
HAL Id: hal-00703606
https://hal.science/hal-00703606

Submitted on 4 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using meta-patterns to construct patterns
Rebecca Deneckere

To cite this version:
Rebecca Deneckere. Using meta-patterns to construct patterns. Object Oriented Information Systems
(OOIS), 2002, Montpellier, France. pp.124-134. �hal-00703606�

https://hal.science/hal-00703606
https://hal.archives-ouvertes.fr

Using Meta-patterns to Construct Patterns

Rébecca Deneckère

Université Paris 1 Panthéon-Sorbonne, Centre de Recherche en Informatique

90 rue de Tolbiac 75013 PARIS, France

tel : + 33 (0) 1 44 07 86 34, fax : + 33 (0) 1 44 07 89 54,
denecker@univ-paris1.fr

Abstract. The pattern notion defines techniques allowing the existing

knowledge reuse. Usually, the knowledge encapsulated in these patterns

is stored in classic library repositories that quickly become

overcrowded. To solve this problem, [1] proposes the use of process

maps in order to organize and select them. But the completeness of the

maps is a very important problem that has to be solved in order to offer

a useful guidance to the method engineer. This paper proposes a

guideline pattern construction technique guiding engineers when

creating the maps.

1 Introduction and State of Art

The pattern notion has been widely used these last years. As a result, the

patterns repositories number increases and it is more and more difficult to

manage them. A way to solve this problem is the process map technique

utilization that helps the method engineer to organize and select patterns. This

section described these concepts.

The concept of pattern is very present in the literature and in a lot of different

domains [2][3][4][5][6][7][8]. In [9] a pattern is described as “a problem which

occurs over an over again in our environment and then describes the core of the

solution to that problem, in such a way that you can use this solution a million

times over, without ever doing the same twice". In Method Engineering, generic

patterns aim at proposing a mean for constructing situation specific methods.

Such patterns allow to know which are the best processes in a specific situation

and they guide the method engineer in the construction of a specific method.

A pattern description must include the problem for which the pattern proposes

a solution and the recurring set of situations in which the pattern applies [10].

We use here the formalism detailed in [11][12]. A pattern contains two parts:

the reusable knowledge (the body) and the application aspects of this pattern

(the signature). The pattern’s body encapsulates the process description to

apply on the product under modification. The signature is described to

represent the situation before the modification, the intention to achieve and the

target of that modification. We also call this concept interface [12]. It is seen

as a triplet <situation, intention, target> associated to a body.

Following the appearance of a lot of transformation patterns catalogues, we

have pointed out in [1] the problems of storing these patterns without order.

Firstly, the patterns are stored in a library but this one may rapidly become

overcrowded as engineers add new patterns as time goes by, and, secondly,

some patterns have precedence relationships and require a way to introduce

and execute them in predefined order. [1] has proposed an organizational

technique to solve these problems by using process maps.

These maps are a formalization of the utilization process of the patterns that

help the engineer with a guidance of each transformation. [1] uses the

technique of process map [14][15] in order to sort the patterns in a catalogue. It

is a labeled graph composed of nodes and edges. Nodes represent intentions

that the engineer wants to reach and edges manners for reaching these

intentions. The directed nature of the graph shows possible intentions

dependencies. An edge enters a node if its manner can be used to achieve its

intention. Since there can be multiple edges entering a node, the map is able to

represent all the manners that can be used for achieving an intention. An

execution path, determined by a map, always starts by the intention Start and

ends by the intention Stop.

In [1], we have defined that a pattern, contextually to a specific map, may be

represented by a defined section. Each of these sections (i.e. each of these

patterns) represents a specific way to reach a target intention, from a node in

the map, by the execution of a particular manner. The next figure shows the

equivalence between concepts of Section and Pattern using the representation

of two sections of a map.

Manner 1

Manner 2

Source Intention Target Intention I

Section 1

Section 2

Pattern 1

Modify, by manner 1, the product P, to reach the target intention I

Pattern 2

Modify, by manner 2, the product P, to reach the target intention I

Figure 1: Sections and patterns

This figure illustrates the fact that the applicable pattern between two

intentions will be different, according to method engineer’s manner choice.

Then, we may say that it exists, from a specific source intention to a specific

target intention, as many applicable patterns than manners.

The problematic and proposed solution is described in the next section. An

application of this technique to the OO method extension approach is done in

the section three. We conclude in the fourth and last section.

2 Problematic and Proposed Solution

The major problem left was the map completeness. The process maps are

perfects if they are complete, so the method engineer knows all the alternatives

that are offered to him. However, if some patterns are not present on the map,

engineers may come to a dead-end and all the usefulness of this technique is

thrown away. In order to construct complete maps, we propose here a specific

construction pattern technique using meta-patterns.

Problematic when constructing a map, for a specific application domain, begin

with the explicit inventory of all the intentions. For instance, if we want to

extend a method, each intention will represent a specific element integration

into this specified method. Then, the method engineer makes the inventory of

the applicable manners to reach these intentions. Finally, each of these sections

has to be described by a pattern. However, manners inventory in a map is a

very long, delicate and strategic work and represents the major difficulty of

that process. If the method engineer forgets one section and that the extension

process of a specific method need this one to reach its goal, this extension can't

go farther. To solve that case, this paper proposes to create a set of generic

manners specific to the approach used. Apply all generic manners to all map

intentions allows map completeness certification.

Furthermore, in order to ease the sections realization of the map (i.e. the

description of the associated patterns), all the relative knowledge of the

patterns construction is encapsulated in a specific meta-pattern. The method

engineer, as soon as the elements to integrate will have been identified, will

directly realize the map intentions, by applying all meta-patterns defined. Each

meta-pattern application will guide to a pattern construction allowing to reach

a target intention, from a source intention, by applying a specific manner on it.

This construction process allows to guide the method engineer when

identifying the map sections and also when constructing the associated

patterns. The next figure shows the instantiation of a meta-pattern using the

specialization generic manner for the construction of three patterns (i.e. three

sections of the map). A complete description of this meta-pattern is done in

[11].

Extend the method M, by SPECIALIZATION,
to integrate the Temporal Referential concept

Extend the method M, by SPECIALIZATION,

to integrate the Scenario concept

Extend the method M, by SPECIALIZATION,

to integrate the Actor concept

Extend the method M by SPECIALISATION

Pattern Pattern

Pattern

Méta-Pattern

Figure 2: Meta-pattern instantiation to obtain patterns

To illustrate this paper, we choose to apply this technique to the method

extension approach and we will also only focus on the set of patterns that may

be used when extending an OO method.

3 Application to the OO Method Extension Approach

The method extension approach has been defined in [11]. It is described as a

technique allowing to take into account more things that was in the origin set.

The manners and meta-patterns used here are specific to this particular

approach.

The manners studied in this paper allow modifying a method. Three

parameters are considered: (a) the method element to modify - [Element X]

(this element is a part of the method before the extension), (b) the element that

the method engineer wishes to integrate into the method - [Element Y] (this

element is a part of the method after the extension) and (c) the element likely

to be of no use after the extension – [Element D] : Manner ([Element X],

[Element Y], [Element D]). Note that the two first arguments are mandatory.

The third one – [Element D] – is optional. All extensions don’t change the

source method to the point of leaving an useless element. In that last case, it is

necessary to leave the possibility for deleting this element and guaranty the

method coherency.

Lets take the example of a pattern that allows integrating the Calendar Class

concept into a method that already contains the Clock Class concept. In fact, it

will be implemented as a replacement of the first one by the second one. The

situation before the extension is : Clock Class = Inherits of (Class),

Composition (Temporal Event)1. The manner application is : REPLACEMENT

(Clock Class, Calendar Class, φ). The situation after the extension is :

Calendar Class = Inherits of (Class), Composition (Temporal Event).

The knowledge relative to each manner is encapsulated into a specific pattern

named "Meta-pattern". As exposed before, the meta-patterns follow the

patterns description. They are composed by a signature (Figure 3) and a body.

As for the patterns, the meta-patterns may be differentiated following two

specific types: the ones allowing to construct a Product pattern and the ones

allowing to build a Process pattern.

Situation Target

Intention

Method to
extend

Extend, by the manner S, the method M to integrate Y

Method

extended

Situation Target

Intention

([Element Y]

Construct a pattern to Extend, by the manner S, the method [M] to integrate [Y]

Pattern Meta-pattern body

Pattern body

Figure 3: Meta-pattern interface

1 This formalism is described in [11].

The meta-pattern situation represents the Element Y (the additional element

we want to integrate into the original method). The meta-pattern intention is to

build a pattern that will integrate that element in the method following a

specific manner, resulting a target meta-pattern that is a pattern for a specific

element and following a specific manner.

The meta-pattern body represents all the operations allowing the construction

of the pattern, i.e. the definition of its situation, its intention, its target and its

body. This body is constructed by a set of operators corresponding to the

manner used. Each manner represents a set of modification operators

containing three unknown values : Element X, Element Y and Element D (the

three arguments of the manner). Element Y is known when we use the meta-

pattern in order to build a pattern. However, Element X and Element D will

only be known when instantiating this pattern to a specific method.

Lets illustrate that concept with a sample. The following figure shows the

successive instantiations, from a meta-pattern to a pattern (for an integration of

a specific element) and to a pattern allowing the extension of a specific

method. Calendar Class is the concept to integrate in the O* method.

Situation
Target

Intention

[X} = ([W])

W represents the set of

links of X

Extend, by REPLACEMENT, The product part of M to integrate the Calendar Class concept

[Calendar Class] = ([W])

W represents the set of links of

Calendar Class

Situation
Target

Intention

Clock Class = Inherits of

(Class), Composition

(Temporal Event)

Extend, by REPLACEMENT, the Clock Class concept to integrate the Calendar Class concept

Calendar Class = Inherits of

(Class), Composition (Temporal

Event))

Pattern body

Replace (Clock Class, Calendar

Class)

 M = Method O* having

 [X] = Clock Class

 [W] = inherits of (Class), Composition (Temporal Event)

Situation Target

Intention

Product Element [Y]

Construct a pattern to Extend, by REPLACEMENT, the product part of M, to integrate the product
element [Y]

Product pattern REPLACEMENT

meta-pattern body

[Y] = Calendar Class

Meta-pattern

Pattern

Pattern instantiated to O*

Pattern body

Replace (X, Calendar Class)

Figure 4: Example of pattern construction with meta-patterns

This figure shows the two steps allowing to construct a pattern, given a

specific method. The first step represents the meta-pattern instantiation for the

Calendar Class concept. The second step represents the pattern instantiation to

the O* method.

As the objective in this paper is automating patterns building, we will focus on

the inventory of all the possible manners to extend a method (the manners set),

i.e. all the possible meta-patterns. We will describe here differences between

the two types of meta-patterns (Product and Process) and theirs related

manners. To limit the research domain of this work, we will only focus on the

set of patterns that may be used when extending an OO method. These

manners will be called OOME manners (Object Oriented Methods Extension

manners). On the same way, the associated patterns are called OOME patterns.

3.1 OOME Product Manners

In case where Product part of a method doesn’t match method engineer

requirements, that method may be modified by applying a Product pattern

defined in the patterns catalogue. This catalogue is populated with the Product

meta-patterns application. These specific patterns allow constructing pertinent

patterns adapted to the application at hand. They have to be applied on the

method in order to modify it. The modified method will then handle a bigger

set of concepts to construct a more complete and coherent application.

A Product meta-pattern may be described with its interface. The situation is the

Product element to integrate in the method. The intention is the construction of

a pattern to extend the method. The target is that pattern, created for a specific

product element and following a selected manner. The body is the set of

creation operations allowing to create the pattern. The body of the pattern

created will be composed of a set of transformation operations (corresponding

to the manner chosen).

As a method extension is a technique allowing to take into account more

things that was in the origin set, a Product part extension will introduce new

concepts into an existing model. That merge may be made following two

different ways : either the concept to integrate is a new element, or it is a

concept already represented in the method but in an incomplete or incorrect

way.

Introduction of a New Concept in the Method

The introduction of these new concepts had to be followed by their connection

to the rest of the model. A concept is important only if it is linked with other

concepts. These grafts are realized by instantiating the different kind of links

defined in the Product meta-model of the method. Note that the extension

process will be different following these links. As a result, the extensions may

be defined according to the link type used to connect the new element to the

method model. A generic links set has been defined with the study of several

OO methods (OMT[16],OOA&D[17], O*[18], etc) and results in the fact that

a new concept may be added in a method product model by connecting it to an

other concept with the inheritance, composition or association link.

• Inheritance Link: The method engineer may integrate a new concept in the

model by connecting it to an existing concept with an inheritance link. The

new concept is then inserted as a specialization of an existing or a non-existing

concept.

In the first case, the new concept is inserted and the inheritance link between it

and the existing concept is added. This technique may be used only if the

method already contains a concept that may be viewed as a super-type of the

concept to integrate. Lets use an example concerning an extension of the OMT

method. Its Product model contains the Event concept. The insertion of the

Temporal Event new concept may be made by a specialization of Event.

Integrating the Temporal Event concept, and connecting it by specialization

with the Event one, makes the extension.

On the contrary, in the second case, the method does not contain any concept

of this kind. However, it contains one with a semantic similar to the concept to

integrate. In this case, the extension allows integration of an other element that

de facto generalize existing and new concepts. Lets consider again the OMT

method. It contains the Object Class concept. The insertion of the Actor Class

may be made with that technique, regarding their semantic similarity. Firstly,

the extension of the method will insert a generalization of the Object Class that

we call the Class concept. Next, the Actor Class concept is integrated. Finally,

this new concept is connected by a specialization link to the Class concept.

To insert a concept by an inheritance link may be viewed as two different

techniques : inheritance link usage or generalization link usage. Each of these

two techniques represents a specific OOME Product manner :

SPECIALIZATION and GENERALIZATION.

• Composition Link: The method engineer may also integrate a new concept

in the model using a composition link. The new designed concept may be

inserted as a composed concept or as a component of an existing concept.

In the first case, the concept is added in the target Product model then

connected as a composed element of an existing concept. Lets illustrate that

with an OMT method case. It contains the designed Object Class concept,

composed of Property, Event and Operation concepts. The method engineer

may extend this method by integrating the Constraint concept on the Object

Class. The best way to integrate this concept is to consider it as a component

of the Object Class, just as the three others.

In the second case, on the contrary, the new concept doesn't become a

component of an existing concept but a composed concept of an existing one.

For instance, a method that contains the concept of External Event and where

the method engineer wants to integrate the Actor Class concept. Then, process

first step is the concept Actor Class integration in the model. Next, the concept

of External Event is connected to this new concept using a composition link.

To integrate a concept with this link represents a composition link usage or a

decomposition link usage. Each of these two different techniques represents a

specific OOME Product manner : COMPOSITION and DECOMPOSITION.

• Association Link: An other existing link in the OO methods generic meta-

model is association. The method engineer may insert a new element and

connect it to the model with this kind of link. In that case, the element is

inserted and is connected with an existing concept. Lets take the example of a

method containing the Action concept. The method engineer wants to integrate

the Agent concept into that one. This problem may be solved by using an

association link (An Action is done by an Agent and an Agent makes one or

more Action(s)).

This kind of insertion represents the fact that the new concept is related to an

existing concept. This is the last OOME product manner : ASSOCIATION.

Introduction of a Concept Incompletely Represented in the Method

It is also possible to extend a model by replacing an existing concept in order

to change its description. Lets use the example of a method that contains the

Granule concept. The method engineer wants to improve this notion of

Granule by adding the Calendar concept. The existing Granule concept

becomes incomplete according to the method engineer requirements. A way to

solve this problem is to replace the existing concept by the new one.

To extend a method with this particular technique is characterized by the

application of a concept replacement. This way of working represents a

specific OOME product manner : REPLACEMENT.

To resume, we may enumerate the following set of OOME Product manners :

Inheritance, Generalization, Composition, Decomposition, Association and

Replacement. Each of them will be supported by a Product meta-pattern.

3.2 OOME Process Manners

If the method engineer applies a Product pattern and that the extended method

contains a Process part, it is better to also extend this part of the method. It will

improve the method completeness. On the same way as we defined Product

meta-patterns, it is possible to define some Process meta-patterns.

Like Product meta-patterns, Process meta-patterns may be described with their

interface. The situation is the construction concept to integrate in the method.

The intention is the construction of a Process pattern in order to extend that

method. The target is this Process pattern, created for a specific product

element construction, following a certain manner. The body is the set of

creation operations allowing to create the pattern (situation, intention, target,

body). The created pattern’s body will be composed of a set of transformation

operations (corresponding to the OOME manner chosen). This section

describes OOME process manners.

Extension of a method’s Process part is made by grafting new processes in the

process tree2 of the existing method, in order to take into account the new

concepts construction. There is two possibilities supplied to the method

engineer: either the schema construction step is left untouched and grafts are

made on a very controlled way, or the process tree is modified in order to

automatically integrate all new processes.

Controlled Integration

Processes allowing the method extensions are grafted in order to leave the

existing construction process unchanged. The method engineer will extend the

schema elements only when all of them will have been fully defined first. The

construction process tree keeps its construction processes (« Construct X ») but

is incremented of a new extension process (« Extend X »). These two

processes are executed in sequential order. We call that technique a Sequential

Extension.

Construct X
Extend X

X not constructed

X extended

Sequential extension of X

No extension of X

Figure 5: Global and local sequential extension principles

The principle shown on the Figure 5 represents the sequence between the

construction process and the extension process of X. However, the X term may

have a different signification according to the needed granularity. At the lower

level, X represents a simple element of the method to extend, i.e. the

construction of the Class, Granule or others concepts. On the contrary, at the

highest level, X represents the entire construction schema of that method.

In the first case, the process tree puts into sequence the entire construction of

the schema with its extension. In the second case, an extension represents a

sequence in the process tree that allows step forward from the construction of a

simple element to its extension. As shown in the previous figure, these two

possibilities represent two specific Process manners : LOCAL SEQUENTIAL

EXTENSION and GLOBAL SEQUENTIAL EXTENSION.

Transparent Integration

This type of extension doesn't leave the construction process unchanged. On

the other hand, the new processes are fully integrated in the existing tree

2 The formalism used to represent the Process part of the methods is the one

of the Esprit project « NATURE » described in [19][20][21]

process. Extension doesn't appear as an artificial step but as a more complete

step. In consequence, the method engineer doesn't work in a sequence

<construction, extension> but simply executes a process tree taking the

modifications into account from the beginning. This principle is illustrated in

the Figure 6.

Construct X extended X not constructed

X extended

Figure 6: Integrated extension principle

That kind of extension represents the specific Process manner INTEGRATED

EXTENSION.

A Process part method may be extended by one of these three following

process OOME manners : Local sequential extension, Global sequential

extension or Integrated extension. Each of these manners will be represented

as a Process meta-pattern.

Process OOME Manners Versus Product OOME Manners

We have to note that an OOME Product manner application will have effects

on the OOME Process manners application and induce three possible impacts

from it. (1) With a specialization or a generalization, there will be a

modification of the process tree alternatives concerned by the element. It will

have an augmentation of the specialized types or an additive step. (2) On the

same way, with a composition or a decomposition, it will guide to a

modification of the constructing sequence of a Product element. (3) A

replacement will leads to a graft of a new branch replacing an old one.

We may also differentiate two cases for the global sequential extension. Either

the desired extension is the first one to be grafted or it is not the case. If it is

the first extension to be realized, the method engineer has to completely

reevaluate the precedence graph of the extension sequence in order to guaranty

method’s coherence and integrity. We call these two types: "First graft" and

"Additional graft".

Notice that extensions based on specialization and generalization will be

different according to the specific specialization of the considered element.

Then, we may consider two types of specialization: "by type" or "by state". Al

thought a type specialization leads to a complete differentiation of all the

specialization of a concept, a state specialization will lead to the same

description, except the type of the concept that will be different.

We defined several Process manners that can be used after the defined Product

manners. However, it is not always possible to use them whichever Product

manner has been previously used. Moreover, according to the Product manner,

the Process modifications will be different. The Figure 7 shows the different

possibilities of combinations.

Process EM manner

Product EM manner

SEQUENTIAL EXTENSION INTEGRATED EXTENSION

GLOBAL LOCAL Element having a type

specialization

Element having a state

specialization
First graft Additional graft

SPECIALIZATION GLOBAL

SPECIALIZATION

(First graft)

GLOBAL

SPECIALIZATION

(Additional graft)

LOCAL

SPECIALIZATION

INTEGRATED

SPECIALIZATION (by

type)

INTEGRATED

SPECIALIZATION (by state)

GENERALIZATION GLOBAL

GENERALIZATION

(First graft)

GLOBAL

GENERALIZATION

(Additional graft)

LOCAL

GENERALIZATION

INTEGRATED

GENERALIZATION (by

type)

INTEGRATED

GENERALIZATION (by state)

COMPOSITION GLOBAL

COMPOSITION

 (First graft)

GLOBAL

COMPOSITION

(Additional graft)

LOCAL

COMPOSITION

INTEGRATED COMPOSITION

DECOMPOSITION GLOBAL

DECOMPOSITION

(First graft)

GLOBAL

DECOMPOSITION

(Additional graft)

LOCAL

DECOMPOSITION

INTEGRATED DECOMPOSITION

ASSOCIATION GLOBAL

ASSOCIATION

(First graft)

GLOBAL

ASSOCIATION

(Additional graft)

LOCAL

ASSOCIATION

INTEGRATED ASSOCIATION

REPLACEMENT INTEGRATED REPLACEMENT

Figure 7: Process OOME manners Versus Product OOEM manners

Notice that we didn’t allowed to use a sequential extension if the OOME

Product manner used was a replacement. It will not be very useful to construct

an element if we have to replace it as soon as we extend the schema.

As a result, we obtain 23 specific OOME Process manners that we may use on

an OO method.

4 Conclusion and Future Works

We proposed here a technique to construct patterns with methodical

guidelines, guarantying completeness relative to map construction. As a matter

of fact, if the process maps aren’t complete, it may lead to coherency problem

of the modified method. To solve this problem, we defined a set of manners

that are encapsulated in specific patterns called meta-patterns. These meta-

patterns lead to the construction of all patterns of process maps. As a result, all

sections are defined, the method engineer can’t reach a dead-end and the map

is complete.

We have illustrated this technique with the Extension approach applied on

Object Oriented methods. This specific application field leads us to define five

Product meta-patterns and twenty-three Process meta-patterns that may be

used to integrate new elements (concept and construction) into OO methods.

Despite that technique, following difficulties remain to be solved:

• A larger application field: The application of this technique to other

domains than the OO method extension.

• The guidance supported by tools: a first one will help the construction of

the map (and its related patterns) with the technique described in this paper

and a second one will help its execution.

References

1. Deneckere, R., Souveyet, C. : Organising and Selecting Patterns in Pattern

Languages with Process Maps. Proceedings of OOIS'2001 Conference. Springer-

Verlag, Calgary (Canada) (2001)

2. Coad, P.: Object-Oriented Patterns. Communications of the ACM, Vol. 35, No. 9
(1992). pp 152-159

3. Beck, K.: Smalltalk, Best Practice Patterns. Volume 1, Coding. Prentice Hall,
Englewood Cliffs, NJ. (1997)

4. Buschmann, F., Meunier, R., Rohnert, et al.: Pattern-Oriented Software
Architecture - A System of Patterns. John Wiley (1996)

5. Coplien, J.O., and Schmidt, D.O. (ed.) : Pattern Languages of Program Design.

Addison-Wesley, Readind, MA. (1995)

6. Gamma, E., Helm, R., Johnson, R., et al.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley (1994)

7. Hay, D.: Data Model Patterns: Conventions of Thought. Dorset House, NY (1996)

8. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, (1997)

9. Alexander, C., Ishikawa, S., Silverstein, M., et al.: A Pattern Language. Oxford
University Press, New York (1977)

10. Software Patterns. Communications of the ACM, Volume 39, No 10, (October
1996)

11. Deneckere, R. : Approche d'extension de méthodes fondée sur l'utilisation de

composants génériques. PhD thesis, University of Paris1-Sorbonne (2001)

12. Deneckere, R., Souveyet, C. : Patterns for extending an OO model with temporal

features. Proceedings of OOIS’98 conference. Springer-Verlag, Paris (France)

(1998)

13. Rolland, C., Plihon, V., Ralyté, J.: Specifying the reuse context of scenario

method chunks. Proceedings of the conference CAISE’98, Springer-Verlag, Pisa
Italy (1998)

14. Benjamen, A.: Une approche multi-démarches pour la modélisation des démarches
méthodologiques. PhD thesis, University of Paris 1, Paris (1999)

15. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling.
Requirements Engineering Journal, p. 169-187 (1999)

16. Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W. : Object-Oriented

Modeling and Design. P.-H. I. Editions, Eds. (1991)

17. Martin J., Odell J.: Object-Oriented Analysis and Desig.n P.-H. I. Editions, Eds.
(1992)

18. Brunet J. : Analyse Conceptuelle orientée-objet. PhD Thesis, University of Paris 6.
(1993)

19. Rolland, C., Souveyet, C., Moreno, M.: An Approach for Defining Ways-Of-
Working. Information Systems, Vol 20, No4, pp337-359 (1995)

20. Rolland, C., Plihon, V.: Using generic chunks to generate process models

fragments. Proceedings of the 2
nd

 IEEE International Conference on Requirements
Engineering, ICRE, ICRE’96, Colorado Spring (1996)

21. Jarke, M., Rolland, C., Sutcliffe, A., Dömges, R. (Hsrg.): The NATURE of
Requirements Engineering. Shaker Verlag, Aachen (1999)

