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We consider cluster structures in a general setting where they do not necessarily contain all singletons of the ground set. Then we provide a direct proof of the bijection between semi-proper robinsonian dissimilarities and indexed pre-pyramids. This result generalizes its analogue proven by Batbedat in the particular case of definite cluster structures. Moreover, the proposed proof shows that the clusters of the indexed pre-pyramid corresponding to a semi-proper robinsonian dissimilarity are particular 2-balls of the considered dissimilarity.

Structural bijections between cluster structures and dissimilarity types play an important role in cluster analysis. They not only validate the dissimilarity-based clustering approach, but make it possible to bring a cluster system specification problem back to a dissimilarity matrix determination (13; 9; 8; 10). The best known of these bijections is certainly the one between indexed hierarchies and ultrametrics (20; 5). Several extensions of this bijection have been obtained, e.g., between indexed quasi-hierarchies and quasi-ultrametrics (1; 15), between indexed pyramids and strongly robinsonian dissimilarities [START_REF] Durand | One-t-one correspondences in pyramidal representation: a unified approach[END_REF], and between weakly indexed pyramids and robinsonian dissimilarities [START_REF] Diday | Une représentation visuelle des classes empiétantes : les pyramides[END_REF]. Generalizations and/or unifications of some of these bijections can be found in (3; 11; 6; 18; 7; 2; 12). The present paper focuses on a bijection between semi-proper robinsonian dissimilarities and indexed pre-pyramids, in a general setting where cluster structures are not required to contain all singletons of the ground set, i.e., are not necessarily definite. We give a direct proof of this bijection, showing that the clusters of the indexed pre-pyramid corresponding to a semi-proper robinsonian dissimilarity are particular 2-balls of the considered dissimilarity. This result generalizes its analogue proven by Batbedat (4) in the particular case of definite cluster structures. Moreover, it can be thought of as the third side of a triangular correspondence between indexed pre-pyramids, weakly indexed pyramids and semi-proper robinsonian dissimilarities. Indeed, on the one hand, a bijection between indexed pre-pyramids and weakly indexed pyramids derives as an instance of the general one between indexed cluster structures and weakly indexed closed cluster structures [START_REF] Diatta | One-to-one correspondence between cluster structures and weakly indexed closed cluster structures[END_REF]. On the other hand, the Diday's bijection [START_REF] Diday | Une représentation visuelle des classes empiétantes : les pyramides[END_REF] extends between weakly indexed (not necessarily definite) pyramids and semi-proper robinsonian dissimilarities.

1 Pyramids and Pre-pyramids

Pre-pyramids

Let E be a finite nonempty set. A cluster structure on E is a collection C of subsets of E, satisfying conditions (CS1), (CS2) and (CS2') below: (CS1) the empty set is not a member of C whereas the ground set E is, i.e., ∅ / ∈ C and E ∈ C; (CS2) the set of minimal members of C (w.r.t. set inclusion) partitions E; in other words, these minimal members are non-empty, pairwise disjoint, and they cover E (i.e. their union equals E);

(CS2') every non-minimal member of C is the union of members of C it properly contains, i.e., for all X ∈ C: ∪{Y ∈ C : Y ⊂ X} ∈ {∅, X};

(CS3) there is a linear order, say θ, on E, of which each member C of C is an interval, i.e., for all x, y, z ∈ E: x, y ∈ C and xθzθy imply z ∈ C.

The pair of conditions (CS2) and (CS2') is often replaced by a stronger condition requiring each singleton to be a member of C. Actually, a cluster structure satisfying this strong requirement is said to be total or definite.

A pre-pyramid on E is a cluster structure C onf E, satisfying the condition (CS3) below: (CS3) there is a linear order, say θ, on E, of which each member C of C is an interval, i.e., for all x, y, z ∈ E: x, y ∈ C and xθzθy imply z ∈ C.

The order θ and the collection C are said to be compatible with each other, and subset collections satisfying condition (CS3) are said to admit a compatible order. The condition (CS3) is the specific condition of interval-type subset collections.

Pyramids

To every subset collection can be associated its closure consisting of arbitrary intersections of its members. As we are concerned with collections of nonempty subsets of finite sets, we will consider only finite nonempty intersections. The closure of a subset collection C under (finite) nonempty intersections will be denoted by C, and C will be said to be closed when it satisfies the condition (CS4) below:

(CS4) the intersection of two members of C is either empty or a member of

C, i.e., X, Y ∈ C implies X ∩ Y ∈ C ∪ {∅}.
A pyramid is a closed pre-pyramid. It can be checked that conditions (CS2) and (CS2') are equivalent under (CS1) and (CS4). Pyramidal classification has been introduced by Diday ( 16) and considered or investigated in several works among which we can mention (21; 19).

To show that C is a pyramid when C is a pre-pyramid, it suffices to check that C verifies (CS2). Now this derives from the fact that, by Lemma 1 and Lemma 2 below, every minimal member of C is also a minimal member of C.

Lemma 1 [START_REF] Diatta | One-to-one correspondence between cluster structures and weakly indexed closed cluster structures[END_REF] The conjunction of conditions (CS2) and (CS2') is equivalent to the conjunction of conditions (a) and (e), where:

(a 1 ) C, C ′ ∈ C and C minimal in C imply C ∩ C ′ ∈ {∅, C}; (a 2 ) minimal members of C cover E.
Lemma 2 [START_REF] Diatta | One-to-one correspondence between cluster structures and weakly indexed closed cluster structures[END_REF] The following conditions are equivalent for a collection C of nonempty subsets of E.

(a 1 ) C, C ′ ∈ C and C minimal in C imply C ∩ C ′ ∈ {∅, C}.
(a 3 ) Every minimal member of C is minimal in C.

Indexed pre-pyramids and weakly indexed pyramids

Let C be a cluster structure on E. A pre-index on C is an order preserving map f : (C, ⊆) → (R + , ≤) taking the zero value on minimal members of C, i.e.,

(i) C minimal implies f (C) = 0; (ii) C ⊆ C ′ implies f (C) ≤ f (C ′ ).
In the sequel, we will assume that a pre-index f takes the value zero only on minimal members, hence, f (C) = 0 if and only if C is minimal. A canonical pre-index f c can be obtained by letting f c (C) be the number of elements of the union of members of

C properly contained in C. An index on C is a strict pre-index, i.e., a pre-index f such that C ⊂ C ′ implies f (C) < f (C ′ ). A weak index (6) on C is a pre-index f such that [C ⊂ C ′ and f (C) = f (C ′ )] implies [C = ∩{C ′′ ∈ C : C ⊂ C ′′ }].
When f is a pre-index (resp. an index, a weak index) on a cluster structure C, the pair (C, f ) is said to be pre-indexed (resp. indexed, weakly indexed). Let (C, f ) be a pre-indexed cluster structure on E. Let Inter(C, f ) denote the pair (C, f ), where f is defined on C by

f (C) = min{f (C ′ ) : C ′ ∈ C and C ⊆ C ′ }.
On the other hand, define an f -maximal member of C to be a non-minimal member C ∈ C such that there is no member

C ′ ∈ C such that C ⊂ C ′ and f (C) = f (C ′ ). Let Strict(C, f ) denote the pair (C, f ),
where C is composed of minimal and f -maximal members of C, and f the restriction of f on C. Then Strict(C, f ) is clearly an indexed cluster structure. Moreover, the following result shows that indexed pre-pyramids correspond to weakly indexed pyramids in a one-to-one way. A proof can be found in [START_REF] Diatta | One-to-one correspondence between cluster structures and weakly indexed closed cluster structures[END_REF].

Theorem 1 A robinsonian dissimilarity is a dissimilarity admitting a compatible order, i.e., such that there exists a linear order θ on E such that xθyθz=⇒ max{d(x, y), d(y, z)} ≤ d(x, z).

(i) If (C, f ) is
Robinsonian dissimilarities play an important role in unidimensional scaling problems in archeology [START_REF] Robinson | A Method for Chronologically Ordering Archeological Deposits[END_REF] and in the analysis of DNA sequences [START_REF] Mirkin | Graphs and Genes[END_REF]. See also [START_REF] Warrens | On robinsonian dissimilarities, the consecutive ones property and latent variable models[END_REF] for more references.

Semi-proper robinsonian dissimilarities and indexed pre-pyramids

In this section, we show that semi-proper robinsonian dissimilarities correspond to indexed prepyramids via their associated 2-balls. Let d be a dissimilarity on E. Given x ∈ E and r ≥ 0, the d-ball of center x and radius r is the set B d (x, r) defined as B d (x, r) = {z ∈ E : d(x, z) ≤ r}.

Let now x, y be two (not necessarily distinct) elements of E. Then, the (d, We will use the two following lemmas to prove the bijection between indexed pre-pyramids and semi-proper robinsonian dissimilarities. 

∈ C(v, y), d(x, y) ≤ f (C) < f (X), because C ⊂ X, so that d(x, y) < min X∈C(v,y) f (X) = d(v, y).
Assume now that yθv. By an argument of symetry, we can deduce from the previous case that It should be noticed that Theorem 2 still holds and the Diday's bijection [START_REF] Diday | Une représentation visuelle des classes empiétantes : les pyramides[END_REF] can be derived form it, when "B d " and "indexed" are replaced by "B d " and "weakly indexed", respectively [START_REF] Durand | One-t-one correspondences in pyramidal representation: a unified approach[END_REF].

d(x, y) < min X∈C(x,v) f (X) = d(x, v).
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 21 an indexed cluster structure on E, then Inter(C, f ) is a weakly indexed closed cluster structure on E. Moreover, Strict(Inter(C, f )) = (C, f ). (ii) Conversely, if (C, f ) is a weakly indexed closed cluster structure on E, then Strict(C, f ) is an indexed cluster structure on E. Moreover, Inter(Strict(C, f )) = (C, f ). Robinsonian dissimilarities Let us recall that a dissimilarity on E is a map d : E × E → R + satisfying d(x, x) = 0 and d(x, y) = d(y, x). It is said to be semi-proper if d(x, y) = 0 implies d(x, z) ≤ d(y, z) for all z.

  2)-ball (or simply 2-ball) generated by the pair x, y is the set B d xy defined as B d xy = B d (x, d(x, y)) ∩ B d (y, d(x, y)). It may be noted that B d xy = B d (x, d(x, x)) when x = y. Let diam d be the function defined on nonempty subsets X of E by diam d (X) = max{d(x, y) : x, y ∈ X} and let B d be the set defined by B d = {B d xy : x, y ∈ E and diam d (B d xy ) = d(x, y)}.

Proof.

  Let d be a a semi-proper robinsonian dissimilarity on E. Clearly, E ∈ B d since E = B d xy with x, y such that d(x, y) = diam d (E). Moreover, as d is semi-proper, the 2-balls of the form B d xx are the minimal members of B d . Hence they cover E, and, for all x, y, z, B d xx ∩ B d yz ∈ {∅, B d xx }. Finally, by Lemma 3, the elements of B d are intervals of any order compatible with d, proving that B d is a pre-pyramid on E. On the other hand, it is a clear fact that, for B ∈ B d , diam d (B) = 0 if and only if B = B d xx for some x ∈ E, as d is semi-proper, i.e., if and only if B is minimal. Moreover, it follows obviously from Lemma 4 that diam d is an index on B d , proving the direct assertion. Conversely, let (C, f ) be an indexed pre-pyramid on E. For all x, y ∈ E, denote by C(x, y) the collection of members of C that contain x and y, i.e. C(x, y) = {C ∈ C : x, y ∈ C}. Let d be the dissimilarity on E defined by d(x, y) = min{f (C) : C ∈ C(x, y)}. The dissimilarity d is robinsonian. Let xθyθz, where θ is an order compatible with C. Then every member of C containing x and z contains also y. Therefore, max{d(x, y), d(y, z)} = max{ min C∈C(x,y) f (C), min C∈C(y,z) f (C)} ≤ min C∈C(x,z) f (C) = d(x, z), as required. The dissimilarity d is semi-proper. Indeed, let x, y ∈ E such that d(x, y) = 0. Then there is a member of C containing x, y, say C xy , such that f (C xy ) = 0. On the other hand, by condition (CS2), there is a minimal member of C containing x, say C x . Thus C xy = C x since f (C x ) = 0 = f (C xy ) and f is an index. Let z ∈ E. Now C xy being minimal, for all C ∈ C(x, z) we have, by Lemma 1-(a 1 ), C xy ⊆ C. Therefore, every member of C containing x, z contains also y, z, so that d(y, z) = min C∈C(y,z) f (C) ≤ min C∈C(x,z) f (C) = d(x, z). The pairs (B d , diam d ) and (C, f ) are equal. Let B := B d xy ∈ B d . By Lemma 4, we assume, w.l.g., its bounds be x and y. Let A xy ∈ Argmin{f (C) : C ∈ C(x, y)}. Then B ⊆ A xy since A xy is an interval of θ. Let us prove the reverse inclusion. Denoting u and v the bounds of A xy , we have d(u, v) ≤ f (A xy ) = d(x, y). Now, as x, y ∈ A xy we get d(x, y) ≤ d(u, v) = diam(A xy ). Then, by compatibility of d with θ, we have max{d(x, u), d(x, v), d(y, u), d(y, v)} ≤ d(u, v) = d(x, y), i.e., u, v ∈ B, proving that B = A xy , hence B d ⊆ C. To prove the reverse inclusion, let C ∈ C with bounds x and y (xθy). Then, as B d xy is an interval of θ, C ⊆ B d xy . In order to prove the reverse inclusion, let v ∈ C = [x, y]. Let us first consider the case where vθx. Then for all X

  Thus v / B d xy , proving that B d xy ⊆ C. Therefore, C = B d xy and, by the way, x and y are the bounds of B d xy . Hence C ∈ B d , proving that B d= C. In addition every C(x, y) contains C, so that f (C) = d(x, y) = diam d (B d xy ), proving that (B d , diam d ) = (C, f ). The dissimilarity d is unique. Let d ′ be a semi-proper robinsonian dissimilarity such that (B d ′ , diam d ′ ) = (C, f ). Let x, y ∈ E with xθy. Let u be the smallest element of E (w.r.t. θ) such that d ′ (u, y) = d ′ (x, y) and let v be the greatest element of E such that d ′ (u, v) = d ′ (u, y) (uθx and yθv). Then d ′ (u, v) = d ′ (x, y) and B d ′ uv = [u, v] ∈ B d ′ = C = B d . Thus, as x, y ∈ B d ′uv (since uθxθyθv and B d ′ uv is an interval containing u and v),d(x, y) ≤ f (B d ′ uv ) = diam d ′ (B d ′ uv ) = d ′ (u, v) = d ′ (x, y).Assume now that there exists a member X ∈ C(x, y) such that f (X) < d ′ (x, y). If w and z are the bounds of X with wθz, then wθxθyθz.But X ∈ C = B d ′ implies X = B d ′ wz , so that f (X) = diam d ′ (B d ′ wz ) = d ′ (w, z). It follows then that d ′ (w, z) < d ′ (x,y), which contradicts the compatibility of d ′ with θ. Hence d ′ (x, y) ≤ min C∈C(x,y) f (C) = d(x, y), proving that d ′ (x, y) = d(x, y). Therefore d ′ = d, as required.