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Abstract

We consider cluster structures in a general setting where they do not necessarily contain
all singletons of the ground set. Then we provide a direct proof of the bijection between
semi-proper robinsonian dissimilarities and indexed pre-pyramids. This result generalizes its
analogue proven by Batbedat in the particular case of definite cluster structures. Moreover,
the proposed proof shows that the clusters of the indexed pre-pyramid corresponding to a
semi-proper robinsonian dissimilarity are particular 2-balls of the considered dissimilarity.
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Structural bijections between cluster structures and dissimilarity types play an important role
in cluster analysis. They not only validate the dissimilarity-based clustering approach, but make
it possible to bring a cluster system specification problem back to a dissimilarity matrix deter-
mination (13; 9; 8; 10). The best known of these bijections is certainly the one between indexed
hierarchies and ultrametrics (20; 5). Several extensions of this bijection have been obtained,
e.g., between indexed quasi-hierarchies and quasi-ultrametrics (1; 15), between indexed pyra-
mids and strongly robinsonian dissimilarities (17), and between weakly indexed pyramids and
robinsonian dissimilarities (16). Generalizations and/or unifications of some of these bijections
can be found in (3; 11; 6; 18; 7; 2; 12).

The present paper focuses on a bijection between semi-proper robinsonian dissimilarities and
indexed pre-pyramids, in a general setting where cluster structures are not required to contain
all singletons of the ground set, i.e., are not necessarily definite. We give a direct proof of this
bijection, showing that the clusters of the indexed pre-pyramid corresponding to a semi-proper
robinsonian dissimilarity are particular 2-balls of the considered dissimilarity. This result gen-
eralizes its analogue proven by Batbedat (4) in the particular case of definite cluster structures.
Moreover, it can be thought of as the third side of a triangular correspondence between indexed
pre-pyramids, weakly indexed pyramids and semi-proper robinsonian dissimilarities. Indeed, on
the one hand, a bijection between indexed pre-pyramids and weakly indexed pyramids derives
as an instance of the general one between indexed cluster structures and weakly indexed closed
cluster structures (14). On the other hand, the Diday’s bijection (16) extends between weakly
indexed (not necessarily definite) pyramids and semi-proper robinsonian dissimilarities.

1 Pyramids and Pre-pyramids

1.1 Pre-pyramids

Let E be a finite nonempty set. A cluster structure on E is a collection C of subsets of E,
satisfying conditions (CS1), (CS2) and (CS2’) below:
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(CS1) the empty set is not a member of C whereas the ground set E is, i.e., ∅ /∈ C and
E ∈ C;

(CS2) the set of minimal members of C (w.r.t. set inclusion) partitions E; in other words,
these minimal members are non-empty, pairwise disjoint, and they cover E (i.e. their
union equals E);

(CS2’) every non-minimal member of C is the union of members of C it properly contains,
i.e., for all X ∈ C: ∪{Y ∈ C : Y ⊂ X} ∈ {∅,X};

(CS3) there is a linear order, say θ, on E, of which each member C of C is an interval, i.e.,
for all x, y, z ∈ E: x, y ∈ C and xθzθy imply z ∈ C.

The pair of conditions (CS2) and (CS2’) is often replaced by a stronger condition requiring each
singleton to be a member of C. Actually, a cluster structure satisfying this strong requirement
is said to be total or definite.

A pre-pyramid on E is a cluster structure C onf E, satisfying the condition (CS3) below:

(CS3) there is a linear order, say θ, on E, of which each member C of C is an interval, i.e.,
for all x, y, z ∈ E: x, y ∈ C and xθzθy imply z ∈ C.

The order θ and the collection C are said to be compatible with each other, and subset collections
satisfying condition (CS3) are said to admit a compatible order. The condition (CS3) is the
specific condition of interval-type subset collections.

1.2 Pyramids

To every subset collection can be associated its closure consisting of arbitrary intersections of
its members. As we are concerned with collections of nonempty subsets of finite sets, we will
consider only finite nonempty intersections. The closure of a subset collection C under (finite)
nonempty intersections will be denoted by C, and C will be said to be closed when it satisfies
the condition (CS4) below:

(CS4) the intersection of two members of C is either empty or a member of C, i.e., X,Y ∈ C
implies X ∩ Y ∈ C ∪ {∅}.

A pyramid is a closed pre-pyramid. It can be checked that conditions (CS2) and (CS2’) are
equivalent under (CS1) and (CS4). Pyramidal classification has been introduced by Diday (16)
and considered or investigated in several works among which we can mention (21; 19).

To show that C is a pyramid when C is a pre-pyramid, it suffices to check that C verifies (CS2).
Now this derives from the fact that, by Lemma 1 and Lemma 2 below, every minimal member
of C is also a minimal member of C.

Lemma 1 (14) The conjunction of conditions (CS2) and (CS2’) is equivalent to the conjunction
of conditions (a) and (e), where:

(a1) C,C ′ ∈ C and C minimal in C imply C ∩ C ′ ∈ {∅, C};

(a2) minimal members of C cover E.

Lemma 2 (14) The following conditions are equivalent for a collection C of nonempty subsets
of E.

(a1) C,C ′ ∈ C and C minimal in C imply C ∩ C ′ ∈ {∅, C}.

(a3) Every minimal member of C is minimal in C.
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1.3 Indexed pre-pyramids and weakly indexed pyramids

Let C be a cluster structure on E. A pre-index on C is an order preserving map f : (C,⊆) →
(R+,≤) taking the zero value on minimal members of C, i.e.,

(i) C minimal implies f(C) = 0;

(ii) C ⊆ C ′ implies f(C) ≤ f(C ′).

In the sequel, we will assume that a pre-index f takes the value zero only on minimal members,
hence, f(C) = 0 if and only if C is minimal. A canonical pre-index fc can be obtained by letting
fc(C) be the number of elements of the union of members of C properly contained in C. An
index on C is a strict pre-index, i.e., a pre-index f such that C ⊂ C ′ implies f(C) < f(C ′).
A weak index (6) on C is a pre-index f such that

[C ⊂ C ′ and f(C) = f(C ′)] implies [C = ∩{C ′′ ∈ C : C ⊂ C ′′}].

When f is a pre-index (resp. an index, a weak index) on a cluster structure C, the pair (C, f)
is said to be pre-indexed (resp. indexed, weakly indexed). Let (C, f) be a pre-indexed cluster
structure on E. Let Inter(C, f) denote the pair (C, f), where f is defined on C by

f(C) = min{f(C ′) : C ′ ∈ C and C ⊆ C ′}.

On the other hand, define an f -maximal member of C to be a non-minimal member C ∈ C such
that there is no member C ′ ∈ C such that C ⊂ C ′ and f(C) = f(C ′). Let Strict(C, f) denote the
pair (C, f), where C is composed of minimal and f -maximal members of C, and f the restriction
of f on C. Then Strict(C, f) is clearly an indexed cluster structure. Moreover, the following
result shows that indexed pre-pyramids correspond to weakly indexed pyramids in a one-to-one
way. A proof can be found in (14).

Theorem 1

(i) If (C, f) is an indexed cluster structure on E, then Inter(C, f) is a weakly indexed closed
cluster structure on E. Moreover, Strict(Inter(C, f)) = (C, f).

(ii) Conversely, if (C, f) is a weakly indexed closed cluster structure on E, then Strict(C, f) is
an indexed cluster structure on E. Moreover, Inter(Strict(C, f)) = (C, f).

2 Correspondences with robinsonian dissimilarities

2.1 Robinsonian dissimilarities

Let us recall that a dissimilarity on E is a map d : E × E → R+ satisfying d(x, x) = 0 and
d(x, y) = d(y, x). It is said to be semi-proper if d(x, y) = 0 implies d(x, z) ≤ d(y, z) for all z.
A robinsonian dissimilarity is a dissimilarity admitting a compatible order, i.e., such that there
exists a linear order θ on E such that

xθyθz=⇒max{d(x, y), d(y, z)} ≤ d(x, z).

Robinsonian dissimilarities play an important role in unidimensional scaling problems in arche-
ology (23) and in the analysis of DNA sequences (22). See also (24) for more references.
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2.2 Semi-proper robinsonian dissimilarities and indexed pre-pyramids

In this section, we show that semi-proper robinsonian dissimilarities correspond to indexed pre-
pyramids via their associated 2-balls. Let d be a dissimilarity on E. Given x ∈ E and r ≥ 0, the
d-ball of center x and radius r is the set Bd(x, r) defined as Bd(x, r) = {z ∈ E : d(x, z) ≤ r}.

Let now x, y be two (not necessarily distinct) elements of E. Then, the (d, 2)-ball (or simply
2-ball) generated by the pair x, y is the set Bd

xy defined as Bd
xy = Bd(x, d(x, y)) ∩Bd(y, d(x, y)).

It may be noted that Bd
xy = Bd(x, d(x, x)) when x = y.

Let diamd be the function defined on nonempty subsets X of E by diamd(X) = max{d(x, y) :
x, y ∈ X} and let Bd be the set defined by

Bd = {Bd
xy : x, y ∈ E and diamd(B

d
xy) = d(x, y)}.

We will use the two following lemmas to prove the bijection between indexed pre-pyramids and
semi-proper robinsonian dissimilarities.

Lemma 3 (17) If d is a robinsonian dissimilarity, then for all compatible order θ and all x, y ∈
E, Bd

xy is an interval of θ.

Lemma 4 (17) If d is a robinsonian dissimilarity, then for any compatible order θ, each member
B of Bd is of the form Bd

xy, where x and y are the bounds of B relatively to θ.

Theorem 2 If d is a semi-proper robinsonian dissimilarity on E, then (Bd,diamd) is an indexed
pre-pyramid. Conversely, if (C, f) is an indexed pre-pyramid on E, then there exists a unique
semi-proper robinsonian dissimilarity d such that (Bd,diamd) = (C, f).

Proof. Let d be a a semi-proper robinsonian dissimilarity on E. Clearly, E ∈ Bd since E = Bd
xy

with x, y such that d(x, y) = diamd(E). Moreover, as d is semi-proper, the 2-balls of the form Bd
xx

are the minimal members of Bd. Hence they cover E, and, for all x, y, z, Bd
xx ∩Bd

yz ∈ {∅, Bd
xx}.

Finally, by Lemma 3, the elements of Bd are intervals of any order compatible with d, proving that
Bd is a pre-pyramid on E. On the other hand, it is a clear fact that, for B ∈ Bd, diamd(B) = 0
if and only if B = Bd

xx for some x ∈ E, as d is semi-proper, i.e., if and only if B is minimal.
Moreover, it follows obviously from Lemma 4 that diamd is an index on Bd, proving the direct
assertion.

Conversely, let (C, f) be an indexed pre-pyramid on E. For all x, y ∈ E, denote by C(x, y) the
collection of members of C that contain x and y, i.e. C(x, y) = {C ∈ C : x, y ∈ C}. Let d be the
dissimilarity on E defined by d(x, y) = min{f(C) : C ∈ C(x, y)}.
The dissimilarity d is robinsonian. Let xθyθz, where θ is an order compatible with C. Then
every member of C containing x and z contains also y. Therefore,

max{d(x, y), d(y, z)} = max{ min
C∈C(x,y)

f(C), min
C∈C(y,z)

f(C)} ≤ min
C∈C(x,z)

f(C) = d(x, z),

as required.
The dissimilarity d is semi-proper. Indeed, let x, y ∈ E such that d(x, y) = 0. Then
there is a member of C containing x, y, say Cxy, such that f(Cxy) = 0. On the other hand, by
condition (CS2), there is a minimal member of C containing x, say Cx. Thus Cxy = Cx since
f(Cx) = 0 = f(Cxy) and f is an index. Let z ∈ E. Now Cxy being minimal, for all C ∈ C(x, z)
we have, by Lemma 1-(a1), Cxy ⊆ C. Therefore, every member of C containing x, z contains
also y, z, so that

d(y, z) = min
C∈C(y,z)

f(C) ≤ min
C∈C(x,z)

f(C) = d(x, z).
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The pairs (Bd,diamd) and (C, f) are equal. Let B := Bd
xy ∈ Bd. By Lemma 4, we assume,

w.l.g., its bounds be x and y. Let Axy ∈ Argmin{f(C) : C ∈ C(x, y)}. Then B ⊆ Axy since Axy

is an interval of θ. Let us prove the reverse inclusion. Denoting u and v the bounds of Axy, we
have d(u, v) ≤ f(Axy) = d(x, y).
Now, as x, y ∈ Axy we get d(x, y) ≤ d(u, v) = diam(Axy).
Then, by compatibility of d with θ, we have

max{d(x, u), d(x, v), d(y, u), d(y, v)} ≤ d(u, v) = d(x, y),

i.e., u, v ∈ B, proving that B = Axy, hence Bd ⊆ C. To prove the reverse inclusion, let C ∈ C
with bounds x and y (xθy). Then, as Bd

xy is an interval of θ, C ⊆ Bd
xy. In order to prove the

reverse inclusion, let v 6∈ C = [x, y]. Let us first consider the case where vθx. Then for all
X ∈ C(v, y), d(x, y) ≤ f(C) < f(X), because C ⊂ X, so that

d(x, y) < min
X∈C(v,y)

f(X) = d(v, y).

Assume now that yθv. By an argument of symetry, we can deduce from the previous case that

d(x, y) < min
X∈C(x,v)

f(X) = d(x, v).

Thus v /∈ Bd
xy, proving that Bd

xy ⊆ C. Therefore, C = Bd
xy and, by the way, x and y are the

bounds of Bd
xy. Hence C ∈ Bd, proving that Bd = C. In addition every C(x, y) contains C, so

that f(C) = d(x, y) = diamd(B
d
xy), proving that (Bd,diamd) = (C, f).

The dissimilarity d is unique. Let d′ be a semi-proper robinsonian dissimilarity such that
(Bd′ ,diamd′) = (C, f). Let x, y ∈ E with xθy. Let u be the smallest element of E (w.r.t. θ) such
that d′(u, y) = d′(x, y) and let v be the greatest element of E such that d′(u, v) = d′(u, y) (uθx
and yθv). Then

d′(u, v) = d′(x, y) and Bd′

uv = [u, v] ∈ Bd′ = C = Bd.

Thus, as x, y ∈ Bd′

uv (since uθxθyθv and Bd′

uv is an interval containing u and v),

d(x, y) ≤ f(Bd′

uv) = diamd′(B
d′

uv) = d′(u, v) = d′(x, y).

Assume now that there exists a member X ∈ C(x, y) such that f(X) < d′(x, y). If w and z
are the bounds of X with wθz, then wθxθyθz. But X ∈ C = Bd′ implies X = Bd′

wz, so that
f(X) = diamd′(B

d′

wz) = d′(w, z). It follows then that d′(w, z) < d′(x, y), which contradicts the
compatibility of d′ with θ. Hence

d′(x, y) ≤ min
C∈C(x,y)

f(C) = d(x, y),

proving that d′(x, y) = d(x, y). Therefore d′ = d, as required. �

It should be noticed that Theorem 2 still holds and the Diday’s bijection (16) can be derived
form it, when “Bd” and “indexed” are replaced by “Bd” and “weakly indexed”, respectively (17).
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