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ON SUPERSIMPLE GROUPS

CÉDRIC MILLIET

Abstract. An infinite group with supersimple theory has a finite series of de-
finable groups whose factors are infinite and either virtually-FC or virtually-
simple modulo a finite FC-centre. We deduce that a group which is type-
definable in a supersimple theory has a finite series of relatively definable
groups whose factors are either abelian or simple groups. In this decomposi-
tion, the non-abelian simple factors are unique up to isomorphism.

1. Introduction

Model theory is the study of definable sets. It can be thought as a generalisation
of algebraic geometry where the objects under study are algebraic varieties : sets
defined by systems of polynomial equations. The existence of a notion of dimen-
sion on a class of definable sets strongly restricts the behavior of this class. In a
linear algebraic group over an algebraically closed field, the Zariski dimension of an
algebraic variety arises from the Zariski topology. A supersimple group is a group
whose definable sets are equiped with a notion of dimension, the so-called SU-rank,
arising from the logic topology and taking ordinal values. The SU -rank generalises
the Lascar U -rank of superstable groups, and the Morely rank of groups of finite
Morley rank. It is thus a far reaching generalisation of the Zariski dimension for
algebraic groups. Example of supersimple groups include :

• Finite groups.
• Linear algebraic groups over algebraically closed fields.
• Groups of finite Morley rank.
• Abelian groups which are divisible, or of bounded exponent.
• ℵ0-stable groups
• Superstable groups.
• Simple linear algebraic groups over pseudofinite fields.
• Simple pseudofinite groups.

On the other hand, the infinite cyclic group Z, non-abelian free groups on n gen-
erators, and more generally non elementary hyperbolic groups are not supersimple
(see Corollary 4.10).

In spite of the strong analogy between U -rank and SU -rank, the theory of su-
persimple groups is not nearly as developed as it is for its superstable analogues.
For instance, Berline and Lascar [2] have shown every superstable group to have
a definable abelian subgroup of the same cardinality. The original argument has
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ON SUPERSIMPLE GROUPS 2

been much simplified since (see [26, Remark 5.4.11]). Still, it is unknown whever
a supersimple group has an infinite abelian subgroup. An abelian subgroup of a
(super)simple group is a subgroup of a definable finite-by-abelian one (see [5, Elwes
Jaligot Macpherson Ryten] or [15, Milliet]), so this is equivalent with asking wether
a supersimple group of rank ωα.n+ β has a definable finite-by-abelian subgroup of
rank at least ωα. Finite-by-abelian groups are FC-groups, i.e groups whose con-
jugacy classes are finite. In [1], Baudisch has shown every superstable group G to
have a finite series with abelian or simple factors. Our main result is:

Theorem 1.1. G is an infinite supersimple group. There is a finite chain of
definable subgroups 1 = H0 ⊳H1 ⊳ · · ·⊳Hn = G such that every quotient Hi+1/Hi

is infinite and either virtually-FC or virtually-simple modulo a finite FC-centre.

Consequently, Baudish’s resut can be extended to supersimple groups. His argu-
ments however do not adapt to the supersimple context though, mainly for two
reasons : the proof is based on a transfinite induction on the rank of G, the induc-
tion basis being Berline and Lascar’s result that a superstable group of rank 1 is
virtually abelian ; in a supersimple group, there is a notion of connected compo-
nent, but it depends heavily on the specific parameter set over which it is defined.
So we have to do without Berline and Lascar and without connected components.

To replace Berline and Lascar, the basic idea is provided by [26, Remark 5.4.11] : a
supersimple group of rank one either has an infinite abelian subgroup or is virtually-
simple modulo a finite FC-centre ; this makes a transfinite induction still possible.
To avoid the use of connected component, we study just-infinite supersimple groups.
These turn out to be either virtually FC or virtually simple.

Important tools are also Lascar’s additive properties of the rank, Wagner’s version
of Zilber’s indecomposability Theorem for supersimple groups, and the observation
that the FC-centre of a supersimple group is definable. It should be mentioned that
these methods mainly come from Berline and Lascar’s investigation of superstable
groups [2], later extended by Wagner [26] to supersimple groups.

The main theorem has several consequences. We outline three of them. Sela has
shown recently that a torsion-free hyperbolic group is stable. With a theorem of
Delzant [4], we derive :

Corollary 1.2. A (non virtually-cyclic) hyperbolic group is not supersimple.

Jaligot, Elwes, Macpherson, and Ryten have recently proved that the soluble radical
of a supersimple group of finite rank such that Geq eliminates ∃∞ is soluble and
definable [5]. This has been generalised for an arbitrary supersimple groups in
[17]. A group G is said to be type-definable if it is defined by a conjunction of
infinitely many formulae. A relatively definable subgroup of G is the trace over G
of a definable set. We show the following :

Corollary 1.3. The soluble radical of a type-definable supersimple group is solvable
and relatively definable.

Pseudofinite supersimple groups of finite rank have been investigated in [5]. Pseu-
dofinite fields are supersimple of rank one, and pseudofinite simple groups are su-
persimple of finite rank by [28]. Using the work of Wilson [28] and Ryten [20] on
pseudofinite simple groups :
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Corollary 1.4. A pseudofinite supersimple group either interprets a pseudofinite
field or is virtually-solvable.

2. Preliminaries

If G is a group and x an element of G, we write xG for the conjugacy class {g−1xg :
g ∈ G} of x, and C(x) for its centraliser {g ∈ G : g−1xg = x} in G. If y is another
element of G, we write [x, y] for the commutator x−1y−1xy. The element x is said
to be FC in G if xG is finite. The FC-centre of G is the subgroup of every of its
FC elements. We write it FC(G). We say that G is an FC-group if every of its
elements is FC in G.

Two subgroups of a given group G are commensurable if the index of their inter-
section is finite in both of them. The following theorem comes originally from [22],
with some precisions coming from [26, Theorem 4.2.4] and its proof.

Fact 2.1 (Schlichting [22]). G is group and H a subgroup of G such that H/H∩Hg

remains finite and bounded by a natural number for all g in G. There exists a normal
subgroup N of G such that H/H ∩ N and N/N ∩H are finite. Moreover, N is a
finite extension of a finite intersection of G-conjugates of H. In particular, if H is
definable then so is N . More precisely, there are four elements g1, . . . , g4 in G such
that N is contained in Hg1Hg2Hg3Hg4 .

We recall the properties of a supersimple group that will be needed in the sequel.
A supersimple group G is a group equiped with a rank function taking values in the
ordinals, and ranking any definable subset X of G. We write SU(X) for the rank
of X . We refer to [26, Definition 5.1.1] for the precise definition of this rank and
more generally to [26, Chapter 5] for precisions on supersimple theories. We shall
try to avoid technicalities and use only basic properties of this rank that we recall
now.

(1) Monotonicity. The rank is increasing : if X ⊂ Y are two definable subsets
of G, then SU(X) is smaller or equal to SU(Y ).

(2) Definable invariance. The rank is preserved by definable isomorphisms : if
there is a definable isomorphism between two definable sets X and Y , then
SU(X) equals SU(Y ).

(3) Interpretation and additivity. If G is supersimple, then so is Geq , meaning
that any quotient G/H of left (or right) cosets of a definable subgroup H
has an ordinal SU -rank. The rank SU(G/H) can be controlled in terms of
SU(H) and SU(G) by Lascar inequalties (see Fact 2.2).

(4) Rank zero sets. A definable set (in Geq) has rank zero if and only if it is
finite. In particular, if H is a definable subgroup of G, then SU(G/H)
equals zero if and only if H has finite index in G.

(5) Preservation by elementary extension. If G is supersimple, then so is any
of its elementary extension.

We shall use a little ordinal arithmetic : any ordinal α decomposes in base ω, which
means that there are unique ordinals α1 > · · · > αn and non-zero natural numbers
k1, . . . , kn such that α equals ωα1 .k1+ · · ·+ωαn .kn. If α and β are two ordinals, we
may assume that α equals ωα1 .k1+ · · ·+ωαn .kn and β equals ωα1 .ℓ1+ · · ·+ωαn .ℓn
for the same α1, . . . , αn, adding some additional possibly zero ki and ℓi if necessary.
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We write α⊕ β for their Cantor sum defined by

α⊕ β = ωα1 .(k1 + ℓ1) + · · ·+ ωαn .(kn + ℓn)

We say that an ordinal is monomial if it is of the form ωα.n. Note that for mono-
mials, the two operations + and ⊕ coincide.

The following inequalities are due to Lascar and their analogue in the supersimple
context can be found in [26, Theorem 5.1.6].

Fact 2.2 (Lascar inequalities). G is a supersimple group, and H a definable sub-
group of G. Then

SU(H) + SU(G/H) ≤ SU(G) ≤ SU(H)⊕ SU(G/H)

The following Lemma will be much used in the sequel :

Fact 2.3 ([16, 18]). The FC-centre of a supersimple group is definable and has a
finite derived subgroup.

We say that a group is FC-soluble if it has a finite series 1⊳ · · ·⊳G whose factors
are FC-groups. Soluble-by-finite groups are FC-soluble groups. In a supersimple
theory, the converse is also true :

Fact 2.4 (Milliet [16]). In a supersimple group, any FC-soluble subgroup has a
soluble subgroup of finite index. Any definable FC-soluble subgroup has a definable
soluble subgroup of finite index.

The following Proposition is the definable version of [25, Corollary 4.2] which is
stated for hyperdefinable (hence type-definable) groups. As we could not find any
precise reference, we give a proof here for the sake of completeness.

Fact 2.5 (Wagner [25, Corollary 4.2]). G is a supersimple group of rank ωα1 .k1 +
· · ·+ ωαn .kn with α1 > · · · > αn. For every natural number i such that 1 ≤ i ≤ n,
there is a definable normal subgroup H of G of rank ωα1 .k1 + · · · + ωαi .ki. The
group H is unique up to commensurability.

Proof. We may assume that G is saturated and we write βi for ωα1 .k1+ · · ·+ωαi.ki.
By [25, Corollary 4.2], there is a type-definable normal subgroup H of G having
rank βi. Recall that βi is by definition the rank of any of the generic types of
H . By [25, Theorem 4.4], the group H is the conjunction of definable groups Hi

for i in I. We may close this family by finite intersections, remove the members
that do not have minimal rank and assume that every Hi has rank β say and are
commensurable. It follows that for every i, the group H has bounded index in Hi

so H is a generic type of Hi by [26, Lemma 4.1.15]. Thus β equals βi. Take any
Hi. As H is normal in G, the groups Hg

i and Hi are commensurable for every g
in G. By compactness and saturation, the cardinal of Hi/Hi ∩ Hg

i must remain
bounded by some natural number when g ranges over G. By Theorem 2.1, there is
a definable normal subgroup N of G commensurable with H hence of rank βi. If
K is another definable group satisfying the desired requirements, then K/K ∩ N
and N/K ∩N are bounded by [25, Corollary 4.2]. By compactness, K and N must
be commensurable. �
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3. A Jordan-Hölder like decomposition

Lemma 3.1. G is an infinite supersimple group. G has a definable series 1 =
H0 ⊳ · · · ⊳ Hn = G such that Hi+1/Hi has non-zero monomial rank ωαi .ki and
every definable normal subgroup of Hi+1/Hi has rank either ωαi .ki or strictly less
than ωαi .

Proof. We proceed by induction on the rank of G.

If G has rank 1, we take the series 1⊳G.

Assume that G has rank α and that the Lemma is proved for every group of rank
less than α.

If α is monomial, say ωβ .n. Either the chain 1 ⊳ G satisfies the requirement of
Lemma 3.1, or there is a definable normal subgroup H of rank ωβ .k + γ with 1 ≤
k < n and γ < ωβ . By Lascar inequalities, both H and G/H have rank strictly less
than α. We may apply the induction hypothesis to H and G/H and find two series
1 = H0 ⊳ · · ·⊳Hn = H and 1 = Hn/H ⊳ · · ·⊳Hn+r/H = G/H with the required
properties. As Hn+i+1/H

/

Hn+i/H is definably isomorphic to Hn+i+1/Hn+i, they
must have same rank ; moreover their definable normal subgroups are in a (rank
preserving) one-to-one definable corespondance, so that the series 1 = H0 ⊳ · · · ⊳
Hn+r = G fullfills our purpose.

If α is not monomial, it equals ωβ.n+ γ with 0 < γ < ωβ. By Proposition 2.5, the
group G has a definable normal subgroup H of rank ωβ.n. By Lascar inequalities,
both H and G/H have rank strictly less than α so we conclude again by induction
hypothesis as in the monomial case. �

For the next Lemma, we shall need Zilber’s Indecomposibility Theorem formulated
by Wagner for hyperdefinable groups in a supersimple theory (see [26, Theorem
5.4.5]). We give the appropriate version for definable groups here. Again, we could
not find a precise reference for this particular version, so we provide a proof bellow.

Fact 3.2 (Wagner’s version of Zilber’s Indecomposibility Theorem). G is a super-
simple group of rank strictly less than ωα+1 and X a collection of definable subsets
of G. There is a definable subgroup H of G contained in X±1

1 · · ·X±1
n for some

X1, . . . , Xn in X such that SU(XH) < SU(H)+ωα for all X in X. Moreover, one
has Hg = H for every g in G stablising X setwise by conjugation.

Proof. By [26, Theorem 5.4.5], there is a type-definable subgroup T of G contained
in X±1

1 · · ·X±1
n for some X1, . . . , Xn in X such that SU(XT ) < SU(T ) + ωα for

all X in X with T normalised by every g in G stabilising X setwise. By [26,
Corollary 5.5.4] and compactness, the group T is contained in a definable subgroup
H of G having same rank as H such that H is contained in X±1

1 · · ·X±1
n . Let

A be the subset of G stabilising X setwise by conjugation. As H contains T and
because T is invariant under conjungation by elements of A, the set of A-conjugates
of H consists of commensurable uniformly definable subgroups : they must be
uniformly commensurable. By Theorem 2.1, there is a definable subgroup N of G
commensurable with H wich is invariant under conjugation by A, and contained in
a finite product of elements of X ∪ X

−1. As N/T ∩N and T/T ∩N are bounded,
the groups T and N have the same SU rank by [26, Lemma 4.1.15]. It follows that
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SU(XT ) = SU(XN) for any X in X, so that the inequality SU(XN) < SU(N)+ωα

holds. �

Let G be a group. We say that G is virtually-P if it has a definable normal subgroup
of finite index with property P . We say that G is finite-by-P if it has a finite normal
subgroup N such that G/N has property P . We say that G is finite-by-P -by-finite
if G has a series 1 ⊳ N ⊳ H ⊳ G such that N and G/H are finite and H/N has
property P .

Lemma 3.3. G is a supersimple group which is not virtually-FC. If every non-
trivial definable normal subgroup of G has finite index, then every normal subgroup
of G is definable (hence either trivial or of finite index).

Proof. G must have monomial rank ωα.n for otherwise Proposition 2.5 together
with Lascar inequalities would yield a normal definable subgroup of infinite index. If
some gG has rank strictly less than ωα, then so does G/C(g). By Lascar inequalities,
G/C(g) has rank zero so C(g) has finite index in G. If g 6= 1, then FC(G) contains
g hence is a non-trivial normal subgroup. It is definable by Lemma 2.3 so it must
have finite index in G. It follows that G is virtually-FC, a contradiction. So every
non-trivial conjugacy class has rank at least ωα. If N is a normal proper subgroup
of G containing some n 6= 1, by Theorem 3.2 there is definable normal sugroup H
with H ≤ 〈nG〉 ≤ N and SU(nGH) < SU(H) + ωα. As SU(nG) ≥ ωα, the group
H is non-trivial. It follows that H has finite index in G so N is a finite union of
cosets of H : it is definable. �

Definition 3.4 (McCarthy, Magnus). A group is just-infinite if it is infinite and
every of its normal subgroup is either trivial or has finite index.

Lemma 3.5. G is a supersimple group. If G is just-infinite, it is either virtually-
FC or virtually-simple.

Proof. Let us suppose that G is not virtually-FC. Let G0 be the intersection of
every definable subgroup of G of finite index. It is a normal subgroup of G hence
either trivial or of finite index. If G0 has finite index, it is simple by Lemma 3.3.
Suppose for a contradiction that G0 is trivial. We may use [27, Wagner] : G is
residually finite hence virtually-nilpotent, so has a minimal nilpotent subgroup N
of finite index, which is a characteristic subgroup. N ′ is a proper normal subgroup
of G and equals {1} : the group G is virtually abelian, a contradiction. We may
also use a compactness argument : by Lemma 3.3, being just-infinite and being
virtually-simple are properties of the theory of G so we may assume that G is
ℵ0-saturated. There is a countable chain of proper normal subgroup having finite
index whose intersection is normal hence trivial. This contradicts compactness and
saturation. �

Lemma 3.6. G is a supersimple group of monomial rank ωα.n. Assume that every
definable normal subgroup of G has rank either ωα.n or strictly less than ωα. Then
the quotient G/FC(G) is either finite or just-infinite.

Proof. Let H be a definable normal subgroup of G having rank less than ωα, and
h in H . Then H contains hG so SU(hG) < ωα, hence SU(G/C(h)) < ωα. By
Lascar inequalities, G/C(h) is finite. It follows that FC(G) contains any normal
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subgroup having rank less than ωα. If FC(G) has maximum SU -rank, G/FC(G)
is finite. So we may assume that FC(G) has rank less than ωα, so that G/FC(G)
has maximal rank ωα.n. Note that if H/FC(G) is a definable normal subgroup
of G/FC(G), then H is a definable normal subgroup of G. Thus every definable
normal subgroup of G/FC(G) must be either {1} or have maximal rank hence be
of finite index. The group G/FC(G) is just-infinite by Lemma 3.3. �

Theorem 3.7. G is an infinite supersimple group. There is a finite chain of
definable subgroups 1 = H0 ⊳H1 ⊳ · · ·⊳Hn = G such that every quotient Hi+1/Hi

is infinite and either virtually-FC or virtually-simple modulo a finite FC-centre.

Proof. Lemma 3.1 provides a series 1 = H0 ⊳ H1 ⊳ · · · ⊳ Hn = G. Lemma 3.6
and 3.5 ensure that there is a refinement of the series whose factors have the required
properties. �

4. Corollaries

A supersimple FC group is finite-by-abelian according to Lemma 2.3. As a finite
group F decomposes into a finite series 1 = F0 ⊳ F1 ⊳ · · ·⊳ Fn = F whose factors
are abelian or simple, we may state:

Corollary 4.1. G is a supersimple group. There is a finite series of definable sub-
groups 1 = H0⊳H1⊳ · · ·⊳Hn = G such that every factor Hi+1/Hi is either abelian
or simple. Moreover, in this decomposition, the non-abelian simple factors (in par-
ticular the infinite simple ones) are unique up to definable group isomorphism.

Proof. We need just a proof that the non-abelian simple factors are unique. Let be
two series for G with abelian and simple factors. By Schreier refinement Theorem,
in any two normal series of G, intermediate subgroups can be inserted to yield
two new normal series for the group G whose factor groups coincide up to group
isomorphism, counting multiplicity. As neither an abelian group nor a simple one
has a non-abelian simple proper factor, the non-abelian simple factors occuring in
the two new normal series must already occur in the original ones. �

Theorem 3.7 has many consequences, about soluble subnormal subgroups, residual
properties or pseudofinite groups. We discuss them here.

4.1. About soluble subgroups and local properties.

Corollary 4.2. G is a supersimple group. Either G interprets an infinite simple
group, or G is virtually soluble.

Proof. If G does not interpret an infinite simple group, then G has a series whose
factors are finite or abelian. So G has a series with FC factors : it is FC-soluble.
By Theorem 2.4, G is virtually soluble. �

Let G be any group with a series 1 = G0 ⊳G1 ⊳ · · ·⊳Gn = G . If N is a normal
subgroup of G, it has a series

1 = G0 ∩N ⊳G1 ∩N ⊳ · · ·⊳Gn ∩N = N

where each factor Gi+1 ∩ N/Gi ∩N is isomorphic to (Gi+1 ∩N)Gi/Gi hence can
be considered as normal subgroups of Gi+1/Gi. We say that H is a subnormal
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subgroup of G if there is a finite series H ⊳ · · ·⊳G. For a subnormal subgroup H
of G, an immediate induction yields a series (of length no greater than n) whose
factors are isomorphic to subnormal factors of the series for G. In particular:

Corollary 4.3. In a supersimple group, any subnomal subgroup S (not necessarily
definable) has a series 1 = H0 ⊳H1 ⊳ · · ·⊳Hn = S of bounded length with abelian
or simple factors.

Corollary 4.4. In a supersimple group, there is a natural number n bounding the
derived length of any subnormal soluble subgroup.

Question 1. In a supersimple group, or even a superstable one, is there a bound
on the derived length of any soluble subgroup? At least on the number of infinite
abelian factors? For that it is equivalent to deal with the case where the ambient
group is infinite, simple of monomial rank.

Corollary 4.5. A locally soluble subnormal subgroup of a supersimple group is
soluble.

Proof. By [21], every locally soluble simple group is finite hence soluble. Corol-
lary 4.3 concludes. �

We call the soluble radical of a group, the subgroup generated by all normal soluble
subgroups. It is a locally soluble characteristic subgroup. From Corollary 4.5,
it follows that the soluble radical of a supersimple group must be soluble. By
an observation of Ould Houcine [12], the soluble radical of any group is definable
provided that it is soluble. This shows:

Corollary 4.6. The soluble radical of a supersimple group G is soluble and defin-
able.

Wagner and Evans [6] have shown that a supersimple ℵ0-categorical group is finite-
by-abelian-by-finite. A simple ℵ0-categorical group is nilpotent-by-finite [26, Wag-
ner]. Note that ℵ0-categorical groups are locally finite groups of bounded exponent.
In the same vein :

Corollary 4.7. A locally finite supersimple group of bounded exponent is soluble-
by-finite.

Proof. Same argument as Felgner in [7] : by an inspection of the classification of
finite simple groups, and a result of Kargapolov [14]. �

Question 2. Is a locally finite supersimple group soluble-by-finite? For that it is
equivalent to ask wether a supersimple locally finite simple group is finite. Recall
from [10] that in an infinite locally finite simple group, the centraliser of every
element is infinite.

4.2. About free groups, hyperbolic groups and residual properties. Non-
abelian free groups are not superstable [19, Gibone]. Sela has shown that free
groups, and more generally torsion-free hyperbolic groups are stable [23]. By a
Theorem of Magnus, an early result of combinatorial group theory, free groups are
residually-nilpotent (see [9, chapter 11]). Wagner [27] has shown that a supersimple
group which is residually soluble is in fact soluble. It follows that non-abelian free
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groups are not supersimple. This can also be derived directly from Corollary 4.1
following Poizat’s argument in [1].

Corollary 4.8. A non-abelian free group is not supersimple.

Proof. Suppose for a contradiction that F is a supersimple non-abelian free group
on r > 1 generators. By Corollary 4.1, F has a series of bounded length n with
abelian or simple factors. So does every quotient of F by a normal subgroup. In
particular, any soluble group generated by r elements is isomorphic to a quotient
of F and would have derived length bounded by n. �

Let G be a (non virtually-cyclic) hyperbolic group. A theorem of Gromov states
that if g and h are non commuting elements of G, then gn and hm generate a non-
abelian free subgroup on 2 generators for sufficiently large natural numbers n and
m (see [8, Théorème 37 p. 157]). This was generalised by Delzant [4] : if g is in G,
we write ℓ(g) for the length of g and n(g) for the limit of ℓ(gn)/n when n goes to
infinity. This can be shown to be a natural number.

Fact 4.9 (Delzant [4]). G is a (non virtually cyclic) δ-hyperbolic group. There is
a natural number m such that for all g1, . . . , gn in G with n(gi) = n(gj) ≥ 1000δ,
the normal subgroup generated by gn1 , . . . , g

n
m is free.

Corollary 4.10. A (non virtually cyclic) hyperbolic group is not supersimple.

Let C be a pseudo-variety of groups i.e. a class of groups closed under taking sub-
groups, quotients and finite cartesian products. A group G is said to be residually
C if

⋂

H⊳G
G/H∈C

H = {1}

It was shown in [27] that a supersimple group which is residually C has series
G = G0 ⊲ · · ·⊲Gn such that every factor Gi/Gi+1 is in C and Gn is nilpotent. In
the same spirit :

Corollary 4.11. C is a pseudo-variety of groups that does not contain an infinite
simple group. A residually C supersimple group is virtually soluble. In particular,
a residually soluble supersimple group is soluble (Wagner).

Proof. Let G be residually C and supersimple. By 4.6, the soluble radical R of G is
soluble and definable. It may not be equationnally definable, so we may not apply
[11, Lemma 2.2.2], but it is equationnally type-definable, that is to say, definable
by the infinite set of equations f(x, g1, . . . , g2n) = 1 where the gi range over all
elements of G and where f(x, g1, . . . , g2n) is the word defined inductively on n ≥ 1
by

f(x, g1, g2) = [xg1 , xg2 ] and

f(x, g1, g2, . . . , g2n+1) = [f(x, g1, g2, . . . , g2n), f(x, g2n+1, g2n+2, . . . , g2n+1)]

By [27, Lemma 1], the quotient G/R is residually C . If G/R is infinite, by Corol-
lary 4.1, it has a finite series 1 = G0/R ⊳ · · · ⊳ Gn/R = G/R such that G1/R is
infinite and either finite-by-simple, or finite-by-abelian. The first case is impossible
as C does not contain any infinite simple group. In the second case, there is a
finite F extension of R such that G1/F is abelian, so G1/F is a subnormal abelian
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subgroup of G/F , and is contained in the Baer radical. The Baer radical of a group
is generated by every subnormal abelian subgroup. It is a characteristic locally
nilpotent group. By Corollary 4.5, G1/F is contained in a normal soluble subgroup
S/F of G/F . As F is soluble-by-finite, S is FC-soluble hence soluble-by-finite by
Theorem 2.4. It must have a maximal soluble subgroup of finite index which is
characteristic in S hence normal in G. But S/R is infinite : this contradicts the
maximality of R. It follows that G/R is finite. �

4.3. About pseudofinite groups. Wilson has shown in [28] that every pseudofi-
nite simple group is elementary equivalent to a Chevalley group over a pseudofinite
field. As pseudofinite fields are supersimple (see [13]) of rank 1 (see [3]), a pseudo-
finite simple group is supersimple of finite rank.

Corollary 4.12. A pseudofinite supersimple group has a finite series whose fac-
tors are abelian, finite simple groups, or elementary equivalent to Chevalley groups
over pseudofinite fields. In particular, if a pseudofinite supersimple group does not
interpret a pseudofinite field, it must be virtually soluble.

Proof. If a pseudofinite supersimple group G interprets an infinite simple group S,
this must be a Chevalley group over a pseudofinite field F . By [20], F is inter-
pretable in G. Otherwise, G is virtually soluble by Corollary 4.2. �

In [5] Elwes Jaligot Macpherson and Ryten have shown that a supersimple pseudofi-
nite group of rank 2 is virtually soluble provided that T eq eliminates ∃∞. With this
assumption, they also showed using [28] that there are no supersimple pseudofinite
simple groups of rank less than 3, and that one of rank 3 is elementary equivalent
to PSL2(F ) for some pseudofinite field F .

Corollary 4.13. A pseudofinite supersimple group G of rank 3 such that Geq elimi-
nates ∃∞ is either virtually soluble or has a series of definable subgroups 1⊳F⊳S⊳G
such that F and G/S are finite and S/F is elementary equivalent to PSL2(F ) for
some pseudofinite field F .

5. Type-definable version

In a theory T equiped with a definable binary law ×, we call a type-definable group
a partial type π in n variables such that for all model M of T the set of realisations
of π in in the cartesian product Mn has a group structure for ×. In a saturated
structure, we assimilate the type π and the group that it defines. We now extend
the main results of the previous section to type-definable groups in a supersimple
theory. We first recall :

Fact 5.1 (Wagner [26, Theorem 5.5.4]). In a supersimple theory, a type-definable
group is a conjunction of definable groups.

It is shown in [1, Corollary 1.11] that a type-definable simple group in a superstable
theory is definable. We generalise that to supersimple theories :

Proposition 5.2. A simple group H wich is type-definable in a supersimple theory
is definable.
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Proof. By [26, Proposition 5.4.9], any elementary extension of H is still a simple
group, so we may assume that H is infinite and that the ambient structure is
saturated. By Theorem 5.1, the type-definable group H is contained in a definable
one G that we may take of minimal rank possible, so that G/H is bounded. It
follows that H is normal in G. Note that both G and H have monomial rank say
ωα.n. Let h 6= 1 be in H . If hG has rank stricly less than ωα, then C(h) has finite
index in G so h is in FC(H) a contradiction with H being simple. So hG has rank
at least ωα. By Theorem 3.2 there is a definable normal subgroup N of G with
N ≤ 〈hG〉 ≤ H and SU(hGN) < SU(N) + ωα. As SU(hG) ≥ ωα, the group N is
non trivial and must equal H by simplicity. �

Let G be a type-definable group and H a type-definable subgroup of G. We say
that H is relatively definable in G if it is the trace on G of definable group. We
now extend Theorem 3.7 to type-definable groups :

Theorem 5.3. G is a type-definable supersimple group. There is a finite chain
of relatively definable subgroups 1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn ⊳ G such every quotient
Gi+1/Gi is either abelian or simple. Moreover, the non-abelian simple factors are
unique up to isomorphism.

Proof. We may add paramaters to the language and assume that G is defined
with no parameters. We also may assume that the structure is ℵ0-saturated. By
Theorem 5.1, the group G is contained in a ∅-definable group H . We may assume
that H has minimal rank so that H/G is bounded. Let H0 be the connected
component over ∅, that is, the intersection of every ∅-definable subgroup of finite
index. It is a normal subgroup of H contained in G. Let 1 = H0⊳H1⊳· · ·⊳Hn = H
be a definable series for H provided by Theorem 3.7. As Hi+1 ∩ H0/Hi ∩ H0 is
isomorphic to (H0∩Hi+1)Hi/Hi, the groups Hi+1∩H0/Hi∩H0 can be considered
as normal subgroup of Hi+1/Hi : they are again abelian or simple. The series
1 = H0 ⊳H1 ∩ H0 ⊳ · · · ⊳Hn−1 ∩ H0 ⊳H0 ⊳ G has the required properties, but
maybe the last factor Gn/G, which is bounded.

We now show inductively on the length n of the chain that the previous series can
be refined into a new series where every factor is abelian, simple or finite. As a
finite group has a series whose factor are either simple or abelian, this is sufficient.
If n is 1, then H0 = {1} so H is finite by compactness. For the induction step,
note that H0/H0 ∩Hn−1 is isomorphic to H0.Hn−1/Hn−1, which is either abelian
or simple. If it simple, then H0.Hn−1 must be definable by Proposition 5.2 for it
is of finite index in a definable group. By compactness, there is a definable normal
subgroup H1 of H of finite index such that H0.Hn−1 equals H1.Hn−1. It follows
that H1/H1 ∩ Hn−1 is isomorphic to H0/H0 ∩ Hn−1 hence simple. Note that
H1 ∩G/H1 ∩Hn−1 has bounded index in H1/H1 ∩Hn−1 hence is also simple. As
H1 ∩Hn−1/H

0 ∩Hn−1 is bounded, the series

1 = H0 ⊳H1 ∩H0
⊳ · · ·⊳Hn−1 ∩H0

⊳Hn−1 ∩H1
⊳H1 ∩G⊳G

can be refined by a series with abelian, simple or finite factors by induction hypoth-
esis. Otherwise, H0/H0 ∩ Hn−1 is abelian. By compactness, there is a definable
subgroup Gn of finite index in H , such that Gn/H

0 ∩ Hn−1 is abelian. We may
replace Gn by a finite intersection of H-conjugates of it and assume that Gn is
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normalised by H , hence by G. We consider the series

1 = H0 ⊳H1 ∩H0
⊳ · · ·⊳Hn−1 ∩H0

⊳Gn ∩G⊳G

where only the two last factor groups Gn ∩G/Hn−1 ∩H0 and G/G∩Gn have been
modified. As a subgroup of Gn/H

0∩Hn−1, the group Gn∩G/Hn−1∩H0 is abelian.

We have just build a series of type-definable groups 1 = G0 ⊳ G0 ⊳ · · ·⊳ Gn = G
such that every factor is abelian or simple. By the same type of arguments, one can
show inductively that each Gi may be replaced by one which is relatively definable
in Gi+1. �

Corollary 5.4. In a type-definable supersimple group, there is a natural number n
bounding the derived length of any subnormal soluble subgroup.

Corollary 5.5. A locally soluble subnormal subgroup of a type-definable supersim-
ple group is soluble.

Lemma 5.6. G is any type-definable goup. Assume that G is the conjunction of
definable groups Hi where i ranges over I. If the soluble radical of G is soluble,
there is a finite conjunction HJ of groups Hi such that

R(G) = R(HJ) ∩G

Proof. For any finite subset J of I, we write HJ for the intersection of Hj when j
ranges over J . For any finite subset J of I, if x is in R(HJ )∩G, then xHJ generates
a soluble group so xG also generates a soluble group and x is in R(G). Reciprocally,
if x is in R(G), then xG generates a soluble group of derived length n say. Note
that n does not depend on x as R(G) is soluble. It follows that (xG ∪ x−G)(n)

equals {1} where X(n) is defined inductively by... This means that the partial type
G× · · · ×G in 2n variables (x1, . . . , x2n) implies the formula f(x, x1, . . . , x2n) = 1
where f(x, x1, . . . , x2n) is the word defined inductively on n ≥ 1 by

f(x, x1, x2) = [xx1 , xx2 ] and

f(x, x1, x2, . . . , x2n+1) = [f(x, x1, x2, . . . , x2n), f(x, x2n+1, x2n+2, . . . , x2n+1)]

By compactness there is a finite subset J of I such that the same formula

f(x, x1, . . . , x2n) = 1

is implied by the formula

(x1, . . . , x2n) ∈ HJ × · · · ×HJ

This means precisely that xHJ generates a soluble group of derived length at most n,
hence x is in R(HJ) ∩G. �

Corollary 5.7. The soluble radical of a group G which is type-definable in a su-
persimple theory is soluble and relatively definable in G.
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