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ON SUPERSIMPLE GROUPS

CÉDRIC MILLIET

Abstract. We show that an infinite group having a supersimple theory has a
finite series of definable subgroups whose factors are infinite and either virtually
FC or virtually simple modulo a finite FC-centre. We deduce that a group
which is type-definable in a supersimple theory has a finite series of relatively
definable subgroups whose factors are either abelian or simple groups. In this
decomposition, the non-abelian simple factors are unique up to isomorphism.

1. Introduction

Model theory is the study of definable sets, that is, sets defined by a first order
formula in a given language. It can be thought of as a generalisation of algebraic
geometry where the objects under study are algebraic varieties: sets defined by sys-
tems of polynomial equations; in this case, the language considered is the language
of fields which consists of the two function symbols +, × and the two constants 0
and 1. The existence of a notion of dimension on a class of definable sets strongly
restricts the behavior of this class. In a linear algebraic group over an algebraically
closed field, the Zariski dimension of an algebraic variety arises from the Zariski
topology. A supersimple group is a group whose definable sets are equipped with a
notion of dimension, the so-called SU-rank, arising from the logic topology and tak-
ing ordinal values. The SU -rank extends the Lascar U -rank of superstable groups
and the Morley rank of groups of finite Morley rank. It is thus a far reaching
generalisation of the Zariski dimension for linear algebraic groups. Examples of
supersimple groups include:

• finite groups;
• linear algebraic groups over algebraically closed fields;
• groups of finite Morley rank;
• abelian groups which are divisible, or of bounded exponent;
• ℵ0-stable groups;
• superstable groups;
• simple linear algebraic groups over pseudofinite fields;
• simple pseudofinite groups (i.e. abstractly simple groups having a pseudo-

finite theory).
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(secondary).

Key words and phrases. Model theory; supersimple group; just-infinite groups; series with
abelian or simple factors.

Thanks to Wagner for improving an earlier version of Theorem 5.3.

1



ON SUPERSIMPLE GROUPS 2

On the other hand, the infinite cyclic group Z, non-abelian free groups on n gen-
erators and more generally non-elementary hyperbolic groups are not supersimple
(see Corollary 4.10).

In spite of the strong analogy between the U -rank and the SU -rank, the theory of
supersimple groups is not nearly as developed as it is for its superstable analogues.
For instance, Berline and Lascar [BL] have shown that every superstable group
has a definable abelian subgroup of the same cardinality. Their original argument
has been much simplified since and has shrunk to a few lines (see [Wag00, Remark
5.4.11]). Still, it is unknown whether a supersimple group G has an infinite abelian
subgroup. If H is an abelian subgroup of G, then there exists a definable subgroup
E of G which is finite-by-abelian and contains H (see [EJMR] or [Mil1]). Moreover,
if one writes the SU -rank of G in the form ωα.n+β with 0 ≤ β < ωα, then one can
provide that the SU -rank of E be at least ωα. So, asking whether G has an infinite
abelian subgroup is equivalent with asking whether G has a definable finite-by-
abelian subgroup of SU -rank at least ωα. Finite-by-abelian groups are FC groups,
i.e. groups whose every conjugacy class is finite. In [Bau], Baudisch has shown that
a superstable group has a finite series whose factors are either abelian or simple
groups. Our main result is:

Theorem 1.1. Let G be an infinite supersimple group. Then there is a finite chain
of definable subgroups 1 = H0⊳H1⊳· · ·⊳Hn = G such that every quotient Hi+1/Hi

is infinite and either virtually FC or virtually simple modulo a finite FC-centre.

Consequently, Baudish’s result extends to supersimple groups. His arguments how-
ever do not adapt to the supersimple context, mainly for two reasons: first, the
proof of [Bau] is based on a transfinite induction on the U -rank of G, the induc-
tion basis being Berline and Lascar’s result that a superstable group of U -rank 1
is virtually abelian; second, [Bau] makes a strong use of the connected component
of a superstable group; in a supersimple group, there is also a notion of connected
component, but it heavily depends on the specific parameter set over which it is
defined. So we have to work without the use of Berline and Lascar’s result and
without connected components.

For the development of a suitable version of the result by Berline and Lascar, our
basic idea is provided by [Wag00, Remark 5.4.11]: a supersimple group of U -rank 1
either has an infinite abelian subgroup or is virtually simple modulo a finite FC-
centre; this makes a proof by transfinite induction still possible. To avoid the use
of connected components, we study just-infinite supersimple groups. These turn
out to be either virtually FC or virtually simple.

Other important tools are Lascar’s additive properties of the SU -rank, Wagner’s
version of Zilber’s indecomposability Theorem for supersimple groups and the ob-
servation that the FC-centre of a supersimple group is defined by a first order
formula. It should be mentioned that these methods mainly come from Berline and
Lascar’s investigation of superstable groups in [BL], later extended by Wagner to
supersimple groups [Wag00].

The main theorem has several consequences. We outline three of them here. Sela
has recently shown that the first order theory of a torsion-free hyperbolic group is
stable, hence simple. Using a theorem of Delzant [Del], we derive:

Corollary 1.2. A (non virtually cyclic) hyperbolic group is not supersimple.
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Jaligot, Elwes, Macpherson and Ryten have proved in [EJMR] that the soluble
radical of a supersimple group of finite SU -rank satisfying an additional technical
assumption is soluble and definable. This has been generalised to an arbitrary
supersimple group in [Mil3]. A group G is said to be type-definable if it is defined
by the conjunction of infinitely many first order formulae. If G is a type-definable
group, a subset of G is called relatively definable in G if it is the intersection of G
with a definable set. We show the following:

Corollary 1.3. The soluble radical of a type-definable supersimple group G is solv-
able and relatively definable in G.

Pseudofinite supersimple groups of finite SU -rank have been investigated in [EJMR].
Pseudofinite fields are supersimple of SU -rank one and pseudofinite simple groups
are supersimple of finite SU -rank according to [Wil]. Using the work of Wilson
[Wil] and Ryten [Ryt] on pseudofinite simple groups, we conclude that:

Corollary 1.4. A pseudofinite supersimple group either interprets a pseudofinite
field or is virtually solvable.

2. Preliminaries

Let G be a group and let x be an element of G. We write xG for the G-conjugacy
class {g−1xg : g ∈ G} of x and C(x) for its centraliser {g ∈ G : g−1xg = x} in G.
If y is another element of G, we write [x, y] for the commutator x−1y−1xy. The
element x is said to be FC in G if xG is finite. We call the subgroup consisting of
the FC elements of G the FC-centre of G and we write it FC(G). We say that G
is an FC group if each of its elements is FC in G.

Two subgroups of G are called commensurable if their intersection has a finite
index in each of them. The following theorem originally comes from [Sch], with
some details taken from [Wag00, Theorem 4.2.4] and its proof.

Fact 2.1 (Schlichting [Sch]). Let G be a group and H a subgroup of G such that
H/H ∩Hg remains finite and bounded by a natural number for all g in G. Then,
there exists a normal subgroup N of G such that H/H ∩N and N/N ∩H are finite.
There are four elements g1, . . . , g4 in G such that N is a subset of Hg1Hg2Hg3Hg4 .
Moreover, N is a finite extension of a finite intersection of G-conjugates of H. In
particular, if H is definable, then so is N .

We recall the properties of a supersimple group that will be needed in the sequel.
A supersimple group G is a group equipped with a rank function defined on the set
of all definable subsets of G and taking ordinal values. As this is the only notion
of rank that we shall use in the paper, we simply write rk(X) for the rank of such
a set X . We refer to [Wag00, Definition 5.1.1] for the precise definition of this
rank, which will not be needed here, and more generally to [Wag00, Chapter 5] for
precisions on supersimple theories. We shall try to avoid technicalities and use only
the basic properties of this rank that we recall now.

(1) Monotonicity. The rank is increasing: if X ⊂ Y are two definable subsets
of G, then rk(X) is smaller than or equal to rk(Y ).

(2) Definable invariance. The rank is preserved by definable isomorphisms: if
there is a definable isomorphism between two definable sets X and Y , then
rk(X) equals rk(Y ).
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(3) Interpretation and additivity. If the group G is supersimple, then so is
Geq . We shall not need the precise definition of Geq. Let us just say
that Geq is a multi-sorted structure built up out of G which allows us
to treat factor groups by definable subgroups as definable sets. The only
useful consequence for the paper is that any left or right quotient G/H by
a definable subgroup H has an ordinal rank. The rank rk(G/H) can be
controlled in terms of rk(H) and rk(G) by Lascar inequalities (see Fact 2.2).

(4) Rank zero sets. A definable set (in Geq) has rank zero if and only if it
is finite. In particular, if H is a definable subgroup of G, then rk(G/H)
equals zero if and only if H has a finite index in G.

(5) Preservation by elementary extension. If the group G is supersimple, then
so is each of its elementary extension. We recall that G is called an elemen-
tary extension of G if it contains G and for every formula ϕ(x1, . . . , xn) in
the free variables x1, . . . , xn without parameters and all elements g1, . . . , gn
of G, the formula ϕ(g1, . . . , gn) holds in G if and only if it holds in G

We shall use a modicum of ordinal arithmetic: any ordinal α decomposes in base
ω, which means that there are unique ordinals α1 > · · · > αn and non-zero natural
numbers k1, . . . , kn such that α equals ωα1 .k1 + · · · + ωαn .kn. If α and β are
two ordinals, we may assume that α equals ωα1 .k1 + · · · + ωαn .kn and β equals
ωα1 .ℓ1+ · · ·+ωαn .ℓn for the same α1, . . . , αn, adding some additional possibly zero
ki and ℓi if necessary. We call their Cantor sum and write α ⊕ β for the ordinal
defined by

α⊕ β = ωα1 .(k1 + ℓ1) + · · ·+ ωαn .(kn + ℓn)

We say that an ordinal is a monomial if it is of the form ωα.n where α is an ordinal
and n a natural number. Note that for two monomials ωα.n and ωβ .m, the two
operations coincide:

ωα.n+ ωβ .m = ωα.n⊕ ωβ.m

The following inequalities are due to Lascar and their analogue in the supersimple
context can be found in [Wag00, Theorem 5.1.6].

Fact 2.2 (Lascar inequalities). Let G be a supersimple group and H a definable
subgroup of G. Then

rk(H) + rk(G/H) ≤ rk(G) ≤ rk(H) ⊕ rk(G/H)

The following fact will be much used in the sequel:

Fact 2.3 ([Mil2, Neu]). The FC-centre of a supersimple group G is definable and
its derived subgroup G′ is finite.

We call a group G FC-soluble if it has a finite series 1 ⊳ · · · ⊳ G whose factors
are FC groups. Soluble-by-finite groups are FC-soluble groups. For supersimple
groups, the converse is also true:

Fact 2.4 (Milliet [Mil2]). In a supersimple group, any FC-soluble subgroup has a
soluble subgroup of finite index. Any definable FC-soluble subgroup has a definable
soluble subgroup of finite index.

The following Fact is the definable version of [Wag01, Corollary 4.2] which is stated
for hyperdefinable (hence type-definable) groups. As we could not find any precise
reference, we give a proof here for the sake of completeness.
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Fact 2.5 (Wagner [Wag01, Corollary 4.2]). Let G be a supersimple group of rank
ωα1 .k1+· · ·+ωαn .kn with α1 > · · · > αn. Then for every natural number i such that
1 ≤ i ≤ n, there is a definable normal subgroup H of G of rank ωα1 .k1+· · ·+ωαi .ki.
Moreover, if N is another subgroup of G satisfying the same properties as H, then
N and H are commensurable.

Proof. Without loss of generality, we may assume that G is κ-saturated for some
cardinal κ and we write βi for ωα1 .k1 + · · · + ωαi .ki. By [Wag01, Corollary 4.2],
there is a type-definable normal subgroup H of G whose rank equals βi. We recall
that βi is by definition the rank of each of the generic types of H . By [Wag01,
Theorem 4.4], the group H is the conjunction of definable groups Hj for j running
in some set J . We may close this family by finite intersections, then remove the
members whose rank is not minimal, assume that the rank of every Hj equals β say
and that the groups Hj are pairwise commensurable. It follows that for every j, the
index of H in Hj is bounded by κ, so H is a generic type of Hj by [Wag00, Lemma
4.1.15]. Thus β equals βi. Let us take any Hj . As H is normal in G, the groups Hg

j

and Hj are commensurable for every g in G. By the Compactness Theorem and
the saturation hypothesis, the cardinal of Hj/Hj ∩ Hg

j remains bounded by some
natural number when g ranges over G. By Theorem 2.1, there is a definable normal
subgroup N of G which is commensurable with H . Therefore, rk(N) equals βi.

If K is another definable group satisfying the desired requirements, then K/K ∩N
and N/K ∩ N are bounded by κ according to [Wag01, Corollary 4.2]. By the
Compactness Theorem, K and N are commensurable. �

3. A Jordan-Hölder decomposition

We prove the main theorem in this section.

Lemma 3.1. Let G be an infinite supersimple group. Then G has a series 1 =
H0 ⊳ · · ·⊳Hn = G of definable subgroups such that

(1) the rank of every factor Hi+1/Hi is a non-zero monomial, say ωαi .ki,
(2) for every i in {0, . . . , n− 1}, the rank of any definable normal subgroup of

Hi+1/Hi is either equal to ωαi .ki or strictly less than ωαi .

Proof. We proceed by induction on the rank of G.

If the rank of G is 1, we take the series 1⊳G.

Let us assume that the rank of G equals α and that the lemma is proved for every
group whose rank is less than α.

If α is a monomial, we write it say as ωβ.n. Then, either the chain 1⊳G satisfies the
requirements of Lemma 3.1, or there is a definable normal subgroup H whose rank
is of the form ωβ.k+γ with 1 ≤ k < n and γ < ωβ . By Lascar inequalities, the ranks
of both H and G/H are strictly less than α. We may apply the induction hypothesis
to H and G/H and find two series 1 = H0 ⊳ · · ·⊳Hn = H and 1 = Hn/H ⊳ · · ·⊳
Hn+r/H = G/H with the required properties. As groups, Hn+i+1/H

/

Hn+i/H
and Hn+i+1/Hn+i are definably isomorphic, so they must have the same rank;
moreover, their definable normal subgroups are in a (rank preserving) one-to-one
definable correspondence, so that the series 1 = H0 ⊳ · · · ⊳ Hn+r = G meets our
requirements.
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If α is not a monomial, it can be written in the form ωβ.n+γ with 0 < γ < ωβ. By
Proposition 2.5, the group G has a definable normal subgroup H of rank ωβ.n. By
Lascar inequalities, both the rank of H and the rank of G/H are strictly less than
α, so we conclude again by applying the induction hypothesis as in the monomial
case. �

To prove Fact 3.2, we shall need Zilber’s Indecomposability Theorem formulated
by Wagner for the groups which are hyperdefinable in a supersimple theory (see
[Wag00, Theorem 5.4.5]). We give the appropriate version for definable groups
here. Again, we could not find a precise reference for this particular version, so we
provide a proof bellow.

Fact 3.2 (Wagner’s version of Zilber’s Indecomposability Theorem). Let G be a
supersimple group and let X be a collection of definable subsets of G. If the rank of
G is strictly less than ωα+1, then there is a definable subgroup H of G included in
X±1

1 · · ·X±1
n for some X1, . . . , Xn belonging to X such that rk(XH) < rk(H) +ωα

holds for all X in X. Moreover, Hg equals H for every element g of G stabilising
X setwise by conjugation.

Proof. Without loss of generality, we assume that G is κ-saturated for some cardinal
κ. By [Wag00, Theorem 5.4.5], there is a type-definable subgroup T of G included
in X±1

1 · · ·X±1
n for some X1, . . . , Xn in X such that rk(XT ) < rk(T ) + ωα holds

for all X in X and such that T is normalised by every element g of G stabilising
X setwise. By [Wag00, Corollary 5.5.4], the group T is a subgroup of a definable
subgroup H of G having the same rank as T . By the Compactness Theorem, we
may assume that H is still a subset of X±1

1 · · ·X±1
n . Let A be the subset of G whose

elements stabilise X setwise by conjugation. As T is a subgroup of H and because
T is invariant under conjugation by elements of A, the set of A-conjugates of H
consists of commensurable uniformly definable subgroups: they must be uniformly
commensurable. By Theorem 2.1, there is a definable subgroup N of G which is
commensurable with H , is invariant under conjugation by elements of A and is a
subset of a finite product of elements of X ∪ X

−1. As N/T ∩N and T/T ∩N are
bounded by κ, the groups T and N have the same rank by [Wag00, Lemma 4.1.15].
It follows that rk(XT ) equals rk(XN) for any X in X, so that the inequality
rk(XN) < rk(N) + ωα holds. �

Let G be a group and let P be a group property. We say that G is virtually P if
G has a definable normal subgroup of finite index with property P . We say that G
is finite-by-P if it has a finite normal subgroup N such that G/N has property P .
We say that G is finite-by-P -by-finite if G has a series 1⊳N ⊳H ⊳G such that N
and G/H are finite and H/N has property P .

Lemma 3.3. Let G be a supersimple group which is not virtually FC. If every
non-trivial definable normal subgroup of G has a finite index, then every normal
subgroup of G is definable (hence either is trivial or has a finite index).

Proof. G must have a monomial rank say ωα.n for otherwise Proposition 2.5 to-
gether with Lascar inequalities would yield a normal definable subgroup of infinite
index. If there is a conjugacy class gG whose rank is strictly less than ωα, then so is
the rank of G/C(g). By Lascar inequalities, the rank of G/C(g) is zero so C(g) has
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a finite index in G. If g 6= 1, then FC(G) contains g hence is a non-trivial normal
subgroup. FC(G) is definable by Lemma 2.3 so it has a finite index in G. It follows
that G is virtually FC, a contradiction. So, the rank of any non-trivial conjugacy
class is at least ωα. If N is a normal proper subgroup of G containing some n 6= 1,
by Theorem 3.2 there is definable normal subgroup H such that H ≤ 〈nG〉 ≤ N and
rk(nGH) < rk(H) +ωα hold. As rk(nG) is at least ωα, the group H is non-trivial.
It follows that H has a finite index in G, so N is a finite union of cosets of H : it is
definable. �

Definition 3.4 (McCarthy, Magnus). A group is called just-infinite if it is infinite
and if each of its normal subgroups either is trivial or has a finite index.

Lemma 3.5. Let G be a supersimple group. If G is just-infinite, then it is either
virtually FC or virtually simple.

Proof. Let us suppose that G is not virtually FC. Let G0 be the intersection of
every definable subgroup of G having a finite index. G0 is a normal subgroup
of G hence either is trivial or has a finite index. If G0 has a finite index, it is
simple by Lemma 3.3. Suppose for a contradiction that G0 be trivial. We may
use [Wag11]: G is residually finite hence virtually nilpotent, so it has a minimal
nilpotent subgroup N of finite index. N is a characteristic subgroup. As a proper
normal subgroup of G, the derived group N ′ is trivial, so G is virtually abelian, a
contradiction. We may alternatively use a compactness argument: by Lemma 3.3,
being just-infinite and being virtually simple are properties of the theory of G, so
we may assume that G is ℵ0-saturated. G0 is the intersection of infinitely many
definable normal subgroups of G having a finite index. As it is trivial, one can find
a countable subchain of strictly decreasing definable subgroups G1, G2, . . . whose
indexes in G are finite. Let us call A a countable parameter set over which every
Gi is definable. Let G0

A be the intersection of all the subgroups of G of finite index
which are definable using parameters in A. As G0

A is normal in G, either it has a
finite index or it is trivial. Being a subgroup of

⋂

i∈N
Gi, it must be trivial. This

contradicts the Compactness Theorem and the ℵ0-saturation of G. �

Lemma 3.6. Let G be a supersimple group having a monomial rank ωα.n. Assume
that the rank of every definable normal subgroup of G is either equal to ωα.n or
strictly less than ωα. Then, the quotient G/FC(G) is either finite or just-infinite.

Proof. Let H be a definable normal subgroup of G whose rank is less than ωα

and let h be an element of H . Then H contains hG so rk(hG) < ωα, hence
rk(G/C(h)) < ωα. By Lascar inequalities, G/C(h) is finite. It follows that any
normal subgroup whose rank is less than ωα is a subgroup of FC(G). If the rank of
FC(G) equals ωα.n, then G/FC(G) is finite. So, we may assume that the rank of
FC(G) is less than ωα, so that G/FC(G) has rank ωα.n. Note that if H/FC(G) is
a definable normal subgroup of G/FC(G), then H is a definable normal subgroup
of G. Thus, every definable normal subgroup of G/FC(G) must either be trivial
or have maximal rank hence have a finite index. In this case, the group G/FC(G)
is just-infinite by Lemma 3.3. �

Theorem 3.7. Let G be an infinite supersimple group. Then, there is a finite chain
of definable subgroups 1 = H0⊳H1⊳· · ·⊳Hn = G such that every quotient Hi+1/Hi

is infinite and either virtually FC or virtually simple modulo a finite FC-centre.
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Proof. Lemma 3.1 provides a series 1 = H0 ⊳H1 ⊳ · · ·⊳Hn = G. Lemma 3.6 and
Lemma 3.5 ensure that there is a refinement of the series whose factors have the
required properties. �

4. Corollaries of Theorem 3.7

A supersimple FC group is finite-by-abelian according to Lemma 2.3. As a finite
group F decomposes into a finite series 1 = F0 ⊳ F1 ⊳ · · ·⊳ Fn = F whose factors
are either abelian or simple, we may state:

Corollary 4.1. Let G be a supersimple group. Then there is a finite series of
definable subgroups 1 = H0 ⊳H1 ⊳ · · ·⊳Hn = G such that every factor Hi+1/Hi is
either abelian or simple. Moreover, in this decomposition, the non-abelian simple
factors (in particular the infinite simple ones) are uniquely determined up to a
definable group isomorphism.

Proof. We need just to prove that the non-abelian simple factors are unique. Let
be two series for G whose factors are either abelian or simple. By the Schreier
Refinement Theorem, in both of those two normal series of G, some intermediate
subgroups can be inserted to yield two refined normal series for G whose factor
groups coincide, counting their multiplicity, up to a group isomorphism. As neither
an abelian group nor a simple one has a non-abelian simple proper factor, the non-
abelian simple factors occurring in the two refined normal series must already occur
in the original series. �

Theorem 3.7 has many consequences concerning soluble subnormal subgroups, resid-
ual properties and pseudofinite groups. We discuss them here.

4.1. About soluble subgroups and local properties.

Corollary 4.2. Let G be a supersimple group. Then, either G interprets an infinite
simple group or G is virtually soluble.

Proof. If G does not interpret an infinite simple group, then G has a series whose
factors are finite or abelian. So G has a series with FC factors: it is FC-soluble.
By Theorem 2.4, G is virtually soluble. �

Let G be any group with a series 1 = G0 ⊳G1 ⊳ · · ·⊳Gn = G . If N is a normal
subgroup of G, it has a induced series

1 = G0 ∩N ⊳G1 ∩N ⊳ · · ·⊳Gn ∩N = N

where every factor Gi+1 ∩N/Gi ∩N is isomorphic to (Gi+1 ∩N)Gi/Gi hence can
be considered as a normal subgroup of Gi+1/Gi. We say that H is a subnormal
subgroup of G if there is a finite series H ⊳ · · ·⊳G. For a subnormal subgroup H
of G, an immediate induction yields an induced series (of length no greater than
n) whose factors are isomorphic to subnormal factors of the original series for G.
In particular:

Corollary 4.3. For any supersimple group G, there exists a natural number n
such that any subnormal subgroup S (not necessarily definable) has a series 1 =
H0 ⊳ H1 ⊳ · · · ⊳ Hm = S whose length m is bounded by n and whose factors are
either abelian or simple.
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Corollary 4.4. For any supersimple group, there is a natural number n bounding
the derived length of any subnormal soluble subgroup.

Question 1. In a supersimple group, or even a superstable one, is there a bound on
the derived lengths of soluble subgroups? Is the number of infinite abelian factors
bounded? It would suffice to prove this in the case where the ambient group is
infinite simple and has a monomial rank.

Corollary 4.5. A locally soluble subnormal subgroup of a supersimple group is
soluble.

Proof. By [Rob], every locally soluble simple group is finite hence soluble. The use
of Corollary 4.3 concludes the proof. �

By definition, the soluble radical of a group is the subgroup generated by all its
normal soluble subgroups. It is a locally soluble characteristic subgroup. By Corol-
lary 4.5, the soluble radical of a supersimple group is soluble. By an observation of
Ould Houcine [Oul], the soluble radical of any group is definable provided that it
is a soluble subgroup. This shows:

Corollary 4.6. The soluble radical of a supersimple group G is a soluble and
definable subgroup.

Wagner and Evans [EW] have shown that a supersimple ℵ0-categorical group is
finite-by-abelian-by-finite. A simple ℵ0-categorical group is known to be nilpotent-
by-finite [Wag00]. Note that ℵ0-categorical groups are locally finite groups of
bounded exponent. In the same vein:

Corollary 4.7. A locally finite supersimple group of bounded exponent is soluble-
by-finite.

Proof. The same argument as the one by Felgner in [Fel] works: by an inspection
of the classification of finite simple groups and a result of Kargapolov [Kar]. �

Question 2. Is a locally finite supersimple group soluble-by-finite? This question
is equivalent to asking whether a supersimple locally finite simple group is finite.
Recall from [HK] that in an infinite locally finite simple group, the centraliser of
every element is infinite.

4.2. About free groups, hyperbolic groups and residual properties. Non-
abelian free groups are not superstable (a result of Gibone, see [Poi]). Sela has
shown that free groups and more generally torsion-free hyperbolic groups are stable
[Sel]. By a Theorem of Magnus, an early result of combinatorial group theory, free
groups are residually-nilpotent (see [Hal, Chapter 11]). Wagner [Wag11] has shown
that a supersimple group which is residually soluble is in fact soluble. It follows
that non-abelian free groups are not supersimple. This can also be derived directly
from Corollary 4.1 following Poizat’s argument in [Bau].

Corollary 4.8. A non-abelian free group is not supersimple.

Proof. Suppose for a contradiction that F is a supersimple non-abelian free group
on r > 1 generators. By Corollary 4.1, F has a series of bounded length n with
abelian or simple factors. So does every quotient of F by a normal subgroup. In
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particular, any soluble group generated by r elements is isomorphic to a quotient
of F and would have derived length bounded by n. �

Let G be a (non virtually cyclic) hyperbolic group. A theorem of Gromov states
that if g and h are non-commuting elements of G, then gn and hm generate a non-
abelian free subgroup on 2 generators for sufficiently large natural numbers n and
m (see [GH, Théorème 37 p. 157]). This was generalised by Delzant [Del]: if g is
an element of G, we write ℓ(g) for the length of g and n(g) for the limit of ℓ(gn)/n
when n goes to infinity. This limit can be shown to be a natural number.

Fact 4.9 (Delzant [Del]). Let G be a (non virtually cyclic) δ-hyperbolic group.
Then, there is a natural number m such that for all g1, . . . , gn in G with n(gi) =
n(gj) ≥ 1000δ, the normal subgroup generated by gn1 , . . . , g

n
m is free.

Corollary 4.10. A (non virtually cyclic) hyperbolic group is not supersimple.

Let C be a pseudo-variety of groups i.e. a class of groups closed under taking sub-
groups, quotients and finite Cartesian products. A group G is said to be residually
C if

⋂

H⊳G
G/H∈C

H = {1}

It was shown in [Wag11] that a supersimple group which is residually C has series
G = G0⊲· · ·⊲Gn such that every factor Gi/Gi+1 belongs to C and Gn is nilpotent.
In the same spirit:

Corollary 4.11. Let C be a pseudo-variety of groups that does not contain an
infinite simple group. A residually C supersimple group is virtually soluble. In
particular, a residually soluble supersimple group is soluble (Wagner).

Proof. Let G be residually C and supersimple. By Corollary 4.6, the soluble radical
R of G is soluble and definable. It may not be equationnally definable, so we may
not apply [Oul07, Lemma 2.2.2], but it is equationnally type-definable, that is to
say, definable by an infinite set of equations, namely f(x, g1, . . . , g2n) = 1 where
the gi range over all elements of G and where f(x, g1, . . . , g2n) is the word defined
inductively on n ≥ 1 by putting

f(x, g1, g2) = [xg1 , xg2 ] and

f(x, g1, g2, . . . , g2n+1) = [f(x, g1, g2, . . . , g2n), f(x, g2n+1, g2n+2, . . . , g2n+1)]

By [Wag11, Lemma 1], the quotient G/R is residually C . If G/R is infinite, then,
by Corollary 4.1, it has a finite series 1 = G0/R ⊳ · · · ⊳ Gn/R = G/R such that
G1/R is infinite and either finite-by-simple, or finite-by-abelian. The first case is
impossible as C does not contain any infinite simple group. In the second case, there
is a finite F extension of R such that G1/F is abelian, so G1/F is a subnormal
abelian subgroup of G/F and is a subgroup of its Baer radical, that is, the subgroup
generated by each of its subnormal abelian subgroups. It is a characteristic locally
nilpotent group. By Corollary 4.5, G1/F is a subgroup of a normal soluble subgroup
S/F of G/F . As F is soluble-by-finite, S is FC-soluble hence soluble-by-finite by
Theorem 2.4. It must have a maximal soluble subgroup of finite index which is
characteristic in S hence normal in G. But S/R is infinite: this contradicts the
maximality of R. It follows that G/R is finite. �
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4.3. About pseudofinite groups. Wilson has shown in [Wil] that every pseudofi-
nite simple group is elementary equivalent to a Chevalley group over a pseudofinite
field. As pseudofinite fields are supersimple (see [Hru]) and have rank 1 (see [CVM]),
a pseudofinite simple group is supersimple and has a finite rank.

Corollary 4.12. A pseudofinite supersimple group has a finite series whose fac-
tors are abelian, finite simple groups, or elementary equivalent to Chevalley groups
over pseudofinite fields. In particular, if a pseudofinite supersimple group does not
interpret a pseudofinite field, it must be virtually soluble.

Proof. If a pseudofinite supersimple group G interprets an infinite simple group
S, this must be a Chevalley group over a pseudofinite field F . By [Ryt], F is
interpretable in G. Otherwise, G is virtually soluble by Corollary 4.2. �

For a group G, let us say that Geq eliminates ∃∞ if for any uniformly definable
family of sets (in the sense of Geq), there is an upper bound on the size of its finite
members. Elwes, Jaligot, Macpherson and Ryten have shown in [EJMR] that a
supersimple pseudofinite group G having rank 2 is virtually soluble provided that
Geq eliminates ∃∞. With this assumption, they also showed using [Wil] that there
were no supersimple pseudofinite simple groups of rank less than 3 and that the
ones having rank 3 are elementary equivalent to PSL2(F ) for some pseudofinite
field F .

Corollary 4.13. A pseudofinite supersimple group G of rank 3 such that Geq elimi-
nates ∃∞ is either virtually soluble or has a series of definable subgroups 1⊳F⊳S⊳G
such that F and G/S are finite and S/F is elementary equivalent to PSL2(F ) for
some pseudofinite field F .

5. Type-definable version

Let T be be first order theory equipped with a definable binary law ×. Let n be
a natural number. We call a type-definable group a partial type π in n variables
such that for all model M of T , the set of realisations of π in the Cartesian product
Mn has a group structure for the law ×. If the structure M is saturated, we shall
identify the type π and the group that it defines on Mn. We now extend the main
results of the previous section to type-definable groups in a supersimple theory. We
first recall:

Fact 5.1 (Wagner [Wag00, Theorem 5.5.4]). In a supersimple theory, a type-
definable group is a conjunction of definable groups.

It is shown in [Bau, Corollary 1.11] that a type-definable simple group in a super-
stable theory is definable. We generalise that to supersimple theories:

Proposition 5.2. A simple group H which is type-definable in a supersimple theory
is definable.

Proof. We may assume that H is infinite. We may also add some parameters to the
language and assume that H is defined with no parameters. By [Wag00, Proposition
5.4.9], any elementary extension of H is still a simple group, so we may assume that
the ambient structure is ℵ0-saturated. By Fact 5.1, the type-definable group H is
contained in a group G which is definable without parameters and that we may
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take of the minimal possible rank, so that the cardinal of G/H is bounded by κ.
Let us consider the intersection G0 of every subgroup of G having finite index and
being definable without parameters. G0 is a non-trivial subgroup of H which is
normalised by G. Because H is simple, G0 equals H . It follows that H is normal
in G. Note that both G and H have a monomial rank say equal to ωα.n. Let h 6= 1
be an element of H . If the rank of hG is strictly less than ωα, then C(h) has a
finite index in G so h belongs to FC(H), a contradiction with H being infinite and
simple. So the rank of hG is at least ωα. By Fact 3.2, there is a definable normal
subgroup N of G such that N ≤ 〈hG〉 ≤ H and rk(hGN) < rk(N) + ωα hold. As
we have rk(hG) ≥ ωα, the group N is non-trivial and must equal H by simplicity
of H . �

Let G be a type-definable group and let H be a type-definable subgroup of G. We
say that H is relatively definable in G if H is the intersection of G with a definable
set. We now extend Theorem 3.7 to type-definable groups:

Theorem 5.3. Let G be a type-definable supersimple group. There is a finite chain
of relatively definable subgroups 1 = G0⊳G1⊳ · · ·⊳Gn⊳G such that every quotient
Gi+1/Gi is either abelian or simple. Moreover, the non-abelian simple factors are
unique up to isomorphism.

Proof. We may add parameters to the language, assume that G is defined with
no parameters and that the structure is ℵ0-saturated. By Fact 5.1, the group G
is a subgroup of some group H definable with no parameters. We may assume
that H has a minimal rank so that H/G is bounded. Let H0 be the intersection
of every subgroups of finite index which are definable with no parameters. H0 is
a normal subgroup of H included in G. Let 1 = H0 ⊳ H1 ⊳ · · · ⊳ Hn = H be a
definable series for H provided by Theorem 3.7. For every i, as Hi+1∩H0/Hi∩H0

is isomorphic to (H0∩Hi+1)Hi/Hi, the group Hi+1∩H
0/Hi∩H

0 can be considered
as a normal subgroup of Hi+1/Hi: it is again abelian or simple. The series 1 =
H0 ⊳H1 ∩H0 ⊳ · · ·⊳Hn−1 ∩H0 ⊳H0 ⊳G has the required properties, but maybe
the last factor G/H0, which is bounded.

We now show inductively on the length n of the chain that the previous series can
be refined into a new series where every factor is abelian, simple or finite. Because
a finite group has a series whose factor are either simple or abelian, this is sufficient.
If n equals 1, then H0 is trivial so H is finite by the Compactness Theorem. For
the induction step, we note that H0/H0 ∩Hn−1 is isomorphic to H0.Hn−1/Hn−1,
which is either abelian or simple.

First case: H0.Hn−1/Hn−1 is simple. Then H0.Hn−1 is definable by Proposi-
tion 5.2. By the Compactness Theorem, there is a definable normal subgroup K of
H of finite index such that H0.Hn−1 equals K.Hn−1. It follows that K/K ∩Hn−1

is isomorphic to H0/H0 ∩ Hn−1 hence simple. Note that K ∩ G/K ∩ Hn−1 has
bounded index in K/K ∩Hn−1 hence is also simple. As K ∩Hn−1/H

0 ∩Hn−1 is
bounded, the series

1 = H0 ⊳H1 ∩H0
⊳ · · ·⊳Hn−1 ∩H0

⊳Hn−1 ∩K ⊳K ∩G⊳G

can be refined by a series with abelian, simple or finite factors by the induction
hypothesis.
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Second case: H0/H0∩Hn−1 is abelian. Then, by the Compactness Theorem, there
is a definable subgroup K of finite index in H , such that K/H0 ∩Hn−1 is abelian.
We may replace K by a finite intersection of H-conjugates of it and assume that
K is normalised by H , hence by G. We consider the series

1 = H0 ⊳H1 ∩H0
⊳ · · ·⊳Hn−1 ∩H0

⊳K ∩G⊳G

where only the two last factor groups K ∩G/Hn−1 ∩H0 and G/G ∩K have been
modified. As a subgroup of K/H0 ∩Hn−1, the group K ∩G/Hn−1 ∩H0 is abelian
whereas G/G ∩K is finite. This completes the proof by induction.

We have just build a series of type-definable groups 1 = G0 ⊳ G0 ⊳ · · ·⊳ Gn = G
such that every factor is abelian or simple. By the same type of arguments, one can
show inductively that each Gi may be replaced by one which is relatively definable
in Gi+1. �

Corollary 5.4. In a type-definable supersimple group, there is a natural number n
bounding the derived length of any subnormal soluble subgroup.

Corollary 5.5. A locally soluble subnormal subgroup of a type-definable supersim-
ple group is soluble.

Lemma 5.6. Let G be any type-definable group. Assume that G is the conjunction
of definable groups Hi where i ranges over some set I. Let R(G) be the soluble
radical of G. If R(G) is soluble, then there is a finite conjunction HJ of groups Hi

such that

R(G) = R(HJ) ∩G.

In particular, R(G) is relatively definable in G.

Proof. For any finite subset J of I, we write HJ for the intersection of Hj when j
ranges over J . For any finite subset J of I, if x belongs to R(HJ) ∩ G, then xHJ

generates a soluble subgroup so xG also generates a soluble subgroup and x is an
element of R(G). Reciprocally, if x belongs to R(G), then xG generates a soluble
subgroup of derived length n say. Because R(G) is soluble, the number n does not
depend on x. It follows that (xG ∪ x−G)(n) equals {1} where for a subset X of G,
the set X(n) is defined inductively on n ≥ 0 by

X(0) = X, X(1) = [X,X ] and X(n+1) =
[

X(n), X(n)
]

.

This means that the partial type G×· · ·×G in 2n variables (x1, . . . , x2n) implies the
formula f(x, x1, . . . , x2n) = 1 where f(x, x1, . . . , x2n) is the word defined inductively
on n ≥ 1 by

f(x, x1, x2) = [xx1 , xx2 ] and

f(x, x1, x2, . . . , x2n+1) = [f(x, x1, x2, . . . , x2n), f(x, x2n+1, x2n+2, . . . , x2n+1)]

By the Compactness Theorem, there is a finite subset J of I such that the same
formula

f(x, x1, . . . , x2n) = 1

is implied by the formula

(x1, . . . , x2n) ∈ HJ × · · · ×HJ

This means precisely that xHJ generates a soluble group of derived length at most n,
hence x is an element of R(HJ ) ∩G. �
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Corollary 5.7. The soluble radical of a group G which is type-definable in a su-
persimple theory is soluble and relatively definable in G.
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