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We define the prequantization of a symplectic Anosov diffeomorphism f : M → M , which is a U(1) extension of the diffeomorphism f preserving an associated specific connection, and study the spectral properties of the associated transfer operator, called prequantum transfer operator. This is a model for the transfer operators associated to geodesic flows on negatively curved manifolds (or contact Anosov flows).

We restrict the prequantum transfer operator to the N -th Fourier mode with respect to the U(1) action and investigate the spectral property in the limit N → ∞, regarding the transfer operator as a Fourier integral operator and using semi-classical analysis. In the main result, we show a " band structure " of the spectrum, that is, the spectrum is contained in a few separated annuli and a disk concentric at the origin.

We show that, with the special (Hölder continuous) potential V 0 = 1 2 log |det Df x | Eu |, the outermost annulus is the unit circle and separated from the other parts. For this, we use an extension of the transfer operator to the Grassmanian bundle. Using Atiyah-Bott trace formula, we establish the Gutzwiller trace formula with exponentially small reminder for large time. We show also that, for a potential V such that the outermost annulus is separated from the other parts, most of the eigenvalues 1 in the outermost annulus concentrate on a circle of radius exp ( V -V 0 ) where . denotes the spatial average on M . The number of these eigenvalues is given by the "Weyl law", that is, N d VolM with d = 1 2 dimM in the leading order.
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We develop a semiclassical calculus associated to the prequantum operator by defining quantization of observables Op (ψ) in an intrinsic way. We obtain that the semiclassical Egorov formula of quantum transport is exact. We interpret all these results from a physical point of view as the emergence of quantum dynamics in the classical correlation functions for large time. We compare these results with standard 30 quantization (geometric quantization) in quantum chaos. Contents 1.5.1 The question of existence of a "natural quantization" . . . . . . . . 1.6 Dynamical correlation functions and emergence of quantum dynamics . . . 1.6.1 Use of the resolvent estimate for dynamical control . . . . . . . . . 1.6.2 Decay of correlations expressed with the quantum operator . . . . . 1.7 Semiclassical calculus on the quantum space . . . . . .

Introduction and results

Introduction

We consider a smooth symplectic Anosov diffeomorphism f : M → M on a 2d-dimensional closed symplectic manifold (M, ω) as a standard model of "chaotic" dynamical system. Following the geometric quantization procedure introduced by Kostant, Souriau and Kirillov in 1970s', we consider the prequantum bundle P → M. This is the U(1)-principal bundle over M equipped with a connection whose curvature is (-2πi) • ω. Then we introduce the prequantum map f : P → P as the U(1)-equivariant extension of the map f preserving the connection. The prequantum map f thus defined is known to be exponentially mixing 1 , that is, any smooth probability density which evolves under the iteration of f converges weakly towards the uniform equilibrium distribution on P and the speed of convergence is exponentially fast if it is measured by a smooth observable. We study the fluctuations in this convergence to the equilibrium by investigating spectral properties of the transfer operator F associated to the prequantum map f . Following the approach taken by David Ruelle in his study of expanding dynamical systems [START_REF] Ruelle | An extension of the theory of Fredholm determinants[END_REF], we first show that the transfer operator displays discrete spectrum, which is sometimes called Ruelle-Pollicott resonances. Precisely we consider the restriction FN of the transfer operator F to the N-th Fourier mode with respect to the U(1) action on P and show that its natural extension to appropriate generalized Sobolev spaces of distributions has discrete spectrum. This result concerning discrete spectrum is already known in the preceding works [START_REF] Rugh | The correlation spectrum for hyperbolic analytic maps[END_REF], [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF][START_REF] Gouëzel | Banach spaces adapted to anosov systems[END_REF], [6, theorem 1.1], [19, theorem 1] and will be recalled in Theorem 1. [START_REF] Duistermaat | Fourier integral operators[END_REF]. In this paper we are mainly concerned with the limit N → ∞ of small wavelength (high Fourier modes). We will use the standard notation of semiclassical analysis and put throughout this paper:

:= 1 2πN
The new result of this paper is in Theorem 1.17, where we show that the spectrum of FN has a particular "band" structure: for every N large enough, there is an annulus that contains finitely many (but increasing to infinity as N → ∞) eigenvalues; they are separated from the rest of the internal spectrum by a gap under some pinching conditions. This means that the convergence to the equilibrium mentioned above, restricted to the N-th Fourier mode, is described by a finite rank operator denoted F : H → H , up to relatively small exponentially decaying errors. The finite rank operator F is the spectral restriction of the prequantum transfer operator FN on the external annulus. We show, in Theorem 1.21, that the dimension of H is proportional to N d asymptotically as 2 N → ∞. These results are generalizations of the results in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] for the linear Arnold cat map to the case of general non-linear symplectic Anosov diffeomorphisms.

Motivations of the study From the construction above, the prequantum map f : P → P is partially hyperbolic, that is, hyperbolic in the directions transverse to the fibers but is neutral (because of equivariance) in the direction of the fibers. Also note that f preserves the connection one form on the prequantum bundle P which is a contact form on P (See Remark 1.7 page 13). These properties of the prequantum map are very similar to those of the time-t-map of the geodesic flow φ 1 : T * 1 M → T * 1 M on a closed Riemannian manifold M with negative curvature, acting on the unit cotangent bundle T * 1 M: In the latter case the time-t-map of the geodesic flow is partially hyperbolic and preserves the canonical Liouville contact one form ξdx on T * 1 M. (See [START_REF] Liverani | On contact Anosov flows[END_REF][START_REF] Tsujii | Quasi-compactness of transfer operators for contact anosov flows[END_REF][START_REF] Tsujii | Contact anosov flows and the fourier-bros-iagolnitzer transform[END_REF][START_REF] Faure | Upper bound on the density of ruelle resonances for anosov flows. a semiclassical approach[END_REF]). With this point of view, the prequantum transfer operator can be considered as a model of the transfer operators for the geodesic flows on negatively curved manifolds. One of our objective behind the present work is to show some band structure of the spectrum for the case of geodesic flow and extend other results presented in this paper to that case [START_REF] Faure | Spectrum and zeta function of contact anosov flows[END_REF][START_REF] Faure | Band structure of the ruelle spectrum of contact anosov flows[END_REF]. In the special case of manifolds with constant curvature, such a band structure is readily observed from the classical theorem of Selberg on zeta functions [START_REF] Selberg | Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces with applications to dirichlet series[END_REF].

Another motivation already discussed in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] in a special case is the following observation: The finite rank operator F which describes the long time classical correlation functions of the map f has the properties of a "quantum map" i.e. a "quantization of f " but with additional interesting properties. It satisfies the Gutzwiller trace formula with an error term which decreases exponentially fast in large time, an exact Egorov theorem, etc. Surprisingly this "quantization" or quantum behavior, appears here dynamically (after long time) in the classical correlation functions of the "classical" map f : the finite dimensional "quantum space" H in which F acts is defined from the dynamics. There are many open questions in "quantum chaos" for example related to "unique quantum ergodicity" or "random matrix theory" [START_REF] Nonnenmacher | Some open questions in 'wave chaos[END_REF]. These questions can be posed for the family quantum operators (F ) considered here and may be their special properties with respect to the dynamics may help.

Semiclassical approach

The general method that we use to obtain the main results is semiclassical analysis. We regard the prequantum transfer operator as a Fourier Integral Operator (FIO), which means that we consider its action on wave packets in the high frequency limit N → ∞. From the general idea in semiclassical analysis, this action is effectively described by the associated canonical map (Df * ) -1 on the cotangent space T * M equipped with the symplectic structure Ω = dx ∧ dζ + π * ω (where dx ∧ dζ stands for the canonical symplectic structure on T * M and π * ω is the pull-back of ω on T * M).

For the action of the canonical map (Df * ) -1 , the non-wandering set is the zero section K ⊂ T * M and is called the trapped set. The additional term π * ω in Ω makes K a symplectic submanifold. The trapped set is therefore symplectic and normally hyperbolic. We will see that these facts are the core of our argument and give the band structure of the spectrum in the main theorem.

Structure of the paper In Section 1.2 we define precisely the prequantum map f and the prequantum transfer operator F that are uniquely associated to the Anosov map f .

In Section 1.3 we present the main results concerning the discrete spectrum of FN (after Fourier decomposition of F on Fourier component N = 1/ (2π ) ∈ Z) acting on a Hilbert space H r called the anisotropic Sobolev space. These results are summarized on Figure 1.4. The spectral restriction of the operator FN on this external band will be called the quantum operator and denoted F in Definition 1. [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]. The associated spectral projector is denoted byΠ . In Section 1.4 we show how to extend the results so that the potential function V that enters in the definition 1.9 of the transfer operator F can be chosen such that the external band of resonances concentrates on the unit circle in the limit → 0, although this requires that V is only Hölder continuous. In Section 1.5 we show that the quantum operator F n satisfies the Gutzwiller trace formula with an error that decays exponentially fast as n → ∞. We discuss the fact that this property determines the spectrum of F and shows somehow that the family of operators F is a kind of "natural quantization" of the Anosov symplectic map f . In Section 1.6 we pursue the exploration of the properties of this quantum operator F obtained by the spectral restriction of FN by the spectral projector Π . In Theorem 1.47 it is shown that F describes the exponential decay of correlations of the Anosov map f . In Section 1.7 we show in which sense the quantum operator F is a kind of "quantum map": it satisfies an exact Egorov formula with respect to an algebra of quantum observables Op (ψ). For this, we define a new kind of quantization procedure Op : ψ ∈ C ∞ (M) → Op (ψ) ∈ End (H ) which satisfies most of the usual "axioms of quantization". In particular the spectral projector on the external band is Π = Op [START_REF] Aebischer | Symplectic geometry[END_REF]. In Theorem 1.55, Op (ψ) is expressed as an integral over x ∈ M of ψ (x) • π x where π x is a rank one projector over a "localized wave packet"3 at position x ∈ M. In Section 1.8 we consider the usual "geometric quantization" of the map f in the sense of Toeplitz quantization and compare it with the quantum operator F or "natural quantization". We show that both quantization coincide up a to small error in the limit → 0. In Section 2 we present the main ideas of semiclassical analysis used in the proofs. In Section 3 we present additional results concerning the spectrum of the rough Laplacian operator. This is used to discuss geometric (Toeplitz) quantization. Subsequent sections contain the proofs.
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Definitions

Symplectic Anosov map

Let M be a C ∞ closed connected symplectic manifold of dimension 2d with symplectic two form ω. Let f : M → M be a C ∞ symplectic Anosov diffeomorphism, i.e. a C ∞ Anosov diffeomorphism such that f * ω = ω. We recall the definition of an Anosov diffeomorphism: 235 Definition 1.1. [30, p.263] A diffeomorphism f : M → M is said to be Anosov if there exists a C ∞ Riemannian metric g on M, an f -invariant continuous decomposition of T M,

T x M = E u (x) ⊕ E s (x) , ∀x ∈ M (1.1)
and a constant λ > 1, such that, for any x ∈ M, hold

|D x f (v s )| g ≤ 1 λ |v s | g ∀v s ∈ E s (x) , and (1.2) 
D x f -1 (v u ) g ≤ 1 λ |v u | g ∀v u ∈ E u (x) .
The subbundle E s (resp.E u ) in which f is uniformly contracting (resp. expanding) is called the stable (resp. unstable) sub-bundle. See figure 1.1.

f x E s (x) M f (x) E u (x) Figure 1.1: A symplectic Anosov map f Remark 1.2. ( 1 
)
The subspaces E u (x) and E s (x) do not depend smoothly on the point x in general. However it is known that they are Hölder continuous in x with some Hölder exponent [START_REF] Pesin | Lectures on Partial Hyperbolicity and Stable Ergodicity[END_REF]. In what follows, we assume that the Hölder exponent is 240 0 < β < 1.

(1.

3)

The subspaces E u (x) and E s (x) are Lagrangian4 linear subspace of T x M and both have dimension d.

(2) The Arnold cat map [START_REF] Arnold | Méthodes ergodiques de la mécanique classique[END_REF] is a simple example of a symplectic Anosov diffeomorphism on the torus

T 2 = R 2 /Z 2 , f 0 q p = 2 1 1 1 q p mod Z 2 .
(1.4)

It preserves the symplectic form ω = dq ∧ dp. If h : M → M is a diffeomorphism close enough to identity in the C 1 norm and preserves the symplectic form ω, the perturbed cat map f (x) := h (f 0 (x)) (1.5) is also a (probably non-linear) symplectic Anosov diffeomorphism [30, p.266]. Similarly, we get examples of symplectic Anosov diffeomorphisms on T 2d from any symplectic linear map f 0 ∈ Sp 2d (Z) with no eigenvalues on the unit circle.

The prequantum bundle and the lift map f

A prequantum bundle is a U(1)-principal bundle P equipped with a specific connection.

In a few paragraphs below, we recall the definition of a U(1)-principal bundle and that of a connection on it. (For the detailed account, we refer [START_REF] Woodhouse | Geometric quantization[END_REF].) The one-dimensional unitary group U(1) is the multiplicative group of complex numbers of the form e iθ , θ ∈ R. A U(1)-principal bundle P over M is a manifold with a free action of U(1), written p ∈ P → e iθ p ∈ P,

such that the quotient space is M = P/U(1). We write π : P → M for the projection map. From the definition, the U(1)-principal bundle P has a local product structure over M: There exist a finite cover of M by simply connected open subsets U α ⊂ M, α ∈ I, and smooth sections τ α : U α → P on each of U α , called a local smooth section; A local trivialization of P over U α is defined as the diffeomorphism

T α : U α × U (1) → π -1 (U α )
x, e iθ → e iθ τ α (x) (1.7)

A connection on P is a differential one form A ∈ C ∞ (P, Λ 1 ⊗ (iR)) on P with values in the Lie algebra u (1) = iR which is invariant by the action of U(1) and normalized so that

A ∂ ∂θ = i (1.8)
where ∂ ∂θ denotes the vector field on P generating the action of U [START_REF] Aebischer | Symplectic geometry[END_REF]. Consequently the pull-back of the connection A on P by the trivialization map (1.7) is written as

T * α A = idθ -i2πη α (1.9)
where η α ∈ C ∞ (U α , Λ 1 ) is a one-form on U α which depends on the choice of the local section τ α . A different local section τ β : U β → P with U α U β = ∅ is written as τ β = e iχ τ α with using a function χ : U α U β → R and hence the connection A pulled-back by the corresponding trivialization T β is written as (1.9) with

η β = η α - 1 2π dχ on U α U β .
(1.10)

The curvature of the connection A is the two form Θ = dA on P . In the local trivialization (1.7), we have T * α Θ = -i2π (dη α ) and (1.10) implies that dη α = dη β . Therefore the curvature two form is written as

Θ = -i (2π) (π * ω)
where ω = dη α is a closed two form on M independent of the trivialization.

Since there is a given symplectic two form ω on M in our setting, we naturally require below in (1.13) that the two form ω coincides with ω and then ω = dη α .

(1.11)

For the construction of the prequantum bundle and prequantum transfer operator, we will need the following two assumptions:

Assumption 1: The cohomology class [ω] ∈ H 2 (M, R) represented by the symplectic form ω is integral, that is, [ω] ∈ H 2 (M, Z) (1.12)
Assumption 2: The integral homology group H 1 (M, Z) has no torsion part and 1 is not an eigenvalue of the linear map f * : H 1 (M, R) → H 1 (M, R) induced by f : M → M.

Remark 1.3. The second assumption above is not restrictive and may not be necessary. In fact this hypothesis is conjectured to be true in general. For the case M = T 2d , this is always satisfied.

Theorem 1.4. Under Assumption 1 above, there exists a U(1)-principal bundle π : P → M and a connection A ∈ C ∞ (P, Λ 1 ⊗ (iR)) on P such that the curvature two form Θ = dA satisfies Θ = -i (2π) (π * ω) .

(1.13)

If we put Assumption 2 in addition, we can choose the connection A as above so that there exists an equivariant lift f : P → P of the map f : M → M preserving the connection A, that is: The proof of Theorem 1.4 is given in Section A.1.

π • f (p) = (f • π) (p) , ∀p ∈ P : f is a lift of f . ( 1 
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Definition 1.5. The U(1)-principal bundle π : P → M equipped with the connection A ∈ C ∞ (P, Λ 1 ⊗ (iR)) satisfying (1.13) is called prequantum bundle over the symplectic manifold (M, ω). The map f : P → P satisfying the conditions (1.14), (1.15) and (1. [START_REF] Dunford | Linear operators. Part I[END_REF]) is called prequantum map. A picture of the prequantum bundle P → M in the case of M = T 2 , with connection one form A and the prequantum map f : P → P which is a lift of f : M → M. A fiber P x ≡ U (1) over x ∈ M is represented here as a segment θ ∈ [0, 2π[. The plane at a point p represents the horizontal space H p P = Ker (A p ) which is preserved by f . These plane form a non integrable distribution with curvature given by the symplectic form ω.

Remark 1.6. (Uniqueness of the prequantum bundle and the prequantum map) The prequantum bundle P is unique (as a smooth manifold) if it exists, because it is determined by its first Chern class c 1 (P ) = [ω] ∈ H 2 (M, Z 2 ). However the connection A on the prequantum bundle P is not unique. In the proof of the theorem above, we will explicitly show that there may be finitely many connections A which satisfy the condition (1.13) and they differ from each other by a flat connection. Once the prequantum bundle P and the connection A on it is given, the lifted map f is unique up to a global phase e iθ 0 ∈ U(1), i.e. another map g satisfies the conditions in (2) of Theorem 1.4 if and only if g = e iθ 0 f for some e iθ 0 ∈ U(1).

Remark 1.7. Let α := i 2π A. Then the differential (2d + 1)-form

µ P := 1 d! α ∧ (dα) d (1.17)
is a non-degenerate volume form on P . This means that α is a contact one form on P preserved by f .

Remark 1.8. Suppose that x ∈ M is a periodic point of the map f with period n ∈ N, n ≥ 1, i.e x = f n (x). Then if p ∈ π -1 (x) is in the fiber, the condition (1.14) implies that f n (p) ∈ π -1 (x) lies in the same fiber and therefore differ by a phase:

f n (p) = e i2πSn,x p (1.18) 
with S n,x ∈ R/Z called the action of the periodic point x, see Figure 1.3. These actions are important quantities in semiclassical analysis and will appear in the Gutzwiller trace formula in [START_REF] Hall | Holomorphic Methods in Mathematical Physics[END_REF]. 

f p f P M f n (p) e i2πSn,x f f x = f n (x)

The prequantum transfer operator F and the reduced operator FN

As usual in dynamical system theory, we consider the transfer operator associated to the prequantum map f : Definition 1.9. Let V ∈ C ∞ (M) be a real-valued smooth function, called potential. The prequantum transfer operator is defined as

F : C ∞ (P ) → C ∞ (P ) u → F (u) = e V •π u • f -1 (1.19)
where V • π ∈ C ∞ (P ) is the function V lifted on P .

Remark 1.10. The fact that f -1 appears instead of f in (1. [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]) is a matter of choice. In our choice, f maps the support of u to that of F u.

From the equivariance property (1.15), the prequantum transfer operator commutes with the action of U(1) on functions on P and therefore is naturally decomposed into each Fourier mode with respect to the U(1) action:

Definition 1.11. For a given N ∈ Z, we consider the space of functions in the N-th Fourier mode

C ∞ N (P ) := u ∈ C ∞ (P ) | ∀p ∈ P, ∀θ ∈ R, u e iθ p = e iN θ u (p) . (1.20) 
The prequantum transfer operator F restricted to C ∞ N (P ) is denoted by: FN := F/C ∞ N (P ) : C ∞ N (P ) → C ∞ N (P ) .

(1.21)

Remark 1.12. The complex conjugation maps C ∞ N (P ) to C ∞ -N (P ) and commutes with F . It is therefore enough to study FN with N ≥ 0. Remark 1.13. The space of equivariant functions C ∞ N (P ) defined in (1.20) can be identified with the space of smooth sections of an associated Hermitian complex line bundle L ⊗N over M (i.e. the N tensor power of a line bundle L → M) with covariant derivative D, called the prequantum line bundle i.e. we have ⊗N . See [51, p.502, eq.(6.1)]. In order to simplify the presentation we will not use this identification in this paper although it will be present implicitly. Notice however that most of references about geometric quantization use the "line bundle terminology". In this paper the main object of study is the resonance spectrum of the operator FN , (1.21), in the limit N → ∞. For N > 0, we set

C ∞ N (P ) ∼ = C ∞ M, L
= 1 2πN
. (1.22) This new variable is in one-to-one correspondence to N, and → +0 as N → ∞. We introduce it for convenience in referring some argument in semi-classical analysis where is regarded as the Plank constant and the limit → +0 is considered. Remark 1.14. In the following, we will confuse the parameters N and in the notation.

For instance, the operator FN will be written F sometimes.

1.3 Results on the spectrum of the prequantum operator FN

The following theorem has been obtained essentially in the works of Rugh [START_REF] Rugh | The correlation spectrum for hyperbolic analytic maps[END_REF], Liverani et al. [START_REF] Blank | Ruelle-Perron-Frobenius spectrum for Anosov maps[END_REF][START_REF] Gouëzel | Banach spaces adapted to anosov systems[END_REF], Baladi et al.[6, Theorem 1.1], Faure et al. [19, theorem 1]. The method employed in the present paper is close to the semiclassical approach given in [19, Theorem 1]. Before giving the theorem, let us mention that the transfer operator FN has been defined on the space of smooth functions C ∞ N (P ) and can be extended by duality to the distributions space D ′ N (P ).

Theorem 1. [START_REF] Duistermaat | Fourier integral operators[END_REF]. "Discrete spectrum of prequantum transfer operators". For any N ∈ Z, there exists a family of Hilbert spaces H r N (P ) for arbitrarily large r > 0, called anisotropic Sobolev space such that

C ∞ N (P ) ⊂ H r N (P ) ⊂ D ′ N (P )
and such that the operator FN extends to a bounded operator FN : H r N (P ) → H r N (P ) , and its essential spectral radius r ess FN is bounded by ε r := 1 λ r max e V , which shrinks to zero if r → +∞. The discrete eigenvalues of FN on the domain |z| ≥ ε r (and their associated eigenspaces) are independent on the choice of r and are therefore intrinsic to the Anosov diffeomorphism f . These discrete eigenvalues Res FN := {λ i } i ⊂ C * are called Ruelle-Pollicott resonances. The definition of the space H r N (P ) depends on the diffeomorphism Anosov f but do not depend on the potential function V . Remark 1. [START_REF] Dunford | Linear operators. Part I[END_REF]. See [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF], [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]Cor. 1.3] for a general argument about this independence of Res FN on the choice of r.

The main new result of this paper is the following Theorem . It is illustrated in Figure 1.4. Let us prepare some notations. For a linear invertible map L we will use the notation [START_REF] Duistermaat | Fourier integral operators[END_REF] shows that the spectrum of FN has discrete eigenvalues called Ruelle-Pollicott resonances. Theorem 1.17 shows that for N large enough it is structured in bands and that the resolvent is bounded between the bands, uniformly with respect to = 1/ (2πN). In the external band A 0 , the number of resonances is given by the Weyl formula 1 (2π ) d Vol (M) at leading order. The precise number is given by the Atiyah-Singer formula in Theorem 1.21. Theorem 1. [START_REF] Folland | Harmonic Analysis in phase space[END_REF] shows that in this external band A 0 almost all the resonances are distributed uniformly on the circle of radius R = e D in the limit N → ∞. The spectral restriction of the operator FN on this external band will be called the quantum operator and denoted F in Definition 1. [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]. The spectral projector is Π .

L max := L , L min := L -1 -1 . (1.23) R = e D r - 1 r + 1 r - 0 r + 0 A 1 A 0 ε r Figure 1.4: Theorem 1.
We define the special "potential of reference"

V 0 (x) := 1 2 log det Df x | Eu(x) (1.24) 
Notice that the unstable foliation E u (x) is not smooth in x in general (see Remark 1.2 [START_REF] Aebischer | Symplectic geometry[END_REF]) which implies that this function V 0 is Hölder continuous but not smooth in x. We then consider the difference

350 D := V -V 0 ∈ C β (M) (1.25)
which is also a Hölder continuous function on M and that will be called the "effective damping function". It will appear in many results below. Finally we denote by

D n (x) := n j=1 D f j (x) (1.26)
the Birkhoff sum of the damping function.

Theorem 1.17. "Band structure of the spectrum of FN ". For any ε > 0, there exists C ε > 0, N ε ≥ 1 such that for any N ≥ N ε

(1) the Ruelle-Pollicott resonances of FN is contained in a small neighborhood of the union of annuli (2) Suppose that r + k < r - k-1 for some k ≥ 1. For any z ∈ C such that r + k + ε < |z| < r - k-1ε, i.e. such that z is in a "gap", the resolvent of FN on H r N (P ) is controlled uniformly with respect to N:

A k := {r - k ≤ |z| ≤ r + k } k≥0 : Res FN ⊂ k≥0 r - k -ε ≤ |z| ≤ r + k + ε ε-neighborhood of A k (1.
z -FN -1 ≤ C ε (1.29)
This is true also for |z| > r + 0 + ε.

(3) If r + 1 < r - 0 , i.e. if the outmost annulus A 0 is isolated from other annuli, then the number of resonances in its neighborhood satisfies the estimate called "Weyl formula"

♯ Res FN r - 0 -ε ≤ |z| ≤ r + 0 + ε = N d Vol ω (M) 1 + O N -δ . (1.30)
with Vol ω (M) := M 1 d! ω ∧d being the symplectic volume of M and δ > 0.
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The proof of Theorem 1.17 is given in Section 7. There in Theorem 7.1, we will provide a more detailed but more technical result about the operators FN , without any assumption on existence of gaps r + k < r - k-1 . The Weyl law (1.30) is obtained in Corollary 1.64. We will give a more precise value in Theorem 1.21 below. Remark 1. [START_REF] Faure | Semiclassical formula beyond the ehrenfest time in quantum chaos.(i) trace formula[END_REF]. 2), we have obviously r - k+1 < r - k and r + k+1 < r + k for every k ≥ 0. However we don't always have r + k+1 < r - k therefore the annuli A k may intersect each other.

(2) From Theorem 1.17 it is tempting to take the potential V = V 0 defined in (1.24) which would indeed give D = 0 hence r + 0 = r - 0 = 1 in (1.28). In that case the external band A 0 would be the unit circle, separated from the internal band A 1 by a spectral gap r + 1 given by

r + 1 = lim sup n→∞ sup x∈M Df n x | Eu -1/n min < 1 λ < 1 
However Theorem 1.17 does not apply in this case because the function V 0 is not smooth in x as required. This is the purpose of the next Section 1.4 to show how to handle this non smooth potential V 0 and still get spectral results similar to Theorem 1.17. For the moment let us remark that if E u ⊂ T M is a smooth approximation of the unstable sub-bundle E u ⊂ T M in C 0 norm and if one chooses the potential:

V 0 (x) = 1 2 log det Df x | Ẽu(x) (1.31)
then on can have r - 0 , r + 0 (arbitrarily) closed to one and the annulus A 0 of the external band get isolated from the other ones (A 0 A k = ∅ for k = 0).

(3) In the simple case of the linear hyperbolic map on the torus T 2 in (1.4) with V (x) = 0,

we have r + k = r - k = λ -k-1 2 with λ = Df 0/Eu = 3+ √ 5 2
≃ 2.6 (constant), and each annulus A k is a circle. In this case Theorem 1.17 has been obtained in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] and is depicted on Figure (1-b) in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF]. If one chooses V (x) = 1 2 log |detDf x | Eu | = 1 2 log λ the external band A 0 is the unit circle and it is shown in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] that the Ruelle-Pollicott resonances on the external band coincide with the spectrum of the quantized map called the "quantum cat map".

(4) The estimate (1.29) will be useful in Section 1.6 to express dynamical correlation functions.

(5) For a given ε > 0, in (1.27), only a finite number of annuli A k can be distinguished.

From now on, we suppose that r + 1 < r - 0 , i.e. that the external annulus A 0 defined in (1.27) is isolated from other annuli k≥1 A k . We have seen in (1.31), how to achieve this situation by a suitable choice of the potential V (x).

Definition 1.19. Assume r + 1 < r - 0 . For N = 1/ (2π ) large enough let

Π : H r N (P ) → H r N (P ) (1.32)
be the spectral projector of the operator FN on its external band, i.e. on the spectral domain

r - 0 -ε ≤ |z| ≤ r + 0 + ε . Let H := Im (Π )
that we call the "quantum space" which is finite dimensional from (1.30) and let

F : H → H (1.33)
be the finite dimensional spectral restriction of FN on the exterior annulus A 0 . We call F the "quantum operator".

Remark 1.20. We will justify in Section 1.6 this name of "quantum operator".

In (1.30), Weyl law gives the leading order for the value of dim H . The next Theorem gives its exact value.

Theorem 1.21. "Index formula for the number of resonances". If the external annulus A 0 is isolated, i.e. r + 1 < r - 0 , then the number of resonances in the external annulus A 0 is given by the Atiyah-Singer index formula: for N large enough,

dim H = M e N ω Todd (T M) 2d (1.34)
where

e N ω = 1 + Nω + . . . + N d ω d d! is the Chern character and Todd (T M) = det Ω (T M) 1 -exp (-Ω (T M)) = 1 + Ω (T M) 2 + . . . ∈ H • DR (M)
is the Todd class of the tangent bundle defined from the Riemannian curvature Ω (T M) and [.] 2d denotes the restriction to volume 2d-forms. Consequently we recover "Weyl formula" of (1.30) and the remainder is also better:

dim H = N d Vol ω (M) + O N d-1 (1.35)
Theorem 1.21 above follows from Theorem 3.5 where we will introduce a differential operator ∆ = D * D acting in C ∞ N (P ) called the rough Laplacian. In Theorem 3.5, we will show that its low energy spectrum has band spectrum and that the cardinality of the eigenvalues in the first (i.e. the lowest) band equals the quantity on the right hand side of the formula (1.34). The latter is actually a consequence of a theorem in geometry. We will also show that the rank of the projector Π 0 coincides with the rank of the spectral projector for eigenvalues in the first band. We thus obtain the formula (1.34). Then the Weyl formula (1.35) is a direct consequence. Indeed we have e N ω Todd (T

M) 2d = N d ω d d! + O N d-1 and hence M e N ω Todd (T M) 2d = N d Vol ω (M) + O N d-1 .
Remark 1.22. In the case of M = T 2 which correspond to example (1.4) and treated in [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF], the projector Π 0 has exactly rank (Π 0 ) = N. Indeed, for Riemann surfaces M of genus g, we have Todd

(T M) = 1 + c 1 (T M ) 2 with first Chern number M c 1 (T M) = 2 -2g (the Gauss-Bonnet integral formula). Hence rank (Π 0 ) = M (Nω) + M c 1 (T M) = N for M = T 2 with genus g = 1.
For the next Theorem, recall the definition of the damping function and for any 0

D (x) = V (x) - V 0 (x) in (1.25).
≤ θ 1 < θ 2 ≤ 2π, lim N →∞ ♯ Res( FN ) ∩ {θ 1 < arg(z) < θ 2 } ♯{Res( FN )} = θ 2 -θ 1 2π .
The proof of Theorem 1.23 will be given in Section 10 .

Remark 1.24. With some pinching conditions, it is possible to show that the resonances in the internals bands A k also concentrate uniformly on circles.

Remark 1.25. The proof of Theorem 1.23 uses ergodicity of the map f : M → M and follows a techniques presented by J. Sjöstrand in [START_REF] Sjöstrand | Asymptotic distribution of eigenfrequencies for damped wave equations[END_REF] for the damped wave equation. Using mixing and large deviations properties of the map f it may be possible to improve the results as in [START_REF] Anantharaman | Spectral deviations for the damped wave equation[END_REF].

Spectral results with extended models on the Grassmanian bundle

In this Section we extend the previous results for a family of prequantum transfer operators more general than that considered in Theorem 1.17 in the sense that we will admit some functions V for the potential, defined in (1.39) below that may be only Hölder continuous. This is the case of V 0 given in (1.24). The trick is to consider transfer operators associated to the dynamics of f : M → M lifted on the d-dimensional Grassmanian bundle p :

G d (T M) → M so that the potential function V on M is derived from a smooth potential function Ṽ on G d (T M).
We explain now this construction.

1.4.1

The Grassmanian bundle G → M and the lifted map f G At a given point x ∈ M of the manifold M, recall from Remark 1.2(1) that the stable and unstable linear space

E s (x), E u (x) ⊂ T x M, x ∈ M have dimension d = dim M/2 each.
For that reason we consider all the d-dimensional linear subspaces of T x M: 

G f G -→ G ↓ p ↓ p M f -→ M 5 For x ∈ M , the Grassmanian is a homogeneous space G x = G d (T x M ) ≡ O (2d) O (d) × O (d) , dimG x = d 2 . M f E u (x) x T x M Df E s (x) l M f x G E u l u Df E s G x K 0 Figure 1.5:
Remark 1.28. The stable d-dimensional bundle E s → M defines a Hölder continuous section E s of the bundle G → M and from Definition 1.1, E s is a repeller for the map f G . Similarly the unstable bundle E u is a Hölder continuous section of the bundle G → M. The image of E u (for which we also write E u ) is an attractor for the map f G . See Figure 1.5.

Prequantum transfer operator

FN on P G → G Let Ṽ ∈ C ∞ (G)
be a smooth real valued function called potential function and its restriction to the unstable bundle will be denoted by:

V := Ṽ • E u ∈ C β (M) (1.39)
which is Hölder continuous with Hölder exponent 0 < β ≤ 1.

Remark 1.29.

(1) In Definition 1.9 we have considered the particular case of a smooth function V ∈ C ∞ (M) which can be derived here from the function

Ṽ := V • p ∈ C ∞ (G) (i.e.
constant on the fibers). So results presented in this Section will also apply to the prequantum operator (1.19).

(2) The special potential function

V 0 := Ṽ0 • E u in (1.24) is derived as in (1.39) from the smooth function Ṽ0 ∈ C ∞ (G) given by Ṽ0 (l) = 1 2 log (detDf x | l ) , l ∈ G, x = p (l) (1.40) G p P f / / π ! ! C C C C C C C C P π ! ! C C C C C C C C M f / / M Definition 1.32. Let Ṽ ∈ C ∞ (G) .
The prequantum transfer operator is defined by

F : C ∞ (P G ) → C ∞ (P G ) u → e Ṽ • |det (Df G | kerp )| -1 • u • f -1 G (1.42)
It preserves the space of the N-th Fourier modes for every N ∈ Z:

C ∞ N (P G ) := u ∈ C ∞ (P G ) | ∀p ∈ P G , ∀e iθ ∈ U (1) , u e iθ p = e iN θ u (p) (1.43)
and its restriction is denoted 

F N := F /C ∞ N (P G ) : C ∞ N (P G ) → C ∞ N (P G ) . ( 1 
E u and K 1 := f G (K 0 ) ⋐ K 0 (1.45)
i.e. K 1 is a proper subset of K 0 . See Figure 1.5. For any n ≥ 1, let

K n := f n G (K 0 ) . (1.46)
Then, by definition (of the absorbing neighborhood), we have that

E u = ∞ n=1 K n . (1.47) Let χ ∈ C ∞ (G) be a function such that χ (l) = 0 for l / ∈ K 0 , χ (l) = 1 for l ∈ K 1 . We denote χ : C ∞ (P G ) → C ∞ (P G ) (1.48) 
the multiplication operator by the function χ • p, where p : G → M is the projection. For any n ≥ 1 we have from (1.45) that

F χ n = F n χ (1.49)
Also χ preserves the space of equivariant functions C ∞ N (P G ) defined in (1.43). By duality the operator F N χ extends to equivariant distributions D ′ N (P G ). From definition (1.46) and (1.49) we have that, for any n ≥ 1 and u ∈ D ′ (P G ),

supp F N χ n u ⊂ π -1 G (K n ) . (1.50)
1.4.4 Results on the spectrum of the prequantum operator F N

The following theorem (and its proof) is similar to Theorem 1.15 but concerns the transfer operator F N defined in (1.44).

Theorem 1.34. "Discrete spectrum". For every N ∈ Z, there exists a family of Hilbert spaces H r N (P G ) for arbitrarily large r > 0, such that

C ∞ N (P G ) ⊂ H r N (P G ) ⊂ D ′ N (P G
) and such that the operator F N χ extends to a bounded operator

F N χ : H r N (P G ) → H r N (P G ) ,
and its essential spectral radius r ess FN χ is bounded by ε r := 1 λ r max e Ṽ , which shrinks to zero if r → +∞. The discrete eigenvalues of FN χ on the domain |z| ≥ ε r (and their associated eigenspaces) are independent on the choice of χ and r. The support of an eigendistribution is contained in the attractor π -1

G (E u ). These discrete eigenvalues are called Ruelle-Pollicott resonances and are denoted Res

F N := {λ i } i ⊂ C * .
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The fact that the support of an eigendistribution is contained in the attractor π -1

G (E u ) is a direct consequence of (1.50) and (1.47).

The next Theorem is similar to Theorem 1.17 but here we restrict ourselves to the description of the external band

A 0 := z ∈ C, |z| ∈ r - 0 , r + 0
although description of internal bands may be possible also. Recall that V (x) is defined in (1.39), D (x) := V (x) -V 0 (x) is the damping function and

D n (x) = n j=1 D f j G (x) is the Birkhoff sum of D (x).
Theorem 1.35. "External band". For any ε > 0, there exists

C ε > 0, N ε ≥ 1 such that, for any N ≥ N ε , we have Res F N ⊂ z ∈ C, |z| ∈ 0, r + 1 + ε r - 0 -ε, r + 0 + ε with r - 0 := lim inf n→∞ inf x∈M e 1 n Dn(x) , r + 0 := lim sup n→∞ sup x∈M e 1 n Dn(x) , (1.51) 
r + 1 := lim sup n→∞ sup x∈M e 1 n Dn(x) Df n x | Eu -1/n min For any z ∈ C such that r + 1 + ε < |z| < r - 0 -ε or |z| > r + 0 + ε we have: z -F N -1 ≤ C ε . (1.52)
In the rest of this section we will assume that the potential Ṽ is such that the external annulus A 0 is isolated i.e. r + 1 < r - 0 , giving a "spectral gap". We take the same definition of H and F as in Definition 1.19, for the spectral restriction of F N to the external band A 0 .

Theorem 1.36. Index formula and Weyl law:

dim H = M e N ω Todd (T M) 2d = N d Vol ω (M) + O N d-1 (1.53)
The next Theorem is a particular case of Theorem 1.35, but there, compared to 1.17, we emphasize again that the main interest is the case of the particular smooth potential [START_REF] Taylor | Partial differential equations[END_REF], so that the external annulus A 0 coincides with the unit circle.

Ṽ0 in ((1.40)) giving V 0 (x) = 1 2 log det Df x | Eu(x) , D = 0 hence r + 0 = r - 0 = 1 in (1.
Theorem 1.37. Let F N be the transfer operator defined in (1.42) with the special choice of the smooth potential Ṽ0 (l) = 1 2 log (detDf x | l ) on G. Then the operator F N χ extends to a bounded operator on H r N (P G ). The Ruelle spectrum of F N χ concentrates on the unit circle for N = 1/ (2π ) → ∞ and is separated from the internal resonances by a non vanishing asymptotic spectral gap (r + 1 < r - 0 = r + 0 = 1). That is, for any given ε > 0, its (discrete) spectrum is contained in

{||z| -1| < ε} ∪ |z| < r + 1 + ε
for sufficiently large N. The spectrum in {||z| -1| < ε} obeys the Weyl law and the angular equidistribution law stated in Theorem 1.23. (See Figure 1.6).

We will call the potential function Ṽ0 above the "potential of reference".

Gutzwiller trace formula

In this Section we continue to consider the prequantum transfer operators F N χ on the Grassmanian bundle P G , defined in (1.42). We assume the condition r + 1 < r - 0 . (This condition holds if we consider the potential of reference V 0 .) As in Definition 1.19, let Π : H r N (P G ) → H r N (P G ) be the spectral projector for the external band and let H be its image. Let F : H → H be the restriction of F N χ to H . Theorem 1.38. "Gutzwiller trace formula for large time". Let ε > 0. For any = 1/ (2πN) small enough, in the limit n → ∞, we have

Tr F n - x=f n (x) e Dn(x) e iSn,x/ |Det (1 -Df n x )| < CN d (r + 1 + ε) n (1.54)
where e i2πSn,x is the action of a periodic point defined in (1.18) and D n is the Birkhoff sum (1.26) of the effective damping function

D (x) = V (x) -V 0 (x).
The proof of Theorem 1.38 will be given in Section 10. It is based on the general and remarkable flat trace formula of Atiyah-Bott that we recall in Lemma 11.2.

Remark 1.39. We will see in Proposition 1.42 below, the simple but remarkable fact that the formula (1.54) determines the spectrum of F with multiplicities.

Remark 1.40. For large time n we have the equivalence

|Det (1 -Df n x )| -1/2 ∼ Det Df n x | Eu(x) -1/2 = e -(V 0 ) n (x)
Therefore one can expect that

Tr F n = x=f n (x) e Dn(x) e iSn,x/ Det Df n x | Eu(x) -1/2 + O (1) N d e sup x Dn λ -n (1.55) = x=f n (x) e Vn(x) e iSn,x/ Det Df n x | Eu(x) -1 + O (1) N d e sup x Dn λ -n (1.56)
This is indeed true and this will be obtained in the proof. Let us remark however that (1.55) is not an immediate consequence of (1.54) and vise-versa due to the control of the remainder. Indeed, suppose for example that (1.54) holds, with D = V -V 0 = 0 (for simplicity). We have for individual periodic points x and for n → ∞,

530 1 |Det (1 -Df n x )| = Det Df n x | Eu(x) -1/2 + O (1) λ -dn 2 -n
but the number of periodic points grows like

# {x = f n (x)} ≥ λ dn in general with d = 1 2 dim M.
Hence we can only deduce that

x=f n (x) e iSn,x/ |Det (1 -Df n x )| - x=f n (x) e iSn,x/ det Df n x | Eu(x) -1/2 = O λ dn λ -dn 2 -n = O λ d 2 -1 n and if d ≥ 2 the term in the remainder is λ d 2 -1 ≥ 1,
this is not enough to deduce (1.55).

The question of existence of a "natural quantization"

The following problem is a recurrent question in mathematics and physics in the field of quantum chaos, since the discovery of the Gutzwiller trace formula. For simplicity of the discussion we consider V = V 0 i.e. no effective damping, as in Figure 1.6.
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Problem 1.41. Does there exists a sequence j > 0, j → 0 with j → ∞, such that for every = j ,

(1) there exists a space H of finite dimension, an operator F : H → H which is quasi unitary in the sense that there exists ε ≥ 0 with ε j → 0, with j → ∞ and

∀u ∈ H , (1 -ε ) u ≤ F u ≤ (1 + ε ) u (1.57)
(2) The operator F satisfies the asymptotic Gutzwiller Trace formula for large time; i.e. there exists 0 < θ < 1 independent on and some C > 0 which may depend on , such that for small enough (such that θ < 1ε ):

∀n ∈ N, Tr F n - x=f n (x) e iSx,n/ |det (1 -Df n x )| ≤ C θ n (1.58)
Let us notice first that Theorem 1.38 (for the case V = V 0 ) provides a solution to Problem 1.41: this is the quantum operator Fh : H h → H h defined in (1.33) obtained with the choice of potential Ṽ = Ṽ0 , Eq.((1.40)), giving V = V 0 . Indeed (1.57) holds true from Corollary 1.37 and (1.58) holds true from (1.54) and because θ := r + 1 + ε < 1. Some importance of the Gutzwiller trace formula (1.58) comes from the following property which shows uniqueness of the solution to the problem: Proposition 1.42. If F : H → H is a solution of Problem 1.41 then the spectrum of F is uniquely defined (with multiplicities). In particular dim (H ) is uniquely defined.

Proof. This is consequence of the following lemma. Proof of Lemma 1.43. From the formula6 :

det (1 -µA) = exp - n≥1 µ n n Tr (A n )
The sum on the right is convergent if 1/ |µ| > A . Notice that we have (with multiplicities): Remark 1.44. Previous results in the literature concerning the "semiclassical Gutzwiller formula" for "quantum maps" do not provide an answer to the problem 1.41 above. We explain why. For any reasonable quantization of the Anosov map f : M → M, e.g. the Weyl quantization or geometric quantization, one obtains a family of unitary operators F : H → H acting in some finite dimensional (family of) Hilbert spaces. So this answer to (1.57). Using semiclassical analysis it is possible to show a Gutzwiller formula like (1.58) but with an error term on the right hand side of the form O ( θ n ) with θ = e h 0 /2 > 1 where h 0 > 0 is the topological entropy which represents the exponential growing number of periodic orbits ( [START_REF] Faure | Semiclassical formula beyond the ehrenfest time in quantum chaos.(i) trace formula[END_REF] and references therein). Using more refined semiclassical analysis at higher orders, the error can be made

µ is a zero of d A (µ) = det (1 -µA) if and only if z = 1 µ is a (generalized) eigenvalue of A. Using the formula we get that if 1/ |µ| > θ then det (1 -µA) det (1 -µB) ≤ exp n≥1 |µ| n n |Tr (A n ) -Tr (B n )| < exp C n≥1 (|µ| θ) n n = (1 -θ |µ|) -C =: B Similarly det(1-µA) det(1-µB) > 1 B , hence d A (µ)
O M θ n (1.59)
with any M > 0 [START_REF] Faure | Semiclassical formula beyond the ehrenfest time in quantum chaos.(i) trace formula[END_REF], but nevertheless one has a total error which gets large after the socalled Ehrenfest time:

n ≫ M log(1/ ) λ 0
. So all these results obtained from any quantization scheme do not provide an answer to the problem 1.41. We may regard the operator in (1.33) as the only "quantization procedure" for which (1.58) holds true. For that reason we may call it a natural quantization of the Anosov map f .

-n≥1

x n n which converges for |x| < 1:

det (1 -µA) = j (1 -µλ j ) = exp   j log (1 -µλ j )   = exp   - j n≥1 (µλ j ) n n   = exp   - n≥1 µ n n Tr (A n )  

Dynamical correlation functions and emergence of quantum dynamics

As explained in [19, cor. 1.3] for example, the Ruelle-Pollicott spectrum of the transfer operator F has an important meaning in terms of time evolution of correlation functions.

If u, v ∈ C ∞ (P ) the time correlation function is defined by

C v,u (n) := P v (p) F n u (p) dµ P = v, F n u L 2 (P ) .
In this Section we show that C v,u (n) can be expressed as an asymptotic over the Ruelle resonances, up to exponentially small error term. In particular we emphasize the role of the external band in the spectrum as a manifestation of "quantum behavior" in the fluctuations of the correlation functions. In this subsection and the next, we consider the transfer operators on P (not the Grassmanian extension P G ).

Use of the resolvent estimate for dynamical control

Before giving results about dynamical correlation functions, we give a proposition which expresses differently (but equivalently) the estimate (1.52) about the resolvent. Recall from (1.33) that if r + 1 < r + 0 , then for N large enough, the transfer operator has a spectral decomposition F N = F + FN -F into a finite rank operator F for the external band and FN -F is for the internal structure.

Proposition 1.45. For any ε > 0, there exists C ε > 0 and N ε ≥ 1 such that for any N ≥ N ε and for any n ≥ 0,

F n N ≤ C ε r + 0 + ε n (1.60) Moreover if r + 1 < r - 0 then F n max ≤ C ε r + 0 + ε n , F n min ≥ 1 C ε r - 0 -ε n (1.61) and FN -F n ≤ C ε r + 1 + ε n . (1.62) Remark 1.46. More generally, if there is some internal isolated band k, i.e. if r + k+1 < r - k ,r + k < r - k-1
for some k ≥ 1, then we can consider the corresponding spectral decomposition FN = . . . + Fk, + . . . isolating some finite rank operator Fk, and similarly we can show that (1.29) is equivalent to

1 C ε r - k -ε n ≤ F n k, min ≤ F n k, max ≤ C ε r + k + ε n .
Proof. Let γ be the closed path in C made by the union of the circle of radius r + 0 + ε in the direct sense and the circle of radius r - 0ε in the indirect sense. From Cauchy formula one has

F n = 1 2πi γ z n z -FN -1 dz which implies F n max ≤ r + 0 + ε n+1 max z∈γ z -FN -1
Then the uniform bound on the resolvent (1.52) implies

F n ≤ C ε r + 0 + ε n
which is the first equation of (1.61). Reversing the sign of n one gets

F -n ≤ C ε r - 0 -ε -n .
Hence

F n min = F -n -1 ≥ 1 C ε r - 0 -ε n
which is the second equation of (1.61). The bound (1.60) is obtained similarly but more simply with the closed path γ being only the circle of radius r + 0 + ε in the direct sense. The estimate (1.62) is obtained with the closed path γ being the circle of radius r + 1 + ε in the direct sense.

Decay of correlations expressed with the quantum operator

We first introduce a notation: for a given N ∈ Z, we have seen that the prequantum transfer operator FN has a discrete spectrum of resonances. For ρ > 0 such that there is no eigenvalue on the circle |z| = ρ for any N, we denote by Π ρ,N the projector on the Fourier space of mode N composed with the spectral projector of the operator FN on the domain {z ∈ C, |z| > ρ}. This is a finite rank operator (which obviously commutes with FN ). Recall that = 1 2πN .

Theorem 1.47. Suppose that r + 1 < r - 0 (i.e. the external band is isolated). For any ε > 0, there exists N ε ≥ 1 such that for any N ≥ N ε , for any u, v ∈ C ∞ (P ) such that supp (u) ⊂ K 0 , and for n → ∞, one has

v, F n u L 2 "classical" = |N |≤Nε v N , FN Π ρ,N n u N + |N |>Nε v N , F n u N "quantum" +O r + 1 + ε n (1.63)
with ρ = r + 1 + ε and where u N , v N ∈ C ∞ N (P ) are the Fourier components of the functions u and v. In the right hand side of (1.63), the first sum is a finite sum and involves finite rank operators. The second sum is an infinite but convergent sum.

Remark 1.48. The asymptotic formula (1.63) has a nice interpretation: the classical correlation functions v, F n u are governed by the quantum correlation functions v N , F n u N for large time (up to the first finite rank expression), or equivalently the "quantum dynamics emerge dynamically from the classical dynamics".

Remark 1.49. From (1.61) one has that

v N , F n u N ≤ u N (H r N ) ′ v N H r N F n H r N ≤ O N -∞ O r + 0 + ε n
uniformly in n and N. We have used the fact that for smooth functions one has fast

decay in N: u N , v N = O (N -∞ ).
(This is also because the weight in the space H r N is polynomially bounded in frequencies ξ).

Remark 1.50. It is known that for n → ∞, v, F n u = λ n 0 (v, Π λ 0 u) + O (|λ 1 | n )
where λ 0 > 0 is the leading and simple eigenvalue of F (in the space H r N =0 ) and λ 1 is the second eigenvalue with |λ 1 | < λ 0 . The case V = 0 for which λ 0 = 1 gives that the map f : P → P is mixing with exponential decay of correlations.

Proof. Let N ε given by Theorem 1.15 or Proposition 1.45 and write v,

F n u = |N |≤Nε v N , FN Π ρ,N n u N + |N |≤Nε v N , FN (1 -Π ρ,N ) n u N + |N |>Nε v N , F n N u N
(1.64) Let us consider the second term on the right hand side. From definition of Π ρ,N one has r s FN (1 -Π ρ,N ) ≤ r + 0 + ε so for the finite number of terms

|N| ≤ N ε one has FN (1 -Π ρ,N ) n ≤ C ε r + 0 + ε n and we deduce the estimate |N |≤Nε v N , FN (1 -Π ρ,N ) n u N = O r + 0 + ε n .
As in Proposition 1.45 we consider the spectral decomposition FN = F + FN -F and decompose accordingly the last term of (1.64) as

|N |>Nε v N , F n N u N = |N |>Nε v N , F n u N + |N |>Nε v N , FN -F n u N
From (1.62), one has then

v N , FN -F n u N ≤ u N (H r N ) ′ v N H r N FN -F n H r N ≤ O N -∞ O r + 1 + ε n This implies that |N |>Nε v N , FN -F n u N = O r + 1 +
ε n and we get (1.63).

Semiclassical calculus on the quantum space

In Definition 1.19 we have defined the quantum space H for every = 1 2πN (small enough), the quantum operator F : H → H and the finite rank spectral projector Π : H r N (P ) → H . In this section we introduce the definition of "quantization of symbols" on this quantum space and give some properties of them. In semiclassical analysis these properties are considered as "standard" or "basic properties" for defining "a good semiclassical calculus".

We will comment on them at the end of the Section. Beware that the quantum space H defined here depends on the given Anosov diffeomorphism f : M → M.

Remark 1.51. The results below extend readily to the case of Grassmanian extension considered in Subsection 1.4 and 1.5. Definition 1.52. For 0 ≤ δ < 1/2 and for some family of constant C α > 0, α ∈ N 2d , we define the class of symbols

S δ := ψ ∈ C ∞ (M) s.t. ∀α ∈ N 2d , |∂ α x ψ| < C α -δ|α|
A symbol ψ ∈ S δ is therefore a family of smooth functions (ψ ) .

Definition 1.53. For any symbol ψ ∈ S δ we define its quantization as the operator

Op (ψ) := Π • M(ψ) • Π : H → H (1.65)
where M(ψ) is the multiplication operator by the function ψ in H r N (P ).

As it is usual in quantum mechanics, we call the operator Op (ψ) a "quantum observable".

Remark 1.54. Definition 1.53 is very similar to the definition of Toeplitz (or anti-Wick) quantization of a symbol. The difference is that the quantum space H considered here is attached to a given Anosov diffeomorphism f : M → M.

In this Section beware that the operator norms . and trace norms . Tr are define with respect to the norm on the Hilbert space H r N (P ).

Theorem 1.55. For any class of symbols S δ , there exist constants C > 0 and ε > 0 such that the following holds: For every , there exists a smooth family of rank one projectors π x : H r N (P ) → H ⊂ H r N (P ) with π x ≤ C, parametrized by x ∈ M, such that for any symbol ψ ∈ S δ , we have

Op (ψ) - 1 (2π ) d M ψ (x) π x dx ≤ C ε (1.66) and [Π , M(ψ)] ≤ C ε . (1.67)
The proof of Theorem 1.55 is given in Section 7.7. Remark 1.56. In particular for the choice ψ = 1 we get an approximate expression of 

Π ≡ Id | H as Π -1 (2π ) d M π x dx ≤ C ε sometimes
Op (ψ 1 ) • Op (ψ 2 ) -Op (ψ 1 ψ 2 ) ≤ C ε (1.68)
Proof. Below the notation O ( ε ) means that this is a term with norm less than C ε . We have

Op (ψ 1 ) • Op (ψ 1 ) =Π M(ψ 1 )Π M(ψ 2 )Π = (1.67) Π M(ψ 1 )M(ψ 2 )Π + O ( ε ) =Π M(ψ 1 ψ 2 )Π + O ( ε ) = Op (ψ 1 ψ 2 ) + O ( ε )
Remark 1.59. Composition formula (1.68) expressed the property that the operator Op (ψ) has the so-called "microlocal property". This is seen by taking ψ 1 and ψ 2 with disjoint supports giving that Op (ψ 1 ) • Op (ψ 2 ) ≤ C ε .

Remark 1.60. In Proposition 1.55 the operator Op (ψ) is decomposed into rank one operators π x . Each operator π x is a projector and can be written π x (•) = (ϕ x , .) H r • ψ x with ψ x , ϕ x ∈ H r . From the "microlocal property" given in the previous remark, we can think of ψ x , ϕ x as "microlocal wave packets" and π x as a projection over these wave packets. In the proof of Proposition 1.66, (6.11), we can find a very explicit expression of π x on local coordinate charts where ψ x , ϕ x are respectively along the unstable and stable directions in the orthogonal space (K) ⊥ (in variables ζ) and are localized wave packets within the trapped set K (in the variables ν).

Corollary 1.61. "Adjoint of observables". There exist C > 0, ε > 0, such that for any and any ψ ∈ S δ

(Op (ψ)) † H -Op ψ ≤ C ε (1.69)
The adjoint operator is defined here in the space H by the relation u, (Op (ψ)

) † v H = (Op (ψ) u, v) H for any u, v ∈ H . Proof. For any u, v ∈ H we have u, (Op (ψ)) † v H = (Op (ψ) u, v) H = (Π M(ψ)u, v) H r N (P ) = (1.67) (M(ψ)Π u, v) H r N (P ) + O ( ε u • v ) = u, M(ψ)v H r N (P ) + O ( ε u • v ) = (1.67) u, Π M(ψ)v H r N (P ) + O ( ε u • v ) = u, Op ψ v H + O ( ε u • v )
(The equality in the middle will be given in Corollary 6.4. ) Proposition 1.62. "Exact Egorov formula". For any and any ψ ∈ S δ , we have

F • Op (ψ) = Op ψ • f -1 • F (1.70)
Proof. We use that Π is a spectral projector of F = Π FN Π and that from its definition (1.19), FN is a transfer operator hence

FN • M(ψ) = M(ψ • f -1 ) • FN : F • Op (ψ) = Π FN Π M(ψ)Π = Π FN M(ψ)Π = Π M(ψ • f -1 ) FN Π = Π M(ψ • f -1 )Π FN Π = Op ψ • f -1 • F Proposition 1.

"Trace of observables".

There exists C > 0, ε > 0, such that for any and any ψ ∈ S δ we have

(2π ) d Tr (Op (ψ)) - M ψdx ≤ C ε (1.71)
Proof. Since Tr (π x ) = 1, we have

Tr M ψ (x) π x dx = M ψdx.
Then

(2π ) d Tr (Op (ψ)) - M ψdx ≤ (2π ) d Op (ψ) - 1 (2π ) d M ψ (x) π x dx Tr ≤ C Op (ψ) - 1 (2π ) d M ψ (x) π x dx ≤ (1.66) C ′ ε
In the second line we have used Corollary 1.64. We have

dimH = 1 (2π ) d Vol ω (M) (1 + O ( ε ))
Remark 1.65. Eq.(1.70) expresses transport properties of the operator F . For usual quantization scheme of non-linear map f : M → M the Egorov formula has some error O ( ) in operator norm. It is therefore remarkable that the formula is exact here. We can iterate it for any time n ≥ 1 and obtain

F n • Op (ψ) = Op (ψ • f -n ) • F n .
For Schrodinger equation, it is a difficult task to express long time dynamics of initial states using the classical underlying dynamics (relevant in the limit of small wavelength). This is due to interferences effects, semiclassical corrections that grows rapidly and that are difficult to control. In our situation, the prequantum operator F is a transfer operator for which transport properties are exact. Since the quantum operator F is a spectral restriction of F we have immediately that for any initial state u ∈ H , any time n ≥ 0,

F n u = F n u
|H so that quantum evolution and classical transport coincide for any time.

Remark 1.66. In their paper [START_REF] Marklof | Weyl's law and quantum ergodicity for maps with divided phase space[END_REF], J. Marklof 

Geometric quantization of the symplectic map

We have discussed above the "natural quantization" of the map f as the operator F : H → H and showed its nice properties. There is however a "standard quantization" of the map f defined in the literature in the framework of geometric quantization. In this subsection we recall first the definition of "geometric quantization" or "Toeplitz quantization" of the symplectic map f : M → M. Then we compare it with the "natural quantization" F : H → H introduced above.

In Section 3.2 we introduce the rough Laplacian operator ∆. In Theorem 3.5, for each N large enough, we define P 0 the spectral projector of the rough Laplacian on its first band k = 0. See also Figure 3.1. The projector P 0 has finite rank, the same rank as the spectral projector Π on the external band of FN . There is some major difference between these projectors even if they have same rank: Π depends on the map f and its image Im (Π ) ⊂ D ′ N (P ) consists of distributions whereas the projector P 0 does not depend on the map f and its image Im (P 0 ) ⊂ C ∞ N (P ) contains smooth sections. The projector P 0 depends only on the symplectic space (M, ω) together with an additional compatible metric g. The following definition is standard in "geometric quantization" [START_REF] Ma | Toeplitz operators on symplectic manifolds[END_REF].

Definition 1.67. For every N large enough, the Toeplitz quantum space H T is the finite dimensional space

H T := Im (P 0 ) (1.72)
The Toeplitz quantum operator is FT,V := P 0 FN P 0 : H T → H T (1.73)

In the notation we have emphasized the dependence on the potential V which enters in the definition 1.33 of FN .

In (3.9) we obtain the following Lemma: 

Φ F ,V Φ -1 -FT,V ′ ≤ O δ , (1.75) 
where FT,V ′ : H T → H T is the Toeplitz operator (1.73) but constructed with the potential

V ′ = V + M.
The proof of Theorem 1.69 is given in Section 12. Remark 1.70. We have already said but we repeat here, that Toeplitz quantization (or geometric quantization7 ) gives a family of "quantum operators" FT,V ′ that have nice semiclassical properties as any quantization gives. For example they satisfy Egorov formula (1.70) but with an error of order O (h). They satisfy the Gutzwiller trace formula (1.58) but with a larger error O (θ n ) with θ > 1. The "natural quantization" of the Anosov map f presented in this paper has the unique additional property that the errors in these formula vanish (or are improved).

Preliminary results and sketch of the proofs

In this Section we begin with establishing some preliminary results which will be used in the rest of the paper. Then we sketch the proofs of the main theorems presented in Section 1. 

Semiclassical description of the prequantum operator FN

f ". Suppose that V ⊂ U α ∩ f -1 (U β ) is a simply connected open set. Then for x ∈ V f (τ α (x)) = e i2πA β,α (x) τ β (f (x)) (2.1)
with the "action function" given by

A β,α (x) = f (γ) η β - γ η α + c (x 0 ) = γ (f * (η β ) -η α ) + c (x 0 ) . (2.2)
In the last integral, x 0 ∈ V is any point of reference, γ ⊂ V is a path from x 0 to x and c (x 0 ) does not depend on x. See figure 2.1. Remark 2.2. In other terms, if p ∈ P is such that π (p) = x, let θ α , θ β such that

U α U β x f (x) π M f e i2πA β,α P τ α (x) τ β (f (x))
760 p = e iθα τ α (x) , f (p) = e iθ β τ β (f (x)) then θ β = θ α + 2πA β,α (x) 
Remark 2.3. Notice that the integral (2.2) does not depend on the path γ from x 0 to x because the one form

f * (η β ) -η α is closed. Indeed d (f * (η β ) -η α ) = f * ω -ω = 0 since f is symplectic.
Proof. Let γ ⊂ V be a path from x 0 to x. Let γ : t → γ (t) be the lifted path parallel transported above γ starting from τ α (x 0 ) and ending at point p. (See Figure 2.2.) Since the connection one form vanishes along the path γ, we have

0 = (T * α A) dγ α dt = (idθ -i2πη α ) dγ α dt with γα = T -1 α (γ).
From the construction of the lifted map f in the proof of Lemma A.1, we have

p = e iθα(x) τ α (x) (2.3) with θ α (x) = γ dθ = 2π γ η α . x 0 γ τ β M γ τ α (x)
x p e iθα(x) Let θ 0 given by f (τ α (x 0 )) = e iθ 0 τ β (f (x 0 )). Similarly we have

f (γ) f (p) e iθ 0 f (τ α (x 0 )) f (x 0 ) f (x) f (γ) τ β (f (x)) τ α (x 0 ) τ α e iθ β
f (p) = e iθ 0 e ib(x) τ β (f (x)) with b (x) = 2π f (γ) η β .
From equivariance of f and (2.3), we have f (p) = e iθα(x) f (τ α (x)). Therefore

f (τ α (x)) = e -iθα(x) f (p) = e -iθα(x) e iθ 0 e ib(x) τ β (f (x)) = e i2πA β,α (x) τ β (f (x)) with A β,α (x) = f (γ) η β - γ η α + θ 0 2π .
For a given N ∈ Z, an equivariant function u ∈ C ∞ N (P ) defines the set of associated functions8 u α : U α → C, α ∈ I, defined by

u α (x) := u (τ α (x)) (2.4)
for x ∈ U α . Conversely one reconstructs u from (u α ) α∈I by the relation

u (p) = u e iθ τ α (x) = e iN θ u (τ α (x)) = e iN θ u α (x) for p = e iθ τ α (x) and x ∈ U α . Proposition 2.4. "Local expression of FN ". Let u ∈ C ∞ N (P ) and u ′ := FN u ∈ C ∞ N (P ). Let the respective associated functions be u α = u • τ α and u ′ α = u ′ • τ α for any α ∈ I. Then u ′ β = e V • e -i2πN A β,α •f -1 u α • f -1 (2.5)
Proof. From definition (1.19) of the transfer operator

u ′ β (x) = u ′ (τ β (x)) = F u (τ β (x)) = e V (x) u f -1 (τ β (x))
From (2.1) we have

f -1 (τ β (x)) = e -i2πA β,α( f -1 (x)) τ α f -1 (x) hence u ′ β (x) = e V (x) u e -i2πA β,α( f -1 (x)) τ α f -1 (x) = e V (x) e -i2πN A β,α( f -1 (x)) u τ α f -1 (x) = e V (x) e -i2πN A β,α( f -1 (x)) u α f -1 (x)
The next few results will concern some semiclassical aspects of the transfer operator. The first easy result but of fundamental importance is the following Proposition. (It is not used in the proofs in this paper and the explanation below may be a bit sloppy. But it gives the background of the following argument.) Remark 2.5. For the general definition of a Fourier integral operator, we refer to Martinez [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF], Zworski [START_REF] Zworski | Semiclassical analysis[END_REF] or Duistermaat [START_REF] Duistermaat | Fourier integral operators[END_REF]. If the reader is not familiar with Fourier integral operator, it is enough for the reading of this paper to understand the rough idea of a Fourier integral operator F , which is quite simple as explained in [START_REF] Córdoba | Wave packets and fourier integral operators[END_REF]: if a function ψ is localized at point x ∈ M and its Fourier transform is localized at point ξ ∈ T *

x M (which means that these functions decay fast outside these points and we say that ψ is microlocalized at (x, ξ) ∈ T * M ) then the operator F transforms this function ψ to a function ,ξ) is called the associated canonical map. Note that we are interested in the situation of high frequencies |ξ| N = (2π ) -1 ≫ 1 and, in the limit N → ∞ (or → +0), we will normalize ξ by multiplying .

ψ ′ micro-localized in another point (x ′ , ξ ′ ) ∈ T * M. The map F : T * M → T * M, giving (x ′ , ξ ′ ) = F (x
Proposition 2.6. The prequantum transfer operator FN is a Fourier Integral Operator if we view it in the local trivializations as in (2.5). The associated canonical map on the cotangent space is given by

F α,β : T * U α → T * U β (x, ξ) → (x ′ , ξ ′ ) = f (x) , t Df -1 x ′ (ξ + η α (x)) -η β (x ′ ) (2.6)
where x ∈ U α , f (x) ∈ U β and ξ ∈ T * x U α . The map F α,β preserves the canonical symplectic structure

Ω := 2d j=1 dx j ∧ dξ j (2.7)
Proof. The transfer operator is given in local chart by (2.5). This expression shows that it is the composition of two operators F2 • F1 where F1 is the pull-back by the diffeomorphism f -1 and F2 is the multiplication by a phase function. Both operators are basic examples of F.I.O as explained in [36, chap.5] and the Proposition 2.6 follows.

Remark 2.7. We give here a more detailed explanation of the associated canonical map (2.6). From (2.5), the transfer operator FN can be decomposed as elementary operators.

Let F1 : u (x) → u f -1 (x) .
This is a Fourier integral operator with canonical map

F 1 x ξ = x ′ ξ ′ = f (x) t Df -1 x ′ ξ (2.8)
Indeed, it is clear that supp (ψ) is transported to f (supp (ψ)) hence x ′ = f (x). Also an oscillating function u (x) = e i ξ.x is transformed to u ′ (y) = F1 u (y) = e i ξ.f -1 (y) and, for

y = f (x) + y ′ with |y ′ | ≪ 1, we have f -1 (y) = x + Df -1 y .y ′ + o (|y ′ |) , hence u ′ (y) ≃ e i ξ.(x+Df -1 x ′ .y ′ ) = Ce i t ( Df -1 x ′ )ξ.y = Ce i ξ ′ .y with ξ ′ = t Df -1 x ′ ξ and C = e i ξ•(x-Df -1 x ′ •f (x))
. We deduced (2.8). Next we consider a multiplication operator by a "fast oscillating phase" (recall that ≪ 1):

F2 : ψ (x) → e iS(x)/ ψ (x)
For the same reasons, it is a F.I.O. and its canonical map is

F 2 x ξ = x ξ + dS(x) Indeed u (x) = e i ξ.
x is transformed to u ′ (y) = F2 u (y) = e i (ξ.y+S(y)) and for

y = x + y ′ with |y ′ | ≪ 1, we have u ′ (x ′ ) ≃ Ce i (ξ.y+dS•y) = Ce i ξ ′ .y
with ξ ′ = ξ + dS and C = e i (S(x)-dSx.x) . From these two previous examples and (2.5), we can deduce (2.6). Notice that the multiplication operator by e V does not appear in the canonical map because it is not a "fast oscillating function" (in the limit → 0). Notice that the canonical maps F α,β in the last proposition are given with respect to local trivializations of P . The following proposition gives a global and geometric description of the canonical map (2.6).

Proposition 2.8. Consider the following change of variable on T * U α for every α ∈ I:

(x, ξ) ∈ T * U α → (x, ζ) = (x, ξ + η α (x)) ∈ T * M (2.9)
Then the canonical map (2.6) get the simpler and global expression (independent on the set U α ) on the phase space T * M F :

T * M → T * M (x, ζ) → (x ′ , ζ ′ ) = f (x), t Df -1 x ′ ζ .
(2.10)

The symplectic form Ωin (2.7) preserved by F is expressed:

Ω = 2d j=1 (dx j ∧ dζ j ) + π * (ω) . (2.11)
with the canonical projection map π :

T * M → M.
Remark 2.9. We will see in Remark 3.3 that the variables ζ can be interpreted as the symbol of the covariant derivative operator D. The change of variables (2.9) and the global geometric description (2.10) is standard in mathematical physics for semiclassical problems involving large magnetic fields on manifolds.

Proof. The relation (2.10) is obvious from (2.6) and (2.9). To prove (2.11), we write in coordinates

η α = 2d j=1 η j dx i
and from (1.11),

ω = dη α = i,j ∂η j ∂x i (dx i ∧ dx j ) .
Then from (2.7) Definition 2.10. The trapped set K ⋐ T * M is the set of points (x, ξ) ∈ T * M which do not escape to infinity in the past neither in the future n → ±∞ under the dynamics of the canonical map F :

Ω = 2d j=1 dx j ∧ dξ j = 2d j=1 dx j ∧ (dζ j -dη j ) = 2d j=1 dx j ∧ dζ j - 2d i=1 ∂η j ∂x i dx i = 2d j=1 (dx j ∧ dζ j ) + ω
K := {(x, ξ) , ∃C > 0, |ξ (n)| ≤ C, ∀n ∈ Z, with (x (n) , ξ (n)) := F n (x, ξ)} .
Remark 2.11. In terms of the theory of dynamical systems, the trapped set K is the non-wandering set for the dynamical system generated by F .

At every point ρ ∈ K of the trapped set we have the decomposition

T ρ (T * M) = E * u (ρ) ⊕ E * s (ρ)
into the unstable and stable subspaces with respect to the action of DF defined by:

E * u (ρ) := {v ∈ T ρ (T * M) | |DF -n ρ (v)| → 0 as n → +∞} and E * s (ρ) := {v ∈ T ρ (T * M) | |DF n ρ (v)| → 0 as n → +∞}.
This decomposition is dual to the decomposition (1.1) in the sense that in the fiber

T * ρ M we have E * u ∩ T * ρ M (E u ) = 0, E * s ∩ T * ρ M (E s ) = 0.
Proposition 2.12. "Description of the trapped set K". The trapped set K ⊂ T * M is the zero section:

K = {(x, ζ) ∈ T * M | x ∈ M, ζ = 0} . (2.12)
This is a symplectic submanifold of (T * M, Ω) isomorphic to (M, ω). For every point ρ ∈ K, the tangent space is decomposed as an Ω-orthogonal sum of symplectic linear subspaces

T ρ (T * M) = T ρ K ⊥ ⊕ (T ρ K) ⊥ (2.13)
Moreover each part is decomposed into isotropic unstable/stable linear spaces

T ρ K = E (1) u (ρ) ⊕ E (1) s (ρ) , (T ρ K) ⊥ = E (2) u (ρ) ⊕ E (2) s (ρ) (2.14) 
where the subspaces E (i) σ (ρ) for i = 1, 2 and σ = s, u are d-dimensional subspaces defined by Remark 2.13. There is another F -invariant decomposition:

E (1) σ (ρ) = T ρ K ∩ E * σ (ρ), E (2) σ (ρ) = (T ρ K) ⊥ ∩ E * σ ( 
T ρ (T * M) 4d = T ρ K 2d ⊕ T * x M
2d with x = π (ρ) and T * x M the fiber of the cotangent space. However this sum is not Ωorthogonal and moreover T *

x M is Ω-Lagrangian.

Remark 2.14. It is shown in [9, appendix] that the cotangent space (T * M, Ω) is an "affine cotangent space" and can be geometrically defined as the space of connections on the principal bundle P → M. The trapped set K is the section defined by connection itself [9, appendix]. Proof. From (2.10) it is clear that the trapped set is the zero section

x π f (x) f T ρ K ν q ν p F (T ρ K) ⊥ F (ρ) ζ q ζ p (T * M, Ω) Trapped set ρ is Ω-symplectic K = {ζ = 0} T ρ (T * M) (M, ω) symplectic E (1) s E (1) u E (2) s E (2) s
{(x, ζ) , ζ = 0} since it is invariant and, if ζ = 0, we have |F n (x, ζ)| → ∞ at least either as n → ∞ or n → -∞.
From (2.11) Ω /K = π * ω therefore π : (K, Ω) → (M, ω) is a symplectomorphism. The symplectic maps f : M → M and F : K → K are conjugated by π. For every point ρ ∈ K, T ρ K is a linear symplectic subspace of the symplectic linear space T ρ (T * M) and therefore admits a unique symplectic orthogonal (T ρ K) ⊥ . The decomposition (2.13) is invariant under the map F because the trapped set K is invariant and because F preserves the symplectic form Ω.

In the next proposition, we introduce convenient local coordinates, called normal coordinates or Darboux coordinates. We will use them later in the proof. Proposition 2.15. "Normal coordinates". On a sufficiently small neighborhood U of every point x ∈ M, there exist coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d and a trivialization of P such that the connection one-form in (1.9) is given by

η = d i=1 1 2 q i dp i - 1 2 p i dq i (2.15)
and consequently the symplectic form ω is given by

ω = dη = d i=1 dq i ∧ dp i . (2.16)
On the cotangent bundle T * U, there is a change of coordinates Φ : (x, ξ) → (ν, ζ) where the variables ζ = ζ j p , ζ j q j=1,...,d are already defined in (2.9) as

ζ i p : = ξ i p + η i p = ξ i p + 1 2 q i
(2.17)

ζ i q : = ξ i q + η i q = ξ i q - 1 2 p i
while ν = ν j q , ν j p j=1,...,d are given by ν j q = q jζ j p = 1 2 q jξ j p (2.18)

ν j p = p j + ζ j q = 1 2 p j + ξ j q
This change of variables transforms the symplectic form Ω in (2.11) to the normal form: 

Ω = d j=1 dν j q ∧ dν j p + dζ j p ∧ dζ j q . ( 2 
(T ρ K) ⊥ = {(ν, ζ) , ν = 0}.
In other words, (ν, ζ) are symplectic coordinates related to the decomposition (2.13). These coordinates were introduced in the paper [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] treating the linear case, under the different names (Q 1 , P 1 ) ≡ (ν q , ν p ) and (Q 2 , P 2 ) ≡ (ζ p , ζ q ).

875

Proof. Darboux theorem on symplectic structure (see [START_REF] Aebischer | Symplectic geometry[END_REF]) tells that, if we take sufficiently small neighborhood U of x, there exist coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d such that the symplectic form is expressed in the normal form ω = dq ∧ dp = d i=1 dq i ∧ dp i . Take any local smooth section τ ′ : U → P and let η ′ be the local connection one form (see (1.9)) with respect to the corresponding local trivialization of P . Let η be given in (2.15).

Since we have d(η ′η) = ωω = 0 there is a smooth function χ : U → R such that η ′η = 1 2π dχ. Setting τ = e iχ τ ′ and recalling the formula (1.10), we see that the former statement of the proposition holds for the coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d and the trivialization of P associated to the local smooth section τ thus taken.

We prove now the latter statement. (2.9) and (2.15) imply (2.17). Clearly (2.17) and

(2.18) are coordinates on U as we can give the inverse explicitly. Starting from (2.11) we get

Ω = d j=1 dq j ∧ dζ j q + dp j ∧ dζ j p + dq j ∧ dp j = d j=1 dν j q + dζ j p ∧ dζ j q + dν j p -dζ j q ∧ dζ j p + d ν j q + ζ j p ∧ dν j p -dζ j q = d j=1 dν j q ∧ dν j p -dζ j q ∧ dζ j p = d j=1 dν j q ∧ dν j p + dζ j p ∧ dζ j q .
This completes the proof.

Remark 2.17. Since the symplectic 2-form ω = j dq j ∧ dp j on T * x M ≡ R 2d is non degenerate, it defines an isomorphism, called flat operator,

♭ : R 2d → R 2d * , v ♭ = ω (v, •) .
Its inverse is called the sharp operator.

♯ = ♭ -1 : R 2d * → R 2d . For a one-form α ∈ R 2d * , α ♯ is defined by the relation α = ω α ♯ , . . In coordinates, for v = n j=1 v j q ∂ ∂q j + v j p ∂ ∂p j ≡ (v q , v p ) ∈ R 2d and α = n j=1 α j q dq j + α j p dp j ≡ (α q , α p ) ∈ R 2d * we have v ♭ = n j=1 -v j p dq j + v j q dp j ≡ (-v p , v q ) ∈ R 2d * (2.20) α ♯ = n j=1 α j p ∂ ∂q j -α j q ∂ ∂p j ≡ (α p , -α q ) ∈ R 2d (2.21)
We also have

α (v) = -v ♭ α ♯ ∈ R, ♭ t = -♭, ♯ t = -♯. (2.22)
where ♭ t , ♯ t denote the transposed maps. Using these notation, the relation (2.18) can be 895 written in a more intrinsic manner:

ν := x -ζ # . (2.23)
With these notations (2.19) get also a more geometric expression:

Ω ((ν 1 , ζ 1 ) , (ν 2 , ζ 2 )) = ω (ν 1 , ν 2 ) + ω (♯ζ 2 , ♯ζ 1 ) (2.24)
Proposition 2.18. The normal coordinates (ν q , ν p , ζ p , ζ q ) introduced in the last proposition can be chosen so that the differential of the coordinate map

Φ : π-1 (U) → R 4d at any point ρ ∈ K such that π (ρ) = x ∈ U carries the subspaces E (1) u (ρ), E (1) 
s (ρ), E (2) 
u (ρ), E (2) 
s (ρ) in (2.14) to the subspaces R d νq := (ν q , 0, 0, 0) | ν q ∈ R d , R d νp := (0, ν p , 0, 0) | ν q ∈ R d , R d ζp := (0, 0, ζ p , 0) | ζ p ∈ R d , R d ζq := (0, 0, 0, ζ q ) | ζ q ∈ R d
respectively. That is to say,

T ρ (T * M) = E (1) u (ρ) ⊕ E (1) s (ρ) TρK ⊥ ⊕ E (2) u (ρ) ⊕ E (2) s (ρ) (TρK) ⊥ DΦ ↓ ↓ ↓ T * R 2d (q,p) = R d νq ⊕ R d νp T * R d νq ⊥ ⊕ R d ζp ⊕ R d ζq T * R d ζp
With respect to these coordinates the differential of the canonical map DF ρ :

T ρ (T * M) → T F (ρ) (T * M) is expressed as DΦ • DF ρ • DΦ -1 = F (1) ⊕ F (2) , F (1) ≡ A x 0 0 t A -1 x , F (2) ≡ A x 0 0 t A -1 x (2.25) where A x ≡ Df | Eu(x) : R d → R d is an expanding linear map.
Proof. We can take the coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d in the beginning of 900 the proof of the last proposition so that the stable and unstable subspaces, E s (x) and E u (x), correspond to the subspaces given by the equations p = 0 and q = 0 respectively, because they are Lagrangian subspaces. Then the coordinates and the trivialization constructed in the proof have the required property. The differential of the Anosov map Df

x : T x M → T f (x) M splits according to the invariant decomposition T x M = E u (x) ⊕ E s (x) as Df x = (A x , B x ) with A x := Df | Eu(x) : E u (x) → E u (f (x))
and

B x := Df | Es(x) : E s (x) → E s (f (x))
But since E u (x) and E s (x) are Lagrangian subspaces, ω provides an isomorphism ♭ :

E s (x) → E u (x) * defined by ♭ (S) : U ∈ E u (x) → ω (S, U) ∈ R for S ∈ E s (x). Since Df x is symplectic, i.e. preserves ω, then B x = ♭ • t A -1 x • ♭ -1 i.e. B x is isomorphic to t A -1 x : E * u (x) → E * u (f (x))
So with this identification we have

Df x ≡ A x 0 0 t A -1 x (2.26)

Microlocal description of the prequantum transfer operator near the trapped set

In order to focus on the action of the canonical map F : T * M → T * M on the vicinity of the trapped set K and relate it to the spectral properties of the prequantum transfer operator FN , we use an escape function (or a weight function) W (x, ξ) on the phase space, which decreases strictly along the flow outside a vicinity of the trapped set K, and use it to define some associate norm and associated anisotropic Sobolev spaces 9 . From the fact that the trapped set is compact in phase space and from the property of the escape function mentioned above, we deduce that the spectrum of the prequantum transfer operator FN is discrete in these anisotropic Sobolev spaces [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]. The eigenvalues are called "resonances" (from the physical meaning in scattering theory).

Here is how we will proceed in the proofs:

(1) In Section 7.2 we will consider a system of local charts on the manifold M depending on (or on N), which is of small size 1/2-θ ≪ 1 in the semiclassical limit → 0, and then consider the local trivializations of the prequantum bundle P → M on each chart, as in Proposition 2.15 and 2.18. On each of such charts, the map f is approximated at first order by its linear approximation, and correspondingly the canonical map F is approximated on the trapped set by its differential D ρ F given in (2.25). In Section 7.3, we show how to decompose the global prequantum operator into "prequantum operators on charts" and how to recompose it, i.e. passing from global to local and vice versa.

(2) In view of the decomposition above called "microlocal decomposition", we study first the prequantum operator associated to a linear hyperbolic map. This is done in Section 5. The prequantum operator for a linear hyperbolic map turns out to be the tensor product of two operators, according to the decomposition (2.25): one operator is a prequantum operator associated to the linear map tangent to the trapped set T ρ K and the other one is associated to the linear map in its (symplectic) orthogonal

(T ρ K) ⊥ .
The first part is a unitary operator, while the second part is treated by using the property of the escape function W (x, ξ) as described above and shown to display a discrete decomposition (a discrete spectrum) in Proposition 4.19. For rigorous argument, we will present some technical tools first:

(a) the Bargmann transform B which represents functions and operators in phase space, is explained in Section 4.1.

(b) definition of the escape function in phase space and the associated anisotropic Sobolev space, for the hyperbolic dynamics orthogonal to the trapped set, in Section

Let us now give a quick description of the tensor product decomposition of point ( 2) above in order to explain how the band structure estimates (1.28) may be obtained. Eq.(2.25)

gives a description of the differential DF ρ of the canonical map F at the point ρ ∈ K of the trapped set. It is therefore natural to consider similarly the transfer operator "microlocally" at point ρ and express it as an operator L ρ which somehow "quantizes" the symplectic map DF ρ . We will see in Section 5 that this operator has the following form (which can easily be guessed from (2.5))

L ρ = e Vx e -i2πN Ax F (1) ⊗ F (2)
with constants V x , A x with x = π (ρ) ∈ M and where F (1) , F (2) are the metaplectic operators associated to the linear symplectic map F (1) , F (2) respectively, given by:

F (1) = F (2) = F : C ∞ R d → C ∞ R d u → |detA x | -1/2 • u • A -1 x with A x = Df | Eu(x) : R d → R d
being the linear expanding map. Recall that the linear map F (1) : T ρ K → T ρ K acts on the tangent space of the trapped set. Observe that F (1) is unitary in L 2 R d with spectrum on the unit circle. On the other hand F (2) : (T ρ K) ⊥ → (T ρ K) ⊥ acts on the orthogonal symplectic, transverse to the trapped set. It is a hyperbolic linear map and we will see in Section 4, Theorem 4.19, that correspondingly the operator

F (2) : H r R d → H r R d in anisotropic
Sobolev spaces has a discrete spectrum contained in bands indexed by k ∈ N:

|detA x | -1/2 A x -k max ≤ |z| ≤ |detA x | -1/2 A x -k min .
(We get in fact a more precise description of the operator F (2) as a sum of invertible operators with controlled norms). This implies that the operator

L ρ : L 2 R d ⊗H r R d → L 2 R d ⊗ H r R d has its spectrum contained in bands r - k (x) ≤ |z| ≤ r + k (x) with r ± k (x) = exp (D (x)) Df | Eu(x) -k max/min , D (x) := V x - 1 2 log detDf | Eu(x)
After averaging along the trajectory starting from x during time n and taking the min/max over x ∈ M we see that we obtain the estimates r ± k of (1.28). In fact the precise justification of this last step in the purpose of Sections 5 and 6 and proceed as follows:

(1) In Section 6 we develop some results that will be used in Section 7 in order to show that non-linearity of the map f can be neglected in the reconstruction of the global prequantum operator from its local parts.

(2) In Section 7, we assemble all these previous results and obtain the proof of the main Theorem 7.1.

Finally let us mention that Sections 4 and 5, where we study the resonances of the linear model, as explained above, are the core of our argument because they reveal the main mechanism responsible for the band structure of the spectrum described in Theorem 1.17. This mechanism was discovered in the paper [START_REF] Faure | Prequantum chaos: Resonances of the prequantum cat map[END_REF] originally in the study of the prequantum linear cat map.

3 Covariant derivative D and spectrum of the rough Laplacian ∆

In this Section we provide additional results concerning the rough Laplacian operator ∆ N and its spectrum in the semiclassical limit N → ∞. The rough Laplacian is defined from the covariant derivative D as ∆ = D * D. The main result presented in Theorem 3.5 shows that the bottom of the spectrum of ∆ N in L 2 N (P ) has discrete spectrum with a band structure on the positive real line (beware that ∆ is positive and self-adjoint). We show that the spectral projector Π 0 of the prequantum operator FN on its external band A 0 has the same rank as the spectral projector P 0 of ∆ N on its first band. Since it is known from [26, th. 2][33, cor. 1.2] that this rank is given by an index formula, we deduce (1.34) and (1.53). The spectral projector P 0 of the Laplacian ∆ N is also used in definition 1.67 page 38 to define the Toeplitz quantum space and the Toeplitz quantization.

The covariant derivative D

The connection one form A on P given in Theorem 1.4 induces a differential operator D called the covariant derivative. We recall its general definition and give its expression in local coordinates. We will use it for the definition of the rough Laplacian operator ∆ in the Section 3.2 and also to treat the affine models on R 2d in Section 5.2.

Recall that the exterior derivative du of a function u ∈ C ∞ (P ) (i.e. the differential of u) is defined at point p ∈ P by

(du) p (V ) = V (u) (p)
where V ∈ T p P is any tangent vector. The connection one form A ∈ C ∞ (P, Λ 1 ⊗ (iR)) on the principal bundle π : P → M defines a splitting of the tangent space at every point p ∈ P :

T p P = V p P ⊕ H p P
with H p P = Ker (A (p)) and V p P = Ker ((Dπ) (p)). The subspaces V p P and H p P are called respectively vertical subspace and horizontal subspace. We will denote

H : T p P → H p P (3.1)
the projection onto the horizontal space with Ker (H) = V p P . Explicitly if V ∈ T p P then from (1.8) its horizontal component is

HV = V + iA (V ) ∂ ∂θ . (3.2) 
This can be checked easily from the requirements that A (HV ) = 0 and V -HV ∈ V p P .

Definition 3.1. If u ∈ C ∞ (P ) is a smooth function, its exterior covariant derivative Du ∈ C ∞ (P ; Λ 1
) is a one form on P defined by

(Du) p (V ) = ((HV ) (u)) (p) = (du (HV )) (p) for p ∈ P, V ∈ T p P (3.3)
The operator D is equivariant with respect to (or commutes with) the U(1) action (1.6) in P and therefore restricts naturally to the space (1.20):

D : C ∞ N (P ) → C ∞ N P, Λ 1
for every N ∈ Z.

Expression of D in local charts

Proposition 3.2. With respect to the local trivialization (1.7) of the bundle P over open sets

U α ⊂ M, if u ∈ C ∞ N (P ) then Du is expressed as the first order differential operator D α : C ∞ (U α ) → C ∞ (U α , Λ 1 )
given by:

D α u α = du α + i u α η α (3.4) with u α := (u • τ α ) ∈ C ∞ (U α ) as in (2.4) and D α u α := (Du) • τ α ∈ C ∞ (U α , Λ 1
). More specifically, in the normal coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d and the local trivialization on U α in Proposition 2.15, it is expressed as

D α u α = i d j=1 ζ j q u α dq j + ζ j p u α dp j (3.5)
with the basis (dq, dp) of Λ 1

x , where ζ j q and ζ j p are the differential operators on C ∞ R 2d defined respectively by

ζ j q := ξ j q - 1 2 p j with ξ j q := -i ∂ ∂q j (3.6) 
ζ j p := ξ j p + 1 2 q j with ξ j p := -i ∂ ∂p j .
Remark 3.3. Notice that the canonical variables (ζ q , ζ p ) defined in (2.17) are the symbol of the operators (3.6) as a pseudodifferential operator. In more geometrical terms, the symbol of the covariant derivative -i D is the one form σ (-i D) = ζdx = j ζ j q dq j + ζ j p dp j on T * U α . This can be understood as a generalization of the simpler case of the exterior derivative d : C ∞ (M, Λ p ) → C ∞ (M, Λ p+1 ) (by taking η = 0, i.e. a connection with zero curvature), for which the principal symbol is known to be σ (d) = i (ξdx) ∧ ., [50, (10.12) on p.162].

Proof. Consider local coordinates

x = x 1 , . . . x 2d ∈ U α ⊂ M and a local trivialization of P giving local coordinates (x, θ) on P . Let V = V x ∂ ∂x + V θ ∂
∂θ be a vector field on P expressed in these local coordinates. From (3.2) and (1.9) we have

HV = V + iA (V ) ∂ ∂θ = V + (-dθ (V ) + 2πη α (V )) ∂ ∂θ = V x ∂ ∂x + 2πη α (V ) • ∂ ∂θ .
Then, from the definition (3.3),

(Du) (V ) = (HV ) (u) = V x ∂u ∂x + 2πη α (V ) ∂u ∂θ .
Suppose now that u ∈ C ∞ N (P ) and write p = e iθ τ α (x) ∈ P . Then

u (p) = u e iθ τ α (x) = e iN θ u (τ α (x)) = e iN θ u α (x)
and

(Du) p (V ) = e iN θ V x ∂u α ∂x + iN2πη α (V ) u α = e iN θ (du α (V ) + iN2πη α (V ) u α ) = e iN θ du α + i u α η α (V ). Hence D α u α = (Du) p • τ α = du α + i u α η α
We obtain the rest of the claims by simple calculation.

The rough Laplacian ∆

In 

Compatible metrics and Laplacian

We recall [45, p.72] that on a symplectic manifold (M, ω), there exists a Riemannian metric g compatible with ω in the sense that there exists an almost complex structure 10 J on M such that

ω (Ju, Jv) = ω (u, v) and g (u, v) = ω (u, Jv) for all x ∈ M and u, v ∈ T x M. (3.7) 
In general J is not integrable, i.e. it is not a complex structure. In the rest of this Section we suppose given such a metric g and an almost complex structure J on M. The metric g on M induces an equivariant metric g P on P by declaring that [51, ex.1,ex.2 p.508]:

(1) for every point p ∈ P , V p P ⊥ H p P are orthogonal, (2) on the horizontal space H p P , g P is the pull back of g by π: (g P ) /HpP = π * (g)

(3) on the vertical space V p P , g P is the canonical (Killing) metric on u (1) i.e. ∂ ∂θ g P = 1. 10 An almost complex structure J on M is a section of the bundle Hom (T M, T M ) such that J • J = -Id.

This metric g P induces a L 2 scalar product α|β Λ 1 (p) in the space of one forms Λ 1 (p) at point p ∈ P . Using the volume form µ P on P in (1.17), we define a L 2 scalar product in the space of differential one forms C ∞ (P, Λ 1 ) by

α|β L 2 (P,Λ 1 ) := α (p) |β (p) Λ 1 (p) dµ P (p) for α, β ∈ C ∞ P, Λ 1
The L 2 product of functions is of course defined by

u|v L 2 (P ) := u (p) • v (p) dµ P (p) for u, v ∈ C ∞ (P ) .
Then the operators D * and ∆ are defined as follows.

Definition 3.4. The adjoint covariant derivative D * : C ∞ (P, Λ 1 ) → C ∞ (P ) is defined by the relation

u|D * α L 2 (P,Λ 1 ) = Du|α L 2 (P ) for all u ∈ C ∞ (P ) and α ∈ C ∞ P, Λ 1 .
The rough Laplacian ∆ :

C ∞ (P ) → C ∞ (P ) is defined as the composition ∆ = D * D.
The operators introduced above are equivariant, i.e.

D * R θ = R θ D * and ∆R θ = R θ ∆
with R θ : p → e iθ p, because so is the metric g P . Hence D * and ∆ restrict naturally to

D * : C ∞ N P, Λ 1 → C ∞ N (P ) and ∆ N : C ∞ N (P ) → C ∞ N (P ) for each N ∈ Z. We have denoted ∆ N for the restriction of ∆ to C ∞ N (P ).
It is known that, for every N ∈ Z, the operator ∆ N is an essentially self-adjoint positive operator with compact resolvent. Hence its spectrum is discrete and consists of real positive eigenvalues. The next theorem shows that these eigenvalues form some "clusters" (also called "bands") in the lower part of this spectrum. Precisely the eigenvalues of 1 2πN ∆ N concentrate around the specific integer values d + 2k with d = 1 2 dim M, k ∈ N. (These half-integer values correspond essentially to the eigenvalues of a harmonic oscillator model as we will see later.) See Figure 3.1. These clusters of eigenvalues are called Landau levels or Landau bands in physics. The existence of the first band is given in various papers, see [START_REF] Ma | The spin ˆ\bfc dirac operator on high tensor powers of a line bundle[END_REF]Cor 1.2] and reference therein. 11 Theorem 3.5. "The bottom spectrum of ∆ N has band structure". For any α > 0, the spectral set of the rough Laplacian 1 2πN ∆ N in the interval [0, α] is contained in the N -ǫ -neighborhood of the subset {d + 2k, k ∈ N} for sufficiently large N and any 0 < ε < 1/2. The number of eigenvalues in the N -ǫ -neighborhood of d + 2k (or in the k-th band) is proportional to N d , that is, if we write P k for the spectral projector for the eigenvalues on the k-th band, we have

C -1 N d < rank P k < CN d
for some constant C independent of N. In particular, for the spectral projector P 0 for the first band, we have

rank (P 0 ) = M e N ω Todd (T M) 2d . (3.8)
Further, for the relation to the prequantum transfer operator FN , we have

rank P k = rank τ (k) = dim H k for 0 ≤ k ≤ n
for sufficiently large N, where n, τ (k) and H k are those in Theorem 7.1. In particular

P 0 : Im τ (0) → Im (P 0 ) (3.9)
is a finite rank isomorphism.

{ λ λ = d + 4 λ = d λ = d + 2 rankP 0 Figure 3.1:
The Landau levels of the spectrum of the rough Laplacian 1 2πN ∆ :

L 2 N (P ) → L 2 N (P ) for N ≫ 1.
In the separate Section 8 we give the proof for Theorem 3.5 concerning the spectrum of the rough Laplacian ∆ = D * D . This proof follows the same strategy as for the proof of Theorem 7.1 namely the Laplacian is decomposed into local charts and approximated by an Euclidean Laplacian. We use the Harmonic oscillator described in Section 8.1. In Section 8.2, we obtain the spectrum of the rough Euclidean Laplacian. In Section 8.3 we establish some lemmas in order to show that non-linearity can be neglected. The proof of the index formula (3.8) is given in [START_REF] Guillemin | The laplace operator on the n-th tensor power of a line bundle: eigenvalues which are bounded uniformly in n[END_REF]Th. 2], see also [START_REF] Ma | The spin ˆ\bfc dirac operator on high tensor powers of a line bundle[END_REF]Cor. 1.2] and references therein. 

D α : C ∞ (U α ) → C ∞ U α , Λ 1 , D α u α = (Du) • τ α where u ∈ C ∞ N (P ) and u α := (u • τ α ) ∈ C ∞ (U α ). Similarly D * : C ∞ N (P, Λ 1 ) → C ∞ N (P ) and ∆ N = D * D are represented by operators D * α : C ∞ U α , Λ 1 → C ∞ (U α ) and ∆ α : C ∞ (U α ) → C ∞ (U α ) .
The next proposition gives the explicit expression of the differential operators D α , D * α and ∆ α using local coordinates x 1 , . . . , x 2d on U α (we have already obtain such an expression for D α in Proposition 3.2). Note that the operators D * α and ∆ α depend on the Riemann metric g on M and also on N (or ) though it is not explicit in the notation. We write g = j,k g j,k dx j ⊗ dx k for the metric tensor and g j,k = (g j,k ) -1 j,k for the entries of the inverse matrix.

Proposition 3.6. With respect to the local trivialization and coordinate system described above, we have the following expressions for D, D * and ∆ = D * D:

D α u α = i 2d j=1 ζ j u α dx j , with ζ j = -i ∂ ∂x j + η j , (3.10) 
D * α 2d j=1 v j dx j = - i 2d j,k=1 g j,k ζ j -i ∂ j g j,k v k , ∆ α u α = 1 2 2d j,k=1 g jk ζ j ζ k -i ∂ j g jk ζ k u α . (3.11)
Proof. The expression (3.5) gives (3.10)

. Let v = 2d j=1 v j dx j ∈ C ∞ (U α , Λ 1 ) and u ∈ C ∞ (U α ).
Using integration by parts, we have

u, D * α v L 2 (Uα) = D α u, v L 2 (Uα,Λ 1 ) = du + i ηu|v dx = j,k ∂ j u + i η j u g jk v k dx = - j,k u∂ j g jk v k + i η j ug jk v k dx = -u j,k ∂ j g jk v k + g jk ∂ j v k + i η j v k dx. Hence D * α v = - i j,k g jk ζ j -i ∂ j g jk v k .
We deduce (3.11) from the computation

1085 ∆ α u α = D * α D α u α = - i j,k g jk ζ j -i ∂ j g jk i ζ k u α = 1 2 j,k g jk ζ j ζ k -i ∂ j g jk ζ k u α Corollary 3.7.
In local Darboux coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . p d on U α and in the special case of the Euclidean metric g = d j=1 dq j ⊗ dq j + dp j ⊗ dp j , we have

∆ α = 1 2 d j=1 ζ j p 2 + ζ j q 2 (3.12) with ζ j q , ζ j p given in (3.6).
The operator (3.12) is called the Euclidean rough Laplacian. In Section 8.2, we will deduce the cluster structure (or the Landau levels) of the spectrum of the Euclidean rough Laplacian by identifying it with the harmonic oscillator.

Resonances of linear expanding maps 1090

This Section is self-contained. The main result of this Section is Proposition 4.19.

The Bargmann transform

Definitions

In this section, we recall some basic facts related to the so-called Bargmann transform. For more detailed account about the Bargmann transform, we refer to the books [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]Ch.3], [23, p.39], [START_REF] Hall | Holomorphic Methods in Mathematical Physics[END_REF], [40, p.19].

Let D be a positive integer. Let > 0. We consider the Euclidean space R D with its canonical Euclidean norm written

|.|. For each point (x, ξ) ∈ T * R D = R D ⊕ R D , we assign the complex-valued smooth function φ x,ξ ∈ S R D defined by φ x,ξ (y) = a D exp i ξ • (y - x 2 ) - 1 2 |y -x| 2 , y ∈ R D (4.1)
with

a D = (π ) -D/4 . (4.2)
We will henceforth consider the measure dx = dx 1 . . . dx D on R D defining the Hilbert spaces L 2 R D and the measure (2π

) -D dxdξ on T * R D = R 2D defining L 2 R 2D . Notice that the constant a D is taken so that φ x,ξ L 2 (R D ) = 1.
Definition 4.1. The Bargmann transform is the continuous operator

B : S(R D ) → S(R 2D ), (B u) (x, ξ) = φ x,ξ (y) • u(y)dy (4.3) 
on the Schwartz space S(R D ). Then the (formal) adjoint of B defined by u, 

B * v = B u, v is given by B * : S(R 2D ) → S(R D ), (B * v) (y) = φ x,ξ (y) • v(x, ξ) dxdξ (2π ) D . ( 4 
2 (R D ) → L 2 (R 2D ).
(2) B * extends uniquely to a bounded operator

B * : L 2 (R 2D ) → L 2 (R D ).
(

) B * • B = Id on L 2 (R D ). 3 
Proof. For any u ∈ S(R D ), we have

B u 2 L 2 (R 2D ) = a 2 D (2π ) D φ x,ξ (y ′ )u(y ′ ) • φ x,ξ (y)u(y)dxdξdydy ′ = a 2 D (2π ) D u(y)u(y ′ ) exp i ξ(y ′ -y) - 1 2 |x -y| 2 + |x -y ′ | 2 dxdξdydy ′ = (π ) -D/2 |u(y)| 2 exp(-|x -y| 2 / )dxdy = |u(y)| 2 dy = u 2 L 2 (R D ) .
This gives the claims of the lemma by the usual continuity argument.

Bargmann projector

Proposition 4.3. The space L 2 (R 2D ) is orthogonally decomposed as

L 2 (R 2D ) = ImB ⊕ ker B * . (4.5)
The Bargmann projector P is the orthogonal projection onto Im B ⊂ L 2 (R 2D ) along ker B * . It is given by

1115 P := B • B * : L 2 (R 2D ) → L 2 (R 2D ). (4.
6) It can be expressed as an integral operator (P v) (z) = K P, (z, z ′ ) v(z ′ )dz ′ with the Schwartz kernel:

K P, (z, z ′ ) = exp i 2 ω(z, z ′ ) - 1 4 |z -z ′ | 2 (4.7) with z = (x, ξ) , z ′ = (x ′ , ξ ′ ) ∈ R 2D , the measure dz ′ = dx ′ dξ ′ / (2π ) D , the Euclidean norm |z| 2 := |x| 2 + |ξ| 2 and the canonical symplectic form on T * R D , ω (z, z ′ ) = x • ξ ′ -ξ • x ′ Proof. P is an orthogonal projection because P * h = (B • B * ) * = P and P 2 = B • B * • 1120 B • B * = P from Lemma 4.2. From Definition 4.1, the Schwartz kernel of P = B • B * is K P, (z, z ′ ) = dyφ z (y)φ z ′ (y) = a 2 D R D dy exp -i ξ (y - x 2 ) + i ξ ′ (y - x ′ 2 ) - 1 2 |y -x| 2 + |y -x ′ | 2 = a 2 D exp i 1 2 (ξx -ξ ′ x ′ ) - 1 2 |x| 2 + |x ′ | 2 × dy exp 1 (i (ξ ′ -ξ) + (x + x ′ )) y - 1 |y| 2 .
We use the following formula for Gaussian integral in R D :

R D e -1 2 y•(Ay)+b.y dy = (2π) D detA exp 1 2 b • A -1 b , b ∈ C D , A ∈ L R D (4.8) with A = (2/ ) • Id, b = i (ξ ′ -ξ) + 1 (x + x ′ ) and get K P, (z, z ′ ) = 1 (π ) D/2 (2π) D/2 (2/ ) D/2 exp 1 4 (i (ξ ′ -ξ) + (x + x ′ )) 2 × exp i 1 2 (ξx -ξ ′ x ′ ) - 1 2 |x| 2 + |x ′ | 2 = exp 1 4 -|ξ ′ -ξ| 2 -|x -x ′ | 2 + i 2 (ξx -ξ ′ x ′ + (ξ ′ -ξ) (x + x ′ )) = exp i 2 ω(z, z ′ ) - 1 4 |z -z ′ | 2 .

The Bargmann transform in more general setting

We have seen that the Bargmann transform gives a phase-space representation, i.e. a unitary isomorphism:

B : L 2 (R D ) → Im (B ) ⊂ L 2 (T * R D ).
The next proposition gives the Bargmann transform in a slightly more general setting. We start from a symplectic linear space (E, ω) of dimension 2D and a Lagrangian subspace L ⊂ E. Let g(•, •) be a scalar product on E that is compatible with the symplectic form ω on E in the sense that there is a linear map J : E → E such that J • J = -Id and holds

g (z, z ′ ) = ω (z, Jz ′ ) for all z, z ′ ∈ E.
This is nothing but the point-wise version of the condition (3.7). Let L ⊥g be the orthogonal complement of L with respect to the inner product g, so that a point z ∈ E can be decomposed uniquely as

z = x + ξ, x ∈ L, ξ ∈ L ⊥g .
For each point z = x + ξ, x ∈ L, ξ ∈ L ⊥g , we define the wave packet φ z (y) ∈ S (L) by

φ z (y) = a D exp i ω(y - x 2 , ξ) - 1 2 |y -x| 2 g for y ∈ L.
We (2) B * extends uniquely to a bounded operator B * : L 2 (E) → L 2 (L).

( Remark 4.5. Notice that the Bargmann projector P : L 2 (E) → L 2 (E) can be defined directly from its kernel (4.7) and is independent on the choice of the Lagrangian subspace L.

) B * • B = Id on L 2 (L). 3 
Proof. There are linear isomorphisms ψ : R D → L and Ψ : R 2D → E such that the following diagram commutes:

R 2D Ψ ---→ E p   p ′   R D ψ ---→ L where p : R 2D = R D ⊕ R D → R D is
the projection to the first D components: p(x, ξ) = x, and p ′ : E → L is the orthogonal projection to L with respect to g, and moreover that the pull-back of the symplectic form ω and the inner product g by Ψ coincides with the standard Euclidean inner product g 0 (z, z ′ ) = z • z ′ and the standard symplectic form:

ω 0 (z, z ′ ) = x • ξ ′ -ξ • x ′ for z = (x, ξ) , z ′ = (x ′ , ξ ′ ) ∈ T * R D
Through such correspondence by Ψ and ψ, the definition of the Bargmann transform and its adjoint above coincides with those that we made in the last subsection. Therefore the claims are just restatement of Lemma 4.2 and Proposition 4.3.

Scaling

The operators B and B * are related to B 1 and B * 1 (i.e. with = 1) by the simple scaling

x → 1/2 x. Though this fact should be obvious, we give the relations explicitly for the later use. Let us introduce the unitary operators

s : L 2 (R D ) → L 2 (R D ), s u(x) = -D/4 u( -1/2 x) (4.9)
and 12S :

L 2 R 2D , dxdξ (2π ) D → L 2 R 2D , dxdξ (2π ) D , S u(x, ξ) = u( -1/2 x, -1/2 ξ) (4.10)
Then we have Lemma 4.6. The following diagram commutes:

L 2 R 2D S ---→ L 2 R 2D B   B 1   L 2 R D s ---→ L 2 R D

Action of linear transforms

Definition 4.7. The lift of a bounded operator L : L 2 (R D ) → L 2 (R D ) with respect to the Bargmann transform B is defined as the operator

L lift := B • L • B * : L 2 (R 2D ) → L 2 (R 2D ) (4.11)
By definition, it makes the following diagram commutes:

L 2 (R 2D ) L lift ---→ L 2 (R 2D ) B   B   L 2 (R D ) L ---→ L 2 (R D ).
(4.12)

Since P • L lift • P = L lift , the lift L lift is always trivial on the second factor with respect to the decomposition L 2 (R 2D ) = ImB ⊕ ker B * = Im P ⊕ ker P in (4.5), that is,

L lift = (B • L • B * ) ImP ⊕ (0) KerP . (4.13)
Lemma 4.8. For an invertible linear transformation A : R D → R D , we associate a bounded transfer operator defined by

L A : L 2 (R D ) → L 2 (R D ), L A u = u • A -1 (4.14)
Then we have

L A = d(A) • B * • L A⊕ t A -1 • B , (4.15) 
where

L A⊕ t A -1 : L 2 (R 2D ) → L 2 (R 2D
) is the unitary transfer operator given by

(L A⊕ t A -1 u) (x, ξ) := u A -1 x, t Aξ (4.16)
and we set

d(A) := det 1 2 1 + t AA 1/2 . Consequently the lift of L A , L lift A := B • L A • B * (4.17)
is expressed as

L lift A = d(A) • P • L A⊕ t A -1 • P . (4.18)
Remark 4.9. (1) The expression (4.15) shows that L A can be expressed as an operator on the phase space defined in terms of the Bargmann projector and the transfer operator L A⊕ t A -1 , but with an additional factor d (A), sometimes called the metaplectic correction. This may be regarded as a realization of the idea explained in the last section: L A can be seen as a Fourier integral operator and canonical map is A ⊕ t A -1 on T * R D . But notice that the correction term d(A) will be crucially important for our argument.

(2) For an orthogonal transform A ∈ SO (D), we have d (A) = 1.

(3) The operator 

1 √ |detA| L A is unitary in L 2 R D but
(B * • L A⊕ t A -1 • B u) (y) = K(y, y ′ )u(y ′ )dy ′
with the kernel (from (4.3) and (4.4))

K(y, y ′ ) = φ x,ξ (y) • φ A -1 x, t Aξ (y ′ ) dxdξ (2π ) D .
Using the formula (12.3) for the Gaussian integral and change of variables, we can calculate the integral on the right hand side as

K(y, y ′ ) = φ Ax ′ , t A -1 ξ ′ (y) • φ x ′ ,ξ ′ (y ′ ) dx ′ dξ ′ (2π ) D , (x ′ = A -1 x, ξ ′ = t Aξ) = a 2 D • e i ξ ′ ,y ′ -A -1 y -|y ′ -x ′ | 2 /(2 )-|y-Ax ′ | 2 /(2 ) dx ′ dξ ′ (2π ) D = (π ) -D/2 • δ(y ′ -A -1 y) • e -|A -1 y-x ′ | 2 /(2 )-|y-Ax ′ | 2 /(2 ) dx ′ = π -D/2 • δ(y ′ -A -1 y) • e -|t| 2 /2-|At| 2 /2 dt (t = (x ′ -A -1 y)/ ) = det((I + t AA)/2) -1/2 • δ(y ′ -A -1 y).
Therefore we have

(B * • L A⊕ t A -1 • B )u(y) = det((I + t AA)/2) -1/2 • u(A -1 y) = d(A) -1 • (L A u) (y)
and hence the claim (4.15) follows. This implies

L lift A = B • L A • B * = d(A) • P • L A⊕ t A -1 • P .
The other claims follow immediately.

The next Lemma introduces operators which realize translation in phase space T * R D .
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Lemma 4.10. For (x 0 , ξ 0 ) ∈ T * R D = R 2D , we associate a unitary operator defined by

T (x 0 ,ξ 0 ) : L 2 (R D ) → L 2 (R D ), T (x 0 ,ξ 0 ) v (y) = e i ξ 0 .(y+ x 0 2 ) v (y -x 0 ) (4.19)
Then we have

T (x 0 ,ξ 0 ) = B * • T (x 0 ,ξ 0 ) • B , (4.20) 
where

T (x 0 ,ξ 0 ) : L 2 (R 2D ) → L 2 (R 2D
) is the unitary transfer operator given by 1200

T (x 0 ,ξ 0 ) u(x, ξ) := e i 2 (ξ 0 •x-x 0 •ξ) u (x -x 0 , ξ -ξ 0 ) (4.21)
Consequently the lift of T (x 0 ,ξ 0 ) is

T lift (x 0 ,ξ 0 ) := B • T (x 0 ,ξ 0 ) • B * = P • T (x 0 ,ξ 0 ) • P . (4.22) Proof. The Schwartz kernel of B * • T (x 0 ,ξ 0 ) • B is K (y, y ′ ) = R 2D e i 2 (ξ 0 •x-x 0 •ξ) φ x,ξ (y) • φ x-x 0 ,ξ-ξ 0 (y ′ ) dxdξ (2π ) D =a 2 D • dxdξ (2π ) D e i 2 (ξ 0 •x-x 0 •ξ) e i (ξ•(y-x 2 )-(ξ-ξ0)•(y ′ -x-x 0 2 )) e -1 2 (|y ′ -(x-x 0 )| 2 +|y-x| 2 ) = (π ) -D/2 δ (y ′ -y + x 0 ) e i ξ 0 •(y+ x 0 2 ) e -1 |y-x| 2 dx =δ (y ′ -y + x 0 ) • e i ξ 0 •(y+ x 0 2 ) .
This is the kernel of the operator T (x 0 ,ξ 0 ) .

Corollary 4.11. The lift of the operator T (x 0 ,ξ 0 ) is expressed as

T lift (x 0 ,ξ 0 ) := B • T (x 0 ,ξ 0 ) • B * = T (x 0 ,ξ 0 ) • P = P • T (x 0 ,ξ 0 ) . (4.23)
Proof. We can check the equality T (x 0 ,ξ 0 ) • P = P • T (x 0 ,ξ 0 ) on the left by showing that the Schwartz kernels of T (x 0 ,ξ 0 ) • P and P • T (x 0 ,ξ 0 ) are equal. This an easy computation using 1205 the expressions (4.7) and (4.21). The rest of the claim follows from Lemma 4.10.

4.3

The weighted L 2 spaces :

L 2 (R 2D , (W r ) 2 )
For each t > 0, we define the cones in R 2D :

C + (t) = {(x, ξ) ∈ R 2D | |ξ| ≤ t • |x|}, C -(t) = {(x, ξ) ∈ R 2D | |x| ≤ t • |ξ|}.
Let r > 0. Take and fix a C ∞ function m : P R 2D → [-r, r], called order function, on the projective space P R 2D so that

m ([(x, ξ)]) = -r, if (x, ξ) ∈ C + (1/2); +r, if (x, ξ) ∈ C -(1/2). (4.24) 
We then define the escape function (or the weight function) by

1210 W r : R 2D → R + , W r (x, ξ) = |(x, ξ)| m([(x,ξ)])
where

s := (1 + s 2 ) 1/2 for s ∈ R and |(x, ξ)| 2 := |x| 2 + |ξ| 2 .
From this definition we have

W r (x, ξ) ∼ |(x, ξ)| -r if |x| ≥ 2|ξ|and |(x, ξ)| ≫ 1 and W r (x, ξ) ∼ |(x, ξ)| r if |x| ≤ |ξ|/2and |(x, ξ)| ≫ 1.
For convenience in a later argument, we also take and fix

C ∞ functions m + , m -: P R 2D → [-r, r] such that m + ([(x, ξ)]) = -r, if (x, ξ) ∈ C + (1/9); +r, if (x, ξ) ∈ C -(3), and 
m -([(x, ξ)]) = -r, if (x, ξ) ∈ C + (3); +r, if (x, ξ) ∈ C -(1/9),
and define the functions W r,± :

R 2D → R + by W r,± (x, ξ) := |(x, ξ)| m ± ([(x,ξ)]) . (4.25)
Obviously we have

W r,-(x, ξ) ≤ W r (x, ξ) ≤ W r,+ (x, ξ). (4.26) 
These functions, W r and W r,± , satisfy the following regularity estimate that we will make use of later on: For any ǫ > 0 and multi-index α, there exists a constant C α,ǫ > 0 such that

|∂ α x,ξ W r (x, ξ)| ≤ C α,ǫ |(x, ξ)| -(1-ǫ)|α| • W r (x, ξ) for all (x, ξ) ∈ R 2D (4.27)
and the same inequalities for W r,± (•) hold.

Definition 4.12. For > 0, let

W r : R 2D → R + , W r (x, ξ) := W r ( -1/2 x, -1/2 ξ) = (S W r ) (x, ξ) (4.28)
where S is the operator defined in (4.10). We consider the weighted L 2 space defined as

L 2 (R 2D , (W r ) 2 ) = {v ∈ L 2 loc (R 2D ) | W r • v L 2 (R 2D ) < ∞}. (4.29)
Likewise, we define the functions W r,± and the weighted L 2 spaces L 2 (R 2D , (W r,± ) 2 ) in the parallel manner, replacing W r by W r,± .

Note that the function W r (and W r,± ) satisfies the condition

W r (x, ξ) ≤ C • W r (y, η) • |(x, ξ) -(y, η)| 2r for any x, y ∈ R d (4.30)
for some constant C > 0. Consequently the function W r (and W r,± ) satisfies

W r (x, ξ) ≤ C • W r (y, η) • -1/2 |(x, ξ) -(y, η)| 2r for any x, y ∈ R d . (4.31)
The next Lemma characterizes a class of bounded integral operators in

L 2 (R 2D , (W r ) 2 )
in terms of its kernel.

Lemma 4.13. If R : S(R 2D ) → S(R 2D
) is an integral operator of the form

Ru(x, ξ) = K R (x, ξ; x ′ , ξ ′ )u(x ′ , ξ ′ )dx ′ dξ ′ and if the kernel K R (•) is a continuous function satisfying |K R (x, ξ; x ′ , ξ ′ )| ≤ -1/2 |(x, ξ) -(x ′ , ξ ′ )| -ν
for some ν > 2r + 2D, then it extends to a bounded operator on L 2 (R 2D , (W r ) 2 ) and

R : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ) ≤ C ν
where C ν is a constant which depends only on ν.

Proof. From (4.31), we have

W r (x, ξ) W r (x ′ , ξ ′ ) • K R (x, ξ; x ′ , ξ ′ ) ≤ C -1/2 |(x, ξ) -(x ′ , ξ ′ )| 2r-ν .
Hence, by Schur Lemma 13 [36, p.50] (or by Young inequality for convolution), the operator

norm of u → W r • R ((W r ) -1 • u) with respect to the L 2 norm is bounded by a constant C ν .
This implies the claim of the lemma.

From expression (4.7), the Bargmann projector P satisfies the assumption of the last lemma. Thus we have Corollary 4.14. The Bargmann projector P is a bounded operator on L 2 (R 2D , (W r ) 2 ).

Spectrum of transfer operator for linear expanding map

Below we consider the action of a linear expanding map.

Lemma 4.15. If A : R D → R D is an expanding linear map i.e. satisfying

A -1 ≤ 1 λ for some λ > 1, (4.33) 
then the lift L lift A of L A , defined in (4.17), extends to a bounded operator

L lift A : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ). (4.34) Further, if λ > 1 is sufficiently large (say λ > 9), L lift A extends to a bounded operator L lift A : L 2 (R 2D , (W r,-) 2 ) → L 2 (R 2D , (W r,+ ) 2 ). (4.35)
13 For an integral bounded operator A :

L 2 (R n ) → L 2 (R n ) with Schwartz kernel K A ∈ C 0 (R n × R n ), i.e. (Au) (x) = K A (x, y) u (y) dy we have A L 2 ≤ max y K A (x, y) dx 1/2 . max x K A (x, y) dy 1/2 (4.32)
Proof. From (4.18) in Lemma 4.8 and Corollary 4.14, we have only to check boundedness of L A⊕ t A -1 as an operator on L 2 (R 2D , (W r ) 2 ) (resp. from L 2 (R 2D , (W r,-) 2 ) to L 2 (R 2D , (W r,+ ) 2 ). But this is clear from the definitions of W r and W r,± .

To look into more detailed structure of the operator L A and L lift A , we introduce some definitions. For k ∈ N, let Polynom (k) be the space of homogeneous polynomial on R D of order k. Then we consider the operator14 

T (k) : C ∞ (R D ) → Polynom (k) , T (k) u (x) = α∈N D ,|α|=k ∂ α u(0) α! • x α . (4.36)
This is a projector which extracts the terms of order k in the Taylor expansion. Clearly the operator

T (k) is of finite rank rank T (k) = D + k -1 D -1 = (D + k -1)! (D -1)!k!
and satisfies the following relations

T (k) • T (k ′ ) = T (k) , if k = k ′ ; 0 otherwise, (4.37) 
and

T (k) • L A = L A • T (k) . (4.38)
As in (4.11) we define the lift of the operator T (k) by Then for 0 ≤ k ≤ n the operator T (k) extends naturally to bounded operators

T (k) := B • T (k) • B * . ( 4 
T (k) : L 2 (R 2D , (W r,-) 2 ) → L 2 (R 2D , (W r,+ ) 2 ) (4.41)
and, in particular, from (4.26),

T (k) : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ). (4.42)
Further if we write the operator T (k) as an integral operator

T (k) u (x, ξ) = K(x, ξ; x ′ , ξ ′ )u(x ′ , ξ ′ )dx ′ dξ ′ , the kernel K(•) satisfies the estimate W r,+ (x, ξ) W r,-(x ′ , ξ ′ ) • K(x, ξ; x ′ , ξ ′ ) ≤ C -1/2 |(x, ξ)| k-r • -1/2 |(x ′ , ξ ′ )| k-r (4.43) ≤ C ′ -1/2 |(x, ξ) -(x ′ , ξ ′ )| k-r (4.44)
for some constants C, C ′ > 0 that do not depend on > 0.

Proof. For each multi-index α ∈ N D with |α| = k, we set

T (α) : S(R D ) → S(R D ) ′ , T (α) u (x) := ∂ α u(0) α! • x α s (4.45)
and

T (α) = B • T (α) • B * : S(R 2D ) → S(R 2D ) ′ . Since T (k) = α:|α|=k T (α)
, the claims of the lemma follows if one proves the corresponding claim for T (α) . From (4.3) and (4.4) the kernel of the operator T (α) is written as

K(x, ξ; x ′ , ξ ′ ) = 1 α! • k + (x, ξ) • k -(x ′ , ξ ′ ) with k + (x, ξ) := -D/4 φ x,ξ (y) • ( -1/2 y) α dy, k -(x ′ , ξ ′ ) := D/4 k/2 • ∂ α φ x ′ ,ξ ′ (0).
Applying integration by parts to the integral of k + (•), we see that

|k + (x, ξ)| ≤ C ν • -1/2 |x| k • -1/2 |ξ| -ν
for arbitrarily large integer ν, where C ν is a constant depending only on ν. Also a straightforward computation gives the similar estimate for k -(•):

|k -(x ′ , ξ ′ )| ≤ C ν • -1/2 |ξ ′ | k • -1/2 |x ′ | -ν .
These estimates for sufficiently large ν imply that

W r (x, ξ) • |k + (x, ξ)| ≤ C -1/2 |(x, ξ)| k-r and 1 W r (x ′ , ξ ′ ) • |k -(x ′ , ξ ′ )| ≤ C -1/2 |(x ′ , ξ ′ )| k-r
for some constant C > 0 independent of > 0. Thus we have obtained (4.43). Since rk ≥ rn > 2D from the assumption (4.40) on the choice of r, boundedness of the operators follows from Schur Lemma (4.32).

The following is a direct consequence of the relation (4.37) and (4.38).

Corollary 4.17. For 0 ≤ k, k ′ ≤ n, we have

T (k) • T (k ′ ) = T (k) , if k = k ′ ; 0, otherwise,
and

L lift A • T (k) = T (k) • L lift A = B • L A • T (k) • B * .
Let us set

T = Id - n k=0 T (k) : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ). (4.46)
Then the set of operators T (k) , 0 ≤ k ≤ n, and T form a complete set of mutually commuting projection operators on

L 2 (R 2D , (W r ) 2 ) such that rank T (k) = dim Polynom (k) = D + k -1 D -1 = (D + k -1)! (D -1)!k! , rank T = ∞. Let H k := ImT (k)
and H = Im T .

Then the Hilbert space L 2 (R 2D , (W r ) 2 ) is decomposed as

L 2 (R 2D , (W r ) 2 ) = H 0 ⊕ H 1 ⊕ H 2 ⊕ • • • ⊕ H n ⊕ H (4.47)
Since the operator L lift A commutes with the projections T (k) and T , it preserves this decomposition and therefore the operator L lift A acting on L R 2D , (W r ) 2 is identified with the direct sum of the operators

L lift A : H k → H k for 0 ≤ k ≤ n, and L lift A : H → H.
The former is identified with the action of L A on Polynom (k) , because the diagram

H k L lift A ---→ H k B   B   Polynom (k) L A ---→ Polynom (k) (4.48)
commutes and the operator B : Polynom (k) → H k in the vertical direction is an isomorphism between finite dimensional linear spaces. To state the next proposition which is the main result of this section, we introduce the following definition:

Definition 4.18. The Hilbert space H r R D ⊂ S ′ R D of distributions is the completion of S R D with respect to the norm induced by the scalar product

(u, v) H r (R D ) := (B u, B v) L 2 (R 2D ,(W r ) 2 ) = (W r ) 2 • B u • B v dxdξ (2π ) D for u, v ∈ S(R D ).
The induced norm on H r R D will be written as

u H r (R D ) := B u L 2 (R 2D ,(W r ) 2 ) .
1290 Proposition 4.19. "Discrete spectrum of the linear expanding map". Let A : R D → R D be a linear expanding map satisfying A -1 ≤ 1/λ for some λ > 1. Let L A be the unitary transfer operator defined in (4.14):

L A u = u • A -1 .
Let n > 0 and r > n + 2D. Then the Hilbert space H r R D of definition 4.18 is decomposed into subspaces of homogeneous polynomial of degree k for 0 ≤ k ≤ n and the remainder:

H r R D = n k=0 Polynom (k) ⊕ H
where H := T (H r R D ) with setting

T := Id - n k=0 T (k) . (4.49) 
(The operators T (k) are defined in (4.36).) This decomposition is preserved by L A . There exists a constant C 0 > 0 independent of A and such that

(1) For 0 ≤ k ≤ n and 0 = u ∈ Polynom (k) , we have (2) The operator norm of the restriction of L A to H is bounded by

C -1 0 A -k max ≤ L A u H r (R D ) u H r (R D ) ≤ C 0 A -k min (4.
C 0 max{ A -(n+1) min , A -r min • | det A|}. (4.51)
The following equivalent statements holds for the lifted operator:

L lift A : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ).
The operator L lift A preserves the decomposition of L 2 (R 2D , (W r ) 2 ) in (4.47) and (1) For 0 ≤ k ≤ n and for 0 = u ∈ H k , we have

C -1 0 A -k max ≤ L lift A u L 2 (R 2D ,(W r ) 2 ) u L 2 (R 2D ,(W r ) 2 ) ≤ C 0 A -k max . (4.52)
(2) The operator norm of the restriction of L lift A to H is bounded by (4.51).

Remark 4.20. Proposition 4.19 implies that the spectrum of the transfer operator L A in the Hilbert space H r R D is discrete outside the radius given by (4.51). The eigenvalues outside this radius are given by the action of L A in the finite dimensional space Polynom (k) . These eigenvalues can be computed explicitly from the Jordan block decomposition of A.

In particular if A = Diag (a 1 , . . . a D ) is diagonal then the monomials x α = x α 1 1 . . . x α D D are obviously eigenvectors of L A with respective eigenvalues j a -α j j .

Proof. For the proof of (4.50) and (4.52), we use the fact that the space Polynom (k) is identical to the space Sym k R D of totally symmetric tensors of rank k. For the linear operator (A -1 ) ⊗k acting on R D ⊗k , we have a commutative diagram:

R D ⊗k (A -1 ) ⊗k -----→ R D ⊗k Sym   Sym   Sym k R D L A ---→ Sym k R D
where Sym denotes the symmetrization operation. For every 0 = ũ ∈ R D ⊗k we have

A -k max ≤ (A -1 ) ⊗k ũ ũ ≤ A -k min .
Since the spaces are finite dimensional (and hence all norms are equivalent), we deduce (4.50) for some constant C 0 > 0 independent of A, and also independent on because of the scaling invariance (4.28). The proof of the Claim (2) is postponed to Subsection 4.5, as it requires more detailed argument.

Proof of Claim (2) in Proposition 4.19

We prove Claim (2) on the lifted operator L lift A in the latter part of the statement, which is equivalent to Claim (2) in the former part. In the proof below, we may and do assume = 1, because the Bargmann transforms for different parameter are related by the scaling (4.10), as we noted in Subsection 4.1. Accordingly we will drop the subscript from the notation. Let χ : R D → [0, 1] be a smooth function such that

χ (x) = 1 if |x| ≤ 1 0 if |x| ≥ 2. (4.53)
Below we use C 0 as a generic symbol for the constants which do not depend on A (but may depend on r, n and D). Letting λ smaller if necessary, we suppose

λ = A -1 -1 > 1
for simplicity. We write M (ϕ) for the multiplication operator by ϕ.

To prove the claim, it is enough to show

L lift A • T L 2 (R 2D ,(W r ) 2 ) ≤ C 0 • max{λ -n-1 , λ -r | det A|}
where T is the operator defined in (4.46) with = 1 and

• L 2 (R 2D ,(W r ) 2 ) denotes the operator norm on L 2 (R 2D , (W r ) 2 ).
Let us consider the operators

X = B • M (χ) • B * : L 2 (R 2D , W r ) → L 2 (R 2D , W r )
and

Ξ : L 2 (R 2D , (W r ) 2 ) → L 2 (R 2D , (W r ) 2 ), (Ξv) (x, ξ) = χ |ξ| λ • v (x, ξ) .
The next lemma is the main ingredient of the proof.

Lemma 4.21. L lift A • X • T • Ξ L 2 (R 2D ,(W r ) 2 ) ≤ C 0 • λ -(n+1) . Proof. Let 1 C -(2) be the indicator function of the cone C -(2) := {(x, ξ) | |x| ≤ 2|ξ|} = R 2D \ C + (1/2) and set W r + (x, ξ) := 1 C -(2) (x, ξ) • |ξ| r , W r -(x, ξ) := |x| -r . Then the weight function W r (x, ξ) satisfies W r (x, ξ) ≤ C 0 • W r + (x, ξ) + C 0 • W r -(x, ξ)
for a constant C 0 > 0. Hence, to prove the lemma, it is enough to show for σ = ± the claim

W r σ •B•L A •M (χ)• T •B * •Ξ u L 2 ≤ C 0 •λ -(n+1) u for any u ∈ L 2 R 2D , (W r ) 2 (4.54)
where T is the operator defined in (4.49). Before proceeding to the proof of (4.54), we prepare a few estimates. Take u ∈ L 2 R 2D , (W r ) 2 arbitrarily and set

v(y) := (B * • Ξ u) (y) = φ x,ξ (y)χ |ξ| λ u(x, ξ) dxdξ.
Then, for any multi-index α ∈ N D and arbitrarily large ν, we have

|∂ α y v(y)| ≤ C α,ν |ξ|≤2λ |x -y| -ν • |ξ| |α| • |u(x, ξ)| dxdξ for any y ∈ R D . (4.55)
Note that we have

|x -y| -r • |ξ| r ≤ C 0 • W r (x, ξ) for any x, y, ξ ∈ R D with |y| ≤ 2. Hence |x -y| -ν • |ξ| |α| ≤ C 0 ( |x -y| -ν+r • |ξ| -D/2+1 ) • |ξ| |α|+D/2+1-r • W r (x, ξ).
Putting this estimate in (4.55) with ν ≥ D/2 + 1 + r, we obtain, by Cauchy-Schwarz inequality, 

|∂ α y v(y)| ≤ C α λ max{|α|+D/2+1-r,0} u L 2 (R 2D ,(W r ) 2 ) for any y ∈ R D with |y| ≤ 2. ( 4 
|∂ α y v(y)| ≤ C α u L 2 (R 2D ,(W r ) 2 ) for any y ∈ R D with |y| ≤ 2. (4.57)
Next we consider the function

w := M (χ) • T v = M (χ) • T • B * • Ξ u.
Note that the support of w is contained in that of χ. It follows from (4.56) that, for each multi-index α,

|∂ α w(y)| ≤ C α λ max{|α|+D/2+1-r,0} u L 2 (R 2D ,(W r ) 2 ) for all y ∈ R D . (4.58)
Further, if |α| ≤ n + 1, it follows from (4.57) and the definition of T that

|∂ α y w(y)| ≤ C α |y| n+1-|α| • max |y|≤2 ∂ n+1 y v ≤ C α |y| n+1-|α| u L 2 (R 2D ,(W r ) 2 ) for all y ∈ R D .
(4.59) Now we prove the claim (4.54) in the case σ = +. Let u, v, w be as above. We are 1340 going to estimate the quantity

ξ α • (B • L A • M (χ) • T • B * • Ξ u)(x, ξ) = ξ α φ x,ξ (y) • w(A -1 y) dy.
By integration by parts, we see that this is bounded in absolute value by

C α,ν α ′ ≤α |x -y| -ν • λ -|α ′ | • |∂ α ′ w(A -1 y)| dy
for each ν > 0, where C α,ν is a constant depending only on α and ν. If ν is sufficiently large, we have from (4.58), (4.59) and then from (4.40) that

α ′ ≤α |x -y| -ν • λ -|α ′ | • |∂ α ′ w(A -1 y)| dy ≤ C α α ′ :|α ′ |≤n+1 λ -|α ′ | |x| λ n+1-|α ′ | + α ′ :n+2≤|α ′ |≤|α| λ -|α ′ | λ max{|α ′ |+D/2+1-r,0} u L 2 (R 2D ,(W r ) 2 ) ≤ C α • λ -(n+1) |x| n+1 • u L 2 (R 2D ,(W r ) 2 ) .
Therefore we obtain

|ξ| ν • |B • L A • M (χ) • T • B * • Ξu(x, ξ)| ≤ C ν λ -(n+1) u L 2 (R 2D ,(W r ) 2 ) • |x| n+1
for arbitrarily large ν. For (x, ξ) on supp W r + = C -(2), we have |x| ≤ 2 |ξ| and hence

W r + (x, ξ) ≤ |ξ| r ≤ C 0 |ξ| r+D/2+1+(n+1) • |x| -D/2-1-(n+1) .
Using this in the last inequality, we get

W r + (x, ξ)|(B • L A • M (χ) • (Id -T n ) • B * • Ξu)(x, ξ)| ≤ C ν λ -(n+1) u L 2 (R 2D ,(W r ) 2 ) |x| -D/2-1 |ξ| -ν+r+D/2+1+(n+1) .
This estimate for sufficiently large ν implies the claim (4.54) in the case σ = +, by Cauchy-Schwarz inequality.

1345

We prove the claim (4.54) for σ = -. The proof is easier than the previous case actually. Note that we have

W r -• Bϕ L 2 (R 2D ) ≤ C 0 • • -r • ϕ(•) L 2 (R D ) .
Hence, from (4.59) with α = ∅, we get

W r -• B • L A • M (χ) • T • B * • Ξ u L 2 (R 2D ) = W r -• B • L A • w L 2 (R 2D ) ≤ C 0 • x -2r x/λ 2(n+1) dx 1/2 • u L 2 (R 2D ,(W r ) 2 ) ≤ C 0 • λ -n-1 • u L 2 (R 2D ,(W r ) 2 ) .
Clearly this implies (4.54) for σ = -.

To finish, it is enough to show

L lift A • T -L lift A • X • T • Ξ L 2 (R 2D ,(W r ) 2 ) ≤ C 0 λ -r | det A|. (4.60) Note the relations 1350 L lift A • T = B • L A • T • B = B • T • L A • B = T • L lift A and L lift A • (Id -X) = B • L A • M (1 -χ) • B * = B • M (1 -χ A ) • L A • B * = (Id -X A ) • L lift A where χ A = χ • A -1 and X A = B • χ A • B * .
Below we will prove the claims

L lift A • (Id -X) L 2 (R 2D ,(W r ) 2 ) ≤ C 0 λ -r | det A| (4.61)
and

L lift A • (Id -Ξ) L 2 (R 2D ,(W r ) 2 ) ≤ C 0 λ -r | det A|. (4.62) Since T = Id-n k=0 T (k) is a bounded operator on L 2 (R 2D , W r
), these claims would imply

L lift A • (Id -X) • T L 2 (R 2D ,(W r ) 2 ) ≤ C 0 • λ -r | det A| and L lift A • X • T • (Id -Ξ) L 2 (R 2D ,(W r ) 2 ) = X A • T • L lift A • (Id -Ξ) L 2 (R 2D ,(W r ) 2 ) ≤ C 0 λ -r | det A|
and therefore the conclusion (4.60) would follow.

1355

We can prove (4.61) and (4.62) by straightforward estimate. Writing the kernel of the operator X A explicitly and applying integration by parts to it, we get the estimate

|(Id -X A )v(x, ξ)| ≤ C ν K (ν) 1 (x, ξ; x ′ , ξ ′ ) • v(x ′ , ξ ′ )dx ′ dξ ′
for arbitrarily large ν, where

K (ν) 1 (x, ξ; x ′ , ξ ′ ) = supp (1-χ A ) |x -y| -ν |y -x ′ | -ν |ξ -ξ ′ | -ν dy.
From the expression (4.18) of the operator L lift A , we also have

|L lift A v(x ′ , ξ ′ )| ≤ C ν d (A) K (ν) 2 (x ′ , ξ ′ ; x ′′ , ξ ′′ )v(x ′′ , ξ ′′ )dx ′ dξ ′
for arbitrarily large ν, where 1360

K (ν) 2 (x ′ , ξ ′ ; x ′′ , ξ ′′ ) = |x ′ -x † | -ν |ξ ′ -ξ † | -ν |A -1 x † -x ′′ | -ν | t Aξ † -ξ ′′ | -ν dx † dξ † .
We have d(A) ≤ |det A| also. From the definition of the function W r and the expanding property (4.33) of A, we have

W r (x † , ξ † ) W r (A -1 x † , t Aξ † ) • |x † -y| -2r ≤ C 0 λ -r if y ∈ supp (1 -χ A ).
Also note that, from the property (4.31) of W r , we have

W r (x, ξ) • |x -y| -2r |y -x ′ | -2r |x ′ -x † | -2r ≤ C 0 • W r (x † , ξ † ) and 1 W r (x ′′ , ξ ′′ ) • |A -1 x † -x ′′ | -2r | t Aξ † -ξ ′′ | -2r ≤ C 0 • 1 W r (A -1 x † , t Aξ † )
.

Summarizing these estimates, we obtain

W r (x, ξ) W r (x ′′ , ξ ′′ ) • K (ν) 1 (x, ξ; x ′ , ξ ′ ; y) • K (ν) 2 (x ′ , ξ ′ ; x ′′ , ξ ′′ )dx ′ dξ ′ ≤ C 0 λ -r • K (ν-2r) 1 (x, ξ; x ′ , ξ ′ ; y) • K (ν-4r) 2 (x ′ , ξ ′ ; x ′′ , ξ ′′ )dx ′ dξ ′ .
By Schur inequality (4.32), the integral operators with the kernels K

(ν-4r) 1 (•) and K (ν-2r) 2 (•)
are bounded operators on L 2 (R 2D ) and the operator norms are bounded by a constant that does not depend on A, provided ν is sufficiently large. Therefore the last estimate implies (4.61). We can prove the claim (4.62) in the same manner.

Resonance of hyperbolic linear prequantum maps

The main result of this section, Proposition 5.11, concerns the spectrum of the prequantum transfer operator for linear hyperbolic symplectic maps.

Prequantum transfer operator on R 2d

In this section, we study prequantum transfer operators and rough Laplacian in a special and easy case: The manifold M is the linear space R 2d with the coordinates

x ≡ (q, p) = q 1 , . . . q d , p 1 , . . . p d ∈ R 2d .

(5.1)

We regard it as a symplectic manifold equipped with the symplectic two form

ω = dq ∧ dp := d i=1 dq i ∧ dp i . (5.2)
The prequantum bundle P is the trivial U(1)-bundle π :

P = R 2d × U(1) → R 2d over R 2d
equipped with the connection one form A = idθi(2π)η where

η = d i=1 1 2 q i dp i - 1 2 p i dq i . (5.
3)

The corresponding curvature two form is then

Θ = -i(2π)(π * ω)
because ω = dη. Under these settings, we may rephrase the construction of the prequantum transfer operator for a symplectic diffeomorphism on R 2d .

Let f : U → U ′ be a symplectic diffeomorphism between two domains U and U ′ in R 2d with respect to the symplectic two form ω. Let f : U × U(1) → U ′ × U(1) be the equivariant lift of f preserving the connection A, that is, the map satisfying the conditions (1.14), (1.15) and (1.16) in Theorem 1.4. Then we define as in (1.19) (but for the set V ≡ 0) the prequantum operator

F : C ∞ (U × U(1)) → C ∞ (U ′ × U(1)), F u(x) = u • f -1 (x)
and let FN : 1)) be its restriction to the space of functions in the N-th Fourier mode. Let

C ∞ N (U × U(1)) → C ∞ N (U ′ × U(
L f : C ∞ (R 2d ) → C ∞ (R 2d )
be the expression of the prequantum transfer operator FN with respect to the trivialization using the trivial section τ 0 : R 2d → P = R 2d ×U(1) defined by τ 0 (x) = (x, 1). This operator L f is the prequantum transfer operator for f : U → U ′ . (Note that L f depends on the integer N ∈ Z and hence on .) We recall its concrete expression obtained in Proposition 2.4.

Proposition 5.1. The operator L f as above is written

(L f u) (x) := e -i A f (f -1 (x)) u f -1 (x) (5.4) 
with the (action) function

A f (x) = γ f * η -η (5.5)
where γ is a path from a fixed point x 0 ∈ U ′ to x.

Prequantum operator for a symplectic affine map on R 2d

Let f : R 2d → R 2d be an affine map preserving the symplectic form ω, written:

f : R 2d → R 2d , f (x) = Bx + b (5.6)
where B : R 2d → R 2d is a linear symplectic map and b ∈ R 2d a constant vector.

Proposition 5.2. The prequantum transfer operator L f for an affine map f as above is written as

L f u (x) := e -i A f (f -1 (x)) u f -1 (x) (5.7)
with the (action) function

A f (x) = 1 2 ω (b, x) .
(5.8)

Remark 5.3. Notice that the function A f in (5.8) does not depend on the linear map B which enters in (5.6).

Proof. Then, for any x = (q, p) ∈ R 2d , using the parametrized path γ (t) = (q ′ (t) , p ′ (t) = (tq, tp) with t ∈ [0, 1] we have

γ η = γ 1 2 (q ′ dp ′ -p ′ dq ′ ) = 1 0 1 2 (tqp -tpq) dt = 0
Therefore for a linear symplectic map f 2 (x) = Bx, the action defined in (5.5) vanishes:

A f 2 (x) = f 2 (x) f 2 (0) η - x 0 η = 0 -0 = 0.
For a translation map f 1 (x) = x+b, using the parametrized path (q ′ (t) , p ′ (t)) = (tq + b q , tp + b p ) with b = (b q , b p ) and t ∈ [0, 1] we have

A f 1 (x) = x+b b η - x 0 η = x+b b 1 2 (q ′ dp ′ -p ′ dq ′ ) = 1 0 1 2 ((tq + b q ) p -(tp + b p ) q) dt = 1 2 (b q p -b p q) = 1 2 ω (b, x)
Finally for the affine map

f (x) = Bx + b = (f 1 • f 2 ) (x)
, the action is

A f = A f 1 + A f 2 • f 1 2 = A f 1 = 1 2 ω (b, x) .
We next consider the lift of the operator L f , Eq.(5.7), with respect to the Bargmann transform B . Following the idea explained in Subsection 2.1, we express it with respect to the coordinates (ν, ζ) introduced in Proposition 2.15. Then, in the next Lemma, we will obtain an expression of L f as a tensor product of two operators: each of the two operators is associated to the dynamics of the canonical map

F = t Df -1 : T * R 2d → T * R 2d of L f in
the directions along and orthogonal to the trapped set K, defined by

K = {(x, ξ) ∈ R 2d | ζ = 0}
in the simple setting we are considering. (See Proposition 2.15.)

Let us write the change of variable given in Proposition 2.15 as

Φ :    q, p x , ξ q , ξ p ξ    ∈ R 2d ⊕ R 2d →    ν q , ν p ν , ζ p , ζ q ζ    ∈ R 2d ⊕ R 2d .
(5.9)

It maps the standard symplectic form

Ω 0 = dx ∧ dξ on R 2d ⊕ R 2d to (DΦ * ) -1 (Ω 0 ) = dν q ∧ dν p + dζ p ∧ dζ q
and the metric

g 0 = 1 2 dx 2 + 2dξ 2 (5.10)
on R 2d ⊕ R 2d (g 0 is the metric induced by g on T * R 2d as explained in Section 3.2.1) to the standard Euclidean metric on R 2d ⊕ R 2d :

(DΦ * ) -1 (g 0 ) = dν 2 + dζ 2 .
Remark 5.4. With the choice of metric g 0 , in (5.10), the linear subsets K and K ⊥ω are Ω 0 -symplectic orthogonal but are also g 0 -orthogonal.

The unitary operator associated to the coordinate change Φ is defined as

Φ * : L 2 R 2d ν ⊕ R 2d ζ → L 2 R 2d x ⊕ R 2d ξ , (Φ * u) := u • Φ.
Here (and henceforth) we make the convention that the subscript in the notation such as R 2d ν indicates the name of the coordinates on the space. We define the operators

B νq : L 2 R d νq → L 2 R 2d (νq,νp) and B * νq : L 2 R 2d (νq,νp) → L 2 R d νq
as the Bargmann transform B and its adjoint B * in Subsection 4.1 for the case D = d. We define 

B ζp : L 2 R d ζp → L 2 R 2d
B x : L 2 R 2d x → L 2 R 4d (x,ξ) and B * x : L 2 R 4d (x,ξ) → L 2 R 2d x by B x := σ-1 • B • σ and B * x := σ -1 • B * • σ (5.11)
where B and B * are now those in the case D = 2d, and

σ : L 2 (R 2d x ) → L 2 (R 2d x ) and σ : L 2 (R 4d (x,ξ) ) → L 2 (R 4d (x,ξ) ) are simple unitary operators defined by σu(x) = 2 -d u(2 -1/2 x) and σv(x, ξ) = v(2 -1/2 x, 2 1/2 ξ)
introduced in relation to the additional factor 1/2 in (5.10). Correspondingly we set

P x = B x • B * x = σ-1 • P • σ.
(5.12)

Remark 5.5. (1) In terms of the (generalized) Bargmann transforms considered in Subsection 4.1.3, the operators B x and B * x are the Bargmann transform and its adjoint for the combination of the Euclidean space E = R 4d , the standard symplectic form Ω 0 = dx ∧ dξ, the metric g 0 = 1 2 dx 2 + 2dξ 2 and the Lagrangian subspace R 2d

x . Since the metric g 0 corresponds to the standard Euclidean metric through Φ, the definition of the operators B x , B *

x and P x above is more convenient and natural for our argument than those without σ and σ. Indeed we have

P * x • Φ * = Φ * • (P νq ⊗ P ζp ) * .
(5.13)

(2) In the notation introduced above, the subscripts indicate the related coordinates. Though this may deviate from the standard usage, it is convenient for our argument. Notice that the operators introduced above, such as B x , depend on the parameter (and hence on N).

Lemma 5.6. Let L f be the prequantum transfer operator (5.7) associated to a symplectic affine map in (5.6). Then the following diagram commutes:

L 2 R 2d x L f ---→ L 2 R 2d x  U  U L 2 R d νq ⊗ L 2 R d ζp Mν (f )⊗M ζ (B) --------→ L 2 R d νq ⊗ L 2 R d ζp (5.14)
where U, M ν (f ) and M ζ (B) are the unitary operators defined respectively by

U : L 2 R d νq ⊗ L 2 R d ζp → L 2 R 2d x , U =B * x • Φ * • B νq ⊗ B ζp , (5.15) 
M ν (f ) : L R d νq → L 2 R d νq , M ν (f ) = d (B) • B * νq • (e i 2 ω(ν,b) • L f ) • B νq , M ζ (B) : L 2 R d ζp → L 2 R d ζp , M ζ (B) = d (B) • B * ζp • L B • B ζp with d (B) = det ((1 + t B • B) /2) 1/2 , (L f u) (ν) := (u • f -1 ) (ν) and L B u = u • B -1 as before.
Equivalently, in terms of lifted operators, we have the following commuting diagram:

L 2 R 2d x ⊕ R 2d ξ L lift f ---→ L 2 R 2d x ⊕ R 2d ξ  Φ *  Φ * L 2 R 2d ν ⊗ L 2 R 2d ζ M lift ν (f )⊗M lift ζ (B) ----------→ L 2 R 2d ν ⊗ L 2 R 2d ζ (5.16)
Proof. Recall the operators ♭ : R 2d → (R 2d ) * = R 2d and ♯ : (R 2d ) * = R 2d → R 2d introduced in Remark 2.17. The expression (5.7) shows that L f can be written

L f = T ( b,-1 2 b ♭ ) • L B
where the unitary transfer operator T (b,- 

L f = B * x • T (b,-1 2 b ♭ ) • B x • (d(B) • B * x ) • L B⊕ t B -1 • B x = d(B) • B * x • T (b,-1 2 b ♭ ) • B x • B * x • L B⊕ t B -1 • B x = d(B) • B * x • (e i 2 ϕ • L F ) • B x (5.17) with F (x, ξ) = Bx + b, t B -1 ξ -1 2 b ♭ and ϕ(x, ξ) = -1 2 b ♭ • x -b • ξ. Since we have t B -1 = ♭ • B•♭ -1
for B symplectic, we get the following expression of F in the new coordinates (ν, ζ):

Φ • F • Φ -1 (ν, ζ) = Bν + b, t B -1 ζ = f (ν) , t Df -1 ζ .

This implies

L F = Φ * • (L f ⊗ L B ) • (Φ * ) -1 .
From (5.13), we have

B * x • Φ * = B * x • P x • Φ * = B * x • Φ * • (P νq ⊗ P ζp ) = U • (B νq ⊗ B ζp ) * and (Φ * ) -1 • B x = (Φ * ) -1 • P x • B x = (P νq ⊗ P ζp ) • (Φ * ) -1 • B x = (B νq ⊗ B ζp ) • U -1 .
Using these relations to continue (5.17) and noting that ϕ (x, ξ) = ω(ν, b), we conclude

L f = d(B) • B * x • e i 2 ϕ L F • B x = d(B) • B * x • Φ * • e i 2 ϕ L f ⊗ L B • (Φ * ) -1 • B x = d(B) • U • B * νq • (e i 2 ϕ • L f ) • B νq ⊗ B * ζp • L B • B * ζp • U -1 = U • (M ν (f ) ⊗ M ζ (B)) • U -1 .
Remark 5.7. Eq. (5.14) shows that L f is conjugated to the product of two operators

M ν (f )⊗ M ζ (B)
. This is remarkable but it is due here to the fact that Df is constant. Each of these operators is usually called a metaplectic operator, we refer to [START_REF] Folland | Harmonic Analysis in phase space[END_REF]. Here we have used a derivation in phase space using the Bargmann transform.

The prequantum transfer operator for a linear hyperbolic map

In this subsection, we restrict the argument in the last subsection to the case where f in (5.6) is hyperbolic in the sense that f is expanding in R d ⊕ {0} while contracting in {0} ⊕ R d and is linear, i.e. b = 0. Since f preserves the symplectic form ω, we may express it as (see last remark in the proof of Proposition 2.18)

f (q, p) = B(q, p) = Aq, t A -1 p where B = A 0 0 t A -1
(5.18)

with A : R d → R d an expanding linear map satisfying A -1 ≤ 1/λ for some λ > 1. Notice that, since b = 0, the action A vanishes in (5.7) and the prequantum transfer operator gets the simpler expression:

(L f u) (x) = u B -1 x = L B u (x) . (5.19)
The next proposition is deduced from Proposition 5.6.

Proposition 5.8. The following diagram commutes:

L 2 R 2d x L f ---→ L 2 R 2d x  U  U L 2 R d νq ⊗ L 2 R d ζp U A ⊗U A ----→ L 2 R d νq ⊗ L 2 R d ζp (5.20)
with the unitary operator U defined in (5.15) and

U A := 1 |detA| L A
which is unitary in L 2 R d . Equivalently using lifted operators, expressed in Lemma 4.8, we have the following commuting diagram:

L 2 R 2d x ⊕ R 2d ξ L lift f ---→ L 2 R 2d x ⊕ R 2d ξ  Φ *  Φ * L 2 R 2d ν ⊗ L 2 R 2d ζ U lift A ⊗U lift A ------→ L 2 R 2d ν ⊗ L 2 R 2d ζ (5.21) with U lift A := 1 √ |detA| L lift A .
Proof. We have

d(B) = det 1 + t B • B /2 1/2 = det 1 2 B + t B -1 1/2 = det 1 2 A + t A -1 = (detA) -1 and L f = L B = L A⊕ t A -1 .
Hence, by the expression (4.15), we get

M ν (f ) := d (B) • B * νq • (e i 2 ω(ν,b) • L f ) • B νq = (detA) -1/2 d (A) • B * νq • L A⊕ t A -1 • B νq = U A and M ζ (B) := d (B) • B * ζp • L B • B ζp = (detA) -1/2 d (A) • B * ζp • L A⊕ t A -1 • B ζp = U A .
Putting these in Proposition 5.6, we obtain the conclusion.

Anisotropic Sobolev space

In order to observe a discrete spectrum of resonances of the prequantum operator L f , we have to consider the action of L f on an appropriate spaces of functions. As we explained in subsection 2.1.3, we define such space of function, called anisotropic Sobolev space, by changing the norm in the directions transverse to the trapped set K (that is, in the directions of the variables ζ ). Below is the precise definition.

Definition 5.9. We define the escape function or weight function

W r : R 2d x ⊕ R 2d ξ → R + and W r,± : R 2d x ⊕ R 2d ξ → R + by W r (x, ξ) := W r (ζ p , ζ q ) and W r,± (x, ξ) := W r (ζ p , ζ q ) (5.22)
where the functions W r and W r,± are defined in Definition 4.12, and (ζ p , ζ q ) is part of the coordinates introduced in (5.9). The anisotropic Sobolev space H r R 2d is the Hilbert space obtained as the completion of the Schwartz space S(R 2d ) with respect to the norm

u H r := W r • B x u L 2
where B x is the operator defined in (5.11). Similarly, let H r,± (R 2d ) be the Hilbert space defined in the parallel manner by replacing W r (•) by W r,± (•).

By definition, the operator B x extends to an isometric embedding

B x : H r (R 2d x ) → L 2 (R 2d x ⊕ R 2d ξ , (W r ) 2 ).
Since the weight function W r (•) can be expressed as

W r = (1 ⊗ W r ) • Φ,
where Φ is given in (5.9), we see that the following diagram commutes:

H r R 2d x L f ---→ H r R 2d x   Bx   Bx L 2 R 2d x ⊕ R 2d ξ , (W r ) 2 L lift ---→ L 2 R 2d x ⊕ R 2d ξ , (W r ) 2  Φ *  Φ * L 2 R 2d ν ⊗ L 2 R 2d ζ , (W r ) 2 U lift A ⊗U lift A ------→ L 2 R 2d ν ⊗ L 2 R 2d ζ , (W r ) 2   Bν q ⊗B ζp   Bν q ⊗B ζp L 2 R 2d νq ⊗ H r R d ζp U A ⊗U A ----→ L 2 R 2d νq ⊗ H r R d ζp (5.23)
where Φ * is an isomorphism between Hilbert spaces. Further (5.13) is an isomorphism between the image ofB x and the image of B νq ⊗ B ζp . H r R d ζp in the last line is defined in Definition 4.18. Hence, skipping the lines in the middle, we get:

H r R 2d x L f ---→ H r R 2d x  U  U L 2 R 2 νq ⊗ H r R d ζp U A ⊗U A ----→ L 2 R 2 νq ⊗ H r R d ζp (5.24)
with U the unitary operator defined in (5.15). For the operator U A ⊗ U A on the bottom line, we know that the operator

U A = 1 √ |detA| L A : L 2 R 2d νq → L 2 R 2d
νq is unitary and Proposition 4.19 gives a description on the spectral structure of the operator

L A : H r R d ζp → H r R d ζp .
Therefore we obtain the next proposition as a consequence. We fix some integer n ≥ 0 and assume r > n + 2d.

(5.25)

This assumption on r corresponds to (4.40) in the last section.

Definition 5.10. For 0 ≤ k ≤ n, we consider the projection operators

t (k) := U • Id ⊗ T (k) • U -1 : H r R 2d x → H r R 2d x (5. 26 
)
and

t := Id - n k=0 t (k) = U • Id ⊗ T • U -1 : H r R 2d x → H r R 2d x (5.27)
where T (k) and T are the projection operators introduced in (4.36) and (4.49) respectively.

Proposition 5.11. The operators t (k) , 0 ≤ k ≤ n, and t defined in (5.26), (5.27), form a complete set of mutually commutative projection operators on H r R 2d

x . These operators also commute with the prequantum transfer operator L f defined in (5.19). Consequently the space H r R 2d

x has a decomposition invariant under the action of L f :

H r R 2d x = H ′ 0 ⊕ H ′ 1 ⊕ • • • ⊕ H ′ n ⊕ H ′ where H ′ k = Im t (k) and H ′ = Im t
For this decomposition we have

(1) For every 0 ≤ k ≤ n, we have a commuting diagram

H ′ k L f ---→ H ′ k  U  U L 2 R 2 νq ⊗ Polynom (k) U A ⊗U (k) A -----→ L 2 R 2 νq ⊗ Polynom (k) with U A = 1 √ |detA| L A : L 2 R 2d νq → L 2 R 2d νq unitary and U (k) A := 1 √ |detA| L A : Polynom (k) → Polynom (k) finite rank. From (4.50) we have for every u ∈ H ′ k , C -1 0 A -k max • | det(A)| -1/2 • u H r ≤ L f u H r ≤ C 0 A -k min • | det(A)| -1/2 • u H r .
(2) The operator norm of L f : H ′ → H ′ is bounded by

C 0 • max{ A -n-1 min • | det A| -1/2 , A -r min • | det A| 1/2 }.
The constant C 0 is independent of A and .

A few technical lemmas

In this subsection, we collect a few miscellaneous technical lemmas related to the anisotropic Sobolev spaces H r (R 2d ) and H r,± (R 2d ), which we will use in the later sections. The following are immediate consequences of Lemma 4.15 and 4.16 respectively.

Lemma 5.12. Suppose that f is a hyperbolic linear transformation (5.18) defined for an expanding linear map A satisfying (4.33) for some large λ (say λ > 9). Then the operator L f , (5.19), extends to a bounded operator

L f : H r,-(R 2d ) → H r,+ (R 2d
) and the operator norm is bounded by a constant independent of > 0 and f .

Corollary 5.13. The operator t (k) for 0 ≤ k ≤ n, defined in (5.26), extends to a bounded operator

t (k) : H r,-(R 2d ) → H r,+ (R 2d )
whose operator norm is bounded by a constant independent of .

For convenience in the later argument, let us put the following definition:

Definition 5.14. Let A be the group of affine transformation on R 2d that preserves the symplectic form ω, the Euclidean norm and its derivative preserves the splitting

R 2d = R d ⊕ R d simultaneously.
The function W r , (5.22), is invariant with respect to the transformation (a, t Da -1 ) on T * R 2d = R 2d × R 2d when a ∈ A. This fact, together with Lemma 4.8, yields Lemma 5.15. If a ∈ A, then the prequantum operator L a , defined in (5.7) extends to an isometry on H r (R 2d ).

The norm • H r on the Hilbert space H r (R 2d ) is induced by a (unique) inner product (•, •) H r (R 2d ) . Notice that even if two distributions u and v in H r (R 2d ) have mutually disjoint supports, the inner product (u, v) H r (R 2d ) may not vanish. This is somewhat inconvenient. But we have the following "pseudo-local " property. We omit the proof because it can be given by a straightforward estimate.

Lemma 5.16. Let ǫ > 0. If d(supp u, supp v) ≥ (1-ǫ)/2 for u, v ∈ H r (R 2d ), we have |(u, v) H r (R 2d ) | ≤ C ν,ǫ • ν • u H r (R 2d ) v H r (R 2d ) for u, v ∈ H r (R 2d )
for arbitrarily large ν, with C ν,ǫ > 0 a constant depending on ǫ and ν.

From the definition of the function W r (•) and (4.30), we have

W r (x, ξ) ≤ C • W r (y, η) • -1/2 |(x, ξ) -(y, η)| 2r .
(5.28)

The next lemma and corollary are direct consequences of this estimate. The proof is completely parallel to that of Lemma 4.13.

Lemma 5.17.

If R : S(R 2d ⊕ R 2d ) → S(R 2d ⊕ R 2d
) is an integral operator of the form

(R u) (x, ξ) = K (x, ξ; x ′ , ξ ′ )u(x ′ , ξ ′ )dx ′ dξ ′
depending on and if the kernel

K (•; •) is a continuous function satisfying |K (x, ξ; x ′ , ξ ′ )| ≤ -1/2 • |(x, ξ) -(x ′ , ξ ′ )| -ν
for some ν > 2r + 4d, then the operator R extends uniquely to a bounded operator on

L 2 (R 2d ⊕ R 2d , (W r ) 2 ) and R L 2 (R 2d ⊕R 2d ,(W r ) 2 ) ≤ C ν
where C ν is a constant independent of . The same holds true with W r replaced by W r,± simultaneously.

Corollary 5.18. The Bargmann projector P extends uniquely to a bounded operator on L 2 (R 2d ⊕ R 2d , (W r ) 2 ) and its operator norm is bounded by a constant that does not depend on > 0. The same holds true with W r replaced by W r,± simultaneously.

6 Nonlinear prequantum maps on R 2d

In this section, we prepare some basic estimates on the effect of non-linearity of the Anosov diffeomorphism f on the anisotropic Sobolev space H r (R 2d ). Most of the results in this section may be rather obvious at least for those readers who are familiar with Fourier analysis. However we have to be attentive to the following particular situations in our argument:

• The escape function W r in the definition of the anisotropic Sobolev space H r (R 2d ) has variable growth order m(•) depending on the directions. This leads to the fact that the (prequantum) transfer operator associated to a non-linear map may be unbounded even if the map is very close to the identity.

• The spectral projection operators t (k) in Proposition 5.11 is also very anisotropic and rather singular. It is not well-defined (bounded) on any usual (isotropic) Sobolev spaces of positive or negative order.

• The escape function W r is not very smooth, viewed at the scale (∼ 1/2 ) of the smallest-possible wave packets in the phase space. In terms of the theory of pseudodifferential operators, this implies that the escape function W r belongs only to the symbol class of "critical order". We have to avoid carefully the difficulties caused by this fact.

For these reasons, we are going to give the argument to some detail. The main result in this section is Proposition 6.19, which concerns the third item above.

Recall that the stable and unstable subspaces E s (x) and E u (x) for the Anosov diffeomorphism f depend on the point x ∈ M not smoothly but only Hölder continuously. We let 0 < β < 1 be the Hölder exponent. (See Remark 1.2(1) page [START_REF] Berman | Asymptotics for bergman-hodge kernels for high powers of complex line bundles[END_REF] In what follows, we fix a small positive constant θ such that

0 < θ < β/8. (6.1) 
The open ball of radius c > 0 on R 2d is denoted by

D (c) = x ∈ R 2d | |x| < c .

Truncation operations in the real space

We first consider the operation of truncating functions in the (real) space R 2d

x by multiplying smooth functions with small supports. Below we consider the following setting:

Setting I: For each > 0, there is a given set X of C ∞ functions on R 2d such that, for all ψ ∈ X and > 0,

(C1) the support of ψ is contained in the disk D C * 1/2-θ and (C2) |∂ α x ψ(x)| < C α -( 1 2 -θ)|α| for each multi-index α ∈ N 2d ,
where C * > 0 and C α > 0 are constants independent of ψ ∈ X and > 0.

In the next section, we will consider a few specific sets of functions as X and apply the argument in this section to them. Remark 6.1. The condition above on X is equivalent to the condition that the normalized family

X = ϕ (x) = ψ 1/2-θ x ∈ C ∞ R 2d ψ ∈ X for > 0 (6.2)
are uniformly bounded in the (uniform) C ∞ topology and supported in a fixed bounded subset of R 2d .

Recall the transformations

B x : L 2 R 2d x → L 2 R 2d x ⊕ R 2d ξ , B * x : L 2 R 2d x ⊕ R 2d ξ → L 2 R 2d x and P x := B * x • B x : L 2 R 2d x ⊕ R 2d ξ → L 2 R 2d x ⊕ R 2d ξ ,
which are defined in (5.11) and (5.12) as slight modifications of the Bargmann transform B , its adjoint B * and the Bargmann projector P in the case D = 2d. Notice that the operators B x , B * x and P x depend on the parameter (and hence on N). Below we write M (ϕ) for the multiplication operator by a function ϕ. Since 1/2-θ ≫ 1/2 for small , the functions in X are very smooth (or flat) viewed in the scale of the wave packet φ x,ξ (•) used in the Bargmann transform B . This observation naturally leads to the following few statements.

For each ψ ∈ X , let

M lift (ψ) = B x •M (ψ)•B *
x be the lift of the multiplication operator M (ψ) with respect to the (modified) Bargmann transform B x . Then it is approximated by the multiplication by the function ψ • π with π (x, ξ) := x. Lemma 6.2. There exists a constant C > 0 such that, for any > 0 and ψ ∈ X , we have

M lift (ψ) -M (ψ • π) • P x L 2 (R 2d ⊕R 2d ,(W r ) 2 ) < C θ (6.3) and M lift (ψ) -P x • M (ψ • π) L 2 (R 2d ⊕R 2d ,(W r ) 2 ) < C θ .
Consequently we have

[P x , M (ψ • π)] L 2 (R 2d ⊕R 2d ,(W r ) 2 ) < C θ (6.4)
where [A, B] denotes the commutator of two operators:

[A, B] = A • B -B • A.
The same statement holds true with W r replaced by W r,± .

Proof. The kernel of the operator

M lift (ψ) -M (ψ • π) • P x = B x • M (ψ) • B * x -M (ψ • π) • B x • B * x is written K(x, ξ; x ′ , ξ ′ ) = (2π ) -d e (i/ )(ξ(y-x)-ξ ′ (x ′ -y)) • e -|y-x| 2 /4 -|y-x ′ | 2 /4 (ψ(y) -ψ(x))dy.
We apply integration by parts, using the differential operator

L = 1 -i(ξ -ξ ′ )∂ y 1 + -1 (ξ -ξ ′ ) 2 ,
which satisfies L ν e (i/ )(ξ(y-x)-ξ ′ (x ′ -y)) = e (i/ )(ξ(y-x)-ξ ′ (x ′ -y)) for ν times. Then we get

K(x, ξ; x ′ , ξ ′ ) = (2π ) d e (i/ )(ξ(y-x)-ξ ′ (x ′ -y)) • ( t L) ν e -|y-x| 2 /4 -|y-x ′ | 2 /4 (ψ(y) -ψ(x)) dy where t L = (1 -i(ξ -ξ ′ )∂ y )/(1 + -1 (ξ -ξ ′ ) 2
) is the transpose of L. Using the conditions (C1) and (C2) on the family X and, in particular, the estimate

|ψ(x) -ψ(y)| • -1/2 |x -y| -1 < C θ (6.5)
that follows from the condition (C2), we see that the integrand is bounded in absolute value by

C θ • -1/2 |ξ -ξ ′ | -ν • -1/2 |x -y| -ν • -1/2 |x ′ -y| -ν .
Hence, letting ν large, we obtain

|K(x, ξ; x ′ , ξ ′ )| ≤ C θ • -1/2 |ξ -ξ ′ | -ν • -1/2 |x -x ′ | -ν .
This estimate for sufficiently large ν and Lemma 5.17 give the first inequality (6.3). We can get the second inequality in the same manner.

Corollary 6.3. The multiplication operator M (ψ) by ψ ∈ X extends to a bounded operator on H r (R 2d ) and, for the operator norm, we have M (ψ) H r (R 2d ) < ψ ∞ + C θ for all ψ ∈ X , with a constant C > 0 independent of and ψ.

Proof. From the commutative diagram (4.12), the operator norm of M (ψ) : H r (R 2d ) → H r (R 2d ) coincides with that of the operator

M lift (ψ) : L 2 (R 2d ⊕ R 2d , (W r ) 2 ) → L 2 (R 2d ⊕ R 2d , (W r ) 2 )
restricted to the image of

B x : H r (R 2d ) → L 2 (R 2d ⊕ R 2d , (W r ) 2
). Hence the claim follows from Lemma 6.2.

Corollary 6.4. There exists C > 0, such that for every > 0, for u, v ∈ H r (R 2d ) and ψ ∈ X we have

(u, ψ • v) H r (R 2d ) -(ψ • u, v) H r (R 2d ) ≤ C θ • u H r (R 2d ) • v H r (R 2d )
where O( θ ) denotes a term whose absolute value is bounded by C θ with Proof. This is a consequence of the equality

(u, ψ • v) H r (R 2d ) = (B x u, M lift (ψ) • B x v) L 2 (R 2d ⊕R 2d ,(W r ) 2 ) = (B x u, M (ψ • π) • B x v) L 2 (R 2d ⊕R 2d ,(W r ) 2 ) + O( θ ) • u H r (R 2d ) • v H r (R 2d )
and the parallel estimate for (ψ • u, v) H r (R 2d ) , which follow from Lemma 6.2.

Remark 6.5. The statements of Corollary 6.3 and Corollary 6.4 above hold true with H r (R 2d ) replaced by H r,± (R 2d ) and the proofs are completely parallel. This is the case for a few statements ( Lemma 6.15, Proposition 6.19, Lemma 6.22 and Corollary 6.23, precisely) in this section.

Next we recall the projection operators t (k) for 0 ≤ k ≤ n in (5.26) and t in (5.27). We henceforth assume r > n + 2 + 4d (

for the choice of r. (This is a little more restrictive than (5.25).) Lemma 6.6. There exists a constant C > 0 such that for any > 0, ψ ∈ X and

0 ≤ k ≤ n, M (ψ), t (k) H r,-(R 2d )→H r,+ (R 2d ) < C θ
Proof. From (5.13) and the definition of the operator t (k) , we have

M (ψ) • t (k) = B * x • M lift (ψ) • B x • U • (Id ⊗ T (k) ) • U -1 = B * x • M lift (ψ) • Φ * • (B νq ⊗ B ζp ) • (Id ⊗ T (k) ) • (B * νq ⊗ B * ζp ) • (Φ * ) -1 • B x = B * x • M lift (ψ) • Φ * • (P νq ⊗ T (k) ) • (Φ * ) -1 • B x
and, similarly

t (k) • M (ψ) = B * x • Φ * • (P νq ⊗ T (k) ) • (Φ * ) -1 • M lift (ψ) • B x .
Thus, from Lemma 6.2, it is enough to show that

M (ψ • π), Φ * • (P νq ⊗ T (k) ) • (Φ * ) -1 L 2 (R 2d ⊕R 2d ,(W r,-) 2 )→L 2 (R 2d ⊕R 2d ,(W r,+ ) 2 ) < C θ . (6.7) 
From Proposition 4.3 and Lemma 4.16 page 70, if we write K(x, ξ; x ′ , ξ ′ ) for the kernel of the operator

Φ * • (P νq ⊗ T (k) ) • (Φ * ) -1 , it satisfies W r,+ (x, ξ) W r,-(x ′ , ξ ′ ) |K(x, ξ; x ′ , ξ ′ )| (6.8) ≤ C ν -1/2 |ν q -ν ′ q | -ν -1/2 |ν p -ν ′ p | -ν -1/2 |(ζ p , ζ q )| -(r-k) -1/2 |(ζ ′ p , ζ ′ q )| -(r-k) (6.9) ≤ C ′ ν -1/2 |(ν q , ν p ) -(ν ′ q , ν ′ p )| -ν -1/2 |(ζ p , ζ q ) -(ζ ′ p , ζ ′ q )| -(r-k) (6.10)
for arbitrarily large ν > 0, where C ν , C ′ ν > 0 are constants independent of . The variables

ν q , ν p , ζ q , ζ p (resp. ν ′ q , ν ′ p , ζ ′ q , ζ ′ p ) are the coordinates for (x, ξ) (resp. (x ′ , ξ ′ )) introduced in
(5.9) and | • | denotes the Euclidean norms. The kernel K(x, ξ; x ′ , ξ ′ ) of the commutator in (6.7) is then

K(x, ξ; x ′ , ξ ′ ) = (ψ(x) -ψ(x ′ )) • K(x, ξ; x ′ , ξ ′ ).
By (6.10) with sufficiently large ν and (6.5), we get

W r,+ (x, ξ) W r,-(x ′ , ξ ′ ) | K(x, ξ; x ′ , ξ ′ )| ≤ C θ • -1/2 |(x, ξ) -(y, η)| -(r-k-1) .
Hence we obtain the required estimate by Schur inequality (69), noting that rk -1 ≥ rn -1 > 4d from the assumption (6.6).

Corollary 6.7. There exists a constant C > 0, such that

M (ψ), t (k) H r (R 2d ) < C θ for 0 ≤ k ≤ n and M (ψ), t H r (R 2d ) < C θ for any ψ ∈ X .
Proof. The former claim is an immediate consequence of the last lemma. Since t = Id -n k=0 t (k) by definition, the latter claim follows.

Localization of the projection operator t (k) and estimates on trace norm

We consider the operator t

(k) : H r (R 2d x ) → H r (R 2d 
x ) defined in (5.26). We write t (k) = |α|=k t (α) with setting (as in (5.26)):

t (α) := U • Id |L 2 (R d νq ) ⊗ T (α) • U -1 : H r R 2d x → H r R 2d x for a multi-index α ∈ N d . Here U =B * x • Φ * • B νq ⊗ B ζp is the operator defined in (5.15) and T (α) : H r R d ζp → H r R d ζp
is the rank one projector defined in (4.45).

The next Lemma decomposes the projector t (α) as an integral of localized rank one projectors. Below • Tr denotes the trace norm of an operator on H r R 2d

x . Lemma 6.8. For ν ∈ R 2d , let

πα (ν) := U • ., φ νq,νp ⊗ φ νq,νp , . ⊗ T (α) • U -1 : H r R 2d x → H r R 2d x (6.11)
where φ νq,νp is the wave packet defined in (4.1) and ., φ νq,νp ⊗ φ νq,νp , . : L 2 (R d νq ) → L 2 (R νq ) denotes the rank one projection operator defined by ., φ νq,νp ⊗ φ νq,νp , . u = φ νq,νp , u L 2 • φ νq,νp .

The operator πα (ν) is a rank one projector satisfying πα (ν) Tr ≤ πα (ν) H r (R 2d ) ≤ C with C independent of , and depends smoothly on ν ∈ R 2d . We have (in strong operator topology)

t (α) = R 2d πα (ν) dν (2π ) d (6.12)
Proof. We have

t (α) = U • Id |L 2 (R d νq ) ⊗ T (α) • U -1 (6.13) = U • B * νq B νq ⊗ T (α) • U -1 Since B * νq B νq = R 2d
., φ νq,νp ⊗ φ νq,νp , . dν (2π ) d we get (6.12).

The next lemma gives an estimate on the lift of the localized projection operator πα (ν) with respect to the Bargmann transform. Lemma 6.9. The lifted operator B x • πα (ν) • B *

x is written as an integral operator

(B x • πα (ν) • B * x ) u(x 1 , ξ 1 ) = K(x 1 , ξ 1 ; x 2 , ξ 2 )u(x 2 , ξ 2 ) dx 2 dξ 2 (2π ) d .
The kernel satisfies

W r (x 1 , ξ 1 ) W r (x 2 , ξ 2 ) • |K(x 1 , ξ 1 ; x 2 , ξ 2 )| ≤ C m -1/2 |ν 1 -ν| -m • -1/2 |ν 2 -ν| -m • -1/2 |ζ 1 | -(r-k) • -1/2 |ζ 2 | -(r-k)
for arbitrarily large m > 0 with a uniform constant C m > 0, where

(ν 1 , ζ 1 ) (resp. (ν 2 , ζ 2 ))
is the coordinates of (x 1 , ξ 1 ) (resp. (x 2 , ξ 2 )) defined in Proposition 2.15. (Note that rk ≥ 4d + 2 from the choice of r in (6.6).)

Proof. Since we have the expression (6.13) of the operator πα (ν), the conclusion readily follows from Lemma 4.16 and Proposition 4.3.

Lemma 6.10. For ψ ∈ X and α ∈ N d , the operator

M (ψ) • t (α) : H r (R 2d x ) → H r (R 2d 
x ) is a trace class operator. We have the following estimates on the operator norm and the trace class norm (as operators on H r (R 2d )): There exists a constant C > 0, independent of ψ ∈ X , > 0 and α ∈ N d , such that

M (ψ) • t (α) - R 2d ψ (ν) πα (ν) dν (2π ) d H r (R 2d ) ≤ C θ (6.14) M (ψ) • t (α) - R 2d ψ (ν) πα (ν) dν (2π ) d Tr ≤ C -2θd+θ (6.15)
with πα (ν) defined in (6.11). The same statement holds true for t (α) • M (ψ).

Proof. Let ψ ∈ X . We have

M (ψ) • t (α) - R 2d ψ (ν) πα (ν) dν (2π ) d = (6.12) R 2d (M (ψ) -ψ (ν)) πα (ν) dν (2π ) d
Let T (ν) := (M (ψ)ψ (ν)) πα (ν) for every ν ∈ R 2d . From Lemma 6.9 on the kernel of the lift of πα (ν), we deduce the estimates

(T (x)) * T (y) H r (R 2d ) ≤ C m θ |x -y| √ -m , T (x) (T (y)) * H r (R 2d ) ≤ C m θ |x -y| √ -m
(6.16) for any m > 0 with a constant C m uniform for x, y ∈ M and > 0.

We have from (6.16) that

sup x R 2d (T (x)) * T (y) 1/2 H r (R 2d ) dµ (y) ≤ C θ , sup x R 2d T (x) (T (y)) * 1/2 H r (R 2d ) dµ (y) ≤ C θ with setting dµ (ν) := dν (2π ) d .

We now apply the integral version of the Cotlar-Stein

Lemma 15 to the integral R 2d T (ν) dµ (ν) of operators and deduce that This gives (6.14). It is easy to get (6.15). Since (M (ψ)ψ (ν)) πα (ν) is a rank one operator, we have (M (ψ)ψ (ν)) πα (ν) Tr = (M (ψ)ψ (ν)) πα (ν) and therefore we get (6.15) from the triangle inequality.

R 2d (M (ψ) -ψ (ν)) πα (ν) dν (2π ) d H r (R 2d ) = R 2d T (ν) dµ (ν) H r (R 2d ) ≤ C θ .
Corollary 6.12. There exists a constant C > 0, independent of ψ ∈ X , > 0 and

0 ≤ k ≤ n, such that Tr M (ψ) • t (k) - r(k, d) (2π ) d ψ dx ≤ C -2θd+θ M (ψ) • t (k) Tr ≤ C (2π ) d |ψ| dx
We can get the following statements by slightly modifying the argument in the proof of Lemma 6.10. Corollary 6.13. There exists a constant C > 0, such that, for 0 ≤ k ≤ n and ψ ∈ X ,

M (ψ) • t (k) : H r,-(R 2d ) → H r,+ (R 2d ) T r ≤ C (2π ) d |ψ| dx + C -θd+θ
Corollary 6.14. There exists a constant C > 0, such that

M (ψ), t (k) : H r,-(R 2d ) → H r,+ (R 2d ) T r < C -θd+θ for 0 ≤ k ≤ n
for any ψ ∈ X .

Truncation operations in the phase space

In order to truncate functions in the phase space T * R 2d = R 2d x ⊕ R 2d ξ , we consider the smooth function

Y : T * R 2d → [0, 1], Y (x, ξ) = χ( 2θ-1/2 |(x, ξ)|) (6.17)
with χ : R → [0, 1] a C ∞ function satisfying (4.53), and then introduce the operator

Y : L 2 (R 2d ) → L 2 (R 2d ), Y = B * x • M (Y ) • B x . (6.18)
Note that the size (∼ 1/2-2θ ) of the support of the function Y is much larger than the size (∼ 1/2-θ ) of the region on which the Bargmann transform of the functions in X concentrates in Setting I page 92, when > 0 is small.

First of all, we show

Prequantum transfer operators for non-linear transformations close to the identity

In this subsection, we study the Euclidean prequantum transfer operators for diffeomorphisms defined on small open subsets on R 2d and close to the identity map. Roughly we show that the action of those prequantum operators are close to the identity as an operator on H r (R 2d ), though this is not true in the literal sense.

In this subsection, we consider the following setting in addition to Setting I page 92:

Setting II: For every > 0, there exists a given set G of C ∞ diffeomorphisms

g : D( 1/2-2θ ) → g(D( 1/2-2θ )) ⊂ R 2d
such that every g ∈ G satisfies (G1) g is symplectic with respect to the symplectic form ω in (5.2), (G2) g(0) = 0 and Dg(0) -Id < C β(1/2-θ) , and

(G3) |∂ α g| < C α for any multiindices α.
where C and C α are positive constants that does not depend on nor g ∈ G .

Remark 6.17. In the next section we will consider a few different sets of diffeomorphisms as G and apply the argument below. At this moment, the meaning of the bound C β(1/2-θ) in the condition (G2) may not be clear. This is a consequence of the fact that the hyperbolic splitting (1.1) is β-Hölder continuous. The reason will become clear when we introduce a family of local coordinates on M in the beginning of the next section.

For g ∈ G , we consider the Euclidean prequantum transfer operator L g defined in Subsection 5.1. Recall from Proposition 5.1 that this operator is of the form

L g : C ∞ 0 (D( 1/2-2θ )) → C ∞ 0 (g(D( 1/2-2θ ))), L g u(x) = e -(i/ )•Ag (g -1 (x)) • u(g -1 (x)) (6.19) with A g (x) = γ g * η -η (6.20)
where γ is a path from the origin 0 to x and η is given in (5.3). For convenience, we take the origin 0 as a fixed point of reference. We first show the following lemma for the (action) function A g (x).

Lemma 6.18. If g ∈ G , we have

|∂ α A g (x)| ≤ C α • min{|x| 3-|α| , 1}
for any multi-index α with |α| > 0, where C α > 0 is a constant independent of .

Proof. From the definition, we have

|∂ α A g (x)| ≤ C α
for any multi-index α. Hence the conclusion holds obviously in the case |α| ≥ 3. The first derivatives of A g at 0 vanishes from the assumption g(0) = 0 in the condition (G2).

Let us show that the second derivatives of A g also vanish. For this we use the coordinate x = (p, q) in (5.1) and the notation g -1 (p, q) = (g p (p, q) , g q (p, q)) ,

Note that we have g p (0, 0) = g q (0, 0) = 0 from condition (G2). Condition (G1) that g -1 is symplectic i.e. (g -1 ) * ω = ω writes

∂g q ∂q i • ∂g p ∂q j - ∂g q ∂q j • ∂g p ∂q i = 0, ∂g q ∂p i • ∂g p ∂p j - ∂g q ∂p j • ∂g p ∂p i = 0, ∂g q ∂q j • ∂g p ∂p i - ∂g q ∂p i • ∂g p ∂q j = 1 (i = j); 0 (i = j).
Then we have

g -1 * η -η = 1 2 d i=1 g q • ∂g p ∂p i -g p • ∂g q ∂p i -q i dp i + 1 2 d i=1 g q • ∂g p ∂q i -g p • ∂g q ∂q i + p i dq i ,
and we check that all of the first order partial derivatives of the coefficients of dp i and dq i of this one form vanish at the origin 0 ∈ R 2d . This implies that the second derivatives of A g vanishes at the origin. The claim of the lemma for the case |α| ≤ 2 then follows immediately.

In the next section, we consider the action of the operator L g on functions supported on D( 1/2-θ ) (or sometimes on D(2 1/2-θ )). For this reason, we take the C ∞ function

χ : R 2d → [0, 1], χ (x) = χ( -1/2+θ x/2) (6.21)
with letting χ be a C ∞ function satisfying (4.53) and consider the operator

L g • M (χ ) : C ∞ (R 2d ) → C ∞ 0 (R 2d )
instead of the operator L g itself. The next lemma is the main ingredient of this subsection, which tells roughly that the operator L g for g ∈ G is close to the identity, under the effect of truncation by the operator Y . Proposition 6.19. There exist constants C > 0 and ǫ > 0 such that, for any > 0 and g ∈ G , we have

Y • (L g -Id) • M (χ ) H r (R 2d ) < C ǫ and (L g -Id) • Y • M (χ ) H r (R 2d ) < C ǫ .
Proof. The proof below is elementary but a little demanding. We will use the following estimate which follows from Lemma 6.18 and the conditions in Setting II on G : For any x ∈ R 2d with |x| ≤ 1/2-θ , it holds

|A g (x) -A g (0)| ≤ C|x| 3 < C 3(1/2-θ) , DA g (x) ≤ C|x| 2 < C 2(1/2-θ) , Dg(x) -Id ≤ C β(1/2-θ) and |g(x) -x| ≤ C|x| 1+β < C (1+β)(1/2-θ)
with C a constant independent of > 0 and g ∈ G . Also we note that, if (x, ξ) ∈ supp Y , 

M (Y ) • B x • (L g -Id) • M (χ ) • B * x L 2 (R 2d ⊕R 2d ,(W r ) 2 ) ≤ C ǫ . (6.22)
Recalling the definition of the operators B x and B * x in (5.11), we write the operator

B x • (L g -Id) • M (χ ) • B *
x as an integral operator of the form

(B x • (L g -Id) • M (χ ) • B * x u)(x, ξ) = K(2 -1/2 x, 2 1/2 ξ; 2 -1/2 x ′ , 2 1/2 ξ ′ )u(x ′ , ξ ′ ) dx ′ dξ ′ (2π ) 2d ,
where

K(x,ξ; x ′ , ξ ′ ) = a 2 D e (i/ )ξ((x/2)-y)+(i/ )ξ ′ (y-(x ′ /2)) • e -|y-x| 2 /(2 )-|y-x ′ | 2 /(2 )
• χ (y) • k(x, ξ, x ′ , ξ ′ , y) dy and 1775 k(x, ξ, x ′ , ξ ′ , y) = e (i/ )Ag (g(y))-(i/ )ξ(g(y)-y)-(|g(y)-x| 2 -|y-x| 2 )/(2 ) -1.

(The factor 2 ±1 appears because of the change of variable σ in the definition of B x and B x * . But this is not important in any sense.) Applying integration by parts to the integral above for ν times, we see

K(x, ξ; x ′ , ξ ′ ) = a 2 D L ν (e (i/ )ξ((x/2)-y)+(i/ )ξ ′ (y-(x ′ /2)) ) • e -|y-x| 2 /(2 )-|y-x ′ | 2 /(2 ) χ (y)k(x, ξ, x ′ , ξ ′ , y) dy = a 2 D e (i/ )ξ((x/2)-y)+(i/ )ξ ′ (y-(x ′ /2)) • ( t L) ν (e -|y-x| 2 /(2 )-|y-x ′ | 2 /(2 ) χ (y)k(x, ξ, x ′ , ξ ′ , y)) dy
where L is the differential operators defined by

Lu = 1 1 + -1 |ξ -ξ ′ | 2 • 1 + i 2d j=1 (ξ j -ξ ′ j ) ∂ ∂y j u
and t L is its transpose:

t Lu = 1 -i 2d j=1 (ξ j -ξ ′ j ) ∂ ∂y j 1 1 + -1 |ξ -ξ ′ | 2 • u .
Using the estimates noted in the beginning in the resulting terms, we can get the estimate

|K(x, ξ; x ′ , ξ ′ )| ≤ C ν • ǫ • -1/2 |(x, ξ) -(x ′ , ξ ′ )| -ν for (x, ξ) ∈ supp Y (6.23)
for a small constant ǫ > 0 and arbitrarily large ν > 0, where C ν is a constant independent of .

Remark 6.20. The result of integration by part is not very simple. But we have only to consider the order w.r.t. the parameter , since we allow the constant C ν to depend on the derivatives of g. Hence it is not too difficult to do. Just note that θ satisfies the condition (6.1). This estimate for sufficiently large ν and (5.28) yields the required estimate. The second claim is proved in the parallel manner.

As we noted in the beginning of this section, the operator L g •M (χ ) may not extends to a bounded operator from H r (R 2d ) to itself, even though g ∈ G is very close to the identity map. The next proposition (and hyperbolicity of f ) will compensate this inconvenience. Proposition 6.21. For any g ∈ G , we have

L g • M (χ ) H r,+ (R 2d )→H r (R 2d ) ≤ C 0 and L g • M (χ ) H r (R 2d )→H r,-(R 2d ) ≤ C 0 (6.24)
for sufficiently small > 0, where C 0 > 1 is a constant that depends only on n, r, d, θ and the choice of the escape functions W and W ± in subsection 4.3. (In particular, C 0 is independent of the choice of the family G .)

The conclusion of this proposition is quite natural in view of the facts that

W r • G(x, ξ) • χ (x) ≤ W r,+ (x, ξ), W r,-• G(x, ξ) • χ (x) ≤ W r (x, ξ) (6.25) 
for the canonical map

G : R 2d ⊕ R 2d → R 2d ⊕ R 2d , G(x, ξ) = (g(x), t (Dg(x)) -1 (ξ))
associated to the operator L g . (Recall the argument in Subsection 2.1.) And it can be proved in essentially same ways as the argument given in the papers [START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF] and [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF], where Littlewood-Paley theory and the theory of pseudodifferential operator is used respectively. Below we give a proof below by interpreting the argument in [START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF] in terms of the Bargmann transform. (But the reader may skip it because this is not a very essential part of our argument and may be proved in various ways. )

Proof. We decompose the operator

B x • L g • M (χ ) • B * x as B x • L g • M (χ ) • B * x = M (1 -Y ) • B x • L g • M (χ ) • B * x + M (Y ) • B x • (L g -Id) • M (χ ) • B * x + M (1 -Y ) • B x • M (χ ) • B * x .
If we apply Lemma 6.19 (or more precisely (6.22) in the proof) to the second term and Lemma 6.15 and corollary 6.3 to the third term, we see that these two operators are bounded operators on H r (R 2d ) and the operator norms are bounded by an absolute constant. Hence, in order to prove the former claim of the theorem, it suffices to show that the operator norm of

M (1 -Y ) • B x • L g • M (χ ) • B * x : L 2 (R 2d , (W r,+ ) 2 ) → L 2 (R 2d , (W r ) 2 ) (6.26)
is bounded by a constant C 0 with the same property as stated in the proposition. (The latter claim is proved in the parallel manner.) Below we give a proof 16 . We take and fix 1/3 < a + < b + < a < b < 1/2. Then we introduce a C ∞ partition of unity {ψ n } n∈Z (resp. {ψ + n } n∈Z ) on R 2d with the following properties: 

• The function ψ n (resp. ψ + n ) is supported on the disk |ξ| ≤ 1 if n = 0 and
+ ) = R 2d \ C + (a + ) if n < 0. • The normalized functions ξ → ψ n (2 n ξ) (resp. ξ → ψ + n (2 n ξ)) are uniformly bounded in C ∞ norm.
For each > 0, we define functions ψ n and ψ + n on

T * R 2d = R 2d ⊕ R 2d for n ∈ Z by ψ n, (x, ξ) = ψ n ( -1/2 ζ) resp. ψ + n, (x, ξ) = ψ + n ( -1/2 ζ)
where ζ = (ζ p , ζ q ) is the coordinates introduced in Proposition 2.15. Then, from the definition of the partition of unities above, we have

W r • u 2 L 2 ≤ C 0 ∞ n=-∞ 2 2rn ψ n, • u L 2
and also

∞ n=-∞ 2 2rn ψ + n, • u 2 L 2 ≤ C 0 W r,+ • u 2 L 2
(6.27) 16 The argument in the following part is a little sketchy. For the details, we refer the argument in [START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF], though it will not be very necessary.

for any function u(x, ξ) ∈ C ∞ (R 2d ⊕R 2d ). From the first inequality above and the definition of the function Y , we have

W r • (1 -Y ) • B x • L g • M (χ ) • B * x u L 2 ≤ C 0 |n|≥ -θ ∞ n ′ =-∞ 2 2rn ψ n, • B x • L g • M (χ ) • B * x (ψ + n ′ , • u) 2 L 2 .
For the summands on the right hand side, we observe that

• From Lemma 4.2, the L 2 -operator norm of B x • L g • M (χ ) • B * x is bounded by 1, so ψ n, • B x • L g • M (χ ) • B * x (ψ + n ′ , • u) 2 L 2 ≤ ψ + n ′ , • u 2 L 2 . • If either |n| -|n ′ | ≥ 3 or n < 0 < n ′ , we have dist(Dg t x (supp ψ n, ), supp ψ n ′ , ) > C 0 • 1/2 2 max{n,n ′ } for x ∈ supp χ
and, by crude estimate using integration by parts, we get the estimate

ψ n, • B x • L g • M (χ ) • B * x (ψ + n, • u) 2 L 2 ≤ C ν (g) • 2 -ν•max{n,n ′ } ψ + n ′ , • u 2 L 2
where the constant C ν (g) may depend on g and ν but not on . Otherwise we have n < n ′ + 3 and 2 rn ≤ C 0 2 rn ′ .

From these observations and (6.27), we can conclude the required estimate:

W r • (1 -Y ) • B x • L g • M (χ ) • B * x u 2 L 2 ≤ C 0 ∞ n ′ =-∞ 2 2rn ψ + n ′ • u 2 L 2 ≤ C 0 W u 2 L 2
for sufficiently small > 0.

The next lemma will be used in the key step in the proof of Theorem 7.1. This lemma implies that we can ignore the action of nonlinear diffeomorphisms in G when we restrict it to the image of the projectors t (k) . Lemma 6.22. There exist constants ǫ > 0 and C > 0 independent of such that the following holds: Let ψ ∈ X be supported on the disk D(2 1/2-θ ) and let g ∈ G , 0 ≤ k ≤ n, then it holds

(L g -Id) • M (ψ) • t (k) H r (R 2d ) ≤ C ǫ and t (k) • (L g -Id) • M (ψ) H r (R 2d ) ≤ C ǫ .
Proof. We decompose the operator

(L g -Id) • M (ψ) • t (k) into (L g •M (χ )-Id)•Y •M (ψ)•t (k) and (L g •M (χ )-Id)•(Id-Y )•M (ψ)•t (k) . (6.28)
(Note that we have χ • ψ = ψ from the assumption.) The operator norm of the latter is also bounded by C ǫ from Lemma 6.16 and Proposition 6.21. We further write the former part as

(L g -Id) • M (ψ) • Y • t (k) + (L g • M (χ ) -Id) • [Y , M (ψ)] • t (k)
Then we see that the operator norm of the former part is bounded by C ǫ , from Lemma 6.19, Corollary 5.13, Lemma 6.15 and Proposition 6.21. The latter part is also bounded by C ǫ from Lemma 6.6. Thus we obtain the former claim. The latter claim can be proved in the parallel manner.

Corollary 6.23. There exist constants ǫ > 0 and C > 0 independent of such that, for any ψ ∈ X and g ∈ G it holds

[L g • M (ψ), t (k) ] H r (R 2d ) ≤ C ǫ for 0 ≤ k ≤ n
and also

[L g • M (ψ), t ] H r (R 2d ) ≤ C ǫ .
Proof. The former claim is an immediate consequence of the last lemma and Lemma 6.7.

The latter claim then follows from the relation t = Id -n k=0 t (k) . Lemma 6.24. There exist constants ǫ > 0 and C > 0, independent of , such that the following holds true: Let ψ ∈ X be supported on the disk D(2 1/2-θ ) and let g ∈ G , 0 ≤ k ≤ n, then it holds

(L g -Id) • M (ψ) • t (k) : H r (R 2d ) → H r (R 2d ) tr ≤ C -θd+ǫ t (k) • (L g -Id) • M (ψ) : H r (R 2d ) → H r (R 2d ) tr ≤ C -θd+ǫ and [L g • M (ψ), t (k) ] : H r (R 2d ) → H r (R 2d ) tr ≤ C -θd+ǫ
Proof. We write the operators

(L g -Id) • M (ψ) • t (k) as (L g -Id)•M (ψ)•t (k) = (L g -Id) • M (ψ) • t (k) • t (k) • M (χ ) +((L g -Id) • M (ψ))•[M (χ ), t (k) ].
Then we obtain the first inequality by Lemma 6.22, Lemma 6.10, Proposition 6.21 and Corollary 6.14. We obtain the second inequality in the same manner. Then the third inequality follows from Corollary 6.14.

7 Proof of the Theorem 1.17 for the band spectrum of the prequantum transfer operator

In Section 7.1 we show how to deduce Theorem 3.5 from Theorem 7.1. Then the subsequent subsections will be devoted to the proof of Theorem 7.1.

7.1 Proof of Theorem 1.17

Recall that the damping function D (x) = V (x) -V 0 (x) has been defined in (1.25).

Theorem 7.1. Let n ≥ 0 and take sufficiently large r accordingly. There exist a constant C 0 , which is independent of V and f , and a constant N 0 > 0 such that for every |N| > N 0 one has a decomposition of the Hilbert space H r N (P ) independent on V :

H r N (P ) = H 0 ⊕ H 1 . . . ⊕ H n ⊕ H n+1 (7.1)
such that, writing τ (k) for the projection onto the component H k along the other components,

(1) For some constant ǫ > 0 and C > 0 independent of , we have

dim H k -r(k, d) • N d • V ol ω (M) ≤ CN d-ǫ for 0 ≤ k ≤ n where r(k, d) = d+k-1 d-1 , while dim H n+1 = ∞, (2) τ (k) < C 0 for 0 ≤ k ≤ n + 1, (3) 
For some constant ǫ > 0 and C > 0 independent of , we have, if k = l, that

τ (k) • FN • τ (l) ≤ CN -ǫ , (4) For every 0 ≤ k ≤ n + 1, τ (k) • FN • τ (k) H r N (P ) ≤ C 0 sup x∈M e D(x) Df x | Eu -k min , (7.2) 
(5) For every 0 ≤ k ≤ n and u ∈ H k ,

τ (k) • FN u H r N (P ) ≥ C -1 0 inf x∈M e D(x) Df x | Eu -k max u H r N (P ) , (7.3) 
Now we show how to deduce Theorem 1.17 from Theorem 7.1. Let m ≥ 1 and apply Theorem 7.1 to f m and F m N . On the right hand side of (7.2) and ( 7.3) we have

r + k,m := C 0 sup x∈M e Dm(x) Df m /Eu (x) -1 +k and r - k,m := C -1 0 • inf x∈M e Dm(x) Df m /Eu (x) -k , with D m (x) := m-1 j=0 D (f -j (x)
). From Eq.(1.28) one has lim m→∞ r ± k,m

1/m = r ± k . So let ε > 0 and take m large enough so that

∀k, r + k,m 1/m < r + k + ε and r - k,m 1/m > r - k -ε. (7.4)
The following arguments using Neumann series for resolvents are very standard. For

0 ≤ k ≤ n + 1, let A k,m := τ (k) • F m N • τ (k) : H k → H k , From Theorem 7.1 we have A k,m ≤ r + k,m and for k ≤ n we have also A -1 k,m ≤ r - k,m -1 (recall that A k,m is invertible and finite rank for k ≤ n). For convenience, if k = n + 1, we define r - k,m = 0. Lemma 7.2. Let 0 ≤ k ≤ n + 1, and z ∈ C with |z| < r - k,m or |z| > r + k,m . Then (z -A k,m ) is invertible and its inverse R A k,m (z) := (z -A k,m ) -1 , the resolvent operator, satisfies R A k,m (z) ≤ 1 dist |z| , r - k,m , r + k,m Proof. If |z| > r + k,m ≥ A k,m , then A k,m z
< 1 and we can write a convergent Neuman series for

R A k,m (z) = (z -A k,m ) -1 = 1 z 1 - A k,m z -1 giving R A k,m (z) ≤ 1 |z| 1 - A k,m |z| -1 = 1 (|z| -A k,m ) ≤ 1 dist |z| , r - k,m , r + k,m Similarly if |z| < r - k,m ≤ A -1 k,m -1 then we have zA -1 k,m < 1 and a convergent Neuman series for R A k,m (z) = (z -A k,m ) -1 = -A -1 k,m 1 -zA -1 k,m -1 giving R A k,m (z) ≤ A -1 k,m 1 -|z| A -1 k,m -1 = 1 A -1 k,m -1 -|z| ≤ 1 dist |z| , r - k,m , r + k,m
Thus the operator

A m := A 0,m ⊕ A 1,m ⊕ . . . ⊕ A n+1,m : H r (P ) → H r (P ) (7.5)
has a resolvent R Am (z) which satisfies

R Am (z) ≤ n+1 k=0 1 dist |z| , r - k,m , r + k,m (7.6) 
From Theorem 7.1(3), the operator F m N can be written F m N = A m +B m with B m ≤ C ǫ with C and ǫ independent on (but depends on m). We use a standard perturbation argument [48, p.311] 

to show that if z ∈ C is such that R Am (z) B m < 1 then it is not in the spectrum of F m N : z / ∈ σ F m N .
For this we write

z -F m N = z -A m -B m = (z -A m ) 1 -(z -A m ) -1 B m hence z -F m N -1 = 1 -(z -A m ) -1 B m -1 (z -A m ) -1
and using Neumann series we deduce:

R F m N (z) ≤ (1 -R Am (z) B m ) -1 R Am (z)
hence z is in the resolvent set of F m N , i.e. z / ∈ σ F m N . From Eq.(7.6) and B m ≤ C ǫ , we see that the condition R Am (z)

B m < 1 is satisfied if for every k ∈ {0, n + 1} dist |z| , r - k,m , r + k,m > (n + 1) C ǫ .
In that case we have R F m N (z) < C with C independent on N. In other terms, replacing z by z m and taking the power 1/m of the previous estimates, we have that if z ∈ C and

r + k+1,m + (n + 1) C ǫ 1/m < |z| < r - k,m + (n + 1) C ǫ 1/m (7.7) for every 0 ≤ k ≤ n + 1 then R F m N (z m ) < C and z / ∈ σ FN .
Considering (7.4), take N ε large enough such that for every

|N| = 1 2π > N ε we have r + k+1,m + (n + 1) C ǫ 1/m < r + k+1 + ε and r - k,m + (n + 1) C ǫ 1/m > r - k -ε. Then if z ∈ C is such that r + k+1 + ε < |z| < r - k -ε,
we have (7.7) and therefore

z m -F m N -1 < C (7.8)
and z / ∈ σ FN from above. We have obtained the results presented in Theorem 1.17 except for the bound on the resolvent (1.29) that we derive now from (7.8). From Theorem 7.1 we have that FN ≤ C is bounded independent on N. For z ∈ C in the resolvent set we have the relation 17

z -FN -1 = m-1 r=0 z m-1-r F r N z m -F m N -1
hence we deduce that

z -FN -1 ≤ m-1 r=0 |z| m-1-r C r z m -F m N -1 ≤ (7.8) C ′
with some constant C ′ independent on N. We have obtained (1.29). Suppose that r + 1 < r - 0 . We have defined in (1.32) by Π the spectral projector on the external band of FN . The projector τ (0) introduced in Theorem 7.1 is the projector on the component A 0,m of the decomposition (7.5) of the operator A m . We aim to finish this subsection by showing that Πτ (0) ≤ C ǫ (7.9)

with some constant C > 0, ǫ > 0 independent on = 1/ (2πN). Let m as above and let γ be a clockwise path a circle of radius r + 1 m < |z| < r - 0 m . By Cauchy formula we have

Π = 1 2πi γ R F m N (z) dz, R F m N (z) := z -F m N -1 , τ (0) = 1 2πi γ R Am (z) dz, R Am (z) := (z -A m ) -1 .
We have written above that F m N = A m + B m with B m ≤ C ǫ . For any z ∈ γ we have shown that the resolvent are bounded:

R F m N (z) ≤ C, R Am (z) ≤ C. From the general relation R F m N (z) -R Am (z) = 1 2 R F m N (z) B m R Am (z) + R Am (z) B m R F m N (z) 17 
Proof. For complex numbers a, F ∈ C we have

(z -F ) m-1 r=0 z m-1-r F r = m-1 r=0 z m-r F r - m-1 r=0 z m-1-r F r+1 = m-1 r=0 z m-r F r - m r=1 z m-r F r = z m -F m we deduce that R F m N (z) -R Am (z) ≤ C ′ ǫ
and then from Cauchy formula above that

Π -τ (0) ≤ C ǫ .

Local charts on M and local trivialization of the bundle P → M

In this section and the next ones we give the proof of the Theorem 3.5. We henceforth consider the setting assumed in Section 1. In particular λ > 1 is the constant in the condition (1.2) in the definition (Definition 1.1) that f is an Anosov diffeomorphism. Note that, by replacing f by its iterate if necessary, we may and do suppose that λ is a large number. Below we write C 0 for positive constants independent of f , V and and write C

for those independent of but may (or may not) dependent on f and V . Also we assume (6.6) for the choice of r.

As in (6.1), we fix a constant 0 < θ < β/8 with 0 < β < 1 being the Hölder exponent of the stable and unstable sub-bundle given in (1.3). Below we take an atlas on M depending on the semiclassical parameter = 1 2πN > 0 so that it consists of charts of diameter of order 1 2 -θ . We consider R 2d as a linear symplectic space with coordinates x = (q, p) = q 1 , . . . q d , p 1 , . . . 

κ i = κ i, : D (c) ⊂ R 2d → M, 1 ≤ i ≤ I
with c > 0 a constant independent of , so that the following conditions hold:

(1) κ i (0) = m i .

(2) The differential of κ i at the origin 0 maps the subspaces R d ⊕ {0} and {0} ⊕ R d (or, the q-and p-axis) isometrically onto the unstable and stable subspace respectively:

(Dκ i ) 0 R d ⊕ {0} = E u (m i ) , (Dκ i ) 0 {0} ⊕ R d = E s (m i ) .
Further, the map κ i • (Dκ i ) -1 0 is not far from the exponential map in the sense that

exp -1 m i •κ i • (Dκ i ) -1 0 : D(m i , c) → T m i M C k ≤ C k
with C k a constant independent of nor 1 ≤ i ≤ I , where D(m i , c) denotes the disk in T m i M with radius c and center at the origin.

(

3) The open subsets

U i := κ i D 3 1 2 -θ ⊂ M for 1 ≤ i ≤ I cover the manifold M.
The cardinality I of the set P is bounded by C 0 • -d(1-2θ) and we have

max 1≤i≤I ♯ {1 ≤ j ≤ I | U i ∩ U j = ∅} ≤ C 0 (7.10)
with C 0 a constant independent of .

(4) For every 1 ≤ i ≤ I , κ * i (ω) = i dq i ∧ dp i on U i and with an appropriate choice of a section τ i : U i → P , the statement of Proposition 2.15 holds true.

(5) If U i ∩ U j = ∅, we denote the coordinate change transformation by κ j,i := κ -1 j • κ i :

D (c) → R 2d .
Then there exists symplectic and isometric affine map A j,i : R 2d → R 2d that belongs to A (see Definition 5.14) such that g j,i := A j,i • κ j,i satisfies

g j,i (0) = 0, Dg j,i (0) -Id C 1 ≤ C 1 • β( 1 2 -θ) and g j,i C s < C s for s ≥ 2
where C s for s ≥ 1 are constant independent of and 1 ≤ i, j ≤ I .

(6) There exists a family of C ∞ functions {ψ i : R 2d → [0, 1]} I i=1 which is supported on the disk D( 1/2-θ ) and gives a partition of unity on M:

I i=1 ψ i • κ -1 i ≡ 1 on M. (7.11)
The set of functions ψ i satisfies the conditions (C1) and (C2) in Subsection 6.1.

Remark 7.4. Since the unstable and stable vector sub-bundles, E u and E s may be nontrivial in general, we need to put the affine isometries A j,i ∈ A in the condition (5) above.

Proof. For each point m ∈ M, we first define κ m as the composition of the exponential mapping (in Riemannian geometry) exp m : T m M → M and a linear map R 2d → T m M so that the condition 1 (with κ i = κ m ) holds true. Then, using Darboux theorem, we can deform such κ m into a symplectic map to ensure condition 4 with keeping the condition 1. (See Lemma 3.14 in [37, p.94] and its proof). We may then take a section τ as in the proof of Proposition 2.15 so that the condition 4 (with κ i = κ m ) holds. It is then clear that, if we take the points in P appropriately, the conditions 1 to 3 hold true with setting κ i := κ m i . The condition 5 and 6 are also obvious from this construction.

In the following subsections, we fix the set P , the coordinate maps κ i , the isometric affine maps A j,i ∈ A and the functions ψ i taken in Proposition 7.3 above. 

m i m j U i U j 0 M A j,i κ j κ j,i 0 κ i

The prequantum transfer operator decomposed on local charts

To proceed, we express the transfer operator F as the totality of operators between local 1965 charts. First we discuss about an expression of an equivariant section u ∈ C ∞ N (P ) as a set of functions on local charts. Definition 7.5. Let

E := I i=1 C ∞ 0 (D( 1/2-θ )).
Let I : C ∞ N (P ) → E be the operator that associates to each equivariant function u ∈ C ∞ N (P ) a set of functions I (u) = (u i ) I i=1 ∈ E on local charts:

1970 I : C ∞ N (P ) → E u → u i (x) = ψ i (x) • u (τ i (κ i (x))) for 1 ≤ i ≤ I . (7.12)
The inverse operation is given as follows 18 .

Proposition 7.6. Let I * : I i=1 S(R 2d ) → C ∞ N (P ) be the operator defined by

I * (u i ) I i=1 (p) = I i=1 e iN •α i (p) • χ (x) • u i (x) (7.13)
where χ is the function defined in (6.21), and x = κ -1 i (π(p)) and α i (p) is the real number such that p = e iα i (p) • τ i (π(p)). This operator reconstructs u ∈ C ∞ N (P ) from its local data u i = (I (u)) i :

I * • I = Id C ∞ N (P ) . (7.14)
Consequently, I • I * : E → E is a projection onto the image of I .

Proof. Notice that χ

• ψ i = ψ i (7.15) Let w := (I * • I ) (v).
From the expressions of I and I * and equivariance of v, we compute

w (p) = I i=1 e iN α i (p) (χ (x) • ψ i (x) • v (τ i (κ i (x)))) = I i=1 ψ i (x) v (p) = v (p) . Finally I • I * is a projector since (I • I * ) 2 = I • (I * • I ) • I * = I • I * .
Definition 7.7. We define the lift of the prequantum transfer operator F with respect to I as

F := I • FN • I * : I i=1 S(R 2d ) → E ⊂ I i=1 S(R 2d ). (7.16)
The operator F is nothing but the prequantum transfer operator FN : C ∞ N (P ) → C ∞ N (P ) viewed through the local charts and local trivialization that we have chosen. This is a matrix of operators that describe transition between local data that F induces. The next proposition gives it in a concrete form. Definition 7.8. We write i → j for 0 ≤ i, j ≤ I if and only if f (U i ) U j = ∅.

Clearly we have max

1≤i≤I #{1 ≤ j ≤ I | i → j} ≤ C(f ) (7.17)
for some constant C(f ) which may depend on f but not on .

Proposition 7.9. The operator F is written as

F ((v i ) i∈I ) = I i=1 F j,i (v i ) j∈I
where the component

F j,i : S(R 2d ) → C ∞ 0 (D( 1/2-θ
)) is defined by F j,i ≡ 0 if i → j and, otherwise, by

F j,i (v i ) = L f j,i e V •f •κ i • ψ j,i • χ • v i m i 0 κ i M m j f a j,i κ j 0 f j,i Figure 7
.2: Illustration of the local map f j,i defined in (7.18) and a j,i defined in (7.22).

where we set

f j,i := κ -1 j • f • κ i , (7.18) 
ψ j,i := ψ j • f j,i (7.19) 
and L f j,i is the Euclidean prequantum transfer operator defined in (6. [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF]) with g = f j,i .

Remark 7.10. χ is actually not necessary.

The maps f j,i is illustrated on Figure 7.2.

Proof. The expression of the operator FN in local coordinates has been given in Proposition 1995 2.4. Taking the multiplication by functions ψ i , 1 ≤ i ≤ I , in the definitions of the operators I and I * into account, we obtain the expression of F j,i as above.

We define

V j = max{V (m) | m ∈ U j } for 1 ≤ j ≤ I .
Since the function V is almost constant on each U j , we have

Lemma 7.11. If we set 2000 X ={ψ j,i •χ | 1 ≤ i, j ≤ I , i → j} (resp. X ={e V •f •κ i •ψ j,i •χ | 1 ≤ i, j ≤ I , i → j}),
it satisfies the conditions (C1) and (C2) in Subsection 6.1. (The constants C and C α will depend on f and V though not on .) For 1 ≤ i, j ≤ I such that i → j, we have

M (e V •f •κ i • ψ j,i • χ ) -e V j • M (ψ j,i • χ ) H r (R 2d ) ≤ C(f, V ) • θ
for some constant C(f, V ) independent of .

Proof. The former claim should be obvious from the choice of the coordinates κ i and the functions ψ i for i ∈ I . We can get the latter claim if we apply Corollary 6.3 to the multiplication operators by e

V •f •κ i • ψ j,i • χ -e V j • ψ j,i • χ = (e V •f •κ i -e V j ) • ψ j,i • χ .

The anisotropic Sobolev spaces

Definition 7.12. The Anisotropic Sobolev space H r (P ) is defined as the completion of C ∞ N (P ) with respect to the norm

u H r (P ) := I i=1 u i 2 H r (R 2d ) 1/2 for u ∈ C ∞ N (P ) ,
where

u i = (I (u)) i ∈ C ∞ 0 D( 1/2-θ
) are the local data defined in (7.12) and u i

2 H r (R 2d )
is the anisotropic Sobolev norm on C ∞ 0 R 2d in Definition 5.9. We define the Hilbert spaces H r,± (P ) in the parallel manner, replacing

u i 2 H r (R 2d ) by the norms u i 2 H r,± (R 2d )
respectively.

Remark 7.13. ( 1) By definition, the operation I extends uniquely to an isometric injection

I : H r (P ) → I i=1 H r (D( 1/2-θ )) ⊂ I i=1 H r (R 2d )
where H r (D( 1/2-θ )) denotes the subspace that consists of elements supported on the disk

D( 1/2-θ ).
(2) From (7.14), we have I * • I = Id on H r (P ) and also on H r,± (P ).

Lemma 7.14. The projector I • I * : E → E extends to bounded operators

I • I * : I i=1 H r,+ (R 2d ) → I i=1 H r (D( 1/2-θ ))
and

I • I * : I i=1 H r (R 2d ) → I i=1 H r,-(D( 1/2-θ )).
Further the operator norms of these projectors are bounded by a constant independent of .

Remark 7.15. The operator I • I * will not be a bounded operator from I i=1 H r (R 2d ) to itself.

Proof. To prove the claim, it is enough to apply Proposition 6.21 and Corollary 6.3 to each component of I • I * with setting

G = {A j,i • κ j,i | 1 ≤ i, j ≤ I , U i ∩ U j = ∅} (7.20)
and

X = {ψ j • κ j,i • χ | 1 ≤ i, j ≤ I , U i ∩ U j = ∅},
and use (7.10). (See also the remark below.)

Remark 7.16. The affine transformation A j,i in (7.20) is that appeared in the choice of local coordinates in Proposition 7.3. Note that the prequantum transfer operator L A j,i is a unitary operator on H r (R 2d ) (and on H r,± (R 2d )), by Lemma 5.15, and hence we may neglect the post-or pre-composition of L A ij when we consider the operator norm on H r (R 2d ) (and on H r,± (R 2d )). For the later argument, we also note that, from Lemma 5.15, the prequantum transfer operator L A j,i commutes with the projection operators t

(k)
defined in (5.26).

For the operator F on the Hilbert space H r (P ), we confirm the following fact at this point, though we will give a more detailed description later.

Lemma 7.17. The operator F defined in (7.16) extends uniquely to the bounded operator

F : I i=1 H r (R 2d ) → I i=1 H r (D( 1/2-θ )) (7.21)
and the operator norm is bounded by a constant independent of . Consequently the same result holds for the prequantum transfer operator F : H r (P ) → H r (P ).

Proof. From (7.17), it is enough to prove that the operators F j,i for 1 ≤ i, j ≤ I with i → j are bounded operators on H r (R 2d ) and that the operator norms are bounded by a constant independent of . To see this, we express the diffeomorphism f j,i in (7.18) as a composition f j,i = a j,i • g j,i • B j,i (7.22) where

• a j,i : R 2d → R 2d is a translation on R 2d ,
• B j,i : R 2d → R 2d is a linear map of the form (5.18), i.e. B j,i = A 0 0 t A -1 , with A an expanding map such that A -1 ≤ 1/λ, • g j,i is a diffeomorphism such that G = {g j,i } 1≤i,j≤I satisfies the condition (G1), (G2) and (G3) in Subsection 6.4. This is possible because, if we let B j,i be the linearization of f j,i at the origin and let a j,i ∈ A be the translation such that a j,i (f j,i (0)) = 0, then a j,i , B j,i and g j,i := a -1 j,i •f j,i •B -1 j,i satisfies the required conditions. Remark 7.18. This decomposition of the diffeomorphism f j,i will be used later in the proof of Proposition 7.20 where we study more detailed properties of f j,i .

From the expression (7.22) of f j,i above, the operator F j,i is expressed as the composition

F j,i = L (0) • L (1) • L (2) (7.23)
where L (0) := L a j,i and L (2) := L B j,i are the Euclidean prequantum transfer operators (6.19) for the diffeomorphism a ij and B ij respectively, while L (1) is the operator of the form

L (1) u = L g j,i (e V •f •κ i • ψ j,i • χ ) • B -1 j,i • u
with ψ j,i the function defined in (7.19). Note that the functions

(e V •f •κ i • ψ j,i • χ ) • B -1 j,i = (e V •f •κ i • χ ) • B -1 j,i • (ψ j • a j,i • g j,i )
is supported on the disk D(2 1/2-θ ), provided that is sufficiently small. Hence we may write the operator L (1) as

L (1) u = L g j,i • M (χ ) (e V •f •κ i • ψ j,i • χ ) • B -1 j,i • u . From Lemma 5.15, L a j,i : H r (R 2d ) → H r (R 2d
) is a unitary operator. From Lemma 5.12, the operator L B j,i : H r (R 2d ) → H r,+ (R 2d ) is bounded and the operator norm is bounded by a constant independent of . From Lemma 6.21 and Corollary 6.2, so is the operator L (1) 

: H r,+ (R 2d ) → H r (R 2d ), because X = {(e V •f •κ i • ψ j,i • χ ) • B -1 j,i } 1≤i,j≤I , G = {g j,i } 1≤i,j≤I (7.24) 
satisfy respectively the conditions (C1), (C2) in Section 6.1 and (G1), (G2), (G3) in Section 6.4.

The main propositions

In this subsection, we give two key propositions which will give Theorem 7.1 as a consequence. To state the propositions, we introduce the projection operators

t (k) : I i=1 H r (R 2d ) → I i=1 H r (R 2d ), t (k) ((u i ) I i=1 ) = (t (k) (u i )) I i=1 , (7.25) 
for 0 ≤ k ≤ n and t :

I i=1 H r (R 2d ) → I i=1 H r (R 2d ), t ((u i ) I i=1 ) = ( t (u i )) I i=1 , (7.26) 
which are just applications of the projection operators t (k) and t introduced in (5.26) and (5.27) to each component. For brevity of notation, we set

t (n+1) = t . (7.27)
Then the set of operators {t (k) } n+1 k=0 are complete sets of mutually commuting projection operators .

The following Proposition shows that the projectors t (k) almost commute with the projector (I • I * ).

Proposition 7.19. There are constants ǫ > 0 and C > 0, independent of , such that the following holds: We have that

t (k) • (I • I * ) I i=1 H r,-(R 2d )→ I i=1 H r,+ (R 2d )
< C, and

(I • I * ) • t (k) I i=1 H r,-(R 2d )→ I i=1 H r,+ (R 2d ) < C
for 0 ≤ k ≤ n. (Hence the same statement holds as operators on I i=1 H r (R 2d ).) Also we have, for the norm of the commutators, that

t (k) , (I • I * ) I i=1 H r,-(R 2d )→ I i=1 H r,+ (R 2d ) ≤ C ǫ (7.28) for 0 ≤ k ≤ n.
Proof. From Lemma 7.14, I •I * are bounded as operators from

I i=1 H r,+ (R 2d ) to I i=1 H r (R 2d ) (resp. from I i=1 H r (R 2d ) to I i=1 H r,-(R 2d
)) and the operator norm is bounded by a constant independent of . From Lemma 5.13, so are the operators t (k) as operators from

I i=1 H r,-(R 2d ) to I i=1 H r (R 2d ) (resp. from I i=1 H r (R 2d ) to I i=1 H r,+ (R 2d )).
Hence we obtain the first two inequalities. To prove (7.28), we take u = (u i ) ∈ I i=1 H r,-(R 2d ) arbitrarily. From the definition, we have

t (k) • (I • I * )(u) =   i:U i ∩U j =∅ t (k) • M (ψ j ) • L κ j,i • M (χ )(u i )   I j=1
and

(I • I * ) • t (k) (u) =   i:U i ∩U j =∅ M (χ j ) • L κ j,i • M (χ ) • t (k) (u i )   I j=1
.

Applying Corollary 6.23 and Corollary 6.7 to each components with the setting (7.20) and recalling Remark 7.16 and (7.10), we obtain (7.28).

The next Proposition stated for F is now very close to Theorem 7.1.

Proposition 7.20. There are constants ǫ > 0 and C > 0 independent of such that

F , t (k) I i=1 H r (R 2d )→ I i=1 H r (R 2d ) ≤ C ǫ for 1 ≤ k ≤ n + 1. (7.29)
Further there exists a constant C 0 > 0, which is independent of f , V and , such that

(1) For 0 ≤ k ≤ n + 1, it holds t (k) • F • t (k) I i=1 H r (R 2d )→ I i=1 H r (R 2d ) ≤ C 0 sup |e V | Df | Eu -k min | det Df | Eu | -1/2 (2) If u ∈ I i=1 H r (R 2d ) satisfies I • I * (u) = u and u -(I • I * ) • t (k) (u) H r < u H r /2 for some 0 ≤ k ≤ n,
then we have

t (k) • F • t (k) (u) H r ≥ C -1 0 • inf |e V | Df | Eu -k max | det Df | Eu | -1/2 • u H r .
Proof. We recall the argument in the proof of Lemma 7.17, in particular, the expression (7.23) of the operator F ij . Then we observe that, for each i, j such that i → j, (i) From Proposition 5.11 and Lemma 5.15, the projection operators t (k) for 0 ≤ k ≤ n and t commute with the operator L (0) and L (2) (defined in (7.23)).

(ii) From Lemma 5.15, the operator L (0) is a unitary operator on H r (R 2d ) and also on H r,± (R 2d ).

(iii) From Proposition 6.19, the operator L (1) extends to a bounded operator from H r,+ (R 2d ) to H r (R 2d ) (resp. from H r (R 2d ) to H r,-(R 2d )) and the operator norm is bounded by a constant C 0 , provided that is sufficiently small.

(iv) Applying Proposition 5.11 to L (2) , we see that the operator L (2) is a bounded operator on H r (R 2d ) and that

C -1 0 B j,i | E + -k • | det B j,i | E + | -1/2 ≤ L (2) u H r (R 2d ) u H r (R 2d ) ≤ C 0 B -1 j,i | E + k • | det B j,i | E + | -1/2 for 0 = u ∈ H ′ k := Im t (k) and for 0 ≤ k ≤ n, where E + = R 2d ⊕ {0}. Further we have L (2) u H r (R 2d ) ≤ C 0 B -1 j,i | E + n+1 | det B j,i | E + | -1/2 u H r (R 2d )
for u ∈ H ′ := Im t .

(v) By simple comparison, we have

C -1 0 • inf |e V | Df | Eu -k max | det Df | Eu | -1/2 < e V j • B -1 j,i | E + k • | det B j,i | E + | -1/2 < C 0 sup |e V | Df | Eu -k min | det Df | Eu | -1/2 .
(vi) Applying Lemma 6.22 to the setting (7.24) and Lemma 7.11, we have

L (1) • t (k) -e V j • M (ψ j,i • χ ) • B -1 j,i • t (k) H r (R 2d ) ≤ C ǫ for 0 ≤ k ≤ n (7.30)
with some positive constants C and ǫ independent of .

(vii) Applying Corollary 6.23 to the setting (7.24), we have that

[L (1) , t (k) ] H r (R 2d ) ≤ C ǫ for 0 ≤ k ≤ n + 1
with setting t (n+1) = t for the case k = n + 1. This is true with H r (R 2d ) replaced by H r,± (R 2d ).

From the observations (i), (ii), (iv) and (vii) above, it follows

[F j,i , t (k) ] H r (R 2d )→H r (R 2d ) ≤ C ǫ for 0 ≤ k ≤ n + 1.
This, together with (7.17), implies (7.29).

We prove Claim [START_REF] Aebischer | Symplectic geometry[END_REF]. Take u = (u i )

I i=1 ∈ I i=1 H r (R 2d ) arbitrarily. Let 0 ≤ k ≤ n + 1 and set v j,i = t (k) • F j,i • t (k) (u i ), u j,i = ψ j,i • χ • u i = (ψ j • f j,i ) • χ • u i (7.31)
for 1 ≤ i, j ≤ I such that i → j. Suppose that 0 ≤ k ≤ n. Then, using the expression (7.23) of F j,i , we obtain, by (vi) and Corollary 6.7,

v j,i H r (R 2d ) = t (k) • L (1) • L (2) • t (k) u i H r (R 2d ) = e V j • L (2) • M (ψ j,i • χ ) • t (k) (u i ) H r (R 2d ) + O( ǫ u i H r (R 2d ) ) = e V j • L (2) • t (k) (u j,i ) H r (R 2d ) + O( ǫ • u i H r (R 2d ) )
where O( ǫ • u i H r (R 2d ) ) denotes positive terms that are bounded by

C ǫ • u i H r (R 2d ) .
Hence, from (iv), we get the estimates

v j,i H r ≤ C 0 • e V j • B j,i | E + -k min • | det B j,i | E + | -1/2 • t (k) (u j,i ) H r (R 2d ) + O( ǫ • u i H r (R 2d ) ) (7.32) and v j,i H r ≥ C -1 0 • e V j • B j,i | E + -k max • | det B j,i | E + | -1/2 • t (k) (u j,i ) H r (R 2d ) -O( ǫ • u i H r (R 2d ) ) (7.33) for 0 ≤ k ≤ n.
Actually the upper estimate (7.32) can be strengthen by modifying the argument above, so that it also holds for k = n + 1. (Note that the argument above is not true for k = n + 1, because (7.30) does not hold in that case.) Indeed we can show that

v j,i H r,+ (R 2d ) ≤ C 0 e V j B j,i | E + -k min | det B j,i | E + | -1/2 • t (k) (u j,i ) H r (R 2d ) (7.34)
for all 0 ≤ k ≤ n + 1. Let B 0 : R 2d → R 2d be the linear map defined by

B 0 (x + , x -) = (λ 0 • x + , λ -1 0 • x -) for (x + , x -) ∈ R 2d = R d ⊕ R d
where λ 0 is an absolute constant greater than 9. (Say λ 0 = 10.) Then we write the operator F ij as

F ij = L (0) • L B 0 • L (1)
• L (2) with setting

L (1) = L B -1 0 • L (1) • L B 0 , L (2) = L B -1 0 •B j,i .
The operator L B 0 is a bounded operator from H r,-(R 2d ) to H r,+ (R 2d ), from Lemma 5.12.

The operator L (1) is a bounded operator from H r (R 2d ) to H r,-(R 2d ) and the operator norm is bounded by C 0 e V j , from Proposition 6.21. And the observation (iv) holds true with L (2) replaced by L (2) . Hence we obtain (7.34). From (7.10) in the choice of the coordinate system {κ i } I i=1 (see Proposition 7.3) and from Lemma 5.16, we have

F • t (k) (u) 2 H r = i:i→j v j,i j 2 H r ≤ C 0 i,j:i→j v j,i 2 
H r (R 2d ) + O( ǫ • u 2 H r )
and i,j:i→j

u j,i 2 
H r (R 2d ) ≤ C 0 u 2 H r ,
provided is sufficiently small. Hence we obtain Claim 1 as a consequence of (7.34) and the observation (v). Remark 7.21. Because of the inconvenient property of the inner product (•, •) H r , noted in the paragraph just before Lemma 5.16, the two inequalities above are not an immediate consequence of the estimate (7.10) on the intersection multiplicities of the supports of v j,i and u j,i . We have to use Lemma 5.16. We prove Claim (2). We continue the argument in the proof of Claim [START_REF] Aebischer | Symplectic geometry[END_REF]. Note that we already have the estimate (7.33) for each v j,i . Below we show that the functions v j,i do not cancel out too much when we sum up them with respect to i such that i → j. More precisely, we prove the estimate

i,i ′ ,j:i→j,i ′ →j,i =i ′ Re(v j,i , v j,i ′ ) H r (R 2d ) ≥ -C ǫ • u 2 H r (7.35)
where i,i ′ ,j:i→j,i ′ →j,i =i ′ denotes the sum over 1 ≤ i, i ′ , j ≤ I that satisfies i → j, i → j ′ and i = i ′ . For 1 ≤ j ≤ I , let I(j) be the set of integers 1 ≤ ℓ ≤ I such that there exists

1 ≤ ℓ ′ , ℓ ′′ ≤ I satisfying U ℓ ∩ U ℓ ′ = ∅, U ℓ ′ ∩ U ℓ ′′ = ∅ and ℓ ′ → j. Note that we have max 1≤j≤I #I(j) ≤ C 0 . (7.36) 
Consider 1 ≤ i, i ′ , j ≤ I that satisfies i → j, i → j ′ and i = i ′ . We express v j,i as

v j,i = t (k) • M (e V •κ j • ψ j ) • L f j,i • t (k)   ψ i • ℓ∈I(j) L κ i,ℓ (u ℓ )   .
We can of course write v j,i ′ in the same form with i replaced by i ′ , but we rewrite it as

v j,i ′ = t (k) • M (e V •κ j • ψ j ) • L f j,i • L κ i,i ′ • t (k)   ψ i ′ • ℓ∈I(j) L κ i ′ ,ℓ (u ℓ )   .
We change the order of operators on the right hand sides above, estimating the commutators by Corollary 6.7 and Corollary 6.23 and noting the relation

κ i,i ′ • κ i ′ ,ℓ = κ i,ℓ . Then we get v j,i -M (e V •κ i ′ • ψ j • ψ i • f -1 j,i ) • L f j,i • t (k)   ℓ∈I(j) L κ i,ℓ (u ℓ )   H r (R 2d ) ≤ C ǫ ℓ∈I(j) u ℓ H r (R 2d ) and v j,i ′ -M (e V •κ i ′ • ψ j • ψ i ′ • f -1 j,i ′ ) • L f j,i • t (k)   ℓ∈I(j) L κ i,ℓ (u ℓ )   H r (R 2d ) ≤ C ǫ ℓ∈I(j) u ℓ H r (R 2d ) .
Therefore, by Corollary 6.4, we get

Re(v j,i , v j,i ′ ) ≥ M e V •κ i ′ ψ j • ψ i • f -1 j,i • ψ i ′ • f -1 j,i ′ • L f j,i • t (k)   ℓ∈I(j) L κ i,ℓ (u ℓ )   2 H r (R 2d ) -C ǫ • ℓ∈I(j) u ℓ 2 H r (R 2d ) ≥ -C ǫ • ℓ∈I(j) u ℓ 2 H r (R 2d ) .
Summing up the both sides of the inequality above for all j, i, i ′ with i → j, i ′ → j and 2150 i = i ′ and using (7.36), we obtain (7.35). From (7.35), (7.33) and the observation (iv), we get

F • t (k) (u) 2 H r = j i,i ′ ℜ(v j,i , v j,i ′ ) H r (R 2d ) ≥ i,j:i→j v j,i 2 
H r (R 2d ) -C ǫ u 2 H r ≥ i,j:i→j C -1 0 e V j • B j,i | E + -k max | det B j,i | E + | -1/2 t (k) (u j,i ) 2 H r (R 2d ) -C ǫ u 2 H r ≥ C -1 0 inf |e V | Df | Eu -k max | det Df | Eu | -1/2 i,j:i→j t (k) (u j,i ) 2 H r (R 2d ) -C ǫ u 2 H r . (7.37) 123 
To finish the proof, we compare i,j:i→j t (k) (u j,i ) 2 H r (R 2d ) and u 2 H r . To this end, we use the assumptions in Claim (2), of course. From the assumption and (7.28) in Proposition 7.19, we have

u H r ≤ 2 • (I • I * ) • t (k) (u) H r ≤ 2 t (k) • (I • I * )(u) H r + C ǫ u H r = 2 t (k) (u) H r + C ǫ u H r . (7.38) 
We also have, from Corollary 6.7, Lemma 5.16 and (7.10), that

t (k) (u) 2 H r = i t (k) (u i ) = i t (k) j:i→j u j,i 2 
H r (R 2d ) = i t (k) j:i→j M (ψ j,i • χ )u i 2 H r (R 2d ) ≤ i j:i→j M (ψ j,i • χ ) • t (k) (u i ) 2 H r (R 2d ) + C ǫ u 2 H r ≤ C 0 i,j:i→j M (ψ j,i • χ ) • t (k) (u j ) 2 H r (R 2d ) + C ǫ u 2 H r ≤ C 0 i,j:i→j t (k) (u j,i ) 2 H r (R 2d ) + C ǫ u 2 H r .
We conclude Claim (2) from these inequalities and (7.37).

Proof of Theorem 7.1

We finish the proof of Theorem 7.1. Actually we have almost done with the essential part of the proof. Below we give a formal argument to complete it. Let us begin with introducing 2155 the operators

τ (k) = I * • t (k) • I : H r (P ) → H r (P ) (7.39) 
for 0 ≤ k ≤ n + 1. From Proposition 7.19, these are bounded operators with operator norms bounded by a constant C independent of , and satisfy

τ (1) + τ (2) + • • • + τ (n) + τ (n+1) = Id, (7.40) 
τ (k) • τ (k) - τ (k) H r (P ) ≤ C ǫ for 0 ≤ k ≤ n + 1, and (7.41) 
τ (k) • τ (k ′ ) H r (P ) ≤ C ǫ for 0 ≤ k, k ′ ≤ n + 1with k = k ′ (7.42)
for some constants ǫ > 0 and C > 0.

Lemma 7.22. The operators τ (k) , 0 ≤ k ≤ n, are trace class operators. There exist constants ǫ > 0 and C > 0, independent of , such that

τ (k) : H r (P ) → H r (P ) tr ≤ C -d and that τ (k) - τ (k) • τ (k) : H r (P ) → H r (P ) tr ≤ C -d+ǫ
Proof. It is enough to prove the corresponding statement for

I • τ (k) • I * = (I • I * ) • t (k) • (I • I * ) : I i=1 H r (R 2d ) → I i=1 H r (R 2d ).
Applying Corollary 6.13 and Proposition 6.21 (to deal with the non-linearity of the coordinate change transformations), we see that each component of this operator is a trace class operator and hence so is itself. Recalling Proposition 7.3(3), we obtain the first claim by summing up the trace norm of the components. To prove the second claim, we compare the operator above with

(I • τ (k) •I * )•(I • τ (k) •I * ) = (I •I * )•t (k) •(I •I * )•t (k) •(I •I * ) : I i=1 H r (R 2d ) → I i=1 H r (R 2d ).
We need to prove that the trace norm of the commutator

(I • I * ), t (k) 
:

I i=1 H r (R 2d ) → I i=1 H r (R 2d )
is bounded by C -d+ǫ . It is easy to obtain such estimate by using Corollary 6.14 and Lemma 6.24 to exchange the order of operators and also using Proposition 7.3(3). Now we will modify the operators τ (k) , 0 ≤ k ≤ n + 1, to get the projection operators τ (k) , 0 ≤ k ≤ n, and τ = τ (n+1) in the statement of the theorem. The estimate (7.41) implies that the spectral set of the operator

τ (k) • τ (k) - τ (k) is contained in the disk |z| ≤ C ǫ .
By the spectral mapping theorem [START_REF] Dunford | Linear operators. Part I[END_REF]Part I,VII.3.11], the spectral set of the operators τ (k) is contained in the union of two small disks around 0 and 1:

D(0, C ǫ ) ∪ D(1, C ǫ ) where D(z, r) := {w ∈ C | |w -x| < r}. (7.43) 
For 0 ≤ k ≤ n + 1, let τ (k) be the spectral projector of τ (k) for the part of its spectral set contained in D(1, C ǫ ). This is of finite rank because of compactness of τ (k) . The next lemma should be easy to prove. (We provide a proof in the appendix for completeness.) Lemma 7.23. There is a constant C > 0 independent of such that

τ (k) - τ (k) H r (P ) ≤ C ǫ and τ (k) - τ (k) : H r (P ) → H r (P ) tr ≤ C -d+ǫ
for some C > 0 independent of .

Thus we get the set of projection operators

τ (k) for 0 ≤ k ≤ n + 1, which approximate τ (k)
. As consequences of (7.40) and (7.42), we have

Id -(τ (0) + τ (1) + • • • + τ (n) + τ (n+1) ) H r (P ) ≤ C ǫ (7.44) and τ (k) • τ (k ′ ) H r (P ) ≤ C ǫ if k = k ′ . (7.45) 
We set H k := Im τ (k) for 0 ≤ k ≤ n + 1 and put H = H n+1 . We have Lemma 7.24. The Hilbert space H r (P ) is decomposed into the direct sum:

H r (P ) = H 0 ⊕ H 1 ⊕ H 2 ⊕ • • • ⊕ H n ⊕ H.
Proof. Since the sum

τ (0) + τ (1) + • • • + τ (n) + τ (n+1) is invertible from (7.44), we can set τ (k) := τ (k) (τ (0) + τ (1) + • • • + τ (n) + τ (n+1) ) -1 for 0 ≤ k ≤ n + 1. (7.46) 
We can express any v ∈ H r (P ) as

v = n+1 k=1 v k with v k := τ (k) (v) ∈ H k .
Thus the subspaces H k for 0 ≤ k ≤ n + 1 span the whole space H r (P ). Uniqueness of such expression follows from (7.45).

From the argument in the proof above, the operator τ (k) : H r (P ) → H k (P ) for 0 ≤ k ≤ n + 1 in (7.46) are the projections to the subspace H k along other subspaces. Clearly we

have τ (k) - τ (k) H r (P ) ≤ C ǫ and hence τ (k) - τ (k) H r (P ) ≤ C ǫ . (7.47) 
and also

τ (k) -τ (k) : H r (P ) → H r (P ) tr ≤ C -d+ǫ and hence τ (k) -τ (k) : H r (P ) → H r (P ) tr ≤ C -d+ǫ .

Proof of Claim (1)

For the external band k = 0, Claim 1 is written in Corollary 1.64. But the same argument works for every 0 ≤ k ≤ n, so we give it here. Since we have

rankτ (k) = Tr τ (k) = Tr τ (k) + O( -d+ǫ ),
it is enough to prove the claim that

Tr τ (k) - r(k, d) • V ol ω (M) (2π ) d < C -d+ǫ .
From the definition, we have that

Tr τ (k) = Tr(I • t (k) • I * ) := I i=1 Tr(I • t (k) • I * ) i,i .
From Lemma 6.10 and Corollary 6.14, we see that

Tr(I • t (k) • I * ) i,i - r(k, d) (2π ) d ψ i dx ≤ C -θd+ǫ Since I < C -(1-θ)d and i ψ i • κ -1 i ≡ 1, we obtain Tr τ (k) - r(k, d) • V ol ω (M) (2π ) d < C -(1-θ)d • -θd+ǫ = C -d+ǫ . 7.6.2 Proof of Claim (2)
For the proof of Claim ( 2)-( 5), it is enough to prove the statements with τ (k) replaced by τ (k) because we have (7.47). The operator norm of τ (k) : H r (P ) → H r (P ) is bounded by a constant independent of from Proposition 7.19, as we noted in the beginning of this subsection.

Proof of Claim (3) and (4)

From the definition of the operators F and τ (k) , the following diagram commutes:

I i=1 H r (R 2d ) I •I * •t (k) •F •t (k ′ ) -----------→ I i=1 H r (R 2d )   I   I H r (P ) τ (k) • F •τ (k ′ ) -------→ H r (P )
Since the operator I in the vertical direction is an isometric embedding, we have

τ (k) • F • τ (k ′ ) H r (P ) ≤ I • I * • t (k) • F • t (k ′ ) H r = (I • I * • t (k) ) • (t (k) • F • t (k ′ ) ) H r .
From Proposition 7.19, we have

I • I * • t (k)
H r ≤ C 0 for 0 ≤ k ≤ n where C 0 is a constant independent of , f and V . These estimates give also k) and Lemma 7.14. Now Claim ( 4) is an immediate consequence of Proposition 7.20 [START_REF] Aebischer | Symplectic geometry[END_REF]. From Proposition 7.20 and Lemma 7.17, we have

I • I * • t (n+1) I i=1 H r,+ (R 2d )→ I i=1 H r (R 2d ) ≤ C 0 , because of the relation t (n+1) = t = Id -n k=0 t ( 
t (k) • F • t (k ′ ) H r ≤ t (k) • t (k ′ ) • F H r + C ǫ = C ǫ if k = k ′
and hence Claim (3) follows.

Proof of Claim (5)

Take 0 = u ∈ H k = Im τ (k) for 0 ≤ k ≤ n arbitrarily and set u = I (u). Then we have, from (7.47), that

u -(I • I * ) • t (k) (u) H r = I (u) -I • τ (k) (u) H r = u - τ (k) (u) H r (P ) = (τ (k) - τ (k) )u H r (P ) ≤ C ǫ u H r (P ) = C ǫ u H r
Hence we can apply the second claim in Proposition 7.20 to u and obtain Claim (5), noting that F u H r = F u H r (P ) by definition.

Proof of Theorem 1.55

We will derive Theorem 1.55 as a consequence of Lemma 6.10 on local charts, gluing together the expression given in (6.15). Let ϕ ∈ S δ be a symbol, i.e. a -family of smooth functions (ϕ ) on M with regularity estimates as in Definition 1.52. Below we write ϕ for ϕ .

Recall the definition of the operators I and I * in (7.12) and (7.13). We define

I i, : C ∞ N (P ) → C ∞ 0 (D( 1/2-θ )), u → u i (x) = ψ i (x) • u(τ i (κ i (x))) and I * i, : C ∞ 0 (D( 1/2-θ )) → C ∞ N (P ), u → e N α i (p) • χ • u for 1 ≤ i ≤ I . Then we have M(ϕ) • τ (0) = (7.39) M(ϕ) • I * • t (0) • I = (7.12), (7.13) 
M(ϕ) •

I i=1 I * i, • t (0) • M(ψ i ) • I i, (7.48) 
= I i=1 I * i, • M(ϕ • κ i ) • t (0) • M(ψ i ) • I i, (7.49) 
In the last line above, we have used the fact that M(ϕ) •

I * i, = I * i, • M(ϕ • κ i ).
From Definition 1.52, the family of functions X := {χ •ϕ•κ i ; 1 ≤ i ≤ I } satisfies the conditions in Setting I in Subsection 6.1. Let π0 (ν) be the rank one projection operator πα (ν) defined in (6.11) for α = 0 ∈ N 0 . We continue (7.48) and get (we will justify the second line below)

M (ϕ) • τ (0) = I i=1 I * i, • M(ϕ • κ i ) • t (0) • M(ψ i ) • I i, = (6.14) 
I i=1 I * i, • R 2d ϕ • κ i (ν) π0 (ν) dν (2π ) d • M(ψ i ) • I * i, + O θ = 1 (2π ) d M I i=1 ϕ (x) • χ (κ -1 i (x)) • π(1) i (x) dx + O θ (7.50) 128
where we have put

π(1) i (x) := I * i, • π0 κ -1 i (x) • M(ψ i ) • I i, , i ∈ {1, . . . I } , x ∈ M. (7.51) 
and O θ denotes the error term whose operator norm is bounded by C ǫ with C a constant independent of . In order to justify this small error term, for every i ∈ {1, . . . I }, let

T i := I * i, • M(ϕ) • t (0) - R 2d ϕ i (ν) π0 (ν) dν (2π ) d • M(ψ i ) • I i, .
For every i ∈ {1, . . . I }, we have from (6.14) that T i = O θ . Due to truncations functions, for every 0 ≤ i ≤ I , we have that T i • T * k = 0 and T * i • T k = 0 except for a finite number (bounded uniformly in ) of k. Hence from the discrete version of the Cotlar-Stein Lemma 19 we deduce that j T j = O θ . This justifies the second line of (7.50).

The operator π(1) i (x) is of rank one because π0 (ν) is a rank one projector from Lemma 6.10. Its trace is

Tr π(1) j (x) = χ • κ -1 i (x) • Tr π0 κ -1 i (x) M(ψ i ) = ψ i κ -1 i (x) • Tr π0 κ -1 i (x) + O θ
by Lemma 6.9

= ψ i κ -1 i (x) + O θ (7.52) 
Hence we have π(1) i (x)

2 = ψ i κ -1 i (x) • π(1) i (x) + O θ (7.53)
We define the operator π(2) (x) by summing the operators π(1) j (x) over the different charts:

π(2) (x) := 1≤i≤I π(1) i (x) Notice that π(1) i (x) = 0 if χ • κ -1 i (x) = 0.
Hence in the previous equation, the sum over j contains only a finite number of terms and this number is bounded uniformly with respect to .

In order to proceed with this definition, we need the following lemma.

Lemma 7.26. (1) There exist constants ǫ > 0 and C > 0 such that we have that 

ψ j κ -1 j (x) • π(1) k (x) -ψ k κ -1 k (x) • π(1) j (x) < C ǫ for every 1 ≤ j, k ≤ I .
If (T j ) j is a family of bounded operators, if A := sup j k T j T * k 1/2 < ∞ and B := sup j k T * j T k 1/2 < ∞ then j T j converges in
the strong operator topology and j T j ≤ √ AB.

(2) For any m > 0, there exists a constant C m > 0 such that

π(1) k (x) • π(1) j (y) * ≤ C m |x -y| √ -m and π(1) k (x) * • π(1) j (y) ≤ C m |x -y| √ -m for x, y∈M
Consequently we have (for possibly different constant C m ) that

π(2) k (x) • π(2) j (y) * ≤ C m |x -y| √ -m and π(2) k (x) * • π(2) j (y) ≤ C m |x -y| √ -m for x, y∈M
The claim of the lemma above may look rather obvious. But note that the relation between the operators π(1) j (x) (or its adjoint) for different indices j involves the coordinate change transformation κ j,i , which is close to the identity but non-linear. So we have to go through an argument similar to that in Section 6. We give a proof of Lemma 7.26 at the end.

Note that the operator π(2) (x) is not rank one in general. We are going to construct a rank one projection operator π(x) from π(2) (x) as its spectral projector. First we check

Tr π(2) (x) = (7.52) j ψ j κ -1 j (x) + O θ = 1 + O θ (7.54) 
This is because the term

ψ j κ -1 j (x) • π (1) l (x 
) is not zero only if j and l are indices for intersecting local charts. Hence, using the first claim of Lemma 7.26, we see

ψ j κ -1 j (x) • π(2) (x) = l ψ j κ -1 j (x) π(1) l (x) = l ψ l κ -1 l (x) • π(1) j (x) + O ( ǫ ) = π(1) j (x) l ψ l κ -1 l (x) + O θ = π(1) j (x) + O ( ǫ ) (7.55) 
and

ψ j κ -1 j (x) • π (2) (x) 2 = (7.55) π(1) j (x) 2 
+ O θ = (7.53)

ψ j κ -1 j (x) • π(1) j (x) + O ( ǫ ) = ψ j κ -1 j (x) 2 • π(2) (x) + O ( ǫ ) So choosing j such that ψ j κ -1 j (x) > 1/C we get π(2) (x) 2 = π(2) (x) + O ( ǫ ) (7.56) 
Hence from (7.54) and (7.56), the operator π(2) (x) has an isolated simple eigenvalue λ 1 at a distance O ( ǫ ) to 1 and the rest of its spectrum is at distance O ( ǫ ) of the origin. We consider a fixed path γ in C with center 1 of radius C ǫ (with large C) so that by a Dunford integral, we get the spectral projector of the operator π(2) (x) for its simple eigenvalue λ 1 and we denote it:

π(x) := 1 2πi γ z -π(2) (x) -1 dz.
Note that we may rewrite this definition as

π(x) = 1 2πi γ 1 z z -π(2) (x) -1 dz • π(2) (x) = π(2) (x) • 1 2πi γ 1 z z -π(2) (x) -1 dz (7.
57) The operators π(x) are rank one projection operators depending smoothly on x ∈ M. There exists a constant C > 0 independent of such that π(x) ≤ C and that π(2) (x)π(x) < C ǫ . (For these estimates, we refer the proof of Lemma 7.23 in Appendix A.2 where the argument is in parallel.) Hence

ψ j κ -1 j (x) • π(x) = (7.55) π(1) j (x) + O ( ǫ ) . (7.58) 
Continuing (7.50), we deduce that

M (ϕ) τ (0) = 1 (2π ) d M I j=1 ϕ (x) π(1) j (x) dx + O θ = (7.58) 1 (2π ) d M 
I j=1 ϕ (x) ψ j κ -1 j (x) • π(x) dx + O ( ǫ ) (7.59) = 1 (2π ) d 
M ϕ (x) • π(x) dx + O ( ǫ )
In the second line above, we have to use again the integral version of the Cotlar-Stein Lemma 6.11. We do this in two steps, let us consider the family of operators

T (x) := T 1 (x) + T 2 (x) = I j=1 ϕ (x) ψ j κ -1 j (x) • π(x) - π (1) j (x) 
with

T 1 (x) := I j=1 ϕ (x) ψ j κ -1 j (x) • π(2) (x) - π (1) j (x) 
T 2 (x) := I j=1 ϕ (x) • ψ j κ -1 j (x) • π(x) -π(2) (x) = ϕ (x) π(x) -π(2) (x) .
From Lemma 7.26 and the expression (7.57) of π (x), we see that, for k = 1, 2,

T k (x) T k (y) * H r (R 2d ) ≤ C 2ǫ and T k (x) * T k (y) H r (R 2d ) ≤ C 2ǫ
and also

T k (x) T k (y) * H r (R 2d ) ≤ C m |x -y| √ -m and T k (x) * T k (y) H r (R 2d ) ≤ C m |x -y| √ -m 131 
for any m > 0 with a constant C m independent of . It follows

T k (x) T k (y) * H r (R 2d ) ≤ C m ǫ • |x -y| √ -m and T k (x) * T k (y) H r (R 2d ) ≤ C m ǫ • |x -y| √ -m
.

Then Cotlar-Stein Lemma 6.11 implies that 1

(2π ) d M T k (x) dx H r (R 2d ) = O ( ǫ ) and there- fore 1 (2π ) d M T (x) dx H r (R 2d ) = O ( ǫ )
, giving (7.59) above. We have finally obtained that in norm operator:

M (ϕ) τ (0) - 1 (2π ) d M ϕ (x) • π(x) dx H r (R 2d ) ≤ C ǫ
With Lemma 7.23 and (7.47), we deduce that

2280 M (ϕ) τ (0) - 1 (2π ) d M ϕ (x) • π(x) dx H r (R 2d ) ≤ C ε
We can argue just in parallel manner to give

τ (0) M (ϕ) - 1 (2π ) d M ϕ (x) • π(x) dx H r (R 2d ) ≤ C ε (7.60) Therefore τ (0) , M (ϕ) H r (R 2d ) ≤ C ε .
Suppose that r + 1 < r - 0 . We have defined in (1.32) by Π the finite rank spectral projector on the external band of FN . We define

π x := Π • π (x) • Π .
We have shown in (7.9) that

2285 τ (0) -Π < C ǫ (7.61)
Therefore we deduce from above that

Π M (ϕ) Π - 1 (2π ) d M ϕ (x) • π x dx ≤ C ε and [Π , M (ϕ)] ≤ C ε .
This finishes the proof of Theorem 1.55. Finally we prove Lemma 7.26.

Proof of Lemma 7.26 . Recall the operator Y which truncate the functions in the phase space. We decompose the operators π(1)

j (ν) into π(1) j,1 (x) := I * i, • Y • π0 κ -1 j (x) • M(ψ j ) • I i, and π(1) j,2 (x) 
:= I * i, • (1 -Y ) • π0 κ -1 j (x) • M(ψ j ) • I i, .
For the former part π(1) j,1 (x), we apply Proposition 6.19 and the estimate (6.23) on the kernel in the proof to see that the non-linear coordinate change transformation hardly affect this part. Thus we have both of the claims when we replace the operator π(1) j (ν) by π(1) j,1 (ν). For the latter part, we have

π(1) j,2 (x) H r (R 2d ) < C θ
from Lemma 6.9. This completes the proof of the first claim [START_REF] Aebischer | Symplectic geometry[END_REF]. By inspecting the kernels of the lifted operators, we also see

π(1) k (x) * • π(1) j,2 (x) H r (R 2d ) = O( ∞ ), π (1) k (x) • π(1) j,2 (x) 
* H r (R 2d ) = O( ∞ ).
Since we have only to consider points x, y ∈ M with d(x, y) ≤ C 1/2-θ , this gives the second claim (2).

8 Proof of Theorem 3.5 for the spectrum of the rough Laplacian.

The harmonic oscillator

In this subsection we present the harmonic oscillator in the setting of Bargmann transform. (We refer [START_REF] Folland | Harmonic Analysis in phase space[END_REF], [START_REF] Zworski | Semiclassical analysis[END_REF] for a more detailed treatment.) We will need it in dealing with the (Euclidean) rough Laplacian ∆ in Section 8.2. Associated to the standard coordinates

(x, ξ) = (x 1 , x 2 , • • • , x D , ξ 1 , ξ 2 , • • • , ξ D ) on T * R D = R 2D , we consider the operators xi : S(R 2D ) → S(R 2D ) u → (P • M (x i ) • P ) u and ξi : S(R 2D ) → S(R 2D ) u → (P • M (ξ i ) • P ) u
where M (x i ) and M (ξ i ) on the right hand sides denote the multiplication by the corresponding functions and P is the Bargmann projector (4.6). These operators are usually called Toeplitz quantization of the functions x i and ξ i . Then we set

P := 1 2 x2 + ξ2 := 1 2 D i=1 xi • xi + ξi • ξi , (8.1) 
H := B * P B , L 2 (R D ) → L 2 (R D )
which is usually called the harmonic oscillator operator. (the operators B * , B are defined in Section 4.1). Lemma 8.1. "Spectrum of the harmonic oscillator". The operator H in (8.1) is a closed self-adjoint operator on L 2 (R D ) and its spectral set consists of eigenvalues

D 2 + k, k ∈ N.
For every k ∈ N, the spectral projector Q (k) for the eigenvalue D 2 + k is an orthogonal projection operator of rank D+k-1 D-1 . We have

k i=0 ImQ (i) = {ϕ 0 .p | p is a polynomial of degree ≤ k} (8.2) 
where ϕ 0 (x) = e -|x| 2 /(2 ) .

In particular, we have the following orthogonal decomposition of L 2 (R D ):

L 2 (R D ) = ∞ k=0 ImQ (k) .
Proof. Since xi and ξi are the lift of the operators

u → x i • u and u → -i • ∂ x i u
respectively, the operator P = 1 2 x2 + ξ2 is the lift of

H : L 2 (R D ) → L 2 (R D ), (H u) (x) = 1 - 2 2 D i=1 ∂ 2 u ∂x 2 i (x) + 1 2 |x| 2 • u(x) (8.3) 
Therefore the conclusion follows from the argument on quantization of the harmonic oscillator H [51, p.105].

Remark 8.2. It is possible to compute directly that the eigenfunctions of P using the "creation operator" a j = xj + i ξj and showing that it is multiplication by z j = x j + iξ j in phase space (see [START_REF] Folland | Harmonic Analysis in phase space[END_REF][START_REF] Hall | Holomorphic Methods in Mathematical Physics[END_REF]). Then we can identify

Q (i) = B * Q (i)
B as the projection onto homogeneous polynomials of degree i in (z j ) j .

Recall that operators Q (k) and T (k) (Section 4.4) have the same rank D+k-1 D-1 . The next lemma gives a more precise relation between them.

Lemma 8.3. For 0 ≤ k ≤ n, the operator Q (k) = B * Q (k) B extends to a continuous operator Q (k) : S ′ (R 2D ) → S(R 2D ).
The restrictions:

⊕ k i=0 Q (i) : ⊕ k i=1 ImT (i) → ⊕ k i=0 ImQ (i) (8.4) 
and

⊕ k i=0 T (i) : ⊕ k i=0 ImQ (i) → ⊕ k i=0 ImT (i) (8.5) 
are well-defined and bijective. The operator norms of (8.4), (8.5) and their inverses are bounded by a constant independent of .

Proof. Recall that the operator Q (k) is the orthogonal projection to its image (8.2), which is finite dimensional and contained in S(R 2D ). Hence we have the first claim and well definiteness of the operators (8.4) and (8.5) is an immediate consequence.

To prove that (8.4) and (8.5) are bijective, we have only to show that they are injective, because the subspaces in the source and target have the same finite dimension. We prove injectivity of (8.4). Let u ∈ ⊕ k i=0 ImT (i) . Such u can be expressed as u = B p with p a polynomial of degree at most k on R D . Suppose that

⊕ k i=0 Q (i) u = 0. Since ⊕ k i=0 Q (i)
is an orthogonal projection operator, u is orthogonal to ⊕ k i=0 ImQ (i) and hence we have

(p, q • ϕ 0 ) L 2 (R D ) = (B p, B (q • ϕ 0 )) L 2 (R 2D ) = 0
for any polynomial q of order at most k on R D . Setting q = p, we see that

(p, p•ϕ 0 ) L 2 (R D ) = (|p| 2 , ϕ 0 ) L 2 (R D ) = 0,
showing p = 0 and u = 0. We have shown that (8.4) is injective.

To prove injectivity of (8.5), let u = qϕ 0 ∈ ⊕ k i=0 ImQ (i) with q a polynomial of degree at most k on R D . Let p = ⊕ k i=0 T (i) u be the Taylor expansion of u at 0 up to order k.

Suppose that p = 0. Since ϕ 0 (0) = 0, ϕ 0 is invertible as a formal power series, we deduce that q = 0. Hence (8.5) is injective. The operators (8.4) (resp. (8.5)) for different > 0 are related by the scaling (4.10) and hence we get the last claim.

The rough Laplacian on R 2d

As in Subsection 5.1, we consider R 2d as a symplectic linear space with ω = d i=1 dq i ∧ dp i and with the additional compatible Euclidean metric

g = d i=1 dq i ⊗ dq i + dp i ⊗ dp i 135
We have seen in (3.12) that these data define the Euclidean rough Laplacian as the operator

∆ = D * D : C ∞ (R 2d ) → C ∞ (R 2d ).
This operator ∆ is a closed self-adjoint operator on L 2 (R 2d ) and its domain of definition is

D(∆ ) = {u ∈ L 2 (R 2d ) | ∆ u L 2 < ∞}.
Note that D(∆ ) becomes a Hilbert space if we consider the norm

u ∆ = ((u, u) ∆ ) 1/2 (8.6)
induced by the inner product

(u, v) ∆ = (u, v) L 2 + (∆ u, ∆ v) L 2 .
Obviously, ∆ gives a bounded operator

∆ : (D(∆ ), • ∆ ) → L 2 (R 2d ).
An important property of the operator ∆ that follows from the definition is that it is invariant with respect to the action of prequantum transfer operators for symplectic isometries:

Lemma 8.4. Suppose that f : R 2d → R 2d is an isometric affine map preserving the symplectic form ω, then we have ∆ • L f = L f • ∆ for the associated prequantum transfer operator L f given in (5.7).

From the expression of the Euclidean rough Laplacian obtained in (3.12), we have

∆ = U • Id ⊗ 1 ζ q 2 + ζ p 2 • U -1
where U has been defined in (5.15). By considering a commutative diagram corresponding to (5.23), we obtain the following commutative diagram similar to (5.24):

L 2 R 2d x ∆ ---→ L 2 R 2d x  U  U L 2 R 2 νq ⊗ L 2 R d ζp Id⊗H ---→ L 2 R 2 νq ⊗ L 2 R d ζp
where H is the harmonic oscillator operator defined in (8.3) with setting D = d.

Thus we may invoke the argument in Subsection 8.1, especially Lemma 8.1 and 8.3, to derive the next proposition on the spectral structure of the Euclidean rough Laplacian ∆ . For k ≥ 0, let us consider the spectral projection operator

q (k) := U • Id ⊗ Q (k) • U -1 : L 2 R 2d x → L 2 R 2d x (8.7)
where Q (k) is the projection operator on level k of the harmonic oscillator H . Note that it restricts to a bounded operator

q (k) : L 2 (R 2d ) → (D(∆ ), • ∆ ) ⊂ L 2 (R 2d ) (8.8)
whose operator norm is bounded by a constant independent of .

Proposition 8.5. The rough Laplacian ∆ = D * D on the Euclidean space R 2d is a closed self-adjoint operator on L 2 (R 2d ) and its spectrum consists of integer eigenvalues d + 2k with k ∈ N. The spectral projector corresponding to the eigenvalue d + 2k is the operator q (k) given in (8.7) and together they form a complete set of mutually commuting orthogonal projections in L 2 (R 2d ). Consequently we have

L 2 (R 2d ) = ∞ k=0 H ′′ k , with H ′′ k := Im q (k) .
The next proposition is an immediate consequence of Lemma 8.3.

Proposition 8.6. The operator ⊕ k i=0 q (i) and ⊕ k i=0 t (i) restricts to the bijections

⊕ k i=0 q (i) : ⊕ k i=0 Im t (i) → ⊕ k i=0 Im q (i) and ⊕ k i=0 t (i) : ⊕ k i=0 Im q (i) → ⊕ k i=0 Im t (i)
respectively. The operator norms of these operators and their inverses are bounded by some constant independent of .

The multiplication operators and the rough Laplacian on R 2d

Recall the space of functions X defined in Setting I, page 6.1.

Lemma 8.7. For any ψ ∈ X , we have

[M (ψ), ∆ ] (D(∆ ), • ∆ )→L 2 (R 2d ) ≤ C θ and M (ψ), q (k) L 2 (R 2d ) ≤ C θ
where C is a constant independent of ψ ∈ X and .

Proof. The first claim can be checked easily from the expression of ∆ given in Proposition 3.6. For the second claim, we can just follow the argument in the proof of Lemma 6.6, replacing t (k) by q (k) . (The proof is simpler actually.)

8.4 Proof of Theorem 3.5

In this subsection, we give a proof of Theorem 3.5 on the rough Laplacian. In former part of the proof, we consider a rough Laplacian ∆ constructed from local data instead of the geometric rough Laplacian ∆ , and prove the claims of Theorem 3.5 for ∆ . In the latter part, we show that we can deform the rough Laplacian ∆ continuously to ∆ keeping the "band structure" of the eigenvalues. This will imply that the cardinality of eigenvalues in the first (or lowest) band coincides for ∆ and ∆ . We note at this moment that, for the argument on rough Laplacian below, we do not need Condition (2) in Proposition 7.3 (i.e. orthogonality of stable and unstable subspaces) in the choice of the coordinate charts {κ i } I i=1 in Proposition 7.3, that is, our argument below holds true for any choice of coordinate charts {κ i } I i=1 satisfying the conditions other than that condition. Also since our proof about the Laplacian is independent on the dynamics of f , in our choices the value of 0 < β < 1 can be taken close to 1.

We introduce a rough Laplacian ∆ acting on the space C ∞ N (P ) of equivariant functions. We start from the operators on local data. Let ∆ :

I i=1 D(∆ ) → I i=1 L 2 (R 2d ), ∆((u i ) I i=1 ) = (∆ u i ) I i=1
where ∆ denotes the Euclidean rough Laplacian on R 2d defined in Subsection 8. The operator ∆ defined above is a closed densely defined operator on C ∞ N (P ). Its domain of definition is by definition

D( ∆ ) = {u ∈ L 2 N (P ) | ∆ u L 2 < ∞},
which becomes a Hilbert space if we equip it with the inner product

(u, v) ∆ = (u, v) L 2 + ( ∆ u, ∆ v) L 2 .
We will write • ∆ for the corresponding norm. It is easy to see the following Lemma.

(So we omit the proof.)

Lemma 8.10. The norm • ∆ above is equivalent to the norm

u ′ ∆ = I i=1 u i 2 ∆ 1/2
defined in terms of local data, where • ∆ on the right hand side denotes the norm defined in (8.6). Consequently we have

D( ∆ ) = u ∈ L 2 N (P ) I i=1 u i 2 ∆ < ∞ .
Below we are going to construct the spectral projectors for ∆ , corresponding to the 2425 "bands of eigenvalues". Again we start from local data: We consider the operators

q (k) : I i=1 L 2 (R 2d ) → I i=1 (D(∆ ), • ∆ ) ⊂ I i=1 L 2 (R 2d ), q (k) ((u i ) I i=1 ) = (q (k) (u i )) I i=1 ,
for 0 ≤ k ≤ n, where q (k) is the operator defined in (8.7). Recall (8.8) for boundedness of these projection operators. The remainder is denoted as q = q (n+1) :

I i=1 L 2 (R 2d ) → I i=1 L 2 (R 2d ), q = q (n+1) := Id -(q (1) + q (2) + • • • + q (n) ).
The last operator restricts to a bounded operator q = q (n+1) :

I i=1 (D(∆ ), • ∆ ) → I i=1 (D(∆ ), • ∆ ).
We next introduce the operators

λ(k) := I * • q (k) • I : L 2 N (P ) → (D( ∆ ), • ∆ )
for 0 ≤ k ≤ n. These are bounded operators and the operator norms are bounded by a constant independent of . For k = n + 1, we set

λ(n+1) := I * • q (n+1) • I = Id -( λ(0) + λ(1) + • • • + λ(n) ). (8.11) 
Further we can prove the estimates

λ(k) • λ(k) - λ(k) L 2 N (P )→(D( ∆ ), • ∆ ) ≤ C ǫ for 0 ≤ k ≤ n + 1 (8.12)
and

λ(k) • λ(k ′ ) L 2 N (P )→(D( ∆ ), • ∆ ) ≤ C ǫ for 0 ≤ k, k ′ ≤ n + 1with k = k ′ (8.13)
for some constants ǫ > 0 and C > 0. (For the case where either of k or k ′ equals n + 1, use the definition (8.11) to check (8.12) and (8.13).)

Now we proceed in parallel to the argument in Subsection 7.6 and obtain the following lemma.

Lemma 8.11. There exist a decomposition of the Hilbert space (D( ∆ ), • ∆ )

D( ∆ ) = H 0 ⊕ H 1 ⊕ H 2 ⊕ • • • ⊕ H n ⊕ H and that of L 2 N (P ) L 2 N (P ) = H 0 ⊕ H 1 ⊕ H 2 ⊕ • • • ⊕ H n ⊕ H where H is the closure of H in L 2
N (P ). The subspaces H k for 0 ≤ k ≤ n are of finite dimension. If we write λ (k) for projection operators to H k (resp. to H in the case k=n+1) along other subspaces, then we have

(1) λ (k) - λ(k) (D( ∆ ), • ∆ ) ≤ C ǫ for 0 ≤ k ≤ n, (2) 
if k = k ′ , λ (k) • ∆ • λ (k ′ ) (D(∆ ), • ∆ )→L 2 N (P ) ≤ C ǫ , (3) if 0 ≤ k ≤ n, λ (k) • ∆ • λ (k) -(d + 2k) • λ (k) (D(∆ ), • ∆ )→L 2 N (P ) ≤ C ǫ , (4) 
for k = n + 1, we have

λ (n+1) • ∆ (u) L 2 ≥ (d + 2k + 1 -C ǫ ) u L 2 for u ∈ H = H (n+1) .
Therefore, by the general theorem on perturbation of closed linear operators [29, chap.IV, th. 1.16], we obtain an analogue of Theorem 3.5 for the rough Laplacian ∆ . Theorem 8.12. There exists a small constant ǫ > 0 such that, for any α > 0, we have

dist Spec ∆ ∩ {|z| < α} , {d + 2k, k ∈ N} ≤ ǫ
when is sufficiently small. Further we have Lemma 8.13. There exists C 0 > 0 s.t. for sufficiently small > 0, we have

C -1 0 -d ≤ dim H k = dim H k ≤ C 0 -d for 0 ≤ k ≤ n. Proof. To prove the equality dim H k = dim H k , it is enough to check that rank τ (k) = rank λ (k) for 0 ≤ k ≤ n, or equivalently rank ⊕ k i=0 τ (i) = rank ⊕ k i=0 λ (i) for 0 ≤ k ≤ n.
The latter relation would follow if we show

c ⊕ k i=0 λ (i) u L 2 ≤ ⊕ k i=0 λ (i) • ⊕ k i=0 τ (i) • ⊕ k i=0 λ (i) u L 2 ≤ C ⊕ k i=0 λ (i) u L 2 and c ⊕ k i=0 τ (i) u H r ≤ ⊕ k i=0 τ (i) • ⊕ k i=0 λ (i) • ⊕ k i=0 τ (i) u H r ≤ C ⊕ k i=0 τ (i) u H r
for a constant 0 < c < C, independent of . But these are immediate consequences of Proposition 8.6 (and the construction of the projection operators τ (k) and λ (k) . It remains to show rank λ

(k) ≍ -d for 0 ≤ k ≤ n. (8.14) 
For each point x ∈ M, we associate a smooth function

ϕ x := λ(k) (δ x )
where δ x is the Dirac measure at the point x. (The right hand side is well-defined and give a smooth function that concentrates around x.) Consider positive constants 0 < c < C and take a finite subset of points Q on M so that the mutual distance between two points in Q is in between c • 1/2 and C • 1/2 . Let

Q = {λ (k) (ϕ x ) | x ∈ Q } ⊂ Im λ (k) .
Note that λ (k) (ϕ x ) is close to ϕ x from Claim 1 in Proposition 8.11. It is not difficult to check that

(1) if we let the constants c, C large, the subset Q is linearly independent, and

(2) if we let the constants c, C small, the subset Q span the whole space Im λ (k) .

Indeed, to prove (1), we have only to observe that, if the constants c, C are sufficiently large, the L 2 -scalar product between different elements ϕ x , ϕ x ′ in Q decay rapidly with respect the distance between the corresponding points x, x ′ (relative to the size 1/2 ). To prove (2), we see that, if the constants c, C are sufficiently small, any element of Im λ (k) is well approximated by the linear combinations of the element in Q and then, by successive approximation, it is really contained in the subspace spanned by Q . Clearly the claims (1) and ( 2) imply (8.14).

Finally we compete the proof of Theorem 3.5 and Claim 1 of Theorem 7.1. We show that the operator ∆ is continuously deformed to the geometric Laplacian ∆ , keeping the band structure described in Theorem 8.12. For this purpose, we take a continuous one-parameter family of splitting of the tangent bundle

T M = E (t) + ⊕ E (t) - with t ∈ [0, 1] the parameter, such that • E (0) + = E u and E (0) -= E s ,
that is, the splitting above coincides with the hyperbolic splitting associated to f when t = 0.

• the sub-bundles E Then we consider a continuous deformation {κ i,t } I i=1 of the atlas {κ i } I i=1 and, correspondingly, the deformation {ψ i,t ; 1 ≤ i ≤ I } of the family {ψ i ; 1 ≤ i ≤ I } of functions so that the all the conditions in Proposition 7. Note that the operator ∆ ,1 is close to the geometric rough Laplacian ∆ . In fact, since the derivative (Dκ i,1 ) 0 at the origin is an isometry with respect to the Euclidean metric on R 2d and the Riemann metric g on M, we can check by using the local expression of the geometric rough Laplacian in Proposition 3.11 that we have ∆ ,1 -∆ : (D(∆ ), • ∆ ) → L 2 N (P ) ≤ C ǫ . Therefore, by the perturbation theorem [START_REF] Kato | Perturbation theory for linear operators[END_REF]chap.IV,th. 1.16] for closed operators, we obtain the "band structure" stated in the former part of Theorem 3.5. We can also see that the number of eigenvalues of the geometric rough Laplacian ∆ = D * D in the k-th band is same as that for ∆ . Hence, from Lemma 8.13, we obtain the rough upper and lower bound on the rank of spectral projectors P k in Theorem 3.5 and also Claim (1) of Theorem 7.1. 9 Proof of Th. 1.34, 1.35. Extension of the transfer operator to the Grassmanian bundle.

In this section, we explain how we obtain the results stated in Subsection 1.4, namely Theorem 1.34, Theorem 1.35, Theorem 1.36 and Theorem 1.37 for the Grassmanian extensions.

The proof are obtained by modifying the argument in the previous sections, and, for the most part, the extensions are rather formal and easy. The most essential difference is in Proposition 9.22, where we take systems of local coordinate charts depending on N( or ). Unlike the corresponding statement, Proposition 7.3, the local coordinate charts will be (metrically) singular in the fiber directions and the singularity will increase as N tends to infinity. With this choice of local coordinate charts, the non-smooth section E u will look "flat" in the local coordinates. A problem that may happen with this choice of singular local coordinates is that the coordinate change transformations and the flow viewed in such local coordinate charts may be also singular. In the proof of Proposition 9.22, we show that this problem actually does not occur. We will give a detailed argument on this point. Once we establish the local coordinates, we can follow the argument in the previous sections almost literally. So we will just give the corresponding statements to clarify the correspondence and skip most the proofs referring those of the corresponding statements in the previous sections.

Discussion about the linear model

We first discuss about the extension of the argument in Section 4 and 5 about the prequantum transfer operators for linear hyperbolic maps. Instead of a hyperbolic symplectic linear map B in (5.18), we consider a linear map B : R 2d+d ′ → R 2d+d ′ of the form B(q, p, s) = (Aq, t A -1 p, As) (

where (q, p, s) with q, p ∈ R d and s ∈ R d ′ denote the coordinates on R 2d+d ′ = R d ⊕R d ⊕R d ′ , A : R d → R d is an expanding linear map satisfying A -1 ≤ 1/λ for some λ > 1 and A : R d ′ → R d ′ is a contracting linear map satisfying A ≤ 1/λ. This is a hyperbolic linear map with stable subspace {0} ⊕ R d ⊕ R d ′ and unstable subspace R d ⊕ {0} ⊕ {0}. The L 2 -normalized transfer operator associated to B is

L : L 2 (R 2d+d ′ ) → L 2 (R 2d+d ′ ), Lu = 1 | det A| • u • A -1 .
Before we proceed, we put a remark. Remark 9.1. A simple idea to treat the transfer operator L as above is to regard it as the tensor product of two transfer operators, one associated to the hyperbolic linear map A ⊕ t A -1 and the other associated to the contracting linear map A. We may then apply the results in Section 5 to the former factor and that in 4 to (the adjoint of) the latter, and show a band structure of the spectrum of the transfer operator L on a Hilbert space. However the Hilbert space that appears in such an argument has singular properties with respect to the action of non-linear diffeomorphisms that break the product structure. For this reason, we take a similar but different way.

Let B (x,s) : L 2 (R 2d+d ′ (x,s) ) → L 2 (R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) )
be the Bargmann transform defined by

B (x,s) := B x ⊗ B s (9.2)
where

B x : L 2 (R 2d x ) → L 2 (R 4d (x,ξ) )
is the slight modification of the Bargmann transform given in (5.11) and B s :

L 2 (R d ′ s ) → L 2 (R 2d ′ (s,ξs) ) is the standard Bargmann transform given in (4.3) with setting D = d ′ . Let B * (x,s) := B * x × B * s : L 2 (R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) ) → L 2 (R 2d+d ′ (x,s) )
be the L 2 adjoint of B (x,s) . The lift of the operator L with respect to the Bargmann transform B (x,s) is defined as before:

L lift := B (x,s) • L • B * (x,s) : L 2 (R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) ) → L 2 (R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) ).
Here the space R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) is identified with the cotangent bundle of R 2d+d ′ (x,s) equipped with the coordinates (q, p, s, ξ q , ξ p , ξ s ) = (x, s, ξ x , ξ s )

where x = (q, p) ∈ R d ⊕ R d and s ∈ R d ′ is the coordinates on R 2d+d ′ = R 2d ⊕ R d ′ and ξ x = (ξ q , ξ p ) ∈ R d ⊕ R d and ξ s ∈ R d ′
are their respective dual coordinates. Imitating the argument in Section 5, we introduce a different coordinate system

(ν q , ν p , ζ q , ζ p , s, ξ s ) = (ν, ζ, s, ξ s ) (9.3) on R 2d+d ′ ⊕ R 2d+d ′ , where (ν q , ν p , ζ q , ζ p ) = (ν, ζ) ∈ R 4d = R 2d ⊕ R 2d
is the coordinates introduced in Proposition 2.15 while we do not change the coordinates (s, ξ s ). The corresponding coordinate change transformation is written

Φ : R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) → R 2d ν ⊕ R 2d ζ ⊕ R d ′ s ⊕ R d ′ ξs
Φ(q, p, s, ξ q , ξ p , ξ s ) = (ν q , ν p , ζ p , ζ q , s, ξ s ).

By this transformation, the standard symplectic form Ω 0 = dx∧dξ x +ds∧dξ s is transferred to (D Φ * ) -1 ( Ω 0 ) = dν q ∧ dν p + dζ p ∧ dζ q + ds ∧ dξ s and the metric g 0 = 1 2 dx 2 + 2dξ 2 + ds 2 + dξ 2 s is transferred to the standard Euclidean metric

(D Φ * ) -1 (g 0 ) = dν 2 + dζ 2 + ds 2 + dξ 2 s .
The unitary operator associated to the coordinate change Φ is defined as

Φ * : L 2 R 2d ν ⊕ R 2d ζ ⊕ R d ′ s ⊕ R d ′ ξs → L 2 R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) , Φ * u := u • Φ.
Under these settings, we can follow the arguments in Section 5 and obtain the next proposition, which corresponds to Proposition 5.8.

Proposition 9.2. The following diagram commutes:

L 2 R 2d+d ′ (x,s) L ---→ L 2 R 2d+d ′ (x,s)   U   U L 2 R d νq ⊗ L 2 R d+d ′ (ζp,ξs) L A ⊗L A⊕ t A -1 --------→ L 2 R d νq ⊗ L 2 R d+d ′ (ζp,ξs) (9.4)
with the unitary operator U defined by

U = B * (x,s) • Φ * • (B νq ⊗ B (ζp,ξs)
). Equivalently, for the lifted operators, the following diagram commutes:

L 2 R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) L lift ---→ L 2 R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs)   Φ *   Φ * L 2 R 2d ν ⊗ L 2 R 2d ζ ⊕ (R d ′ s ⊕ R d ′ ξs ) L lift A ⊗L lift A⊕ t A -1 ---------→ L 2 R 2d ν ⊗ L 2 R 2d ζ ⊕ (R d ′ s ⊕ R d ′ ξs ) (9.5) 
We next introduce the anisotropic Sobolev space for the extended situation.

Definition 9.3. We define the escape function (or the weight function)

W r : R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) → R + and W r,± : R 2d+d ′ (x,s) ⊕ R 2d+d ′ (ξx,ξs) → R + by W r (x, ξ) := W r ((ζ p , ξ s ), (ζ q , s)) and W r,± (x, ξ) := W r,± ((ζ p , ξ s ), (ζ q , s)) (9.6) where the functions W r and W r,± are those defined in Definition 4.12 with D = d + d ′ , and ζ p , ζ q , s, ξ s are those in the coordinates (9.3). The anisotropic Sobolev space

H r R 2d+d ′ (x,s)
is the completion of the Schwartz space S(R 2d+d ′ (x,s) ) with respect to the norm

u H r := W r • B (x,s) u L 2
.

Let H r,± (R 2d+d ′ ) be the Hilbert space defined in the parallel manner with W r (•) replaced by W r,± (•).

Below we fix an integer n ≥ 0 and assume that the parameter r in the definition of the anisotropic Sobolev space H r R 2d+d ′ (x,s)

satisfies the condition

r > n + 2 + 2(2d + d ′ ) (9.7)
which corresponds to (6.6) in Subsection 6.1. The next definition of projection operators correspond to Definition 5.26. Note that we will use the same symbol for the new projection operators as the corresponding projection operators in Definition 5.26. Since these two families of projection operators act on different Hilbert spaces, this will not introduce confusion.

Definition 9.4. For 0 ≤ k ≤ n, we consider the projection operators

t (k) := U • Id ⊗ T (k) • U -1 : H r (R 2d+d ′ (x,s) ) → H r (R 2d+d ′ (x,s) ) (9.8) 
and

t := Id - n k=0 t (k) = U • Id ⊗ T • U -1 : H r (R 2d+d ′ (x,s) ) → H r (R 2d+d ′ (x,s) ) (9.9)
where T (k) and T are the projection operators introduced in (4.36) and (4.49) page 74 respectively for the setting

D = d + d ′ .
We can translate the argument in Section 5 (especially that in Subsection 5.4) to get the next result, which corresponds to Proposition 5.11.

Proposition 9.5. The projection operators t (k) , 0 ≤ k ≤ n, and t , defined in (9.8) and (9.9), form a complete set of mutually commutative projection operators on H r (R 2d+d ′ (x,s) ). These operators also commute with the operator L. Consequently the space H r (R 2d+d ′ (x,s) ) has a decomposition invariant under the action of L: k) and E ′ = Im t .

H r (R 2d+d ′ ) = E ′ 0 ⊕ E ′ 1 ⊕ • • • ⊕ E ′ n ⊕ E ′ where E ′ k = Im t ( 
For this decomposition, we have the following estimates:

(1) For every 0 ≤ k ≤ n and for every u ∈ E ′ k , we have

C -1 0 | det(A ⊕ ( t A -1 ))| -1/2 A ⊕ ( t A -1 ) k max • u H r ≤ Lu H r ≤ C 0 | det(A ⊕ ( t A -1 ))| -1/2 A ⊕ ( t A -1 ) k min • u H r .
(2) The operator norm of L : E ′ → E ′ is bounded by

C 0 • max | det(A ⊕ ( t A -1 ))| -1/2 A ⊕ ( t A -1 ) n+1 min , | det(A ⊕ ( t A -1 ))| 1/2 A ⊕ ( t A -1 ) r min .
The constant C 0 is independent of A and .

Setting II ext : For every > 0, there is a given set G of C ∞ diffeomorphisms g :

D (2d+d ′ ) ( 1/2-2θ ) → g(D (2d+d ′ ) ( 1/2-2θ )) ⊂ R 2d+d ′
such that every g ∈ G satisfies (G0) g has a skew product structure with respect to the projection p : R 2d+d ′ (x,s) → R 2d

x , that is, we may write g as

g(x, s) = (ǧ(x), ĝ(x, s)) ∈ R 2d ⊕ R d ′ for (x, s) ∈ D (2d+d ′ ) ( 1/2-2θ ) ⊂ R 2d ⊕ R d ′ ,
(G1) ǧ is symplectic with respect to the symplectic form ω on R 2d in (5.2), (G2) ǧ(0) = 0, |ĝ(0, 0)| < C 1/2+θ and Dg(0) -Id < C max{ β(1/2-θ) , (1-β)(1/2-θ)+2θ }, and 1) for any multi-index α with |α| ≥ 2,

(G3) |∂ α g| < C α • -((1-β)(1/2-θ)+2θ)(|α|-
where C and C α are positive constants that do not depend on nor g ∈ G .

Remark 9.15. Condition (G2) and (G3) in the setting above is weaker than the literal translation of those in "Setting II" in Subsection 6.4. Still we can get the proofs of the propositions below by translating those of the corresponding propositions, though we have to check that these weaker conditions are sufficient to get the conclusions. The point is 2650 that the diffeomorphisms g get closer to the identity in the C ∞ sense as → +0, provided we look them in the scale 1/2 . See Remark 9.17 below also.

For g ∈ G , we consider the Euclidean prequantum transfer operator

L g : C ∞ 0 (D (2d+d ′ ) ( 1/2-2θ )) → C ∞ 0 (g(D (2d+d ′ ) ( 1/2-2θ ))) (9.15) 
defined by

L g u(x, s) = 1 | det(Dg| ker Dp )| • e -(i2π/ )•Ag (p(g -1 (x,s))) • u(g -1 (x, s))
with A g be the function defined by (6.20) replacing g by ǧ. Let

2655 χ : R 2d+d ′ (x,s) → [0, 1], χ (x, s) = χ( -1/2+θ |(x, s)|/2) (9.16)
where χ is a C ∞ function satisfying (4.53). The next two propositions correspond to Proposition 6.19 and 6.21 respectively.

Proposition 9.16. There exist constants C > 0 and ǫ > 0 such that, for any > 0 and g ∈ G , we have

Y •( L g -Id)•M ( χ ) H r (R 2d+d ′ ) < C ǫ and ( L g -Id) • Y • M ( χ ) H r (R 2d+d ′ ) < C ǫ .
Remark 9.17. Concerning Remark 9.15, we have to check that the argument in the proof of Proposition 6.19 works under the weaker assumption in the setting II ext . This is not difficult if we take the last comment in Remark 9.15 into account and noting that, from (9.10), we have

-(1 -β)(1/2 -θ) -2θ > -1/2 + 2θ
for the exponent that appeared in the condition (G3) in the setting II ext .

Proposition 9.18. For any g ∈ G , we have

L g • M ( χ ) H r,+ (R 2d+d ′ )→ H r (R 2d+d ′ ) ≤ C 0 and L g • M ( χ ) H r (R 2d+d ′ )→ H r,-(R 2d+d ′ )
≤ C 0 (9.17) for sufficiently small > 0, where C 0 > 1 is a constant that depends only on n, r, d, θ and the choice of the escape functions W and W ± in subsection 4.3.

The following correspond to Lemma 6.22, Corollary 6.23 and Lemma 6.24.

Lemma 9.19. There exist constants C > 0 and ǫ > 0 independent of such that the following holds: Let ψ ∈ X be supported on the disk

D (2d+d ′ ) (2 1/2-θ ) and let g ∈ G , 0 ≤ k ≤ n, then it holds ( L g -Id) • M (ψ) • t (k) H r (R 2d+d ′ ) ≤ C ǫ and t (k) • ( L g -Id) • M (ψ) H r (R 2d+d ′ ) ≤ C ǫ .
Corollary 9.20. There exist constants C > 0 and ǫ > 0 independent of such that, for any ψ ∈ X and g ∈ G , it holds

[ L g • M (ψ), t (k) ] H r (R 2d+d ′ ) ≤ C ǫ for 0 ≤ k ≤ n
and also

[ L g • M (ψ), t ] H r (R 2d+d ′ ) ≤ C ǫ .
Lemma 9.21. There exist constants ǫ > 0 and C > 0, independent of , such that the following holds true: Let ψ ∈ X and let g ∈ G , 0 ≤ k ≤ n, then it holds

( L g -Id) • M (ψ) • t (k) : H r (R 2d ) → H r (R 2d ) T r ≤ C -θd+ǫ t (k) • ( L g -Id) • M (ψ) : H r (R 2d ) → H r (R 2d ) T r ≤ C -θd+ǫ and [ L g • M (ψ), t (k) ] : H r (R 2d ) → H r (R 2d ) T r ≤ C -θd+ǫ 9.
3 Proof of the main theorems in the setting of Grassmanian extension.

Now we give the proofs of the main theorems, namely Theorem 1.34, Theorem 1.35 and Theorem 1.37 in the extended situation. (Theorem 1.36 will be proved in the next subsection.) The point in the following argument is in the choice of the local coordinate charts and a few basic estimates on the extended map f G viewed in them. The modifications in the rest part will be rather obvious.

Recall the set of points

P = {m i ∈ M | 1 ≤ i ≤ I } ,
local coordinate charts

κ i = κ i, : D (c) ⊂ R 2d → M, 1 ≤ i ≤ I
and the sections τ i : U i → P taken in Proposition 7.3. Also recall that we write E u for the image of the section E u : M → G, which assigns the unstable subspace to each point and is Hölder continuous with exponent β. This is an attracting subset for f G . (See (1.47).)

Let m i := E u (m i ) ∈ K 0 and set

P = { m i ∈ G | 1 ≤ i ≤ I } .
In the next proposition, we take local coordinate charts κ i = κ i, on a small neighborhood of the point m i as an extension of κ i = κ i, . Notice that the local coordinate charts κ i = κ i, are far from being conformal as the parameter gets smaller. That is,

D κ i | R 2d ⊕{0} is nearly isometry while D κ i | {0}⊕R d ′ is a conformal expansion by the rate -(1-β)(1/2-θ)-2θ .
(See Condition (3) in the proposition below and remember Condition (2) in Proposition 7.3.) This is necessary when we deal with the problems caused by non-smoothness of the attracting set E u .

Proposition 9.22. For each = 1 2πN > 0, there exist a system of local coordinate charts

κ i = κ i, : D (2d) (c) × D (d ′ ) (c • (1-β)(1/2-θ)+2θ ) ⊂ R 2d+d ′ → G, 1 ≤ i ≤ I (9.18)
on a neighborhood of E u with c > 0 a constant independent of , so that the following conditions hold for sufficiently small :

(1) κ i (0) = m i and the following diagram commutes

D (2d) (c) × D (d ′ ) (c • h (1-β)(1/2-θ)+2θ ) κ i ---→ G p   p   D (2d) (c) κ i ---→ M
linear map with respect to the Euclidean metric in the source and the Riemann metric on G in the target. Further, the map κ m • (Dκ m) -1 0 is not far from the exponential map in the sense that

exp -1 m •κ m • (Dκ m) -1 0 : D( m, c) → T mG C k ≤ C k with C k a constant independent of nor 1 ≤ i ≤ I .
We then define the local charts κ i in the statement of the proposition by

κ i (x, s) := κ mi (x, h -(1-β)(1/2-θ)-2θ s).
It is not difficult to check that the coordinate maps κ i thus defined satisfies the required conditions. The conditions (1), ( 2) and ( 3) should be obvious. Also so should be (5) once we check the conditions (1)-( 4). Thus we check the condition (4). The condition (G0) and (G1) are direct consequences of the construction. To check the condition (G2), we first observe that the diffeomorphism κ-1

j • κi is written in the form κ-1 j • κi   q p s   =   q 0 p 0 s 0   +   A 1,1 A 1,2 0 A 2,1 A 2,2 0 A 3,1 A 3,2 A 3,3     q p s   + K(q, p, s) (9.20) 
where K(q, p, s) satisfies K(0, 0, 0) = 0 and DK(0, 0, 0) = 0. From the assumption U i ∩U j = ∅ and the choice of β, we have

• |q 0 | < C 1/2-θ , |p 0 | < C 1/2-θ , |s 0 | < C β(1/2-θ) , • A 1,2 < C β(1/2-θ) , A 2,1 < C β(1/2-θ)
, and

• A 1,1 -I < C β(1/2-θ) , A 2,2 -I < C β(1/2-θ) , A 3,3 -I ′ < C (1/2-θ) for some orthogonal transformations I, I ′ : R d → R d .
From the definition, the diffeomorphism κ j,i := κ -1 j • κ i is then written

κ j,i   q p s   =   q 0 p 0 h (1-β)(1/2-θ)+2θ s 0   +   A 1,1 A 1,2 0 A 2,1 A 2,2 0 h (1-β)(1/2-θ)+2θ A 3,1 h (1-β)(1/2-θ)+2θ A 3,2 A 3,3     q p s   + K ′ (q, p, s) (9.21)
where K ′ (q, p, s) satisfies K ′ (0, 0, 0) = 0 and DK ′ (0, 0, 0) = 0. From this expression and the estimates above, we find the affine map A j,i as claimed in (4) so that the condition (G2) holds true. To prove the condition (G3), we express the term K(q, p, s) in (9.20) as

K x s = K 1 (x) K 2 (x, s)
and the differentials of K 1 (x) and K 2 (x, s) are uniformly bounded with respect to 1 ≤ i, j ≤ I and . Then K ′ (q, p, s) in (9.21) is written

K ′ x s = K 1 (x) h (1-β)(1/2-θ)+2θ • K 2 (x, h -(1-β)(1/2-θ)-2θ s)
.

The condition (G3) follows immediately from this expression.

We define a C ∞ section τ i : U i → P G of the U(1)-bundle P G as the pull-back of τ i by the projection p:

τ i (z) = τ i • p(z).
Once we have set up the local coordinates and local sections as above, we can follow the argument in Section 7 by confirming the correspondence between the objects and statements. The following few paragraphs we follow the argument in Subsection 7.3 with obvious modifications.

Definition 9.23. Set

E := I i=1 C ∞ 0 (D 2d+d ′ ( 1/2-θ )).
and let I : C ∞ N (P G ) → E be the operator that assign to each equivariant function u ∈ C ∞ N (P G ) a set of functions I (u) = (u i ) I i=1 ∈ E on local charts defined by the relation

u i (x, s) = ψ i (x, s) • u ( τ i ( κ i (x, s))) for 1 ≤ i ≤ I . (9.22) 
Let I * : I i=1 S(R 2d+d ′ ) → C ∞ N (P G ) be the operator defined by

I * (u i ) I i=1 (p) = I i=1 e i2πN •α i (p) • χ (x, s) • u i (x, s) (9.23)
where χ is the function defined in (9.16), (x, s) = κ -1 i (π(p)) and α i (p) is the real number such that p = e i2πα i (p) • τi (π(p)). Then we have

I * • I u = u for u ∈ C ∞ N (P G ) (9.24) 
and I • I * : E → E is a projection onto the image of I . We define the lift of the prequantum transfer operator F with respect to I by

F := I • FN • I * : I i=1 S(R 2d+d ′ ) → E ⊂ I i=1 S(R 2d+d ′ ). (9.25) Definition 9.26. Let C ∞ N (P G , E u ) be the set of functions u ∈ C ∞ N (P G ) that is supported
on the inverse image (with respect to the projection π G : P G → G) of the ( β(1/2-θ) /4)neighborhood of the section E u . The anisotropic Sobolev space H r (P G , E u ) is defined as the completion of the space C ∞ N (P G , E u ) with respect to the norm

u H r := I i=1 u i 2 H r (R 2d+d ′ ) 1/2 for u ∈ C ∞ N (P G , E u ) ,
where 

u i = (I (u)) i ∈ C ∞ 0 D (2d+d ′ ) (
I • I * : I i=1 H r,+ (R 2d+d ′ ) → I i=1 H r (D (2d+d ′ ) ( 1/2-θ ))
and

I • I * : I i=1 H r (R 2d+d ′ ) → I i=1 H r,-(D (2d+d ′ ) ( 1/2-θ )).
Further the operator norms of these projection operators are bounded by a constant independent of .

Proof. The proof is obtained by following that of Lemma 7.14, setting

G = { A j,i • κ j,i | 1 ≤ i, j ≤ I , U i ∩ U j = ∅} (9.28) and X = { ψ j • κ j,i • χ | 1 ≤ i, j ≤ I , U i ∩ U j = ∅},
and by using Proposition 9.18 and Corollary 9.7 instead of Proposition 6.21 and Corollary 6.3.

The next lemma corresponds to Lemma 7.17. We suppose that the hyperbolicity exponent λ > 1 of the flow f G is sufficiently large. (Say λ > 9.) Lemma 9.28. The operator F defined in (9.25) extends uniquely to the bounded operator

F : I i=1 H r (R 2d+d ′ ) → I i=1 H r (D (2d+d ′ ) ( 1/2-θ )) (9.29)
and the operator norm is bounded by a constant independent of . Consequently the same result holds for the prequantum transfer operator F : H r (P G , E u ) → H r (P G , E u ).

Proof. We follow the argument in the proof of Lemma 7.17 with slight modification. We express the diffeomorphism fj,i in (9.26) as a composition

fj,i = ãj,i • gj,i • B j,i (9.30) 
where

• ãj,i : R 2d+d ′ → R 2d+d ′ is a translation in a direction in R 2d ⊕ {0},
• B j,i : R 2d → R 2d is a linear map of the form (9.1) considered in Subsection 9.1.

• gj,i is a diffeomorphism such that G = {g j,i } 1≤i,j≤I satisfies the condition (G0),(G1),(G2) and (G3) in Setting II ext in Subsection 9.2.

This corresponds to the expression (7.22) in the proof of Lemma 7.17. Remark 9.29. (1) The prequantum transfer operator L ãj,i associated to a translation on R 2d+d ′ acts on the anisotropic Sobolev space H r (R 2d+d ′ ) as an isometry if the direction of translation belongs to the subspace R 2d ⊕ {0}. But this is not true for translations in the other directions.

(2) The proof of the claim on gj,i need some argument. But this is essentially parallel to that in the proof of Proposition 9.22.

From the expression (9.30), the operator F j,i is expressed as the composition F j,i = L (0) • L (1) • L (2) (9.31)

where L (0) := L ãj,i and L (2) := L B j,i are the Euclidean prequantum transfer operators (9.15) associated to the diffeomorphisms g = a ij and g = B ij respectively, while L (1) is the operator of the form

L (1) u = L gj,i (e V • f • κ i • ψ j,i • χ ) • B -1 j,i • u
with ψ j,i the function defined in (9.27). Then we follow the argument in the latter part of the proof of Lemma 7.17, replacing some proposition by those prepared in the last subsection.

Next we introduce the projection operators

t (k) : I i=1 H r (R 2d+d ′ ) → I i=1 H r (R 2d+d ′ ), t (k) ((u i ) I i=1 ) = (t (k) (u i )) I i=1 , (9.32) 
for 0 ≤ k ≤ n and t :

I i=1 H r (R 2d+d ′ ) → I i=1 H r (R 2d+d ′ ), t ((u i ) I i=1 ) = ( t (u i )) I i=1 ,
where t (k) and t are the projection operators introduced in (9.8) and (9.9). As before, we set t (n+1) = t , so that the set of operators {t (k) } n+1 k=0 are complete sets of mutually commuting projection operators. (Notice that we are using the same notation t (k) and t in this extended setting as (7.25) and (7.26) in Subsection 7.5.)

The following two propositions corresponds to Proposition 7.19 and 7.20. For the proofs, we have only to follow those of Proposition 7.19 and 7.20 respectively, checking the correspondence in the notation and replacing the propositions by the corresponding ones. Proposition 9.30. There are constants ǫ > 0 and C 0 > 0, independent of , such that the following holds: We have that

t (k) • ( I • I * ) I i=1 H r (R 2d+d ′ )→ I i=1 H r (R 2d+d ′ ) < C 0 , and 
( I • I * ) • t (k) I i=1 H r (R 2d+d ′ )→ I i=1 H r (R 2d+d ′ )
< C 0 for 0 ≤ k ≤ n. Also we have, for the norm of the commutators, that

t (k) , ( I • I * ) I i=1 H r (R 2d+d ′ )→ I i=1 H r (R 2d+d ′ ) ≤ C 0 ǫ (9.33) for 0 ≤ k ≤ n.
Proposition 9.31. There are constants ǫ > 0 and C > 0, independent of , such that

F , t (k) 
I i=1 H r (R 2d+d ′ )→ I i=1 H r (R 2d+d ′ ) ≤ C ǫ for 1 ≤ k ≤ n + 1. (9.34)
Further there exists a constant C 0 > 0, which is independent of f G , V and , such that

(1) For 0 ≤ k ≤ n + 1, it holds t (k) • F • t (k) I i=1 H r (R 2d+d ′ )→ I i=1 H r (R 2d+d ′ ) ≤ C 0 sup |e V | Df | Eu -k min | det Df | Eu | -1/2 (2) If u ∈ I i=1 H r (R 2d+d ′ ) satisfies I • I * (u) = u and u -( I • I * ) • t (k) (u) H r < u H r /2 for some 0 ≤ k ≤ n, then we have t (k) • F • t (k) (u) H r ≥ C -1 0 • inf |e V | Df | Eu -k max | det Df | Eu | -1/2 • u H r .
Once we have obtained the propositions above, we can prove the next theorem, just in the same manner as we deduced Theorem 7.1 in Subsection 7.6. Theorem 9.32. Let n ≥ 0 and take sufficiently large r accordingly. Then there exists a small constant ε > 0, a constant C 0 , which is independent of V , f and N, and a decomposition of the Hilbert space H r N (P G , E u ) independent of V :

H r N (P G , E u ) = H ′ 0 ⊕ H ′ 1 . . . ⊕ H ′ n ⊕ H ′ n+1 (9.35)
such that, writing τ (k) for the projection onto the component H ′ k along other components, (1) For some constant ǫ > 0 and C > 0 independent of , we have

dim H ′ k -N d • V ol ω (M) ≤ CN d-ǫ for 0≤k≤n. while dim H ′ n+1 = ∞, (2) τ (k) < C 0 for 0 ≤ k ≤ n + 1, (3) τ 
(k) • F N • τ (l) ≤ C/N ε if k = ℓ, with C independent on N (but may depend on f G ). ( 4 
) for 0 ≤ k ≤ n + 1, it holds τ (k) • F N • τ (k) H r N (P G ,Eu) ≤ C 0 sup x∈M e D(x) Df x | Eu -k min , (9.36) 
(5) for 0 ≤ k ≤ n and u ∈ H ′ k it holds Remark. The Hilbert space H r N (P G , E u ) consists of distributions supported on a small neighborhood of the attractor E u depending on > 0. To get the Hilbert space H r (P G ) in the statement of Theorem 1.34 and Theorem 1.35, we need a little formal argument to construct H r (P G ) from H r N (P G , E u ) so that H r (P G ) contains C ∞ N (P G ) and that the operator F N • χ on H r (P G ) has the same spectral property as that on H r N (P G , E u ). But, recalling the argument in Subsection 1.4.3 on the absorbing neighborhoods of the attractor E u and noting the precomposition of the operator χ in F N • χ , such an argument can be provided easily in various ways.

τ (k) • F N u H r N (P G ,Eu) ≥ C -1 0 inf x∈M e D(x) Df x | Eu -k max u H r N (P G ,Eu) , ( 9 

A remark about the relation between the transfer operators

FN and F N (and a proof of Theorem 1.36).

The prequantum transfer operator F N on G is an extension of the prequantum transfer operator FN . But the relation between the spectrum of F N and that of FN is not clear in general. In this subsection, we relate the spectra of the transfer operators F N and FN in the respective "outermost" bands. This will reduce Theorem 1.36 (and the corresponding part of Theorem 1.37) to Theorem 1.21.

Below we suppose that the potential function V and Ṽ in their definitions are related as

Ṽ = V • p (9.38)
and that they are both smooth 20 . We also assume r + 1 < r - 0 so that the outermost annuli in Theorem 1.17 and Theorem 1.34 are separated from the inner annuli. Let us consider the pull-back operator

p * : C ∞ N (P ) → C ∞ N (P G ), p * u(z) = u(p(x))
by the projection p : G → M, and its dual

p * : (C ∞ N (P G )) ′ → (C ∞ N (P )) ′ , p * v, u = v, p * u
Let H r (P G , E u ) 0 be the closed subspace of the Hilbert space H r (P G , E u ) that consists of elements supported on (the image of) the section E u .

Proposition 9.33. The operator p * above restricts to a bounded operator p * : H r (P G , E u ) 0 → H r (P ) (9.39)

and the following diagram commutes:

H r (P G , E u ) 0 F N ---→ H r (P G , E u ) 0 p *   p *   H r (P ) FN ---→ H r (P )
Further we have that (1) The generalized eigenvectors of F N : H r (P G , E u ) → H r (P G , E u ) for the eigenvalues in the outmost band {r - 0ǫ < |z| < r + 0 + ǫ} is contained in H r (P G , E u ) 0 and its image by p * does not vanish.

(2) The image of p * in (9.39) contains C ∞ N (P ) ⊂ H r (P ).

Before proving this proposition, we give the following consequence.

Corollary 9.34. Under the same assumptions as in 9.33, the spectrum of the operators FN : H r (P ) → H r (P ) and F N : H r (P G , E u ) → H r (P G , E u ) in the respective outermost annulus {r - 0ǫ < |z| < r + 0 + ǫ} with sufficiently small ǫ > 0 coincides up to multiplicity (provided is sufficiently small according to ǫ).

Proof. Proposition 9.33 tells that, for a generalized eigenvector v of F N : H r (P G , E u ) → H r (P G , E u ) for an eigenvalue in the outermost band, its image p * (v) is a generalized eigenvector of FN : H r (P ) → H r (P ) for the same eigenvalue. Thus the eigenvalues of

F N : H r (P G , E u ) → H r (P G , E u )
in the outmost band is contained in those of FN : H r (P ) → H r (P ) up to multiplicity 21 .

We prove the converse. The image Imp * of p * in (9.39) can be identified with the quotient space H r (P G , E u )/ ker p * . By this mean, we regard Imp * as a Hilbert space, which contains C ∞ N (P ) ⊂ H r (P ) from Proposition 9.33(2). Thus we have two Hilbert spaces H r (P ) and Imp * which contains C ∞ N (P ) in common as dense subsets and the operator FN act on both of the Hilbert space boundedly as natural extensions of its action on C ∞ N (P ). Then, by a general argument (see Appendix of [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] for instance), the discrete spectra of the operators FN : H r (P ) → H r (P ) and FN : Imp * → Imp * coincide up to multiplicity on the outside of their essential spectral radius. This implies that the eigenvalues of FN : H r (P ) → H r (P ) in the outermost band is contained in those of

F N : H r (P G , E u ) → H r (P G , E u ) up to multiplicity.
With this corollary, we finish the proof of Theorem 1.36.

Proof of Theorem 1.36. Theorem 1.36 follows from Corollary 9.34 and Theorem 1.21, if the potential function Ṽ satisfies (9.38) for some smooth function V close to V 0 . But the rank of the spectral projection operator for the outermost band does not depend on the potential function Ṽ (provided that the outermost band is isolated) because it coincides with the number of the eigenvalues of t (0) in a small neighborhood of 1. So we get Theorem 1.36.

For the proof of Proposition 9.33, we first prove the following simpler version in the linearized setting. 

* (u) H r (R 2d+d ′ ) = K • u H r (R 2d ) for all u ∈ H ′ 0 = Im t (0) .
Proof. We first prove boundedness of the operator p * : H r (R 2d+d ′ ) → H r (R 2d ). Let us consider the operator P * : S(R 4d+2d ′ ) → S(R 4d ) defined by

P * v(x, ξ x ) = a -1 d ′ • (2π ) -d ′ /2 • v(x, s, ξ x , ξ s ) exp(--1 |ξ s | 2 /2) dsdξ s (2π ) d ′ .
It makes the following diagram commute:

S R 2d+d ′ (x,s) B (x,s) ---→ S R 4d+2d ′ (x,s,ξx,ξs)   p *   P * S R 2d x Bx ---→ S R 2d (x,ξx)
Since we have, from the definition of W r (x, ξ x ) in (5.22) and that of W r (x, s, ξ x , ξ s ) in (9.6), that

W r (x, ξ x ) 2 • exp(--1 |ξ s | 2 ) ≤ C • W r (x, s, ξ x , ξ s ) 2
for some constant C > 0 independent of , we obtain, by Schwartz inequality,

W r (x, ξ x ) 2 |P * v(x, ξ x )| 2 = a -2 d ′ • (2π ) -d ′ /2 • W r (x, ξ x )v(x, s, ξ x , ξ s ) exp(--1 |ξ s | 2 )dsdξ s 2 ≤ C W r (x, s, ξ x , ξ s ) 2 |v(x, s, ξ x , ξ s )| 2 dsdξ s
with C > 0 a constant independent of . Integrating the both sides with respect to the variables x and ξ x , we get

W r • P * v L 2 ≤ C W r • v L 2 .

This implies that p

* : H r (R 2d+d ′ ) → H r (R 2d ) is bounded.
We next prove the remaining claims. Recall that the operator T (0) defined in (4.36) is the rank one projection operator that assigns a function the constant term of its Taylor expansion at the origin 0. For the operator p ′

* : S R d+d ′ (ζp,ξs) → S R d ζp defined by p ′ * v(ζ p ) = v(ζ p , 0), we have the commutative diagram: S R d+d ′ (ζp,ξs) T (0) ---→ S R d+d ′ (ζp,ξs)   p ′ *   p ′ * S R d ζp T (0) ---→ S R d ζp
The images of the operators T (0) on the upper and lower rows are one-dimensional subspaces that consists of the constant functions. The operator p ′ * restricts to an isomorphisms between them. The commutative diagram above extends to

H r R d+d ′ (ζp,ξs) T (0) ---→ H r R d+d ′ (ζp,ξs)   p ′ *   p ′ * H r R d ζp T (0) ---→ H r R d ζp
and hence trivially to

L 2 R d νq ⊗ H r R d+d ′ (ζp,ξs) Id⊗T (0) ----→ L 2 R d νq ⊗ H r R d+d ′ (ζp,ξs)   Id⊗p ′ *   Id⊗p ′ * L 2 R d νq ⊗ H r R d ζp Id⊗T (0) ----→ L 2 R d νq ⊗ H r R d ζp (9.40)
This commutative diagram viewed through the isomorphisms

U : L 2 R d νq ⊗ H r R d ζp @H r R 2d x and U : L 2 R d νq ⊗ H r R d+d ′ (ζp,ξs) → H R 2d+d ′ (x,s)
is just

H r R 2d+d ′ (x,s) t (0) ---→ H r R 2d+d ′ (x,s)   p *   p * H r R 2d x t (0) 
---→ H r R 2d

x Therefore for the proofs of the remaining claims of the proposition, it is enough to prove the corresponding claims in the diagram (9.40). But they are now obvious from the fact that T (0) is a rank one projection operator.

Proof of Proposition 9.33 . The proofs of the claims other than Claim 2 are obtained by applying Lemma 9.35 to the local data and showing that the effect of non-linearity of the coordinate transformations is negligible. We omit the detail of the argument because it should be clear if we recall the argument in Section 7 and the preceding subsections in this section.

We prove Claim 2. Recall that E u : M → G is the section that assigns the unstable subspace to each point. Let µ u = (E u ) * (V ol ω ) where V ol ω is the symplectic volume on M.

We consider the operator

ι : C ∞ N (P ) → C ∞ N (P G ) ′ ι(u) = (u • p) • µ u which satisfies p * • ι = Id.
To show that H r (P ) contains the space C ∞ N (P ), it is enough to prove that the image ι(C ∞ N (P )) of this operator is contained in H r (P G , E u ). We define a Hilbert space of distributions H r (G, E u ) ⊂ C ∞ (G) ′ on G as the completion of the space C ∞ (G, E u ) with respect to the norm

u H r := I i=1 W r • B x u i 2 L 2 1/2 where u i (x) := ψ i (x) • u(κ i (x)) and W r : R 2d+d ′ ⊕ R 2d+d ′ → R is defined by W r (p, q, s, ξ p , ξ q , ξ s ) = W r ( -1/2 ξ p , ( -1/2 ξ q , -1/2 ξ s )).
Then, from the results in [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]and [START_REF] Faure | A semiclassical approach for anosov diffeomorphisms and ruelle resonances[END_REF], the Perron-Frobenius operator

Q : C ∞ (G, E u ) → C ∞ (G, E u ), Qu(x) = 1 | det(Df G | ker p )| • u • f -1 G extends to a bounded operator on H r (G, E u ). The spectral radius of Q : H r (G, E u ) → H r (G, E u
) is 1 and the essential spectral radius is smaller than 1. Further 1 is the unique eigenvalue on the unit circle, which is simple, and the corresponding eigenvector is µ u . In particular, the measure µ u belongs to H r (G, E u ). To finish, we consider the operator

j : C ∞ (G, E u ) × C ∞ N (P G ) → C ∞ N (P G ), j(u, v) = u • v
and check that it extends to a continuous operator22 

j : H r (G, E u ) × C ∞ N (P G ) → H r (P G , E u ). Since ι(u) = j(µ u , u), this implies that ι(C ∞ N (P )) is contained in H r (P G , E u ).
10 Proof of Th. 1.23. Concentration of most of the external eigenvalues on a circle. Notice that T n,N is in some sense L Dn,N but with the the external band replaced by the spectrum of L D ,N . As a consequence, from Theorem 1.17, for N large enough, the operator T n,N has no spectrum in the spectral domain23 

♯ {σ (A N + B N ) ∩ {z ∈ C, |z| ≥ 1 + ǫ}} ≤ 1 ǫ C • F (N) with C = (2+C B ) 2 log(1+ǫ) . Proof. Let C N := A N + B N and P N := C * N C N . Let us write P N = A N + B N with A N := A * N A N , B N := A * N B N + B * N A N + B * N B N . We have that A N ≤ 1, B N ≤ 2C B + C 2 B , B N is
M N j=1 log |λ j | ≤ 1 2 M N j=1 log p j (10.6) 
Since |λ j | ≥ 1 + ǫ, that is, log |λ i | ≥ log(1 + ǫ), this implies and log p j ≤ p j -1.

M N • log(1 + ǫ) ≤ 1 2 M N j=1 log p j ≤ 1 2 M N j=1 (p j -1). (10.7) 
Let (f j ) j∈{1,...M N } denote the associated eigenvectors of P N for eigenvalues (p j ) j∈{1,...M N } . Put E N := Span (f j , j ∈ {1, . . . M N }). Then we have

M N j=1 p j = Tr (P N | E N ) = Tr (A N | E N ) + Tr (B N | E N ) ≤ M N j=1 |(f j , A N f j )| + M N j=1 |(f j , B N f j )| ≤ M N j=1 A N + B N Tr ≤ M N + (2 + C B ) F (N) (10.8)
That is

M N j=1 (p j -1) ≤ (2 + C B ) F (N) .
Putting this in (10.7), we obtain the conclusion.

we deduce that R C N (z) -R A N (z) Tr ≤ CF (N) and then that B ′ N Tr ≤ CF (N) with some C > 0 independent on N. We can apply Lemma 10.4 to the operators A ′ N , B ′ N and get that ♯ {σ (A ′ N + B ′ N ) ∩ {z ∈ C, |z| > 1}} ≤ C ′ • F (N) for some C ′ independent on N. By the spectral mapping theorem, we have

♯ {σ (A N + B N ) ∩ U} = ♯ {σ (A ′ N + B ′ N ) ∩ {z ∈ C, |z| > 1}} .
So we get (10.9). Now we apply this lemma to the setting mentioned in the beginning. We take finitely many disks U i ⊂ C so that we may apply Lemma 10.5 to each U i . (In particular we take U i so that it intersects the region e -D (r + 1 + ε) n < |z| < e -D (r - 0ε) n for small ε > 0 where the resolvent (z -A N -B N ) -1 should be bounded uniformly in N and n, and where we take the pint z 0 in Lemma 10.5.) By covering the inner connected component of the region e -D W ǫ by such disks, we conclude Lemma 10.2. 3) and (10.5). In the last inequality, we chose ǫ ′ > 0 such that C ǫ ǫ ′ < ǫ. We next show that log |D (z)| is not too small on some part of the region W ǫ . More precisely, we let From Theorem 1.17 applied to L Dn,N , we see that W ′ ǫ is in a gap (or on the outside) of the bands given there and that (zId -L Dn,N ) -1 ≤ C ǫ for all z ∈ W ′ ǫ .

W ′ ǫ := z ∈ C,
So, from (10.11), we see that 1 -K(z) for z ∈ W ′ ǫ is invertible and that for N > max (N ǫ , N ǫ ′ ).

Finally, we employ a theorem, Jensen's formula [38, p.236], in complex analysis to show that the inequalities (10.12) and (10.13) imply that, for arbitrarily small ǫ > 0, we have

♯ {z ∈ W ǫ , D (z) = 0} < ǫN d (10.14) 
for sufficiently large N. This finish the proof of Lemma 10.3. We cover the domain W ǫ by finitely many open topological disks D i , 1 ≤ i ≤ l, so that D i ∩ W ′ ǫ = ∅ for every i. Let Φ i : D i → D := {w ∈ C, |w| < 1} be a Riemann mapping such that Φ i (z i ) = 0 for some z i ∈ D i ∩ W ′ ǫ . Take δ > 0 so small that i Φ -1 i ({|w| < 1 -δ}) also cover W ǫ . Let D i (w) := D (Φ i (w))

which is a holomorphic function on D with zeroes w j ∈ D, which correspond to the zeroes of D (z). Jensen's formula writes Summing over the sets D i and noting arbitrariness of ǫ > 0, we conclude (10.14).

Proof of equidistribution of the arguments of the resonances

In this subsection we prove the second part of Theorem 1.23, namely the equidistribution of the arguments. We write the eigenvalues of F as λ j = ρ j e iθ j , ρ j ≥ 0, θ j ∈ R, j = 1, 2, . . . , N , with N := dimH . Let us consider the following distribution (for fixed ) in θ on the circle S 1 :

s := 1 N N j=1 δ (θ -θ j )
We want to show that s converges (weakly) to the uniform probability measure on S 1 in the limit → 0. This is equivalent to show that, for every fixed n ∈ Z, From the accumulation of the moduli of eigenvalues to r, proved in the last section, we

have 1 N N j=1 1 - ρ j r -→ →0 0.
Therefore it is enough to show, for each fixed n > 0, that From the results given in Subsection 1.7, we see that the trace of F n = Π • F n • Π is expressed as the sum of contributions from its restriction to neighborhoods of the finite number of fixed points x = f n (x) of f n and obtain (10.16). We finished the proof of Theorem 1.23.

11 Proof of Th. 1.38. Gutzwiller trace formula.

The Atiyah-Bott trace formula

In this subsection, we recall the Atiyah-Bott trace formula in a general setting [4, cor.5.4,p.393]: 3140 Definition 11.1. "Flat Trace of a transfer operator". Suppose that f : M → M is a smooth diffeomorphism on a manifold M whose periodic points are all hyperbolic, that π : E → M is a vector bundle and that B : E → E a vector bundle map projecting on f , i.e. such that the following diagram commutes:

E B -→ E π ↓ ↓ π M f -→ M
We can define the associated transfer operator acting on smooth sections of this vector bundle

F : C ∞ (M, E) → C ∞ (M, E) , F u (x) := B f -1 (x) u f -1 (x) (11.1) 
For any n ≥ 1, the flat trace of the transfer operator F n is defined by where K n (x, y) dy ∈ L (E y → E x ) denotes the Schwartz kernel of F n .

For n ≥ 1, let B

(n)

x := n-1 k=0 B f k (x) : E x → E f n (x) . For a periodic point x = f n (x) then B This is a finite sum over periodic points of f with period n.

the vertical part of the tangent space. Then V G = ∪ l∈G V l G is a smooth subbundle of T G.

Lemma 11.4. For 0 ≤ k ≤ d, 0 ≤ m ≤ d 2 , let Λ (k,m) → G be the vector bundle with fiber Λ (k,m) (l) := Λ k (T l G) ⊗ Λ m (V l G) over l ∈ G and let F k,m be the transfer operator Proof. We first derive an useful expression for the differential of the map f G : G → G. For x ∈ M, we have a continuous decomposition of the symplectic tangent space

F k,m : C ∞ G, Λ (k,m) → C ∞ G, Λ (k,m) defined by F k,m u(l) = χ • p(f -1 G (l))) • |det (Df x | l)| 1/2 |det (Df G | V l G (l))| Λ k Df -1 /l ⊗ Λ m (Df | V l G ) u f -1 G (l) (11 
T x M = E u (x) ⊕ E s (x) ,
where E u (x) and E s (x) are linear Lagrangian space. We will use the fact that the symplectic form ω provides an isomorphism between these complementary Lagrangian subspaces The map L u (x) is expanding while L s (x) is contracting. Similarly in the cotangent bundle (with the usual convention here such as E * u (E s ) = 0), we have t L -1 u (x) := t Df -1

x | E * u (x) : E * u (x) → E * u (f (x))

t L -1 s (x) ≡ t Df -1

x | E * s (x) : E * s (x) → E * s (f (x)) For x ∈ M, the graph of a linear map

L : E u (x) → E s (x)
defines an element l ∈ G x . In particular the linear map L ≡ 0 is associated to the subspace E u (x) ∈ G x . In tensorial notations we have that

L ∈ (E * u (x) ⊗ E s (x)) (11.8)
Conversely, there is a neighborhood of E u (x) in G x such that every element l ∈ G x in this neighborhood can be expressed as the graph of a such linear map L. The map f G : G → G defined in (1.38), is linear in the fiber and has derivative

Df G | kerp ≡    t L -1 u (x) ⊗ L s (x) Df G |V l G    (11.9) 
Now let x = f n (x) be a periodic point. The isomorphism (11.6) gives

L (x) := L u (x) ω ≡ t L -1 s (x) (11.10) 
We will note

L (n) (x) := n-1 k=0 L f k (x) , L -(n) (x) := L (n) (x) -1 .
We first express the "Gutzwiller amplitude" using (11.7) and (11.10) as follows:

B x : = 1 |det (1 -Df n x )| = 1 det 1 -L (n) u (x) 1/2 det 1 -L (n) s (x)
1/2 (11.11)

= det L (n) u (x) -1/2 det 1 -L -(n) u (x) 1/2 det 1 -L (n) s (x) 1/2 = det L -(n) 1/2 • 1 |det (1 -L -(n) )|
Notice that the last expression is presented in such a way that the first factor is a multiplicative cocycle and the second one converges to 1 as n → +∞. Let us consider the map f G : G → G and the transfer operator (11.4) with (k, m) = (0, 0):

(F 0,0 u) = |det (Df x (l))| 1/2 • |det (Df G | V l G (l))| • u • f -1

G

The Atiyah-Bott trace formula reads

Tr ♭ F n 0,0 = x=f n (x)
A x (11.12) with the amplitude

A x := |det (Df n x (E u (x)))| 1/2 |det (Df n G (E u (x)) | kerp )| 1 det 1 -D f -n G (E u (x))
From (11.9) and and (11.10), we can express A x as

A x = det 1 -L -(n) u det 1 -L -(n) s det 1 -t L (n) u ⊗ L -(n) s -1    detL (n) u 1/2 det t L -(n) u ⊗ L (n) s    = det 1 -L -(n) det 1 -L (n) det 1 -L (n) ⊗ L (n) -1 detL (n) 1/2 |det (L -(n) ⊗ L -(n) )| = det L -(n) 1/2 det 1 -L -(n) -2 det 1 -L -(n) ⊗ L -(n) -1
Comparing the expression of A x and B x we see that they have the same leading behavior for n → +∞. More precisely:

3205 B x = A x det 1 -L -(n) det 1 -L -(n) ⊗ L -(n)
Recall that we aim to express B x as a sum of "amplitudes" related to some transfer operators. By construction, the amplitude A x already comes from a transfer operator. Therefore we would like to express the remaining factor det 1 -L -(n) det 1 -L -(n) ⊗ L -(n) as a sum of "cocyles" related to some potentials as in (11.3). For this purpose we use some relations of linear algebra [42, p.396]: if M : R m → R m is a linear endomorphism 

A x Tr Λ k L -(n) ⊗ Λ m L -(n) ⊗ L -(n)  
On the other hand, in the same way we derived (11.12), we check that the Atiyah-Bott trace formula of (11.4) reads:

Tr ♭ F n k,m = x=f n (x) A x Tr Λ k L -(n) ⊗ Λ m L -(n) ⊗ L -(n)
We have obtained (11.5) and finished the proof of Lemma 11.4.

The next corollary extends Lemma 11.4 to the prequantum transfer operators with an arbitrary potential function Ṽ restricted to the N-th Fourier mode. But notice that, in the statement below, we define the Attiyah-Bott trace of the prequantum transfer operators (restricted to the N-th Fourier mode) by using their expressions in local charts, rather than applying Definition 11. where V 0 (x) = 1 2 log detDf x | Eu(x) is the potential of reference. Remark 11.6. As we noted above, we define the Attiyah-Bott trace of prequantum transfer operators by using its local expression. (If we adopt the "line bundle termonology" refered in Remark 1.13, this definition coincides with the Attiyah-Bott trace in Definition 11.1 with E = L ⊗N .) For simplicity, let us consider the case F V ,0,0 which acts on functions on P G and let F V ,0,0 N be its restriction to the N-th Fourier mode. As we observed in Proposition 9.24 in Section 9, this operator F V ,0,0 N is lifted to a matrix of operators, denoted by F . Each component F j,i of F are simple transfer operators on Euclidean trace and the Attiyah-Bott trace is defined by Definition 11.1. We define the Attiyah-Bott trace of F V ,0,0 N as

Tr ♭ F V ,0,0 N := I i=1 Tr ♭ F i,i
taking the sum of the flat traces of the diagonal elements. This definition actually does not depend on the choice of local trivializations. Also the extension to the case of vecor-valued transfer operators such as F Ṽ ,k,m N is straightforward.

Proof of Corollary 11.5. Observe that we can go through the proof of Lemma 11.4 by considering the expressions of the transfer operators on local charts, as we noted in the remark above. Then, recalling Remark 1.8, we see that the action e iSn,x/ in the left hand side of (11.15) appears as a consequence of the rotation on the fiber that the prequantum map f n G induces.

Restriction to the external band

We will now relate the previous quite formal "flat trace formula" (11.15) with the spectrum of the transfer operators. This relation is given by the following result obtained in [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF].

Theorem 11.7. "Flat trace and spectrum". Let f : M → M be a smooth Anosov diffeomorphism. Suppose that the transfer operator F is defined from the general setting (11.1). Let (λ j ) j∈N denote its Ruelle discrete spectrum. Then, for any ε > 0, there exists C ε > 0 such that for any n > 0, with some C > 0 independent on N.

Tr ♭ F n - j,|λ j |≥ε λ n j ≤ C ε ε n . ( 11 
Proof. From the definition (11.24) of the subset X, it is clear that for any sequence of points z 0 , z 1 , . . . z n ∈ T * M with z 0 = z n , we have

1 X (z n = z 0 , z n-1 ) • 1 X (z n-1 , z n-2 ) • • • 1 X (z 1 , z 0 ) = 0.
This implies that the Schwartz kernel of F n trace-free vanishes on the diagonal and hence we have Tr ♭ F n trace-free = 0. For the second claim (11.26), we first observe that, if we consider the action of this operator F n trace-free with respect to the L 2 -norm (without the escape function W r (•)), the operator norm is bounded by the right hand side of (11.26) without the term C(λ/2) -rn . (This is because this is true for operator F N and that B (x,s) and B * (x,s) does not increase the L 2 norm.) Then, taking the escape function W r (•) into account and noting the definition of the subset X, we retain24 the factor C(λ/2) -rn and obtain (11.26). For (11.27), we observe that F trace Tr ≤ |(z -1 X (z)) K F (z, z)| dz and then show that, for any ν > 0, there exists a constant C ν > 0, which may depend on f G but uniform for sufficiently large N, such that

|K F (z, z)| ≤ C ν • -1/2 ζ -ν .
The last estimate is obtained by expressing the kernel K F (•) as an (oscillatory) integral and then by applying integration by parts. (See the proofs of Proposition 6.19 and Proposition 6.21 for similar estimates.) Then we obtain (11.27).

We pursue the proof of Lemma 11.9. Using (11.18), we write

Tr ♭ F n N = Tr F n + Tr ♭ R n
Then (11.23) gives R lift = F trace-free + F trace -F lift . We develop accordingly

R lift n = F n trace-free + n-1 k=0 F k trace-free F trace -F lift R lift n-k-1
From (11.25), we know Tr ♭ F n trace-free = 0 for the first term. The operator F trace -F lift is in the trace class and using the general fact AB Tr ≤ A • B Tr , we obtain By taking large r, we may and do assume that the right hand side of (11.26) is bounded by C(r + 1 ) n . Using these estimates and (11.21), we conclude

Tr ♭ R n ≤ n-1 k=0 F k trace-free
Tr ♭ R n ≤ CN d • n • (r + 1 + ε) n .
This implies (11.22). We have finished the proof of Lemma 11.9.

In order to finish the proof of Theorem 1.38, we have to consider the remaining terms on the right hand side of (11.15), that is, 25 The natural construction of g and J is the following. At every point x ∈ M the symplectic structure ω extends to a symplectic structure on the complexified tangent space T x M C . Let us choose a non real Lagrangian subspace W x ⊂ T x M C i.e. such that ω (W x , W x ) = 0, dim C W x = d and W x ⊕ W x = T x M C . Then W x defines a complex structure J x on T x M C by the requirement that if u ∈ T x M C decomposes as u = u W + u W with u W ∈ W x , u W = u W ∈ W x then J x u = iu Wiu W . In other words, T x M C = W x ⊕ W x is the spectral decomposition of the operator J with respective eigenvalues i, -i. It is clear that J 2

x = -Id and that ω (Ju, Jv) = ω (u, v) (it is enough to check this with u ∈ W x ,v ∈ W x ). The space of such W x is called the Siegel generalized Upper half plane. 

L A u = |det (A)| -1/2 .u • A -1 Hence 3390 c (A) = |det (A)| -1/2 ϕ W |ϕ W • A -1 ϕ W |ϕ W
We have that

ϕ W |ϕ W • A -1 = R d exp - i 1 2 x, Wx exp i 1 2 A -1 x, WA -1 x dx = R d exp - 1 x, W ′ x dx with W ′ = i 2 W -t A -1 WA -1
We recall the Gaussian integral formula in R D : Hence if we choose the flat connection A 0 so that exp (i2π (P A 0 (f * -I))) = r -1 A , then the condition (A.3) is realized for the modified connection A ′ = A + A 0 . From Assumption 2, this is possible. Indeed, if we can write r A = e i2πR A with R A : H 1 (M, Z) → R and choose a flat connection A 0 so that P A 0 = -R A (f * -I) -1 .

From Lemma A.1 and Lemma A.2 there exists an equivariant lifted map f : P → P , which is unique up to a global phase. This proves Theorem 1.4.

Remark A.3. The results of this Section may be expressed more clearly as follows.

(1) The symplectic form ω with the integral Assumption 1.12 page 11 defines a family of principal bundles P A → M which are parametrized by a flat connection A ∈ A. The space A of flat connections is an affine space of finite dimension modeled on H 1 (M) (a torus).

(2) The map f : M → M can be lifted without assumption on the family P A , A ∈ A giving a map f : P A → P f • (A) between bundles with an induced map f • on A. Corollary A.2 above was to find a flat connection A 0 which is a fixed point A 0 = f • (A 0 ) so that we get a lifted map on a unique bundle f : P A 0 → P A 0 . For this we need the additional assumption on f • .

In the example of the Arnold cat map (1.4) of M = T 2 , then A = T 2 is also a torus (sometimes called Floquet parameters). For example in [11, eq. A.2 Proof of Lemma 7.23

It is enough to show that there exist constants C 1 > 0 and C 2 > 0 independent of such that On the other hand, from (7.41), we have

ρ 2 u - τ (k) • τ (k) u H r (P ) ≥ ρ 2 u - τ (k) u H r (P ) -C • ǫ u H r (P )
≥ |ρ(ρ -1)| • u H r (P ) -(ρτ (k) )u H r (P ) -C • ǫ u H r (P ) .

Hence we obtain the estimate

(|ρ(ρ -1)| -C ′ • ǫ ) • u H r ≤ (3 τ (k) H r (P ) + 1) • (ρ - τ (k) )u H r (P )
for some constant C ′ > 0. If we choose C 2 so large that C 2 > 4C ′ , the assumption (A. recalling that τ (k) H r (P ) is bounded by a constant independent of . To prove the second inequality on the trace norm, we observe, using Lemma 7.22,

τ (k) - τ (k) tr ≤ τ (k) • τ (k) - τ (k) tr + τ (k) • τ (k) - τ (k) tr ≤ τ (k) • |ρ-1|=r 0 (ρ -(1/ρ))(ρ - τ (k) ) -1 dρ - τ (k) • |ρ|=r 0 ρ(ρ - τ (k) ) -1 dρ tr + C -d+ǫ ≤ C -d+ǫ .
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. 14 )

 14 f e iθ p = e iθ f (p) , ∀p ∈ P, ∀θ ∈ R : f is equivariant w.r.t. the U(1)action. (1.15) f * A = A : f preserves the connection A. (1.16) (See Figure 1.2.)

  Figure 1.2: A picture of the prequantum bundle P → M in the case of M = T 2 , with connection one form A and the prequantum map f : P → P which is a lift of f : M → M.A fiber P x ≡ U (1) over x ∈ M is represented here as a segment θ ∈ [0, 2π[. The plane at a point p represents the horizontal space H p P = Ker (A p ) which is preserved by f . These plane form a non integrable distribution with curvature given by the symplectic form ω.

Figure 1 . 3 :

 13 Figure 1.3: Action of a periodic point x = f n (x).

1 n 1 n

 11 Dn(x) Df n x | Eu -k/n max , Dn(x) Df n x | Eu -k/n min

1 ,

 1 from(1.

Theorem 1 .

 1 23. "Distribution of resonances". Assume r + 1 < r - 0 . In the limit → 0, most of eigenvalues of F concentrate and equidistribute on the circle of radius R := e D , with D := 1 Vol ω (M) M D (x) dx (1.36) (See Figure 1.4). More precisely, for any ε > 0, we have lim N →∞ ♯ Res( FN ) ∩ {||z| -R| < ǫ} ♯{Res( FN )} = 1

Definition 1 . 26 .

 126 At a given point x ∈ M, the d-dimensional linear subspaces of T x M form a compact manifold of dimension d 2 called the Grassmanian 5 G d (T x M). The Grassmanian bundle is the bundleG d (T M) p -→ M (1.37)whose base space is M and the fiber over point x ∈ M is the Grassmanian G d (T x M). For simplicity we will denote p : G → M this bundle and G x := G d (T x M) the fiber.Definition 1.27. The diffeomorphism f : M → M induces a natural lifted mapf G = Df : G → G (1.38)where (abusively) Df x denotes the induced action of the differential Df x on linear subspaces l ∈ G x . By definition we have a commutative diagram:

. 44 )

 44 Remark 1.33. In the definition(1.42), the additional "potential function" |det (Df G | kerp )| -1 > 1 has been put in order to compensate the attraction effect of the attractor E u on the extended space G. (See the next subsection.)1.4.3 Truncation in a neighborhood of E uIn order to define the discrete spectrum of resonances we first have to consider a specific truncation of the operator. Let K 0 ⊂ G be an open absorbing neighborhood of the attractor

1 r + 1 Figure 1 . 6 :

 1116 Figure 1.6: With the particular potential V 0 = 1 2 log det Df x | Eu(x) Corollary 1.37 shows that the external spectrum of the transfer operator concentrates uniformly on the unit circle as N = 1/ (2π ) → ∞. (We have not represented here the structure of the internal bands inside the disc of radius r + 1 ).

Lemma 1 . 43 .

 143 If A, B are matrices and for any n ∈ N, |Tr (A n ) -Tr (B n )| < Cθ n with some C > 0, θ ≥ 0 then A and B have the same spectrum with same multiplicities on the spectral domain |z| > θ.

  and d B (µ) have the same zeroes on 1/ |µ| > θ. Equivalently A and B have the same spectrum on |z| > θ. If Ĝ is another solution of the problem 1.41 then (1.58) implies that Tr F n -Tr Ĝn ≤ 2Cθ n and Lemma 1.43 tells us that Ĝ and F have the same spectrum on |z| > θ. But by hypothesis (1.57) their spectrum is in |z| > 1ε > θ. Therefore all their spectrum coincides. This finishes the proof of Proposition 1.42.

( 1 .

 1 30) to get that • Tr ≤ C. -d • . Taking ψ = 1 in (1.71) and because Op (1) = Π hence dimH = Tr (Π ) = Tr (Op (1)) we obtain the Weyl law (1.30):

2. 1 . 1

 11 The associated canonical map F : T * M → T * M We first give a local expression of the transfer operator FN defined in (1.21) with respect to local charts and local trivialization of the bundle P . These local expressions will be useful in the sequel of the paper. As in Section 1.2.2, let (U α ) α∈I be a finite collection of simply connected open subsets which cover M and, for every open set U α ⊂ M, let 755 τ α : U α → P be a local section of the bundle. Recall the local trivialization T α defined in (1.7) and the one forms η α in the local expression (1.9) of the connection A. Lemma 2.1. "Local expression of the prequantum map

Figure 2 . 1 :

 21 Figure 2.1: Illustrates the expression (2.1) of the prequantum map f with respect to local trivialization. It is characterized by the action function A β,α (x).

Figure 2

 2 Figure 2.2:
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 12 The trapped set K In relation to the global expression (2.10) of the canonical map associated to the prequantum transfer operator FN , it should be natural to introduce the following definition.

  ρ) for σ = s, u. All the decompositions above are invariant by the map F . See Figure 2.3.

Figure 2 . 3 :

 23 Figure 2.3: The decompositions of the tangent space T ρ (T * M).

  order to define the adjoint operator D * and the Laplacian ∆ = D * D which is used in geometric quantization we need an additional structure on the manifold M, namely a metric g compatible with ω. References are [54, p.400],[8, p.168],[51, p.504].

3. 2 . 2

 22 Expression of D * and ∆ in local charts Let us see the expression of differential operators D * and ∆ introduced above in the local trivialization. Consider a local trivialization (1.7) of the bundle P over an open set U α ⊂ M. As explained in Proposition 3.2, the operator D : C ∞ N (P ) → C ∞ N (P, Λ 1 ) in such local trivialization is represented by the differential operator

. 4 )

 4 Lemma 4.2. [36, p70, Proposition 3.1.1] We have that (1) B extends uniquely to an isometric embedding B : L

  define the Bargmann transform B : S (L) → S (E) and its adjoint B * : S (E) → S (L) as in Definition 4.1. Then the statement corresponding to Lemma 4.2 and Proposition 4.3 holds. Namely Proposition 4.4. For the Bargmann transform B and its adjoint defined as above, (1) B extends uniquely to an isometric embedding B : L 2 (L) → L 2 (E).

  ) The Bargmann projector P : L 2 (E) → L 2 (E), defined by P := B • B * , is the orthogonal projection onto Im B ⊂ L 2 (E). It is expressed as an integral operator with kernel (4.7) with | • | replaced by | • | g .

. 39 )

 39 Lemma 4.16. Let n ∈ N and r > 0 such that r > n + 2D. (4.40)

50 )(

 50 Recall (1.23) for the definition of • max and • min .)

(

  ζp,ζq) and B * ζp : L 2 R 2d (ζp,ζq) → L 2 R d ζp similarly. Suppose that P νq and P ζp are defined correspondingly: That is to say, with setting D = d, we define B νq = B ζp = B , B * νq = B * ζp = B * and P νq = P ζp = P . Next we define the operators

15 Lemma 6 .

 156 [START_REF] Bouzouina | Equipartition of the eigenfunctions of quantized ergodic maps on the torus[END_REF]. "Integral version of the Cotlar-Stein Lemma": If (T (x)) x is a continuous family of bounded operators, if dµ (x) is a smooth measure, if A := sup x T (x) T (y)* dµ (y) < ∞ and B := sup x T (x) * T (y) dµ (y) < ∞ then T (x) u in integrable for every u and T (x) dµ (x) ≤ √ AB.

1770

  we have |(x, ξ)| ≤ 2 1/2-2θ and, in particular, |ξ| ≤ 2 1/2-2θ .From Corollary 5.18, the first claim follows if we show

on the annulus 2

 2 |n|-1 ≤ |ξ| ≤ 2 |n|+1 otherwise. • The function ψ n is supported on the cone C + (b) if n > 0 and on the cone C -(1/a) = R 2d \ C + (a) if n < 0. Respectively, the function ψ + n is supported on the cone C + (b + ) if n > 0 and on the cone C -(1/a

  p d and symplectic form ω = d i=1 dq i ∧ dp i . The open ball of radius c > 0 is denoted by D(c) := {x ∈ R 2d | |x| < c}. The following Proposition is illustrated in Figure 7.1. Proposition 7.3. "Local chart and trivialization". For each = 1 2πN > 0, there exist a set of distinct points P = {m i ∈ M | 1 ≤ i ≤ I } and a coordinate map associated to each point m i ∈ P ,

Figure 7 . 1 :

 71 Figure 7.1: Illustration of the local charts U i and maps κ i defined in Proposition 7.3.

19 Lemma 7 .

 197 [START_REF] Gouëzel | Banach spaces adapted to anosov systems[END_REF]. "Discrete version of the Cotlar-Stein Lemma":

Proposition 8 . 8 .

 88 2. The next proposition is an immediate consequence of Lemma 8.7. (So we omit the proof.) There exist constants C > 0 and ǫ > 0, independent of , such that[∆ , (I • I * )] I i=1 (D(∆ ), • ∆ )→ I i=1 L 2 (R 2d ) ≤ C ε . (8.9)We define a rough Laplacian ∆ acting on C ∞ N (P ) by∆ := I * • ∆ • I : C ∞ N (P ) → C ∞ N (P ) . (8.10) Remark 8.9. Notice that this rough Laplacian operator ∆ is defined by gluing Euclidean rough Laplacian on local charts and does not coincide with the geometric rough Laplacian ∆ = D * D with respect to a global metric on M defined in Subsection 3.2.

( 1 )

 1 ± for t = 1 are C ∞ and orthogonal with respect to the Riemann metric g on M.

. 37 )

 37 provided that N is sufficiently large. Now we can deduce Theorem 1.34 and Theorem 1.35 from the theorem above by the argument parallel to that in Subsection 7.1. (But see the remark below.) The former part of the statements in Theorem 1.37 is an immediate sequence of Theorem 1.34 and Theorem 1.35. The proof of the angular equidistribution law in Theorem 1.37 is parallel to that of Theorem 1.23, which we will present in Subsection 10.3.

Lemma 9 . 35 .

 935 The operator p * : S(R 2d+d ′ ) → S(R 2d ) defined by p * u(x) = u(x, s)ds extends to a bounded operator p * : H r (R 2d+d ′ ) → H r (R 2d ) and the operator norm is bounded by a constant independent of . It restricts to a bijection between the subspaces H ′ 0 in Proposition 5.11 and E ′ 0 in Proposition 9.5. Further there exists a constant K independent of such that p

10. 1 Le

 1 Time average and Birkhoff 's ergodic theoremLet us write FV and FV,N for the prequantum transfer operators F and FN defined respectively in(1.19) and(1.21), specifying dependence on the potential function V . In this subsection, we prove the first part of Theorem 1.23, namely that almost all eigenvalues of FV,N of the external band concentrate at the value e V -V 0 as N → ∞, where V 0 is the potential of reference defined in (1.31) and whose importance has been shown in Theorem Due to ergodicity of the map f : M → M, the time averaged function D n converges for n → ∞ almost everywhere to its spatial average:D := 1 Vol ω (M) M DdxIn particular we will use later on thatM e Dne D dx → D := e D F VǫLet L D ,N be the restriction of L D to H r N (P ). Its spectrum is that of FVǫ,N multiplied by the constant factor e D , in particular its external part concentrates (as N → ∞) to the annulus e D -ǫ ≤ |z| ≤ e D +ǫ and the disk |z| ≤ (1/λ)e D +ǫ from Theorem 1.17. Let τ (0) N be the (finite rank) approximate projection operator on the external band of FV,N introduced in Theorem 7.1. (We put the subscript N now to make the dependence on N explicit.) Recall that this approximate spectral projector τ (0) N does not depend on the choice of the potential V , hence it is also suitable for the transfer operators L Dn and L D . We want now to study the "quantity of spectrum" of the external band of L Dn,N which does not concentrates on the annulus e D -ǫ ≤ |z| ≤ e D +ǫ . To this end, we introduce the operator:S n,N := τ (0) N L Dn,N -L D ,N τ Dne D • FVǫ,N τ (0) N and T n,N := L Dn,N -S n,N giving the following decomposition: L Dn,N = T n,N + S n,N

W

  ǫ := z ∈ C, 1 λ e sup Dn+ǫ ≤ |z| ≤ e D -2ǫ or e D +2ǫ ≤ |z| and, moreover, on W ǫ we have a bound on the norm of the resolvent of T n,N : there exists C ǫ > 0, and N ǫ such that for any N ≥ N ǫ , (z -T n,N ) -1 ≤ C ǫ uniformly for z∈ W ǫ (10.3) and T n,N ≤ e D +2ǫ . (10.4) C B > 0 and, moreover, the operators B N are trace class and B N Tr ≤ F (N) with some function F : N → R + . Then for any ǫ > 0,

10. 2 . 2

 22 Proof of Lemma 10.[START_REF] Arnold | Méthodes ergodiques de la mécanique classique[END_REF] using Jensen formulaFrom the expression L Dn,N = T n,N + S n,N , we write z -L Dn,N for z ∈ W ǫ asz -L Dn,N = z -T n,N -S n,N = (z -T n,N ) (1 -K (z))(10.11)with settingK (z) := (z -T n,N ) -1 S n,N .Since z -T n,N is invertible for z ∈ W ǫ from (10.3), we have(z -T n,N ) -1 (z -L Dn,N ) = (1 -K (z)) for z ∈ W ǫ .Since K(x) is a finite rank operators (because so is S n,N ), we can defineD (z) := det (1 -K (z))and see that the eigenvalues of L Dn,N in W ǫ coincide with the zeroes of D (z) in W ǫ up to multiplicity. From the formula log D (z) = Tr log (1 -K (z)) and the simple inequality log (1x) ≤ x for x > -1, we have that, for N > max (N ǫ , N ǫ ′ ), log |D (z)| ≤ K (z) Tr ≤ (z -T n,N ) -1 S n,N Tr ≤ C ǫ ǫ ′ N d ≤ ǫN d (10.12) from (10.

1

 1 λ e sup Dn+2ǫ ≤ |z| ≤ e inf Dn-3ǫ or e sup Dn+3ǫ ≤ |z| ⊂ W ǫ and show that log |D(z)| ≥ -ǫN d for z ∈ W ′ ǫ . (10.13)

( 1 -

 1 K (z)) -1 = (z -L Dn,N ) -1 (z -T n,N ) = (z -L Dn,N ) -1 (z -L Dn,N + S n,N ) = 1 + (z -L Dn,N ) -1 S n,N .Hence, similarly to (10.12), we getlog |D (z)| ≤ (z -L Dn,N ) -1 S n,N Tr ≤ (z -L Dn,N ) -1 S n,N Tr ≤ C ǫ ǫ ′ N d < ǫN d

j-

  log |w j | =log |D i (0)| + 1 2π |w|=1 log |D i (w)| dw Inequality (10.13) giveslog |D i (0)| < ǫN d , and (10.12) gives 1 2π |w|=1 log |D i (w)| dw < ǫN d . For the zero w j in the disk {|w| < 1 -δ} we havelog |w j | >log (1δ) ≥ δ and, hence, we see that the number N i of such zeros is bounded:

e inθ , s -→ →0 1 ,ρ

 1 if n = 0; 0, otherwise.(10.15) Let us show now(10.15). If n = 0, we have simply 1, s = 1 N N = 1. Suppose n > 0, since e -inθ , s = e inθ , s ). Let r = e V -V 0 . We write e inθ , s = 1 N j e inθ j = Tr F n ,

Tr ♭ F n : = M

 = Tr (K n (x, x)) dx(11.2) 

Lemma 11 . 2 .

 112 is an endomorphism on E x and Tr B (n) x is well defined and does not depend on x on the orbit.3145 For any n ≥ 1, the Atiyah-Bott trace formula reads:Tr ♭ F n = x=f n (x)

. 4 ) 2 m=0(- 1 )

 421 where χ : G → [0, 1] is a smooth function such that χ(l) = 0 for l / ∈ K 0 and χ(l) = 1 for l ∈ f G (K 0 ) and p : G → M is the projection. Then the Atiyah-Bott trace formula gives:x=f n (x) 1 |det (1 -Df n x k+m Tr ♭ F n k,m(11.5)

  u (x) ←→ ω (U, .) ∈ E * s (x)The symplectic map f : M → M gives a symplectic hyperbolic linear mapDf x : T x M → T f (x) Mwhich decomposes accordingly intoDf x = L u (x) ⊕ L s (x) (11.7)whereL u (x) := Df x | Eu(x) : E u (x) → E u (f (x)) L s (x) := Df x | Es(x) : E s (x) → E s (f (x))

(- 1 ) 2 m=0(- 1 ) 2 m=0(- 1 )

 12121 3210and Λ k (M) denotes its natural action on the antisymmetric tensor algebra Λ k (R m ) (with k ∈ {0, . . . , m}) thendet (1 + M) = m k=0 Tr Λ k (M) , Λ k (-M) = (-1) k Λ k (M) , Λ k (M n ) = Λ k (M) n .Also for two linear endomorphismsM 1 , M 2 one has Tr (M 1 ⊗ M 2 ) = Tr (M 1 ) Tr (M 2 ) and M n 1 ⊗ M n 2 = (M 1 ⊗ M 2 ) n .Using this, we get:det 1 -L -(n) det 1 -L -(n) ⊗ L -(n) = d k=0 k Tr Λ k L -(n) d m Tr Λ m L -(n) ⊗ L -(n) k+m Tr Λ k L -(n) ⊗ Λ m L -(n) ⊗ L -(n)

2 m=0(- 1 )

 21 1 naively. (See Remark 11.6 below.)Corollary 11.5. Let Ṽ ∈ C ∞ (G). Let Λ (k,m) → P G be the bundle Λ (k,m) → G pulled back by π G : P G → G. Let F Ṽ ,k,m : C ∞ P G , Λ (k,m) → C ∞ P G , Λ (k,m) be the (vector-valued)prequantum transfer operator defined byF Ṽ ,k,m u(p) = χ•p(f -1 G (l)))• e Ṽ (l) det D fG | V l G (l) Λ k Df -1 /l ⊗ Λ m D f | V l G u f -1 G (p) (11.13) where we set l = π G (p). Let F Ṽ ,k,m N : C ∞ N P G , Λ (k,m) → C ∞ N P G , Λ (k,m)(11.14)be its restriction to N-equivariant functions. Thenx=f n (x)e (V -V 0 ) n (x) e iSn,x/ |det (1 -Df n x k+m Tr ♭ F Ṽ ,k

. 16 )

 16 In our case, we have a family of operators F Ṽ ,k,m N depending on the semiclassical parameter N = 1/ (2π ) and we want to get a result similar to(11.16) but with a control of the remainder uniformly with respect to N. This is the purpose of the next lemma which concerns the operator F Ṽ ,k,m N defined in (11.13) but with the particular value (k, m) = (0, 0). It coincides with the transfer operator F N defined in (1.44):F Ṽ ,0,0 N = F Nfor any n ≥ 1, with some C > 0 independent on n or N. The operator F trace is of trace class and we have F trace Tr ≤ CN d ,(11.27) 

F 1 .

 1 From(11.27) and(11.20), we haveF trace -F lift Tr ≤ F trace Tr + F Tr ≤ CN d .

(- 1 )

 1 k+m Tr ♭ F Ṽ ,k,m n N for (k, m) = (0, 0). This is actually easier once we have done with the case (k, m) = (0, 0). Recall the definition(11.13) of the operator F Ṽ ,k,m and observe that the extra termΛ k Df -1 /l ⊗ Λ m D f | V l G(compared with the case (k, m) = (0, 0)) is bounded in norm by Df -1 /l < 1/λ < 1. This observation gives the next lemma.Lemma 11.11. Consider the transfer operator F Ṽ ,k,m N defined in(11.14). For any ε > 0, there exists a constant C ǫ > 0 and N ǫ > 0 such thatTr ♭ F Ṽ ,k,m n N ≤ C ǫ N d • (r + 1 + ε) n (11.28)holds for any N > N ε , n ≥ 1 and any (k, m) = (0, 0).Proof. A trivial extension of Theorem 1.35 to the vector-valued case, gives the estimateF n Ṽ ,k,m N ≤ C sup x∈M e Dn(x) Λ k Df -n /l ⊗ Λ m D f n | V l G ≤ C ε (r + 1 + ε) n where D n (x) = n j=1 D f j G (x)is the Birkhoff sum of the damping factor D (x) := V (x)-V 0 (x). Then the argument in the proof of Lemma 11.9, using a "phase space decomposition" of F Ṽ ,k,m N into the trace-free term and the trace class term similar to(11.23), enables us to obtain(11.28).S W (ζ p ) = 1 2 ζ p |Wζ p where W ∈ Sym C d 2 is a symmetric d × d complex matrix.Precisely W is given by the graph of the differential dS W :ζ q = (dS W ) (ζ p ) = Wζ pWe associate a quadratic WKB functionϕ W (ζ p ) := exp i S W (ζ p ) = exp i 1 2 ζ p |Wζ pThis function belongs to Im Q (0) , henceQ (0) = |ϕ W ϕ W | ϕ W |ϕ W Example: if d =1 and J is the standard complex structure J ∂ ∂z = i ∂ ∂z with z = ζ p + iζ q 3385 then W = i and ϕ W (ζ p ) = exp -1 2 ζ 2 p .

  It is the homogeneous spaceH d = Sp 2d (R) /U d . Ref: [46, p.62][55, p.89,p.93]. In dimension d = 1, H 1 = Sp 2 (R) /U 1 = SL 2 (R) /SO 2 is the Poincaré disk.In dimension d = 1 it clear that every complex structure J is compatible with ω because every one-dimensional subspace W is Lagrangian. Finally we require that the non degenerate symmetric form g (u, v) := ω (u, Jv) is positive definite. (It is easy to check that it is symmetric:g (v, u) = ω (v, Ju) = -ω (Ju, v) = -ω J 2 u, Jv = -ω (-u, Jv) = g (u, v)187Computation of c (A) Eq.(12.1) implies thatc (A) = ϕ W |L A ϕ W ϕ W |ϕ W where ϕ W |ϕ W = Im (W) x dxRecall the operator L A acting on u ∈ S R d ζp is given by

R D e - 1 2

 1 y|Ay +b.y dy = (2π) D detA exp 1 2 b|A -1 b , b ∈ C D , A ∈ L R D (12.3) giving ϕ W |ϕ W = (2π) d det 2 Im (W) = (π ) d detIm (W) 3395 ϕ W |ϕ W • A -1 = (π ) d detIm (W ′ ) hence c (A) = detIm (W) |det (A)| detIm (W ′ ) 1/2

  (2.1)] they use the notation κ = (κ 1 , κ 2 ) ∈ [0, 2π] 2 ≡ A, the map f • : A → A is given in[11, eq.(6.4)].

(ρ - 1 )

 1 (ρτ (k) ) -1 H r (P ) ≤ C 1 min{|ρ|, |1 -ρ|} (A.5) whenever ρ ∈ C satisfies min{|ρ|, |1 -ρ|} ≥ C 2 ǫ . (A.6)In fact, the estimate (A.5) would imply that, forr 0 = C 2 ǫ , τ (k)τ (k) H r = |ρ-1|=r 0 ,|ρ|=r 0 ρ(ρτ (k) ) -1 dρ -(ρτ (k) ) -1 dρ H r (P ) ≤ 2C 1 • r 0 = 2C 1 • C 2 • ǫ .192To prove (A.5), we may and do assume |ρ| ≤ 2 τ (k) H r (P ) because the claim is trivial otherwise. Take u ∈ H r (P ) arbitrarily. From the assumption made in the preceding sentence, we haveρ 2 uτ (k) • τ (k) u H r (P ) ≤ ρ 2 uρτ (k) u H r (P ) + τ (k) (ρuτ (k) u) H r (P ) ≤ (|ρ| + τ (k) H r (P ) ) • (ρτ (k) )u H r (P )≤ 3 τ (k) H r (P ) • (ρτ (k) )u H r (P ) .

C 1 >

 1 6) implies|ρ(ρ -1)| -C • ǫ ≥ 1 2 min{|ρ|, |1 -ρ|} -C • ǫ ≥ 1 4 min{|ρ|, |1 -ρ|}.Therefore, with such choice of C 2 , the inequality (A.5) holds if we let 3475 4 • (3 τ (k) H r (P ) + 1),
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35 1.2.1

  called "resolution of identity". Remark 1.57. Since dimH ≤ C • we have obviously that an estimate in norm operator implies an estimate in trace class norm by • Tr ≤ C. -d • .

	Corollary 1.58. "Composition formula". There exist C > 0 and ε > 0 such that for
	any and any ψ 1 , ψ 2 ∈ S δ

  because in the main result of this Section, Proposition 4.19, the Hilbert space is not L 2 R D , we don't care about this property. It will however have some importance later in Proposition 5.11 where the factor

	√	1 |detA|	will therefore appear.
	Proof. To prove (4.15), we write the operator B

* • L A⊕ t A -1 • B as an integral operator

  .56) Notice that, if |α| ≤ n + 1, we have |α| + D/2 + 1r ≤ 0 from the assumption (4.40) and hence the last inequality implies

	1335

  1 2 b ♭ ) is defined in (4.19). We apply Lemma 4.10, Lemma 4.8 and corollary 4.11 to obtain

  3 hold uniformly for t ∈ [0, 1], but with the sub-bundles E u and E s in the condition (2) replaced by E t + and E t -. We consider the rough Laplacian ∆ ,t defined, similarly to ∆ in (8.10), from the Euclidean rough Laplacian on local charts {κ i,t } I i=1 and the family of functions {ψ i,t ; 1 ≤ i ≤ I }. The argument in the former part of this subsection holds true uniformly for t ∈ [0, 1], that is, we can consider the spectral projection operators λ

	for ∆ ,t , which corresponds to λ	(k) ,t , 0 ≤ k ≤ n + 1, (k) for ∆ . Since the deformation is continuous, we see by
	homotopy argument that rank λ have rank λ	(k) ,ρ = dim H k,ρ is constant for t ∈ [0, 1]. In particular we

  1/2-θ ) are the local data defined in(9.22) andu i 2 H r (R 2d ) is the anisotropic Sobolev norm on C ∞ 0 R 2d+d ′ in Definition 9.3. We define the Hilbert spaces H r,± (P G , E u ) in the parallel manner, replacing u i (R 2d+d ′ ) respectively.The next lemma corresponds to Lemma 7.14.Lemma 9.27. The projector I • I

	norms u i	2 H r,±	2 H r (R 2d+d ′ ) by the

* : E → E extends to bounded operators

  in the trace class and B N Tr ≤ (2 + C B ) F (N). The operators C N and P N have discrete spectrum outside the circle of radius 1. For each N, let (λ j ) j=1,2,••• ,M N denote the eigenvalues of C N in the domain {z ∈ C, |z| > 1 + ǫ}, ordered in such a way that |λ 1 | ≥ |λ 2 | . . . ≥ |λ M N |. (For simplicity, we do not indicate the dependence on N). Observe that P N is self-adjoint and positive. Let p 1 ≥ p 2 ≥ . . . ≥ p M N denote the eigenvalues of P N counting multiplicity. The p

	1/2 j	j	are the singular values of C

N . Weyl inequalities give (see

[24, p.50] 

for a proof):

Exponential mixing of the map f is already known[START_REF] Dolgopyat | On mixing properties of compact group extensions of hyperbolic systems[END_REF] but is also a direct consequence of results presented in this paper.

The precise value of dimH is given by an index formula of Atiyah-Singer in Th.1.21. 

This localization property is with respect to the anisotropic Sobolev space H r .

To prove that E s (x) is Lagrangian, let u, v ∈ E s (x); we have ω (u, v) = ω (D x f n (u) , D x f n (v)) → n→+∞ 0.Similarly for E u . So E s and E u are isotropic subspaces, E u ⊕ E s = T M , hence they are Lagrangian.

This formula is easily proved by using eigenvalues λ j of A and the Taylor series of log (1x) =

or Weyl quantization when available e.g. if M = T 2d is a torus.

In the language of associate line bundle, these functions u α are sections of a line bundle L ⊗N expressed with respect to the local trivializations.

This idea of defining a generalized Sobolev space using an escape (or weight) function on the phase space has been used several times before and is not new in this paper. For instance, in the context of semiclassical scattering theory in the phase space, such an idea was developed by B. Helffer and J. Sjöstrand in[START_REF] Helffer | Résonances en limite semi-classique. (resonances in semiclassical limit)[END_REF]. In the context of transfer operators for hyperbolic dynamical systems, it was developed in[START_REF] Baladi | Anisotropic Sobolev spaces and dynamical transfer operators: C ∞ foliations[END_REF][START_REF] Baladi | Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms[END_REF] more recently.

The result for all the bands seems to be known to specialists although it does not appear explicitly in the literature to the best of our knowledge.

Recall the convention on the norm on L 2 (R D ) and L 2 (R 2D ) made in the beginning of this section.

for a multi index α ∈ N D , α = (α 1 , . . . α D ), we write |α| = α 1 + . . . + α D .

Beware that I * is not the L 2 adjoint of I here.

Good part of the argument below holds without the assumption on smoothness of the potential V .

That is, the multiplicity of the eigenvalues of the former is not greater than the latter.

Note that this claim is for each fixed and we do not claim any uniformly in . So the proof is easy if we consider in the local charts.

Here we used the fact that V ǫ is an ǫ-approximation of V 0 .

For a rigorus proof of this, we can employ an argument similar to that in the proof of Proposition 6.21, using partition of unity on the phase space. For the detail we refer[START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF].

 Lemma 6.15. The operator Y extends naturally to a bounded operator on H r (R 2d ) and we have

with some positive constants C independent of and ψ.

Proof. It is enough to show

Note that we have [P x , M (Y )] L 2 (R 2d ⊕R 2d ,(W r ) 2 ) ≤ C θ by a simple estimate on the kernel. The first claim is a consequence of this estimate. For the second, we use Lemma 6.2.

The next lemma tells roughly that the truncation operator Y , (6.18),hardly affect the projection operators t (k) , 0 ≤ k ≤ n, defined in (5.26), if we view it in the anisotropic Sobolev spaces. Lemma 6.16. For 0 ≤ k ≤ n and ψ ∈ X , we have

with some constant C > 0 independent of and ψ.

Proof. For the proof of the first inequality, it suffices to show the estimate

for the operator

Recall that we already have the estimates (4.7) and (6.9) respectively for the kernel of the operator P x and Φ * • (P νq ⊗ T (k) ) • (Φ * ) -1 . Using those estimates with the property (5.28) of the escape function W r,± and noting that |(x, ξ)| ≥ 1/2-2θ for (x, ξ) ∈ supp (Id -Y ) (resp. |x| ≤ 2 1/2-θ for x ∈ supp ψ),

we can estimate the kernel of the operator M (W r,+ )•A•M (W r,-) -1 in absolute value and obtain the required estimate. The second inequality can be proved in the parallel manner. We omit the tedious details.

Treatment of non-linearity

We next explain how we modify the argument in Section 6 on the action of non-linear diffeomorphisms. Below we give definitions and related statements with some remarks on the correspondence to the argument in Section 6. We omit the proofs because we can obtain them by translating the corresponding ones in Section 6. Recall again that 0 < β < 1 is the Hölder exponent of the hyperbolic splitting for the Anosov map f : M → M. We take and fix a constant 0 < θ < 1 so small that 0 < θ < β/20. (9.10)

Let D (d) (c) be the open ball of radius c > 0 on R d with center at the origin. Instead of the "Setting I" given in Subsection 6.1, we consider the following setting:

Setting I ext : For each > 0, there is a given set X of C ∞ functions on R 2d+d ′ such that, for all ψ ∈ X and > 0,

where C * > 0 and C α > 0 are constants independent of ψ ∈ X and > 0.

The Bargmann projection operator in the extended setting is

). The following statements correspond to Lemma 6.2, Corollary 6.3 and 6.4 respectively.

For each ψ ∈ X , let

be the lift of the multiplication operator M (ψ).

Lemma 9.6. There exists a constant C > 0 such that, for any > 0 and ψ ∈ X , we have

where π : R 4d+2d ′ (x,s,ξx,ξs) → R 2d+d ′ (x,s) is the natural projection defined by π(x, s, ξ x , ξ s ) = (x, s). Consequently we have

(9.12)

The same statement holds true with W r replaced by W r,± .

Corollary 9.7. The multiplication operator M (ψ) by ψ ∈ X extends to a bounded operator on H r (R 2d+d ′ ) and, for the operator norm, we have

for all ψ ∈ X , with a constant C > 0 independent of and ψ.

Corollary 9.8. For u, v ∈ H r (R 2d+d ′ ) and ψ ∈ X we have

where C is a constant independent of u, v, ψ and .

The next lemma corresponds to Lemma 6.6.

Lemma 9.9. There exists a constant C > 0 such that, for any > 0, ψ ∈ X and 0 ≤ k ≤ n, we have

The following corresponds to Lemma 6.10, Corollary 6.13 and Corollary 6.14 Lemma 9.10. For ψ ∈ X and 0 ≤ k ≤ n, the operator

is a trace class operator. There exists a constant C > 0, independent of ψ ∈ X , > 0 and

where • tr denotes the trace norm of an operator and

The same statement holds true for t (k) • M (ψ).

Corollary 9.11. There exists a constant C > 0, such that, for 0 ≤ k ≤ n and ψ ∈ X ,

Corollary 9.12. There exists a constant C > 0, such that

Next let us consider the function

and the operator 

with some positive constants C independent of and ψ.

Lemma 9.14. For 0 ≤ k ≤ n and ψ ∈ X , we have

with some constant C > 0 independent of and ψ.

Below we give a few statements corresponding to those in Subsection 6.4. We now consider the following setting, in addition to Setting I ext . This corresponds to "Setting II" in Subsection 6.4.

(2) The derivative

and R 2d ⊕ {0} respectively to the subspace ker (Dp) mi ⊂ T mi G and its orthogonal complement respectively. The restriction of (D κ i ) 0 to the subspace {0} ⊕ R d ′ is a conformal expansion by the rate -(1-β)(1/2-θ)-2θ with respect to the Euclidean metric in the source and the Riemann metric on G in the target. Further, the map κ i • (D κ i ) -1 0 is not far from the exponential map in the sense that

with C k a constant independent of nor 1 ≤ i ≤ I , where D( mi , c) denotes the disk in T mi G with radius c and center at the origin.

(3) The union of the images

/2neighborhood of the section E u and contained in the 2 β(1/2-θ)-2θ -neighborhood of the section E u .

(4) For the coordinate change transformation κ j,i := κ -1 j • κ i , defined for 1 ≤ i, j ≤ I with U i ∩ U j = ∅, there exists an isometric affine map A j,i :

(5) There exists a family of

The set of functions X = { ψ i } satisfies the conditions, (C1) and (C2), in the Setting I ext in Subsection 9.2.

Proof. We continue the argument in the proof of Proposition 7.3, in which we defined the local chart κ m : D(c) → M for each point m ∈ M as a composition of a linear map from R 2d to T m M and a modification of the exponential mapping. By a parallel construction, we can and do take a local chart κm : D(c) → G for each point m ∈ M so that the following conditions hold:

and R 2d ⊕ {0} to the subspace ker (Dp) m ⊂ T mG and its orthogonal complement respectively. The restriction of (Dκ m) 0 to the subspace {0} ⊕ R d ′ is an isometric Proposition 9.24. The operator F can be written as

where the component

is defined by F j,i ≡ 0 if i → j and, otherwise, by

where we set

and L fj,i is the Euclidean prequantum transfer operator defined in (9.15) for g = fj,i .

We define

The next lemma corresponds to Lemma 7.11.

Lemma 9.25. If we set

it satisfies the conditions (C1) and (C2) in SettingI ext in Subsection 9.2. (The constants C and C α will depend on f G and V though not on .) For 1 ≤ i, j ≤ I such that i → j, we have

for some constant C(f G , V ) independent of . The same statement holds for the set of functions

Proof. We obtain the proof by following the argument in that of Lemma 7.11 with obvious correspondence, using Lemma 9.7 instead of Lemma 6.3.

We next proceed to the argument corresponding to that in Subsection 7.4. The anisotropic Sobolev space in the extended setting is defined as follows.

1.37. Take ǫ > 0 arbitrarily and let V ǫ be a smooth approximation of the function V 0 such that

We introduce the "(approximate) damping function" as the difference

The next lemma shows that the transfer operator FV is conjugate (and hence has the same spectrum) to an operator L Dn which is the operator of reference FVǫ with an additional potential D n obtained by the time average of the damping function D. This presentation of the operator FV will be very convenient for our purpose. 

is the time averaged of the "damping function" D and G n is the multiplication operator by the function (with same name):

We compute that

Recall that the number of eigenvalues in the external band is

The next lemma concerns the trace norm of S n,N and is the key to show that the "perturbation" S n,N may add only a relatively negligible number of eigenvalues on W ǫ . Lemma 10.2. For any ǫ ′ > 0, there exists n ≥ 1, N ǫ ′ > 0, such that, for any Before giving the proof, remark that due to the conjugation (10.1), the same result holds for the operator F Ṽ ,N and this finishes the proof for the claim on "radial concentration of eigenvalues" in Theorem 1.23. The proof that Lemma 10.3 follows from Lemma 10.2 should be well-known. Here we propose two different proofs, because they are both interesting in their own right. The first proof is based on Weyl inequality while the second is based on Jensen's formula applied to the relative determinant. Suppose also that, for some constant C > 0 independent of N, we have

Moreover, suppose that the operators B N are in the trace class and B N Tr ≤ F (N) with some function F : N → R + . Then there exists a constant C ′ > 0, which depends only on the constant C, such that, for every N, we have

Proof. Let C N := A N + B N . Using holomorphic functional calculus, we define:

Here the path γ = γ 1 ∪γ 2 is taken as follows so that they enclose the spectrum of A N for all N: the closed path γ 1 is taken so that f (γ 1 ) is the clockwise circle of radius 1-ǫ C with some 

where γ ′ = γ ′ 1 ∪ γ 2 with γ ′ 1 a small clockwise circle around the point z 0 so that it enclose the spectrum of C N . From the assumption (z 0 -

From the relation

Proof. (As in [4, cor.5.4,p.393]). From (11.1) we have

where i, j = 1 . . . dimE are indices for components in the fibers E y with respect to some local trivialization and δ x is the Dirac distribution at x. So the Schwartz kernel of F n is

x . From definition (11.2),

where in the second line we have used the change of variable x → y = xf -n (x) in the vicinity of y = 0. For the last equality we have used that detDf n x = 1 since f preserves the volume form.

Remark 11.3. A standard example of bundle map is the differential map Df : T M → T M or extension in tensor bundles as f (k) : Λ k (T * M) → Λ k (T * M) (in antisymmetric tensor bundle of order k that we will use), etc.

The Gutzwiller Trace formula from the Atiyah-Bott trace formula

In this subsection we show how the Gutzwiller trace formula can be expressed as a sum of flat traces of transfer operators acting on differential forms on the Grassmann extension G. We first extend the argument in the last section to the case of smooth diffeomorphisms on the Grassmann bundle G. This is rather trivial. We just replace the manifold M and the diffeomorphism f by the Grassman bundle G and the natural extension f G of f . Lemma 11.2 remains true for such extension. Below we will always truncate the transfer operators on G to a small neighborhood K 0 of the attracting section E u which represents the unstable subbundle. (Recall the argument in Subsection 1.4.3.) So, on the right hand side of (11.3), the sum will be over only the periodic points of f G contained in K 0 . Those periodic points must be contained in E u and in one-to-one correspondence to the periodic points for f : M → M.

The next lemma shows how the amplitude |det (1 -Df n x )| -1/2 appear and the following corollary shows how the phases e iSn,x/ appear. For l ∈ G, we will denote

Recall that the quantum operator F : H → H has been defined from F N in (1.33) as its spectral restriction to the external band. F is finite rank so its trace Tr F n below is well defined. Lemma 11.8. For any ε > 0, there exists C ε and N ε such that, for any N > N ε and any n > 0, we have

Proof. We adapt the methods presented in [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] to our settings. Let Π 0 : H r N (P G ) → H denotes the finite rank spectral projector on the external band of F N defined for N large enough. Note the it commutes with F N by definition: Π 0 , F N = 0. Let

Then, for any n ≥ 1, we have

and hence

We first recall some estimates related to the decomposition (11.18). From (1.30) we have

with C independent on N. From (1.62), we have, for every N > N ε with some N ε large enough:

with C ε independent on N and n. The following Lemma is central in the argument, whose proof is postpone for a moment.

Lemma 11.9. There exists C ǫ > 0 and N ǫ > 0such that for any N > N ǫ and any n > 0

From (11.22) and (11.19), we obtain (11.17), finishing the proof of Lemma 11.8.

Proof of Lemma 11.9. The proof is obtained following the strategy presented in [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF]. Here we explain how the uniform estimate on the remainder term with respect to the semiclassical parameter N (or ) is obtained. In the argument below, we discuss about transfer operators on local charts and local trivializations. (Remind that we defined the Attiyah-Bott trace for prequantum transfer operators using local charts. See Remark 11.6.) But, for simplicity, we still write the operators on local charts by F N abusively. (Moreover we will confuse the objects on local coordinates and the coresponding globel objects.) It is not difficult to put the following schematic argument into rigorous one. We refer the paper [START_REF] Baladi | Dynamical determinants and spectrum for hyperbolic diffeomorphisms[END_REF] for the detail.

We consider the lifted operator on the phase space,

, and decompose it into two parts:

so that we get properties given in Lemma 11.10 below. Note that the decomposition (11.23) is not a spectral decomposition, like (11.18), but is obtained from a "phase space decomposition". To define it, recall the weight (or escape) function W r (x, s, ξ x , ξ s ) defined in (5.22). For simplicity we write z = (x, s, ξ x , ξ s ) ∈ T * M. Let K F (z ′ , z) be the Schwartz kernel of the lifted operator on the phase space

The main property of the escape function W r (z) (which we have already made use of ) is that there exists a compact neighborhood

where ζ is the coordinate introduced in (9.3) (and Proposition 2.15).

Let X ⊂ T * M × T * M be the subset defined by

and let 1 X (z ′ , z) be the characteristic function of the set X. We define the operator F trace-free by its integral expression:

In other words, we define F trace-free and F trace as operators with the Schwartz kernel respectively

Lemma 11.10. The operator F trace-free satisfies

Tr ♭ F n trace-free = 0, and (11.25)

Finally, from (11.15), (11.28) and (11.17), we get

e Dn(x) e iSn,x/ |det (1

We have completed the proof of Th 1.38.

12 Proof of Th. 1.69.

The argument of the proof proceed in two steps. First we prove the result for linear hyperbolic maps. We obtain an "exact result" in that case. Then using the same argument as for the main results of this paper we have that, using a partition of unity at small size, we can use the linear case as an approximation and get Theorem 1.69, where the error comes from estimates on non-linearities.

The function M (x) in Theorem 1.69 will be obtained in (12.2) below with the setting

The quantum operator: We suppose that f : R 2d → R 2d is a linear symplectic hyperbolic map and that we have constructed the prequantum operator FN = L f as in Section 5.3. By definition, the quantum operator is the restriction of L f to the outmost band:

The quantum space is:

H := H ′ 0 Proposition 4.9 and Eq. (4.22) give that

and

In the last line we have used the fact that T (0) has rank one and that

The Laplacian operator: We suppose that g is a constant metric on R 2d (but not necessary the canonical Euclidean metric). From (4.28) the spectral projector on the first Landau band of the rough Laplacian is

where Q (0) has rank one. The Toeplitz space is

The Toeplitz operator: By definition, the Toeplitz operator is

Since Q (0) is a rank one projector, we may write:

i.e.

Isomorphism: We have seen in Lemma 3.23 that

are bijective and invertible. Let

which is invertible. (We may have used T (0) instead). Then from the previous expressions we deduce that

In the next Section we compute the constant c (A).

Computation of

We recall that we have coordinates (ζ p , ζ q ) ∈ R 2d on T * R d ζp . The metric g compatible with ω is characterized 25 

A Appendix

A.1 Proof of Theorem 1.4

Under Assumption 1 on page 11, existence of a U(1)-principal bundle π : P → M with a connection A satisfying the condition (1.13) is standard in differential geometry. See [31][55, prop 8.3.1]. Notice that the connection one form A satisfying (1.13) is determined up to addition by a connection A 0 with dA 0 = 0 i.e. a flat connection. Below we choose a connection appropriately so that the second claim in Theorem 1.4 holds true. We first prove the following lemma.

Lemma A.1. Let π : P → M be a prequantum bundle over a closed symplectic manifold (M, ω) with a connection 1-form A such that dA = -i (2π) (π * ω). Let f : M → M be a diffeomorphism. The following conditions are equivalent

(1) There exists an equivariant lift f : P → P preserving the connection.

(2) For any closed path γ ⊂ M, we have

where h A (γ) ∈ U(1) denotes the holonomy along γ (with respect to the connection A).

(3) f preserves ω (i.e. f * ω = ω) and the homomorphism

(which is well-defined if f * ω = ω holds true) is trivial:

The equivariant lift f as above is unique up to a global phase (if it exists): g is another equivariant lift if and only if there exists e iθ 0 ∈ U(1) such that g = e iθ 0 f . Proof. The proof of Lemma A.1 can be found in [56, Prop 2.2 p.632]. We give it here since some details of the proof will be useful later on. The idea of the proof is illustrated in The assertion (1)⇒( 2) is obvious because holonomy is defined from the connection preserved by f hence holonomy of closed paths is preserved by f .

To prove the assertion (2)⇒(1) we construct f explicitly. Let p 0 ∈ P and x 0 = π (p 0 ) ∈ M be some given points of reference. We choose q 0 ∈ P f (x 0 ) an arbitrary point in the fiber P f (x 0 ) and set f (p 0 ) = q 0 . By equivariance, this defines f on the fiber P x 0 : for any e iθ ∈ U(1), we have to set f e iθ p 0 = e iθ q 0 . Let x 1 ∈ M be any point. We want to define f on the fiber P x 1 . We choose a path γ : [0, 1] → M which joins γ (0) = x 0 to γ (1) = x 1 and then take the unique horizontal lift 26 γ : [0, 1] → P of γ such that γ (0) = p 0 . Put p 1 := γ (1) ∈ P x 1 . Next let f (γ) be the unique horizontal lift of f (γ) such that f (γ) (0) = q 0 . Since f preserves the connection, it sends γ to this horizontal lift f (γ) of f (γ). We define f (p 1 ) = q 1 := f (γ) (1) ∈ P f (x 1 ) . For equivariance, we define f on the fiber P x 1 so that f e iθ p 1 = e iθ q 1 for any e iθ ∈ U(1). The definition of f described above depends a priori on the choice of the path γ. We check now that the condition (2) guarantees the well definiteness (or independence of the choice of the path γ) of this definition. Suppose that γ ′ is another path such that γ ′ (0) = x 0 and γ ′ (1) = x 1 and that we define p ′ 1 ∈ P x 1 and q ′ 1 ∈ P f (x 1 ) in the similar manner as above using γ in the place of γ. Then we have p ′ 1 = e iα p 1 for some e iα ∈ U(1) and q ′ 1 = e iβ q 1 for some e iβ ∈ U(1). From the definition above, we have f (p ′ 1 ) = f (e iα p 1 ) = e iα f (p 1 ) = e iα q 1 .

For well definiteness, we have to check that q ′ 1 = f (p ′ 1 ) or, equivalently, that e iα = e iβ . Note that Γ := γ ′ • γ -1 is a closed path with holonomy 27 h A (Γ) = e iα and f (Γ) = f (γ ′ ) • f (γ) -1 has holonomy h A (f (Γ)) = e iβ . Therefore the required condition e iα = e iβ is equivalent to the condition [START_REF] Anantharaman | Spectral deviations for the damped wave equation[END_REF]. By construction f preserves the horizontal bundle hence the connection A. We have obtained (1). 26 By definition, γ ∈ P is a horizontal lift of the path γ (t) ∈ M if π (γ (t)) = γ (t) and if the tangent vector is horizontal at every point: A dγ dt = 0. It does not depend on the parametrization of γ. 27 By definition, the holonomy of a closed path Γ (t) ∈ M , Γ (1) = Γ (0) is h (Γ) ∈ U(1) computed as follows. We construct Γ (t) ∈ P , a horizontal lift of Γ and write Γ (1) = e ih(Γ) Γ (0) ∈ π -1 (Γ (0)).
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Let us show that (2) and (3) are equivalent. Let γ = ∂σ be a closed path which borders a surface σ ⊂ M i.e. [γ] = 0 in H 1 (M, Z). The curvature formula [START_REF] Demailly | Complex analytic and algebraic geometry[END_REF] gives the holonomy as

The condition h A (f (γ)) = h A (γ) for any closed path γ = ∂σ as above is therefore equivalent to the local condition f * ω = ω. In that case, for any closed paths γ and γ ′ such that

), and hence

Therefore the map (A.2) is well defined. Now the equivalence of the conditions (2) and ( 3) is obvious.

The next lemma gives the choice of the connection in the latter statement of Theorem Proof. If A 0 is a flat connection (i.e. dA 0 = 0) let A ′ = A + A 0 be a modified connection (we assume A 0 ∂ ∂θ to ensure (1.8)). For a closed path γ the modified holonomy is

We have a well-defined homomorphism P A 0 : H 1 (M, Z) → R/Z, called the period map, such that h A 0 (γ) = e i2πP A 0 (γ) . (A.4) Suppose that f is symplectic i.e. f * ω = ω. For the connections A and A ′ = A + A 0 , we have the relation:

or, in terms of the maps (A.2) and (A.4), it gives r A ′ = r A exp (i2π (P A 0 (f * -I))) .