N

N

Sparse Representations and Low-Rank Tensor
Approximation

Pierre Comon, Lek-Heng Lim

» To cite this version:

Pierre Comon, Lek-Heng Lim. Sparse Representations and Low-Rank Tensor Approximation. 2011.
hal-00703494

HAL Id: hal-00703494
https://hal.science/hal-00703494

Submitted on 2 Jun 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00703494
https://hal.archives-ouvertes.fr

Lliiversind
il't" SOPILE AMTIEGLI

LABORATOIRE

sophia antipolis

INFORMATIQUE, SIGNAUX ET SYSTEMES
DE SOPHIA ANTIPOLIS
UMR 6070

SPARSEREPRESENTATIONS ANDLOW-RANK TENSOR
APPROXIMATION

Pierre Comon, Lek-Heng Lim

Equipe SIGNAL

Rapport de recherche
ISRN I3S/RR-201102—-FR

Février 2011

Laboratoire d’'Informatique de Signaux et Systéemes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles — Les Algorithmes — Bat Euclide B — B.P. 121 — 06903 Sophia-Antipolis Cedex — France
Tél.: 33 (0)4 92 94 27 01 — Fax: 33 (0)4 92 94 28 98 — www.i3s.unice.fr
UMRG6070



RESUME:

MOTS CLES:

Identification aveugle ; mélanges linéaires sous-détermjrséparation aveugle de sources ; décompositions pqlyesli
tensorielles ; tenseurs, rang tensoriel ; localisation illeuge approximation de rang faible ; représentation jpaonieuse ;
spark ; échantillonnage compressé ; rang de Kruskal ; cobéreantennes multiples ; capteurs multiples

ABSTRACT.

Approximating a tensor by another of lower rank is in genaralill posed problem. Yet, this kind of approximation is
mandatory in the presence of measurement errors or noiseshéve how tools recently developed in compressed sensing can
be used to solve this problem. More precisely, a minimal@abgtween the columns of loading matrices allows to restotie b
existence and unigueness of the best low rank approximatderthen show how these results can be applied to perforrijoin
localization and extraction of multiple sources from theasw@ement of a noisy mixture recorded on multiple sensaorani
entirely deterministic manner. The main interest in deteistic approaches is that they can be followed in the preseri
strong channel nonstationarities.
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Sparse Representations and

Low-Rank Tensor Approximation

Pierre Comon, Fellow, IEEE and Lek-Heng Lirh

Abstract

Approximating a tensor by another of lower rank is in genenalill posed problem. Yet, this
kind of approximation is mandatory in the presence of measent errors or noise. We show how
tools recently developed in compressed sensing can be assalvie this problem. More precisely, a
minimal angle between the columns of loading matrices altawrestore both existence and uniqueness
of the best low rank approximation. We then show how theseltsesan be applied to perform jointly
localization and extraction of multiple sources from theasi@ement of a noisy mixture recorded on
multiple sensors, in an entirely deterministic manner. Tten interest in deterministic approaches is

that they can be followed in the presence of strong channedtationarities.

Index Terms

Blind identification; under-determined linear mixturedind source separation; polyadic tensor
decompositions; tensors; tensor rank; localization; bask+ approximations; sparse representations;

spark; compressed sensing; Kruskal's rank; coherencdjarralys; multisensors

. INTRODUCTION

Tensor decomposition and approximation models arise a@tuin multiarray multisensor
signal processing, as already demonstrated in [1], [2],[[8] [5] when high-order statistics are
used, and in [6] when sensor arrays enjoy particular gearakfroperties. However, the fact

that approximating a tensor by another of lower rank is gahean ill-posed problem has not
+ Pierre Comon is with Lab. Informatique Signaux et SystemesSophia-Antipolis (13S), UMR6070 CNRS-UNS, 2000

route des Lucioles, BP.121, FO6903 Sophia Antipolis ceffeance, and with INRIA, Galaad, 2004 route des Lucioles98P.
F06902 Sophia Antipolis cedex, FrandeLek-Heng Lim is with the Department of Statistics, Univéysof Chicago.
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been taken into account in the latter works. This explaing mtimerical algorithms sometimes
do not converge to the expected solution, and that they aibemerge quite slowly.

We explain in Section Il why the problem is ill-posed, and wiemedies have already been
proposed to face it. Then we see in Section Il how contrdngiborrowed from compressed
sensing can be used to address the problem in a more converaener. The terncompressed
sensingshould be understood in a broad sense, encompassing nothenigeas covered in [7],
[8], [9], [10], [11], [12] but also in [13], [14], [15], [16].Then, the usefulness of the proposed
approach is demonstrated in Section IV, where several @ifuins are pointed out, with an
emphasis on the problem of joint localization and estinmatibradiating sources with short data

lengths, which can be solved deterministically.

II. PROBLEM POSITION AND FIRST REMEDIES

A tensor of orderD is an object defined on a product bflinear spacesS$,, 1 < d < D. Such
a tensor may represent a map frédhw---®S, onto S, ®---®Sp, for somey, 0 < v < D.
If v = D, one has aD-linear form defined omx?_,S,;. Once the basis of each linear spate
is fixed, such a tensor can be represented ly-@ay array of coordinatesI’ = [7}; ]. The
background field is assumed to &eor C.

When a change of basis is operated in each linear sgacdefined by a matrixA(?, the
array of coordinate§' must be modified accordingly into an arrdy. We shall be concerned

by the so-callectontravarianttensors, which enjoy the multilinearity property below:

Thaw=D Ay DA D AL Thr
i j 3

which we shall denote compactly as

T =AW A  ADH.T (1)

A. Canonical Polyadic decomposition

A tensorE of order D is said to bedecomposablé it can be written as the tensor product
of D vectors:

E=uVgu?eg...gu?
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In other words, its array of coordinates can be writtenZas, = u!"” u{"..u". Any tensorT

can always be decomposed in a sum of decomposable tensgrs [17

R
T = Z)\TE(T)7 (2)
r=1
E(r) = uﬁl)@;u,(?)@...@u?(nm

In addition, A\, can be imposed to be real nonnegative, and veaififscan be imposed to be

of unit norm, for some suitably chosen norm.

Definition 1. The minimal number of decomposable terms necessary to meeixact fit in

equation (2) is referred to as thank of tensorT:
R
rank{T} = min {R ‘ T = Z Ar E(T)} (3)

In particular, decomposable tensors have a rank equal toWwhen minimal, decomposition
(2) reveals the rank and is often called tBanonical PolyadiqCP) decomposition oT". Other
terminologies have been used in various communities, dietuCanDecom18] and Parafac
[19] in Psychometrics. The Linear Algebra community hastakhe habit to use the acronym
CP, standing for CanDecomp/Parafac, which fortunatelpades with the former.

Note that the CP decomposition can be written in compact fasm
T= (UM, U@ . UuP).A (4)

if A denotes theD-way diagonal array, whose sole nonzero entriesAare. = \,, and matrices
U@ are each built with the? = rank{T} column vectorai!”, 1 <d < D, 1<r < R.

At this stage, it is convenient to make a comparison with imatecompositions, which are
better known. Let a matri®M of rank R > 1. Then it can be decomposed in infinitely many

ways into a sum of rank-1 terms as

R
_ T
M = E AU, v,
r=1

whereU = {u,} andV = {v,} are collections ofR? unit-norm vectors. The Singular Value
decomposition (SVD) oMM yields one such decomposition, where vectordJo{resp.V) are

orthogonal to each other.
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In (2-4), no orthogonality constraint is imposed. Howewgesufficient condition for uniqueness

has still been derived wheP > 2 as now pointed out. We first need a definition

Definition 2. The Kruskal's rank of a matrid, or krank{M} in brief, is the maximal number

r such that any subset af columns ofM are linearly independent.

From this definition, originally introduced in [20], it iser thatank{M} > krank{M}. Also
note that the notion o$parkintroduced in compressed sensing [11], [12] is related tasKal's
rank, since spafdM} = krank{M}+1. Let's now turn to the following result, generally referred
to asKruskal's lemmg20], [21], [22]:

Lemma 3. Let T be a tensor of orde). Then its CP decomposition (4) is unique if

D
2rank{T} +2 < Z krank{U@}. (5)

d=1
This condition has been proved to be sufficient but not prdedoe necessary. We insist that
uniqueness is here to be understaguto a scale factarMore precisely, there still remains a
whole equivalence class of CP decompositions in the serseotie can replace eadhi® by
U@DA@ where matrice are diagonal invertible, and satisfy the constrfifft, A@ = I,

the R x R identity matrix.

B. Ill-posedness of the best low-rank approximation

The best rankiz approximate is defined by the minimum of the objective
TUW, ., UP A)=|T - (UD,..., UD) . A} (6)

where ||| » denotes the Frobenius norm defined [i[|% = >°,. . |Ti; +[*, and matricesU!"”

have R columns,R < rank{T}. It turns out that this best approximate may not exist fostes
of order D > 2. In fact, the set of tensors of rank at masts not closed if3 > 1, except when
the latter set is the whole spades. when 3 is maximal (but there is then no approximation).

This lack of closeness is now well known, and examples haea Ipeovided in the literature
[23], [24], which suffice to prove it.
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Example 4. Let's for instance consider two non collinear vectossand b, and define the

sequence of rank-2 tensors:
T(n) = n |(a+ %b)“ _ a8
Asn tends to infinity, this sequence converges towards
T, =a®’¢b+a®?’ebga+agbga®’+bga®?

which may be shown to be of rank 4. This demonstrates thatethef gensors of rank at most

2 is not closed.

The limit of tensors of rank? is said to be ofborder rank R. In general, the actual tensor
rank is larger than the border rank, as in the above examplekier, there are cases where they
always coincide. In particular, this is the case of real desisvith nonnegative entries, if they
are decomposed into a sum of real nonnegative decomposaiders [25]. But in the present

framework, they differ, so that the lower rank approximatmroblem is ill-posed.

C. Searching a compact set via constrained optimization

The most natural way to face this problem is to change the setrer searching into a compact
set. This can be done in several ways. In [26], loading maiit€ are imposed to be orthogonal.
This solution is acceptable only in very restrictive comafis; in particular the rank o' must
be smaller than its dimensions. In [27], it has been propdseathpose orthogonality between
the decomposable tensors; this constraint is less reggyi¢iut quite difficult to impose and still
too restrictive. The first available practical techniqueswhat proposed in [28], consisting of
minimizing the objectivel (UW, ... U®)) + 3> [UD |2, whereg is an arbitrarily chosen
regularization parameter. It can be seen that this is elguivao constrain matriceB/®@ to lie
on a spher&.”, |[U@||% = p, p being determined a posteriori from The drawback of this
efficient constraint is that and are arbitrary, and that they generally have no physical mgan

We posed the problem slightly differently in (6), where eachiumn vector is imposed to
have a unit norm, which permits to define scale coefficientproperly. In other words, we
minimize the Lagrangian

D R
YUY, UL A+ Bay a3
=

1 r=1
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where 3;, denote Lagrange multipliers, arid ||» the L? norm. However, contrary to [28], the
set we are searching is not compact anymore, because ofdbenme of unbounded variables
A (the entries ofA) in the objectiveY. The goal of the next section is to define physically
meaningful constraints, which will ensure the existenceaafinique minimum, even if\ is

unbounded.

[1l. ANGULAR CONSTRAINT
A. Existence

The goal is to prevent the phenomenon we observed in Exampieotcur, by imposing
natural and weak constraints; we do not want to reduce thels¢éa a compact set. It is clear
that the objective (6) is not coercive, which explains whg thinimum may not exist. But with

an additional condition on theoherencewe shall be able to prove existence thanks to coercivity.

Definition 5. LetH be a Hilbert space provided with scalar produet, and letV = {vy, .., vg}

be a finite collection of vectors of unit norm. The coherentéhe collectionV is defined as

def
w(V) = maXp-£q [(Vp, V).

This notion has received different names in the literaturaiual incoherence of two
dictionaries [11], mutual coherence of two dictionariels {Be coherence of a subspace projection
[14], etc. The version here follows that of [12]. We are ietted in the case wheH is
finite dimensional, namelg". Usually, dictionaries are finite or countable, but we hageeha
continuum of atoms. Clearly) < u(V) < 1, andu(V) =0 iff vy,...,vg are orthonormal, and
w(V) =1Iiff V contains at least a pair of collinear vectors.

The following shows that a solution to the bounded coherdrest rank® approxiamtion

problem always exists:

Proposition 6. Le T be a tensor of ordeD and dimensionsV,, 1 < d < D, and define the

sets of dictionaries of unit vectors of coherence not larden 1,
U ={UD e Clu(UY) < py} ()
If T15., pta < %, then

0= inf{IIT — (UM, UDY A | A eCh U e Z/I(d)} 8)
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is attained, wherd| - || denotes any norm om?_,C"?. Above, vectol contains the entries

of the diagonal tensoA.

Proof: Since all norms are equivalent on a finite dimensional spaeemay assume the

Frobenius nornj| - || . We have the following inequalities

R D
H(U(l)7 o ,U(D)) Al = Z A H(u;d), uéd)>
p,q=1 d=1
R D R P
=D IR | LTS DI | (LAY
p=1 d=1 P#q d=1
R D B
>3 I = T oAl
p=1 d=1  p#q

D
>|IAIE = T aallAIT
d=1
Now, use the fact thatA||? < v/R||A||? for any vectorX of size R, to get eventually

D
H(U(l),...,U(D))~AH > <1—RH/~Ld> HM‘% ©)

d=1
Since by assumptioR Hle wy < 1, it is clear that the left hand side of (9) tends to infinity as
|Al], — oco. And because|T|| is fixed, | T — (UM, ..., UP)). A|| also tends to infinity. This
proves coercivity, and hence the proposition. [ |

B. Uniqueness

In order to prove uniqueness, we shall call for Kruskal'sriesn For that purpose, the following

lemma is needed.

Lemma 7. Let H be a Hilbert space and leV = {vy,..,vz} be a finite collection of vectors
of unit norm. Then
1

Proof: Let s = krank{V} + 1, the spark ofu(V). Then there exists suple of distinct unit
vectors inV, {vy, ..., vy} such thaiy v, +- - - +a,vs = 0 with |ay | = max{|a4], ..., |as|} > 0.
Taking inner product withv; we geta; = —ag(vy, vi) — -+ — ag(vg, vq) and soja;| <
(lag] + -+ - + |ag|) (V). Dividing by || then yieldsl < (s — 1)u(V). ]
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Definition 8. We shall say that the CP decomposition (4) is unique upnionodulus scalingf
each vecton!”’ can be multiplied by a scalar facter'” of unit modulus, such the]f[dD:1 ol =

1, Vr,1 <r <R.

We now characterize the uniqueness of the CP decompogitienms of coherence introduced

in Definition 5.

Proposition 9. Let T be a tensor of ordetD) and a decompositiol = Zle AE(r) into R
decomposable tensols(r) = uwWeu?s...su, whereu® are of unit norm. DenotdJ'”

the matrices with columnﬁ,(nd). If
D

1 1
§ZW2R+1 11D
i 1(Ur)

then R = rank{T} and the decomposition is unique up to unimodulus scaling.

Proof: If inequality (11) is satisfied, then so is Kruskal’s conaiiti(5) thanks to Lemma 7.
The results hence directly follows from Lemma 3. [ |
Note that unlike theé:-ranks in (5), the coherences in (11) are trivial to complriieaddition

to uniqueness, an easy but important consequence of Ptiopo8iis that it provides a readily

checkable sufficient condition for tensor rank, which is Ne&#d over any field [29], [30].

C. Existence and uniqueness

Now the following existence and uniqueness sufficient cioodican be deduced from

Propositions 6 and 9.

Corollary 10. If D <5 and if coherenceg(U?) satisfy

b 1/D H
(g M(U(d))> = 9R 12 (12)

then the bounded coherence best ranlapproximation problem has a unique solution up to

unimodulus scaling.

Proof: The existence in the cade = 1 is ensured, because the set of tensors of rank 1 is

closed (it is in fact a determinantal variety). Considerstline case? > 2. Since the function

flx) = 1 — (585)" is strictly positive forz > 2 and D < 5, condition (12) implies that
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Hle p(U@) is smaller thari /R, which permits to claim that the solution exists by callig f
Proposition 6.

Next in order to prove uniqueness, we use the inequality é&tmharmonic and geometric
means: if (12) is verified, then we also necessarily h&V§ " | 1 (U@)1]-1 < 57 Hence
S u(U@)1 > 2R + 2 and we can apply Proposition 9. n

IV. APPLICATIONS

The goal of this section is two-fold. First we want to show theefulness of the CP
decomposition in real world problems, amd second we wantrtowkthe meaning of the

coherence conditions in terms of physical quantities.

A. Joint channel and source estimation

Consider a narrow band transmission problem in the far fidlel.assume here that we are in
the context of wireless telecommunications, but the sarmeipte could apply in other fields.
Let P signals impinge on an array, so that their mixture is recdrdieis wished to recover the
original signals, and to estimate their directions of alr@nd respective powers at the receiver.
If the channel is specular, some of these signals can cameési different propagation paths
of the same radiating source, and are hence correlatedhér atords,P does not denote the
number of sources, but the total number of distinct path&etefrom the receiver.

In the present framework, we assume that channels can bevéigimg, but that they can be
assumed constant over a sufficiently short observationtheridhe goal is hence to be able to
work with extremely short samples.

In order to face this challenge, we assume that the sensay &ristructured, as in [6]. More
precisely, the sensor array is composed aéfarence arraycontaining/ sensors, whose location
is defined by a vectob; € R?, and.J — 1 other subarrays, deduced from the reference array
by a translation in space defined by a vectdy € R?, 1 < j < J. The reference subarray is

numbered withj = 1 in the remainder.

Under these assumptions, the signal received at discmaie iti on the ith sensor of the

reference subarray can be written as:

Si,l(k) = Zap(k) eXp(wi,p)

February 21, 2011 DRAFT
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with 1, = 7% (b]d,) where the dotlesg denotes\/—1, vectord, is unit norm and denotes

the direction of arrival of theth path. Next, on thgth subarray,; > 1, we have
si.i(k Z op(k) exp(¥ijp) (13)

with ¥ ;,, = 7% (bl d, + A]po). If we let A, be the null vector, then (13) also applies for the
reference subarray. The interest of this structure is thatbles: and j; decouple in function

exp(v;,), yielding a relation resembling the CP decomposition:
i (k ZA U, U3 Uy (14)

whereU\)) = exp(y% bl d,), U2 = exp(y2 ATd,) andUS) = a,(k)/[|oyll, Ay = |lo]]-

Hence, by computing the CP decomposition of the J x K tensorS = [s; ;(k)], it is
possible to jointly estimate: (i) signal waveforms(k), and (ii) the directions of arrivadl, of
each propagation path B; or A; are known.

However, the observation model (13) is not realistic, andchdditional error term should be
added in order to stand for modeling inaccuracies and baakgt noise. It is customary (and
realistic thanks to the central limit theorem) to assume thia additive error has a continuous
probability distribution, so that tens@ has ageneric rank Yet, the generic rank takes values
at least as large ad JK /(I + J + K — 2)], which is always larger than Kruskal’'s bound [24].
Therefore, we have to face the problem of approximatingaeSsby another of rankP. And
we have seen that the angular constraint imposed in Sedtiparmits to deal with a well-posed
problem. In order to see the physical meaning of this comgfré is convenient to define first

the tensor product between subarrays.

B. Towards the concept of tensor product between sensorrrsylsa

The sensor arrays we cope with are structured, in the seaséhth whole array is generated
by one subarray, defined by the collection of vector locatifh;, ¢ R*, 1 < i < I}, and a

collection of translations in spacéA; € R?, 1 < j < J}. If we define vectors

w
) = [exp(rg bld,)]L,/VT

w
u = [exp(g ATd)]L/ VY (15)
w) = op/lloy]

February 21, 2011 DRAFT
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then this means that we may see all measurements as thensppsition of decomposable
tensors:

Ap uél) ® uéz) ® ul()g)

The geometry of the sensor array is containedﬁlﬁ@, uf), whereas\, and u§;3) contain energy
and time information on each paghrespectively. Note that the reference subarray and thefset
translations play symmetric roles, in the sense ﬂﬁtand u§,2) could be interchanged without
changing the whole array. This will become clear with a fevaraples.

When we are given a structured sensor array, there can beakewagys of splitting it into a

tensor product of two (or more) subarrays, as now shown byplsimxamples.

Example 11. Define the matrix of sensor locations

001
011

[b17 b27 bS] =

This subarray is depicted in Figure 1.b. By translating itcaaling to the translation defined
in Figure 1.c one obtains another subarray. The union of tle subarrays yields the array
of Figure 1.a. The same array is obtained by interchangirgyries of the two subarrays, i.e.

three subarrays of two sensors deduced from each other byramslations.

@ (b) (©)
ii IO

Fig. 1. Antenna array (a) is obtained as the tensor produstesm subarrays (b) and (c)

Example 12. Define the array by

01201 2
000111

[bl, bQ, .. bﬁ] -

This array, depicted in Figure 2.a, can be obtained eithertly union of subarray of Figure

2.b and its translation defined by Figure 2.c, or by the arréyigure 2.c translated three times
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according to Figure 2.b. We agree to express this relatignsly the equation:

=0, =000l

Another decomposition may be obtained as

Ii=1e = oo ®

o—0—0 o—0—>0
In fact, j:i = i e _ ando—o—o = oo ® o—o. HOwever, it is important to stress that the various
decompositions of the whole array into tensor products dfastays are not equivalent from

the point of view of performance. In particular, the Krusgddound can be different, as will be

pointed out next.

(@) (b) (©
I 0 e

Fig. 2. Antenna array (a) is obtained as the tensor produstesm subarrays (b) and (c)

Similar obsevations can be made for grid arrays in general.

Example 13.Take an array of 9 sensors located @t y) € {1,2,3} x {1,2,3}. We have the

relations
HH = 1oy = 12e 0l = oo

among others.

Let now have a look at the maximal number of sourégs, that can be extracted from a
tensor of sizel x J x K. A sufficient condition is that the total number of patl#5,is smaller
than Kruskal's bound (5). We shall simplify the bound by nmakitwo assumptions: (a) the
loading matrices are generic, that is, they are full rank] @) the number of paths is larger
than the sized and.J of the two subarrays entering the array tensor product, araller than
the number of time samples;. Under these simplifying assumptions, Kruskal’s boundpees
2P<I+J+P -2, or

Prow=1+J—2 (16)
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The table below illustrates the fact that the choice of stayarhas an impact on this bound.

Array | Subarray| I J | P

product

A e s |3 2] 3

88! 7@ oo 4 2 4
i@o—o—o 2 3 3

£®W33 4

Eg m®562 6
j:i®j:i44 6

C. Signification of the angular constraint
We are now in a position to interpret the meaning of angulastiaints proposed in Section

lll. According to the notations given in (15), the first cobece

M — max [a@Ha®
0 #Hp g |

corresponds to the angular separation viewed from theemréersubarray. In fact, vectdss and
d, having a unit norm, as well as vectaus, the quantity|u;'uq| may be seen as a measure of

angular separation betweel) andd,, as we shall now subsequently show in Proposition 15.
Definition 14. We shall say that a collection of vecto{d,},<;<; is resolvent w.r.t. direction

by — by if

A
0 < ||bg — byl < 5 (17)

where\ = % denotes the wavelength.
Let b;, d, andu, be defined as in (15}, <i<I,1<p,q < P.

Proposition 15. If {b;},<;<; is resolvent w.r.t. three linearly independent directiotien

uflu[=1<d,=d, (18)
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Proof: Assume|uflu,| = 1. Then because they are unit norm, vectarsand u, are
collinear with a unit modulus proportionality factor. Henfrom (15), for alli, k, 1 <,k < I,
(b;—by)"(d,—d,) € A\Z, where\ is defined in Definition 17. Sincb, } is resolvant, there exist

(4,40) such that) < ||b; —byo|| < A/2. Hence, because vectads are unit norm||d, —d,|| <2

so that we necessarily have th@t, — b,)"(d, — d,) = 0. Vector (d, — d,) is consequently
orthogonal to(b; — by)). The same reasoning can be carried out with two other indkgren
vectors. Eventually, vectdid, —d,) is null because it is orthogonal to three linearly independe
vectors inR?. The converse is immediate, by the definitiomgf u
Note that the condition of Definition 17 is not very restneti since sensor arrays usually

contain sensors separated by half a wavelength or less.

From Section IV-B, one can claim that a similar interpretatcan be put forward for the
second coherence, which measures the minimal angularasepabetween paths, viewed from
the subarray defining translations.

The third coherence is nothing else but the maximal coroglatoefficient between signals
received from various paths on the array:

O e il
v2a (o] Tl ]

As a conclusion, the tensor approximation exists and isueif either signals propagating
through various paths are not too much correlated, or if thieection of arrival are not too close.
By “not too” it should be understood that the product of cemeies need to satisfy inequality
(12) of Corollary 10. In other words, one can separate paittsmigh correlation provided they
are sufficiently well separated in space.

Hence, the decomposition of an array into a tensor produtwofor more) subarrays should
not only take into account Kruskal’'s bound, as elaborate8ention IV-B, but also the ability

of the latter subarrays to separate two distinct directminarrival (cf. Proposition 15).
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