern 1 

Modify, by manner 1, the product P, to reach the target intention  I 

Pattern 2 

Modify, by manner 2, the product P, to reach the target intention I 

 
Figure 1: Sections and patterns 

This figure illustrates the fact that the applicable pattern between two 

intentions will be different, according to method engineer’s manner choice. 

Then, we may say that it exists, from a specific source intention to a specific 

target intention, as many applicable patterns than manners.  

The problematic and proposed solution is described in the next section. An 

application of this technique to the OO method extension approach is done in 

the section three. We conclude in the fourth and last section.  



2 Problematic and Proposed Solution 

The major problem left was the map completeness. The process maps are 

perfects if they are complete, so the method engineer knows all the alternatives 

that are offered to him. However, if some patterns are not present on the map, 

engineers may come to a dead-end and all the usefulness of this technique is 

thrown away. In order to construct complete maps, we propose here a specific 

construction pattern technique using meta-patterns.   

Problematic when constructing a map, for a specific application domain, begin 

with the explicit inventory of all the intentions. For instance, if we want to 

extend a method, each intention will represent a specific element integration 

into this specified method. Then, the method engineer makes the inventory of 

the applicable manners to reach these intentions. Finally, each of these sections 

has to be described by a pattern. However, manners inventory in a map is a 

very long, delicate and strategic work and represents the major difficulty of 

that process. If the method engineer forgets one section and that the extension 

process of a specific method need this one to reach its goal, this extension can't 

go farther. To solve that case, this paper proposes to create a set of generic 

manners specific to the approach used. Apply all generic manners to all map 

intentions allows map completeness certification. 

Furthermore, in order to ease the sections realization of the map (i.e. the 

description of the associated patterns), all the relative knowledge of the 

patterns construction is encapsulated in a specific meta-pattern. The method 

engineer, as soon as the elements to integrate will have been identified, will 

directly realize the map intentions, by applying all meta-patterns defined. Each 

meta-pattern application will guide to a pattern construction allowing to reach 

a target intention, from a source intention, by applying a specific manner on it. 

This construction process allows to guide the method engineer when 

identifying the map sections and also when constructing the associated 

patterns. The next figure shows the instantiation of a meta-pattern using the 

specialization generic manner for the construction of three patterns (i.e. three 

sections of the map). A complete description of this meta-pattern is done in 

[11]. 

 

Extend the method M, by  SPECIALIZATION, 
to integrate the Temporal Referential concept 

Extend the method M, by  SPECIALIZATION, 

to integrate the Scenario concept 

Extend the method M, by  SPECIALIZATION, 

to integrate the Actor concept 

Extend the method M by SPECIALISATION 

Pattern Pattern 

Pattern 

Méta-Pattern 

 
Figure 2: Meta-pattern instantiation to obtain patterns 

To illustrate this paper, we choose to apply this technique to the method 

extension approach and we will also only focus on the set of patterns that may 

be used when extending an OO method.  



3 Application to the OO Method Extension Approach  

The method extension approach has been defined in [11]. It is described as a 

technique allowing to take into account more things that was in the origin set. 

The manners and meta-patterns used here are specific to this particular 

approach. 

The manners studied in this paper allow modifying a method. Three 

parameters are considered: (a) the method element to modify - [Element X] 

(this element is a part of the method before the extension), (b) the element that 

the method engineer wishes to integrate into the method - [Element Y] (this 

element is a part of the method after the extension) and (c) the element likely 

to be of no use after the extension – [Element D] : Manner ([Element X], 

[Element Y], [Element D]). Note that the two first arguments are mandatory. 

The third one – [Element D] – is optional. All extensions don’t change the 

source method to the point of leaving an useless element. In that last case, it is 

necessary to leave the possibility for deleting this element and guaranty the 

method coherency.  

Lets take the example of a pattern that allows integrating the Calendar Class 

concept into a method that already contains the Clock Class concept. In fact, it 

will be implemented as a replacement of the first one by the second one. The 

situation before the extension is : Clock Class = Inherits of (Class), 

Composition (Temporal Event)1. The manner application is : REPLACEMENT 

(Clock Class, Calendar Class, φ). The situation after the extension is : 

Calendar Class = Inherits of (Class), Composition (Temporal Event). 

The knowledge relative to each manner is encapsulated into a specific pattern 

named "Meta-pattern". As exposed before, the meta-patterns follow the 

patterns description. They are composed by a signature (Figure 3) and a body. 

As for the patterns, the meta-patterns may be differentiated following two 

specific types: the ones allowing to construct a Product pattern and the ones 

allowing to build a Process pattern.  

 

Situation Target 

Intention 

Method to 
extend 

 

Extend, by the manner S,  the method M to integrate Y 

Method 

extended 

Situation Target 

Intention 

([Element Y] 

Construct a pattern to Extend, by the manner S,  the method [M] to integrate [Y]   

Pattern  Meta-pattern body 

 

Pattern body 

 
Figure 3: Meta-pattern interface  

                                                             
1 This formalism is described in [11]. 



The meta-pattern situation represents the Element Y (the additional element 

we want to integrate into the original method). The meta-pattern intention is to 

build a pattern that will integrate that element in the method following a 

specific manner, resulting a target meta-pattern that is a pattern for a specific 

element and following a specific manner.  

The meta-pattern body represents all the operations allowing the construction 

of the pattern, i.e. the definition of its situation, its intention, its target and its 

body. This body is constructed by a set of operators corresponding to the 

manner used.  Each manner represents a set of modification operators 

containing three unknown values : Element X, Element Y and Element D (the 

three arguments of the manner). Element Y is known when we use the meta-

pattern in order to build a pattern. However, Element X and Element D will 

only be known when instantiating this pattern to a specific method.  

Lets illustrate that concept with a sample. The following figure shows the 

successive instantiations, from a meta-pattern to a pattern (for an integration of 

a specific element) and to a pattern allowing the extension of a specific 

method. Calendar Class is the concept to integrate in the O* method. 

 

Situation 
Target 

Intention 

[X} = ([W]) 
 

W represents the set of 

links  of X 

Extend, by REPLACEMENT, The product part of M to integrate the Calendar Class concept  

[Calendar Class] = ([W]) 
 

W represents the set of links of 

Calendar Class 

Situation 
Target 

Intention 

Clock Class = Inherits of 

(Class), Composition 

(Temporal Event) 

 

 

Extend, by REPLACEMENT, the Clock Class concept to integrate the Calendar Class concept 

Calendar Class = Inherits of 

(Class), Composition (Temporal 

Event)) 

Pattern body 

Replace (Clock Class, Calendar 

Class) 

 

 M = Method O* having  

 [X] = Clock Class  

 [W] = inherits of (Class), Composition (Temporal Event) 

Situation Target 

Intention 

Product Element [Y] 

Construct a pattern to Extend, by REPLACEMENT, the product part of M,  to integrate the product 
element [Y]  

Product pattern REPLACEMENT 

meta-pattern body 

 
[Y] = Calendar Class 

Meta-pattern 

Pattern 

Pattern instantiated to  O* 

Pattern body 
 

Replace (X, Calendar Class) 

 
Figure 4: Example of pattern construction with meta-patterns 

This figure shows the two steps allowing to construct a pattern, given a 

specific method. The first step represents the meta-pattern instantiation for the 

Calendar Class concept. The second step represents the pattern instantiation to 

the O* method. 



As the objective in this paper is automating patterns building, we will focus on 

the inventory of all the possible manners to extend a method (the manners set), 

i.e. all the possible meta-patterns. We will describe here differences between 

the two types of meta-patterns (Product and Process) and theirs related 

manners. To limit the research domain of this work, we will only focus on the 

set of patterns that may be used when extending an OO method. These 

manners will be called OOME manners (Object Oriented Methods Extension 

manners). On the same way, the associated patterns are called OOME patterns. 

3.1 OOME Product Manners  

In case where Product part of a method doesn’t match method engineer 

requirements, that method may be modified by applying a Product pattern  

defined in the patterns catalogue. This catalogue is populated with the Product 

meta-patterns application. These specific patterns allow constructing pertinent 

patterns adapted to the application at hand. They have to be applied on the 

method in order to modify it. The modified method will then handle a bigger 

set of concepts to construct a more complete and coherent application. 

A Product meta-pattern may be described with its interface. The situation is the 

Product element to integrate in the method. The intention is the construction of 

a pattern to extend the method. The target is that pattern, created for a specific 

product element and following a selected manner. The body is the set of 

creation operations allowing to create the pattern. The body of the pattern 

created will be composed of a set of transformation operations (corresponding 

to the manner chosen).  

As a method extension is a technique allowing to take into account more 

things that was in the origin set, a Product part extension will introduce new 

concepts into an existing model. That merge may be made following two 

different ways : either the concept to integrate is a new element, or it is a 

concept already represented in the method but in an incomplete or incorrect 

way.  

Introduction of a New Concept in the Method 

The introduction of these new concepts had to be followed by their connection 

to the rest of the model. A concept is important only if it is linked with other 

concepts. These grafts are realized by instantiating the different kind of links 

defined in the Product meta-model of the method. Note that the extension 

process will be different following these links. As a result, the extensions may 

be defined according to the link type used to connect the new element to the 

method model. A generic links set has been defined with the study of several 

OO methods (OMT[16],OOA&D[17], O*[18], etc) and results in the fact that 

a new concept may be added in a method product model by connecting it to an 

other concept with the inheritance, composition or association link.  



• Inheritance Link: The method engineer may integrate a new concept in the 

model by connecting it to an existing concept with an inheritance link. The 

new concept is then inserted as a specialization of an existing or a non-existing 

concept.  

In the first case, the new concept is inserted and the inheritance link between it 

and the existing concept is added. This technique may be used only if the 

method already contains a concept that may be viewed as a super-type of the 

concept to integrate. Lets use an example concerning an extension of the OMT 

method. Its Product model contains the Event concept. The insertion of the 

Temporal Event new concept may be made by a specialization of Event. 

Integrating the Temporal Event concept, and connecting it by specialization 

with the Event one, makes the extension. 

On the contrary, in the second case, the method does not contain any concept 

of this kind. However, it contains one with a semantic similar to the concept to 

integrate. In this case, the extension allows integration of an other element that 

de facto generalize existing and new concepts. Lets consider again the OMT 

method. It contains the Object Class concept. The insertion of the Actor Class 

may be made with that technique, regarding their semantic similarity. Firstly, 

the extension of the method will insert a generalization of the Object Class that 

we call the Class concept. Next, the Actor Class concept is integrated. Finally, 

this new concept is connected by a specialization link to the Class concept. 

To insert a concept by an inheritance link may be viewed as two different 

techniques : inheritance link usage or generalization link usage. Each of these 

two techniques represents a specific OOME Product manner : 

SPECIALIZATION and GENERALIZATION. 

• Composition Link: The method engineer may also integrate a new concept 

in the model using a composition link. The new designed concept may be 

inserted as a composed concept or as a component of an existing concept.  

In the first case, the concept is added in the target Product model then 

connected as a composed element of an existing concept. Lets illustrate that 

with an OMT method case. It contains the designed Object Class concept, 

composed of Property, Event and Operation concepts. The method engineer 

may extend this method by integrating the Constraint concept on the Object 

Class. The best way to integrate this concept is to consider it as a component 

of the Object Class, just as the three others.  

In the second case, on the contrary, the new concept doesn't become a 

component of an existing concept but a composed concept of an existing one.  

For instance, a method that contains the concept of External Event and where 

the method engineer wants to integrate the Actor Class concept. Then, process 

first step is the concept Actor Class integration in the model. Next, the concept 

of External Event is connected to this new concept using a composition link.  



To integrate a concept with this link represents a composition link usage or a 

decomposition link usage. Each of these two different techniques represents a 

specific OOME Product manner : COMPOSITION and DECOMPOSITION. 

• Association Link: An other existing link in the OO methods generic meta-

model is association. The method engineer may insert a new element and 

connect it to the model with this kind of link. In that case, the element is 

inserted and is connected with an existing concept. Lets take the example of a 

method containing the Action concept. The method engineer wants to integrate 

the Agent concept into that one. This problem may be solved by using an 

association link (An Action is done by an Agent and an Agent makes one or 

more Action(s)).  

This kind of insertion represents the fact that the new concept is related to an 

existing concept. This is the last OOME product manner : ASSOCIATION. 

Introduction of a Concept Incompletely Represented in the Method 

It is also possible to extend a model by replacing an existing concept in order 

to change its description. Lets use the example of a method that contains the 

Granule concept. The method engineer wants to improve this notion of 

Granule by adding the Calendar concept. The existing Granule concept 

becomes incomplete according to the method engineer requirements. A way to 

solve this problem is to replace the existing concept by the new one. 

To extend a method with this particular technique is characterized by the 

application of a concept replacement. This way of working represents a 

specific OOME product manner : REPLACEMENT. 

To resume, we may enumerate the following set of OOME Product manners : 

Inheritance, Generalization, Composition, Decomposition, Association and 

Replacement. Each of them will be supported by a Product meta-pattern.  

3.2 OOME Process Manners 

If the method engineer applies a Product pattern and that the extended method 

contains a Process part, it is better to also extend this part of the method. It will 

improve the method completeness. On the same way as we defined Product 

meta-patterns, it is possible to define some Process meta-patterns. 

Like Product meta-patterns, Process meta-patterns may be described with their 

interface. The situation is the construction concept to integrate in the method. 

The intention is the construction of a Process pattern in order to extend that 

method. The target is this Process pattern, created for a specific product 

element construction, following a certain manner. The body is the set of 

creation operations allowing to create the pattern (situation, intention, target, 

body). The created pattern’s body will be composed of a set of transformation 



operations (corresponding to the OOME manner chosen). This section 

describes OOME process manners.  

Extension of a method’s Process part is made by grafting new processes in the 

process tree2 of the existing method, in order to take into account the new 

concepts construction. There is two possibilities supplied to the method 

engineer: either the schema construction step is left untouched and grafts are 

made on a very controlled way, or the process tree is modified in order to 

automatically integrate all new processes.   

Controlled Integration  

Processes allowing the method extensions are grafted in order to leave the 

existing construction process unchanged. The method engineer will extend the 

schema elements only when all of them will have been fully defined first. The 

construction process tree keeps its construction processes (« Construct X ») but 

is incremented of a new extension process (« Extend X »). These two 

processes are executed in sequential order. We call that technique a Sequential 

Extension.  

 

Construct X 
Extend X 

X not constructed 

X extended 

Sequential extension of X 

No extension of X 

 
Figure 5: Global and local sequential extension principles 

The principle shown on the Figure 5 represents the sequence between the 

construction process and the extension process of X. However, the X term may 

have a different signification according to the needed granularity. At the lower 

level, X represents a simple element of the method to extend, i.e. the 

construction of the Class, Granule or others concepts. On the contrary, at the 

highest level, X represents the entire construction schema of that method. 

In the first case, the process tree puts into sequence the entire construction of 

the schema with its extension. In the second case, an  extension represents a 

sequence in the process tree that allows step forward from the construction of a 

simple element to its extension. As shown in the previous figure, these two 

possibilities represent two specific Process manners : LOCAL SEQUENTIAL 

EXTENSION and GLOBAL SEQUENTIAL EXTENSION. 

Transparent Integration 

This type of extension doesn't leave the construction process unchanged. On 

the other hand, the new processes are fully integrated in the existing tree 

                                                             
2 The formalism used to represent the Process part of the methods is the one 

of the Esprit project « NATURE » described in [19][20][21] 
 



process. Extension doesn't appear as an artificial step but as a more complete 

step. In consequence, the method engineer doesn't work in a sequence 

<construction, extension> but simply executes a process tree taking the 

modifications into account from the beginning. This principle is illustrated in 

the Figure 6.  

 
Construct X extended X not constructed 

X extended 

 
Figure 6: Integrated extension principle  

That kind of extension represents the specific Process manner INTEGRATED 

EXTENSION. 

A Process part method may be extended by one of these three following 

process OOME manners : Local sequential extension, Global sequential 

extension or Integrated extension. Each of these manners will be represented 

as a Process meta-pattern.  

Process OOME Manners Versus Product OOME Manners 

We have to note that an OOME Product manner application will have effects 

on the OOME Process manners application and induce three possible impacts 

from it. (1) With a specialization or a generalization, there will be a 

modification of the process tree alternatives concerned by the element. It will 

have an augmentation of the specialized types or an additive step. (2) On the 

same way, with a composition or a decomposition, it will guide to a 

modification of the constructing sequence of a Product element. (3) A 

replacement will leads to a graft of a new branch replacing an old one. 

We may also differentiate two cases for the global sequential extension. Either 

the desired extension is the first one to be grafted or it is not the case. If it is 

the first extension to be realized, the method engineer has to completely 

reevaluate the precedence graph of the extension sequence in order to guaranty 

method’s coherence and integrity. We call these two types: "First graft" and 

"Additional graft".  

Notice that extensions based on specialization and generalization will be 

different according to the specific specialization of the considered element. 

Then, we may consider two types of specialization: "by type" or "by state". Al 

thought a type specialization leads to a complete differentiation of all the 

specialization of a concept, a state specialization will lead to the same 

description, except the type of the concept that will be different.  

We defined several Process manners that can be used after the defined Product 

manners. However, it is not always possible to use them whichever Product 

manner has been previously used. Moreover, according to the Product manner, 

the Process modifications will be different. The Figure 7 shows the different 

possibilities of combinations.  



Process EM manner 

 

Product EM manner 

SEQUENTIAL EXTENSION INTEGRATED EXTENSION 

GLOBAL LOCAL Element having a type 

specialization 

Element having a state 

specialization 
First graft Additional graft  

SPECIALIZATION GLOBAL 

SPECIALIZATION 

(First graft) 

GLOBAL 

SPECIALIZATION 

(Additional graft) 

LOCAL 

SPECIALIZATION  

INTEGRATED 

SPECIALIZATION (by 

type) 

INTEGRATED 

SPECIALIZATION (by state) 

GENERALIZATION GLOBAL 

GENERALIZATION 

(First graft) 

GLOBAL 

GENERALIZATION 

(Additional graft) 

LOCAL 

GENERALIZATION  

INTEGRATED 

GENERALIZATION (by 

type) 

INTEGRATED 

GENERALIZATION (by state) 

COMPOSITION GLOBAL 

COMPOSITION 

 (First graft) 

GLOBAL 

COMPOSITION 

(Additional graft) 

LOCAL 

COMPOSITION  

INTEGRATED COMPOSITION  

DECOMPOSITION GLOBAL 

DECOMPOSITION 

(First graft) 

GLOBAL 

DECOMPOSITION 

(Additional graft) 

LOCAL 

DECOMPOSITION  

INTEGRATED DECOMPOSITION  

ASSOCIATION GLOBAL 

ASSOCIATION 

(First graft) 

GLOBAL 

ASSOCIATION 

(Additional graft) 

LOCAL 

ASSOCIATION 

INTEGRATED ASSOCIATION  

REPLACEMENT     INTEGRATED REPLACEMENT  

Figure 7: Process OOME manners Versus Product OOEM manners 

Notice that we didn’t allowed to use a sequential extension if the OOME 

Product manner used was a replacement. It will not be very useful to construct 

an element if we have to replace it as soon as we extend the schema.  

As a result, we obtain 23 specific OOME Process manners that we may use on 

an OO method.  

4 Conclusion and Future Works 

We proposed here a technique to construct patterns with methodical 

guidelines, guarantying completeness relative to map construction. As a matter 

of fact, if the process maps aren’t complete, it may lead to coherency problem 

of the modified method. To solve this problem, we defined a set of manners 

that are encapsulated in specific patterns called meta-patterns. These meta-

patterns lead to the construction of all patterns of process maps. As a result, all 

sections are defined, the method engineer can’t reach a dead-end and the map 

is complete. 

We have illustrated this technique with the Extension approach applied on 

Object Oriented methods. This specific application field leads us to define five 

Product meta-patterns and twenty-three Process meta-patterns that may be 

used to integrate new elements (concept and construction) into OO methods. 

Despite that technique, following difficulties remain to be solved:  

• A larger application field: The application of this technique to other 

domains than the OO method extension. 

• The guidance supported by tools: a first one will help the construction of 

the map (and its related patterns) with the technique described in this paper 

and a second one will help its execution.  
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