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Abstract

This is a preliminary version and some other results will appear in the next version.
We define the prequantization of a symplectic Anosov diffeomorphism, which is a
U(1) extension of the diffeomorphism preserving an associated specific connection.
We study the spectrum of the associated transfer operator, called prequantum transfer
operator, restricted to the N -th Fourier mode with respect to the U(1) action on P .
We investigate the spectral property in the limit N → ∞, regarding the transfer
operator as a Fourier integral operator and using semi-classical analysis. In the main
result, we show a “ band structure ” of the spectrum, that is, the spectrum is contained
in a few separated annuli and a disk concentric at the origin.
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1 Introduction and results

1.1 Introduction

We consider a smooth symplectic Anosov diffeomorphism f : M →M on a 2d-dimensional
compact symplectic manifold (M,ω) as a standard model of "chaotic" dynamical system.
Following the geometric quantization procedure introduced by Kostant, Souriau and Kir-
illov in 1970s’, we set up the prequantum bundle P → M . This is the U(1)-principal
bundle over M equipped with a connection whose curvature is −2πi · ω. Then we intro-
duce the prequantum map f̃ : P → P as the U(1)-equivariant lift of the map f preserving
the connection. The prequantum map f̃ thus defined is known to be exponentially mixing1,
that is, any smooth probability density which evolves under the iteration of f̃ converges
weakly towards the uniform equilibrium distribution on P and the speed of convergence
is exponentially fast if it is measured by a smooth observable. We study the fluctuations
in this convergence to the equilibrium by investigating spectral properties of the transfer
operator F̂ associated to the prequantum map f̃ . Following the approach taken by David
Ruelle in his study of expanding dynamical systems[32], we first show that the transfer
operator displays discrete spectrum, which is sometimes called Ruelle-Pollicott resonances.
Precisely we consider the restriction F̂N of the transfer operator F̂ to theN -th Fourier mode
with respect to the U(1) action on P and show that its natural extension to appropriate
generalized Sobolev spaces of distributions has discrete spectrum. This result concerning
discrete spectrum is already known in the preceding works [33],[9, 20],[5, theorem 1.1],[17,
theorem 1] and will be recalled in Theorem 1.14. The new result of this paper is in The-
orem 1.16, where we show that the spectrum of F̂N has a particular “band” structure: for
every N large enough, there is an annulus that contains finitely many (but increasing to
infinity as N → ∞) eigenvalues, separated from the rest of the internal spectrum by a
gap. This means that the convergence to the equilibrium mentioned above, restricted to
the N -th Fourier mode, is described by a finite rank operator FN , up to relatively small
exponentially decaying errors. The finite rank operator FN is the spectral restriction of
the prequantum transfer operator F̂N on the external annulus. We show, in Theorem 1.19,
that the rank of F̂N is proportional to Nd asymptotically as2 N → ∞. These results are
generalizations of the results in [16] for the linear Arnold cat map to the case of general
non-linear symplectic Anosov diffeomorphisms.

Motivations of the study From the construction above, the prequantum map f̃ : P →
P is partially hyperbolic, that is, hyperbolic in the directions transverse to the fibers but is
neutral (because of equivariance) in the direction of the fibers. Also note that f̃ preserves
the connection one form on the prequantum bundle P which is a contact form on P .
(See Remark 1.7) These properties of the prequantum map are very similar to those of

1Exponential mixing of the map f̃ is already known [12] but is also a direct consequence of results
presented in this paper.

2The precise value of rank
(
F̂N

)
is given by an index formula of Atiyah-Singer.
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the time-t-map of the geodesic flow φ1 : T ∗1N → T ∗1N on a closed Riemannian manifold
N with negative curvature, acting on the unit cotangent bundle T ∗1N : In the latter case
the time-t-map of the geodesic flow is partially hyperbolic and preserves the canonical
Liouville contact one form ξdx on T ∗1N . (See [26, 39, 40, 18]. ) With this point of view,
the prequantum transfer operator can be considered as a model of the transfer operators
for the geodesic flows on negatively curved manifolds. One of our objective behind the
present work is to show some band structure of the spectrum for the case of geodesic flow.
In the special case of manifolds with constant curvature, such a band structure is readily
observed from the classical theorem of Selberg on zeta functions [35].

Another motivation already discussed in [16] is the following observation: The finite
rank operator FN which describes the long time classical correlation functions of the map
f̃ has the properties of a "quantum map" i.e. a "quantization of f" with the Planck
constant ~ = 1/(2πN). It satisfies the Gutzwiller Trace formula with an error term which
decreases exponentially fast in large time, an exact Egorov theorem, etc. Surprising is that
this “quantization” or quantum behavior, appears here dynamically (after long time) in the
“classical” map f̃ . A movie of this phenomenon can be seen on the web page [15]. This
aspect will be discussed and developed in more detail in the next version of this paper.

Semiclassical approach The general method that we use to obtain the main results is
semiclassical analysis. We regard the prequantum transfer operator as a Fourier Integral
Operator (FIO), which means that we consider its action on wave packets in the high
frequency limit N → ∞. From the general idea in semiclassical analysis, this action
is effectively described by the associated canonical map (Df ∗)−1 on the cotangent space
T ∗M equipped with the symplectic structure Ω = dx∧ dζ + π∗ω (where dx∧ dζ stands for
the canonical symplectic structure on T ∗M). For the action of the canonical map (Df ∗)−1,
the non-wandering set is the zero section K ⊂ T ∗M and is called the trapped set. The
additional term π∗ω in Ω makes K a symplectic submanifold. We will see that these facts
are the core of our argument and give the band structure of the spectrum in the main
theorem.

Acknowledgments: F. Faure would like to thank Yves Colin de Verdière, Louis Funar,
Sébastien Gouëzel, Colin Guillarmou, Malik Mezzadri for interesting discussions related
to this work. During the period of this research project, M. Tsujii was partially supported
by Grant-in-Aid for Scientific Research (B) (No.22340035) from Japan Society for the
Promotion of Science. F.Faure has been supported by “Agence Nationale de la Recherche”
under the grants JC05_52556 and ANR-08-BLAN-0228-01.

1.2 Definitions

1.2.1 Symplectic Anosov map

LetM be a C∞ closed connected symplectic manifold of dimension 2d with symplectic two
form ω. Let f : M → M be a C∞ symplectic Anosov diffeomorphism, i.e. a C∞ Anosov
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diffeomorphism such that f ∗ω = ω. We recall the definition of an Anosov diffeomorphism:

Definition 1.1. [24, p.263] A diffeomorphism f : M →M is said to be Anosov if there
exists a C∞ Riemannian metric g on M , an f -invariant continuous decomposition of
TM ,

TxM = Eu (x)⊕ Es (x) , ∀x ∈M (1.1)

and a constant λ > 1, such that, for any x ∈M , hold

|Dxf (vs)|g ≤
1

λ
|vs|g ∀vs ∈ Es (x) , and (1.2)∣∣Dxf

−1 (vu)
∣∣
g
≤ 1

λ
|vu|g ∀vu ∈ Eu (x) .

This subspaces Es (resp.Eu) in which f is uniformly contracting (resp. expanding) is
called the stable (resp. unstable) sub-bundle. See figure 1.1.

f

x

Es(x)

M

f(x)

Eu(x)

Figure 1.1: A symplectic Anosov map f

Remark 1.2. (1) The subspaces Eu(x) and Es(x) do not depend smoothly on the point
x in general. However it is known that they are Hölder continuous in x with some
Hölder exponent [31]. In what follows, we assume that the Hölder exponent is

0 < β < 1. (1.3)

The subspaces Eu (x) and Es (x) are Lagrangian linear subspace of TxM and have
both dimension d.

(2) The Arnold cat map[2] is a simple example of a symplectic Anosov diffeomorphism
on the torus T2 = R2/Z2,

f0

(
q
p

)
=

(
2 1
1 1

)(
q
p

)
mod Z2. (1.4)
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It preserves the symplectic form ω = dq ∧ dp. If h : M → M is a diffeomorphism
close enough to identity in the C1 norm and preserves the symplectic form ω, the
perturbed cat map

f (x) := h (f0 (x)) (1.5)

is also a (probably non-linear) symplectic Anosov diffeomorphism[24, p.266]. Simi-
larly, we get examples of symplectic Anosov diffeomorphisms on T2d from any linear
map f0 ∈ Sp2d (Z) with no eigenvalues on the unit circle.

1.2.2 The prequantum bundle and the lift map f̃

A prequantum bundle is a U(1)-principal bundle P equipped with a specific connection.
In a few paragraphs below, we recall the definition of a U(1)-principal bundle and that of
a connection on it. (For the detailed account, we refer [42].) The one-dimensional unitary
group U(1) is the multiplicative group of complex numbers of the form eiθ, θ ∈ R. A
U(1)-principal bundle P over M is a manifold with a free action of U(1), written

p ∈ P →
(
eiθp
)
∈ P, (1.6)

such that the quotient space is M = P/U(1). We write π : P → M for the projection
map. Then the space P has a local product structure over M as follows: There exist a
finite cover of M by simply connected open subsets Uα ⊂ M , α ∈ I, and smooth sections
τα : Uα → P on each of Uα, called a local smooth section; A local trivialization of P over
Uα is defined as the diffeomorphism

Tα : U ×U(1)→ π−1 (Uα) , Tα
(
x, eiθ

)
→ eiθτα (x) . (1.7)

A connection on P is a differential one form A ∈ C∞ (P,Λ1 ⊗ (iR)) on P with values in
the Lie algebra u (1) = iR which is invariant by the action of U(1) and normalized so that

A

(
∂

∂θ

)
= i (1.8)

where ∂
∂θ

denotes the vector field on P generating the action of U(1). Consequently the
pull-back of the connection A on P by the trivialization map (1.7) is written as

T ∗αA = idθ − i2πηα (1.9)

where ηα ∈ C∞ (Uα,Λ
1) is a one-form on Uα which depends on the choice of the local

section τα. A different local section τβ : Uβ → P with Uα
⋂
Uβ 6= ∅ is written as τβ = eiχτα

with using a function χ : Uα
⋂
Uβ → R and hence the connection A pulled-back by the

corresponding trivialization Tβ is written as

ηβ = ηα −
1

2π
dχ on Uα

⋂
Uβ. (1.10)
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The curvature of the connection A is the two form Θ = dA on P . In the local trivialization
(1.7), we have T ∗αΘ = −i2π (dηα) and (1.10) implies that dηα = dηβ. Therefore the
curvature two form is written as

Θ = −i (2π) (π∗ω̃)

where ω̃ = dηα is a closed two form on M independent of the trivialization.
Since there is a given symplectic two form ω on M in our setting, we naturally require

below in (1.11) that the two form ω̃ coincides with ω.
For the construction of the prequantum bundle and prequantum transfer operator, we

will need the following two assumptions:

Assumption 1 : The cohomology class [ω] ∈ H2 (M,R) represented by the symplectic
form ω is integral, that is, [ω] ∈ H2 (M,Z).

Assumption 2 : The integral homology group H1 (M,Z) has no torsion part and that
1 is not an eigenvalue of the linear map f∗ : H1 (M,R) → H1 (M,R) induced by
f : M →M .

Remark 1.3. The second assumption above is not restrictive and may not be necessary. In
fact this hypothesis is conjectured to be true in general. For the case M = T2d, this is
always satisfied.

Theorem 1.4. Under Assumption 1 above, there exists a U(1)-principal bundle π :
P → M and a connection A ∈ C∞ (P,Λ1 ⊗ (iR)) on P such that the curvature two
form Θ = dA satisfies

Θ = −i (2π) (π∗ω) . (1.11)

If we put Assumption 2 in addition, we can choose the connection A as above so that
there exists an equivariant lift f̃ : P → P of the map f : M → M preserving the
connection A :(

π ◦ f̃
)

(p) = (f ◦ π) (p) , ∀p ∈ P : f̃ is a lift of f . (1.12)

f̃
(
eiθp
)

= eiθf̃ (p) , ∀p ∈ P, ∀θ ∈ R : f̃ is equivariant w.r.t. the U(1)action.
(1.13)

f̃ ∗A = A : f̃ preserves the connection A. (1.14)

(See figure 1.2.)
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The proof of Theorem 1.4 is given in Section 2.1.

Definition 1.5. The U(1)-principal bundle π : P →M equipped with the connection
A ∈ C∞ (P,Λ1 ⊗ (iR)) satisfying (1.11) is called prequantum bundle over the symplectic
manifold (M,ω). The map f̃ : P → P satisfying the conditions (1.12),(1.13) and (1.14)
is called prequantum map.

x

f̃

f(x)

π
M

P

eiθ
eiθ

A Ap

Figure 1.2: A picture of the prequantum map f̃ . The dash lines at point p represent the
horizontal space HpP = Ker (Ap) which is preserved by f̃ .

Remark 1.6. (Uniqueness of the prequantum bundle and the prequantum map) The pre-
quantum bundle P is unique (as a smooth manifold) if it exists, because it is determined
by its first Chern class c1 (P ) = [ω] ∈ H2 (M,Z2). However the connection A on the
prequantum bundle P is not unique. In the proof of the theorem above, we will explicitly
show that there may be finitely many connections A which satisfy the condition (1.11) and
they differ from each other by a flat connection. Once the prequantum bundle P and the
connection A on it is given, the lifted map f̃ is unique up to a global phase eiθ0 ∈ U(1),
i.e. another map g̃ satisfies the conditions in (2) of Theorem 1.4 if and only if g̃ = eiθ0 f̃
for some eiθ0 ∈ U(1).

Remark 1.7. Let α := i
2π
A. Then the differential (2d+ 1)-form

µP :=
1

d!
α ∧ (dα)d (1.15)

is a non-degenerate volume form on P . This means that α is a contact one form on P
preserved by f̃ .

1.2.3 The prequantum transfer operator F̂ and the reduced operator F̂N

As usual in dynamical system theory, we consider the transfer operator associated to the
prequantum map f̃ :

9



Definition 1.8. Let V ∈ C∞ (M) be a real-valued smooth function, called potential.
The prequantum transfer operator is defined as

F̂ : C∞ (P )→ C∞ (P ) , F̂ (u) = eV ◦π
(
u ◦ f̃−1

)
(1.16)

where V ◦ π ∈ C∞ (P ) is the function V lifted on P .

Remark 1.9. The fact that f̃−1 appears instead of f̃ in (1.16) is a matter of choice. In our
choice, f̃ maps the support of u to that of F̂ u.

From the equivariance property (1.13), the prequantum transfer operator commutes
with the action of U(1) on functions on P and therefore is naturally decomposed into each
Fourier mode with respect to the U(1) action.

Definition 1.10. For a given N ∈ Z, we consider the space of functions in the N -th
Fourier mode

C∞N (P ) :=
{
u ∈ C∞ (P ) | ∀p ∈ P, ∀θ ∈ R, u

(
eiθp
)

= eiNθu (p)
}
. (1.17)

The prequantum transfer operator F̂ restricted to C∞N (P ) is denoted by:

F̂N := F̂/C∞N (P ) : C∞N (P )→ C∞N (P ) . (1.18)

Remark 1.11. The complex conjugation maps C∞N (P ) to C∞−N (P ) and commutes with F̂ .
It is therefore enough to study F̂N with N ≥ 0.
Remark 1.12. The space of equivariant functions C∞N (P ) defined in (1.17) can be identified
with the space of smooth sections of an associated Hermitian complex line bundle L⊗N over
M (i.e. the N tensor power of a line bundle L → M) with covariant derivative D, called
the prequantum line bundle i.e. we have

C∞N (P ) ∼= C∞
(
M,L⊗N

)
.

See [38, p.502, eq.(6.1)]. In order to simplify the presentation we will not use this identi-
fication in this paper although it will be present implicitly. Notice however that most of
references about geometric quantization use the “line bundle terminology”.

In this paper the main object of study is the resonance spectrum of the operator F̂N ,
(1.18), in the limit N →∞. For N > 0, we set

~ =
1

2πN
. (1.19)
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This new variable ~ is in one-to-one correspondence to N , and ~ → +0 as N → ∞. We
introduce it for convenience in referring some argument in semi-classical analysis where ~
is regarded as the Plank constant and the limit ~→ +0 is considered.

Remark 1.13. In the following, we will confuse the parameters N and ~ in the notation.
For instance, the operator F̂N will be written F̂~ sometimes.

1.3 Results on the spectrum of the prequantum operator F̂N
The following theorem has been obtained essentially in the works of Rugh [33], Liverani et
al. [9, 20], Baladi et al.[5, theorem 1.1], Faure et al. [17, theorem 1]. The method employed
in the present paper is close to the semiclassical approach given in [17, theorem 1]. Before
giving the Theorem, let us mention that the transfer operator F̂N has been defined on the
space of smooth functions C∞N (P ) and can be extended by duality to the distributions
space D′N (P ). We will introduce a family of Hilbert spaces Hr

N (P ) for arbitrarily large
r > 0, called anisotropic Sobolev space such that C∞N (P ) ⊂ Hr

N (P ) ⊂ D′N (P ) and show

Theorem 1.14. “Discrete spectrum of prequantum transfer operators”. For
any N ∈ Z, the operator F̂N extends to a bounded operator

F̂N : Hr
N (P )→ Hr

N (P ) ,

and its essential spectral radius ress
(
F̂N

)
is bounded by εr := 1

λr
max eV , which shrinks

to zero if r → +∞. The discrete eigenvalues of F̂N on the domain |z| ≥ εr (and their
associated eigenspaces) are independent on the choice of r and are therefore intrinsic
to the Anosov map f . These discrete eigenvalues Res

(
F̂N

)
:= {λi}i ⊂ C∗ are called

Ruelle-Pollicott resonances.

Remark 1.15. See [6],[17, cor. 1.3] for a general argument about this independence of
Res

(
F̂N

)
on the choice of r.

The new result of this paper is the following. It is illustrated in Figure 1.3.

Theorem 1.16. “The spectrum of F̂N has band structure”. In the semiclassical
limit N →∞, the Ruelle-Pollicott resonances of F̂N is contained in a small neighbor-
hood of the union of annuli

Ak :=
{
z ∈ C, |z| ∈

[
r−k , r

+
k

]}
for k ≥ 0 (1.20)
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A0
A1

r−1 r+
1 r−0 r+

0

εr

Figure 1.3: A “band structure” of the spectrum of F̂N .

where r+
k and r−k are defined by

r−k := lim
n→∞

∣∣∣∣ inf
x∈M

(
eVn(x) ‖Dfnx |Eu‖

−k
max |detDfnx |Eu|

−1/2
)∣∣∣∣1/n , (1.21)

r+
k := lim

n→∞

∣∣∣∣sup
x∈M

(
eVn(x) ‖Dfnx |Eu‖

−k
min |detDfnx |Eu|

−1/2
)∣∣∣∣1/n

with setting

Vn (x) :=
n∑
j=1

V
(
f j (x)

)
and

‖L‖max := ‖L‖ , ‖L‖min :=
∥∥L−1

∥∥−1 (1.22)
for a linear map L. More precisely, we have

Res
(
F̂N

)
⊂ Nδ(N)(A) := {z ∈ C, dist (z, A) ≤ δ (N)} , A :=

{⋃
k≥0

Ak

}
(1.23)

where δ (N) = CN−ε −→
N→∞

0 with some ε > 0 and some constant C independent of f , V
and N . If the outmost annulus A0 is isolated from other annuli, that is if A0

⋂
Al = ∅

for any l > 0, the number of resonances in its neighborhood satisfies the estimate

C−1Nd < ]
{
Res

(
F̂N

)⋂
Nδ(N) (A0)

}
< CNd

for some constant C.
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Theorem 1.16 is deduced from Theorem 1.18 below and the proof is given in Section
A.1.

Remark 1.17. (1) Since ‖Dfnx |Eu‖max ≥ ‖Dfnx |Eu‖min > 1 we have obviously r−k+1 < r−k and
r+
k+1 < r+

k for every k ≥ 0. However we don’t always have r+
k+1 < r−k therefore the annuli

may intersect each other.
(2) Let Ẽu ⊂ TM be a smooth approximation of the unstable sub-bundle Eu ⊂ TM in

C0 norm. If one chooses the potential:

V (x) :=
1

2
log
∣∣det Dfx|Ẽu

∣∣ (1.24)

on can have r−0 , r
+
0 (arbitrarily) closed to one and the annulus A0 of the external band get

isolated from the other ones (A0

⋂
Ak = ∅ for k 6= 0).

(3) In the simple case of a linear hyperbolic map on the torus T2, i.e. example (1.4) with
V (x) = 0, then r+

k = r−k = λ−k−
1
2 , with λ = Df0/Eu = 3+

√
5

2
' 2.6 (constant), i.e. each

annulus Ak is a circle. In this case Theorem 1.16 has been obtained in [16] and is depicted
on Figure (1-b) in [16]. If one chooses V (x) = 1

2
log |detDfx|Eu | = 1

2
log λ the external

band A0 is the unit circle and it is shown in [16] that the Ruelle-Pollicott resonances on
the external band coincide with the spectrum of the quantized map called the “quantum
cat map”.

The following Theorem gives a more precise description of the prequantum transfer
operator that leads to the spectral property stated in Theorem 1.16, though it looks more
technical. The proof of Theorem 1.18 is given in Section 6.5.

Theorem 1.18. ”Detailed description of the band structure”. Let n ≥ 0 and take
sufficiently large r accordingly. Then there exists a small constant ε > 0, a constant C0,
which is independent of V , f and N , and a decomposition of the Hilbert space Hr

N (P ):

Hr
N (P ) = H0 ⊕H1 . . .⊕Hn ⊕Hn+1 (1.25)

such that, writing τ (k) for the projection onto the component Hk along other compo-
nents,

(1) 1
C0
~−d ≤ dimHk ≤ C0~−d for 0 ≤ k ≤ n while dimHn+1 =∞,

(2) ‖τ (k)‖ < C0 for 0 ≤ k ≤ n+ 1,

(3) ‖τ (k) ◦ F̂N ◦ τ (l)‖ ≤ C0~ε if k 6= `,

(4) for 0 ≤ k ≤ n+ 1, it holds

‖τ (k) ◦ F̂N ◦ τ (k)‖HrN (P ) ≤ C0 sup
x∈M

(
eV (x) ‖Dfx|Eu‖

−k
min |detDfx|Eu |−1/2

)
, (1.26)
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(5) for 0 ≤ k ≤ n and u ∈ Hk it holds∥∥∥(τ (k) ◦ F̂N
)
u
∥∥∥
HrN (P )

≥ C−1
0 inf

x∈M

(
eV (x) ‖Dfx|Eu‖

−k
max |detDfx|Eu |

−1/2
)
‖u‖HrN (P ) ,

(1.27)

provided that ~ > 0 is sufficiently small.

We suppose now that the external annulus A0 defined in (1.20) is isolated from other
annuli

⋃
k≥1Ak. We have seen in (1.24), how to achieve such situation by a suitable choice

of the potential V (x).

Theorem 1.19. “Weyl formula and index formula for the number of reso-
nances”. If the external annulus A0 is isolated, i.e. r+

1 < r−0 , then the number of
resonances in the external annulus A0 is given by the “Weyl formula”

]
{
Res

(
F̂N

)⋂
Nδ(N) (A0)

}
= NdVolω (M) +O

(
Nd−1

)
(1.28)

with Nδ(N) (A0) defined in (1.23) and with the symplectic volume of M given by
Volω (M) :=

∫
M
ω∧d/d!.

More precisely, for N large enough, let Π0 denotes the spectral projector associated
to the isolated external band (i.e. on the spectral domain |z| > r−0 − δ (N)) then the
rank of Π0 is exactly given by the Atiyah-Singer index formula:

rank (Π0) =

∫
M

[
eNωTodd (TM)

]
2d

(1.29)

where

eNω = 1 +Nω + . . .+
Ndωd

d!

is the Chern character,

Todd (TM) = det
(

Ω (TM)

1− exp (−Ω (TM))

)
= 1 +

Ω (TM)

2
+ . . . ∈ H•DR (M)

is the Todd class of the tangent bundle defined from the Riemannian curvature Ω (TM)
and [.]2d denotes the restriction to volume 2d-forms.

Theorem 1.19 above follows from two theorems that will be stated in Section 2.4 where
we will introduce a differential operator ∆ = D∗D acting in C∞N (P ) called the rough
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Laplacian. In Theorem 2.21, we will show that its low energy spectrum has band spectrum
and that the cardinality of the eigenvalues in the first (or the lowest) band equals the
quantity on the right hand side of the formula (1.29). The latter is actually a consequence
of a theorem in geometry. Then, in Theorem 2.21, we will show that the rank of the
projector Π0 coincides with the rank of the spectral projector for eigenvalues in the first
band. We thus obtain the formula (1.29). Then the Weyl formula (1.28) is a direct
consequence. Indeed we have

[
eNωTodd (TM)

]
2d

= Ndωd

d!
+O

(
Nd−1

)
and hence∫

M

[
eNωTodd (TM)

]
2d

= NdVolω (M) +O
(
Nd−1

)
.

Remark 1.20. In the case of M = T2 which correspond to example (1.4) and treated in
[16], the projector Π0 has exactly rank (Π0) = N . Indeed, for Riemann surfaces M of
genus g, we have Todd (TM) = 1 + c1(TM)

2
with first Chern number

∫
M
c1 (TM) = 2− 2g

(the Gauss-Bonnet integral formula). Hence rank (Π0) =
∫
M

(Nω) +
∫
M
c1 (TM) = N for

M = T2.

2 Preliminary results and sketch of the proofs
In this Section we begin with establishing some preliminary results which will be used in
the rest of the paper. Then we sketch the proofs of the main theorems presented in Section
1.

2.1 Proof of Theorem 1.4

This Section 2.1 may be skipped for a first reading.
Under Assumption 1 on page 8, existence of a U(1)-principal bundle π : P → M with

a connection A satisfying the condition (1.11) is standard in differential geometry. See
[25][42, prop 8.3.1]. Notice that the connection one form A satisfying (1.11) is determined
up to addition by a connection A0 with dA0 = 0 i.e. a flat connection. Below we choose
a connection appropriately so that the second claim in Theorem 1.4 holds true. We first
prove the following lemma.

Lemma 2.1. Let π : P →M be a prequantum bundle over a closed symplectic manifold
(M,ω) with a connection 1-form A such that dA = −i (2π) (π∗ω). Let f : M → M be
a diffeomorphism. The following conditions are equivalent

(1) There exists an equivariant lift f̃ : P → P preserving the connection.

(2) For any closed path γ ⊂M , we have

hA (f (γ)) = hA (γ) (2.1)
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where hA (γ) ∈ U(1) denotes the holonomy along γ (with respect to the connection
A).

(3) f preserves the curvature two-form on M :

f ∗ω = ω, ω :=
i

2π
(dA) (2.2)

and the homomorphism

rA : H1 (M,Z)→ U(1), rA ([γ]) =
hA (f (γ))

hA (γ)
(2.3)

(which is well-defined if (2.2) holds true) is trivial:

rA ≡ 1 (2.4)

The equivariant lift f̃ as above is unique up to a global phase (if it exists): g̃ is
another equivariant lift if and only if there exists eiθ ∈ U(1) such that g̃ = eiθf̃ .

Proof. The proof of Lemma 2.1 can be found in [43, Prop 2.2 p.632]. We give it here since
some details of the proof will be useful later on. The idea of the proof is illustrated in
Figure 2.1.

x0

γ

M

x1

p1

γ̃

p′1

f(x1)

f(x0)

f(γ)

q0

q1

q′1

f

γ′

f(γ′)

f̃

eiα
eiβ

p0

Figure 2.1: Picture of f̃ construction.

The assertion (1)⇒(2) is obvious because holonomy is defined from the connection
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preserved by f̃ hence holonomy of closed paths is preserved by f .
To prove the assertion (2)⇒(1) we construct f̃ explicitly. Let p0 ∈ P and x0 = π (p0) ∈

M be some given points of reference. We choose q0 ∈ Pf(x0) an arbitrary point in the
fiber Pf(x0) and set f̃ (p0) = q0. By equivariance, this defines f̃ on the fiber Px0 : for any
eiθ ∈ U(1), we have to set f̃

(
eiθp0

)
= eiθq0. Let x1 ∈ M be any point. We want to

define f̃ on the fiber Px1 . We choose a path γ : [0, 1] → M which joins γ (0) = x0 to
γ (1) = x1 and then take the unique horizontal lift3γ̃ : [0, 1]→ P of γ such that γ̃ (0) = p0.
Put p1 := γ̃ (1) ∈ Px1 . Next let f̃ (γ) be the unique horizontal lift of f (γ) such that
f̃ (γ) (0) = q0. Since f̃ preserves the connection, it send γ̃ to a horizontal lift of f (γ). We
define f̃ (p1) = q1 := f̃ (γ) (1) ∈ Pf(x1). For equivariance, we define f̃ on the fiber Px1 so
that f̃

(
eiθp1

)
= eiθq1 for any eiθ ∈ U(1).

The definition of f̃ described above depends a priori on the choice of the path γ. Below
we check that the condition (2) guarantees the well definiteness (or independence of the
choice of the path γ) of this definition. Suppose that γ′ is another path such that γ′ (0) = x0

and γ′ (1) = x1 and that we define p′1 ∈ Px1 and q′1 ∈ Pf(x1) in the similar manner as above
using γ̃ in the place of γ. Then we have p′1 = eiαp1 for some eiα ∈ U(1) and q′1 = eiβq1 for
some eiβ ∈ U(1). From the definition above, we have f̃ (p′1) = f̃ (eiαp1) = eiαf̃ (p1) = eiαq1.
For well definiteness, we have to check that q′1 = f̃ (p′1) or, equivalently, that eiα = eiβ. Note
that Γ := γ′ ◦γ−1 is a closed path with holonomy4 hA (Γ) = eiα and f (Γ) = f (γ′)◦f (γ)−1

is that with holonomy hA (f (Γ)) = eiβ. Therefore the required condition eiα = eiβ is
equivalent to the condition (2). By construction f̃ preserves the horizontal bundle hence
the connection A. We have obtained (1).

Let us show that (2) and (3) are equivalent. Let γ = ∂σ be a closed path which borders
a surface σ ⊂M i.e. [γ] = 0 in H1 (M,Z). The curvature formula [11] gives the holonomy
as

hA (γ) = exp

(
−i2π

∫
σ

ω

)
.

Also
hA (f (γ)) = exp

(
−i2π

∫
f(σ)

ω

)
= exp

(
−i2π

∫
σ

f ∗ω

)
.

The condition hA (f (γ)) = hA (γ) for any closed path γ = ∂σ as above is therefore equiv-
alent to the local condition f ∗ω = ω. In that case, for any closed paths γ and γ′ such that
[γ] = [γ′] ∈ H1 (M,Z), we have hA

(
f (γ) ◦ f (γ′)−1) = hA (γ ◦ (γ′)−1), and hence

hA (f (γ′))

hA (γ′)
=
hA (f (γ))

hA (γ)
.

3By definition, γ̃ ∈ P is a horizontal lift of the path γ (t) ∈ M if π (γ̃ (t)) = γ (t) and if the tangent
vector is horizontal at every point: A

(
dγ̃
dt

)
= 0. It does not depend on the parametrization of γ.

4By definition, the holonomy of a closed path Γ (t) ∈ M , Γ (1) = Γ (0) is h (Γ) ∈ U(1) computed as
follows. We construct Γ̃ (t) ∈ P , a horizontal lift of Γ and write Γ̃ (1) = eih(Γ)Γ̃ (0) ∈ π−1 (Γ (0)).
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Therefore the map (2.3) is well defined. Now the equivalence of the conditions (2) and (3)
is obvious.

The next lemma give the choice of the connection in the latter statement of Theorem
1.4.

Lemma 2.2. Let π : P →M be a prequantum bundle over a closed symplectic manifold
(M,ω) with connection 1-form A such that dA = −i (2π) (π∗ω). Let f : M → M a
symplectic diffeomorphism and f∗ : H1 (M,R) → H1 (M,R) the linear map induced in
the homology group. If Assumption 2 on page 8 holds, there exists a flat connection A0

such that (2.4) holds for the modified connection A+ A0.

Proof. If A0 is a flat connection (i.e. dA0 = 0) let A′ = A+ A0 be a modified connection.
For a closed path γ the modified holonomy is

hA′ (γ) = hA (γ) · hA0 (γ) .

We have a well-defined homomorphism PA0 : H1 (M,Z) → R/Z, called the period map,
such that

hA0 (γ) = ei2πPA0
(γ). (2.5)

Suppose that f is symplectic i.e. f ∗ω = ω. For the connections A and A′ = A + A0, we
have the relation:

hA′ (f (γ))

hA′ (γ)
=
hA (f (γ))

hA (γ)

hA0 (f (γ))

hA0 (γ)

or, in terms of the maps (2.3) and (2.5), we have

rA′ = rA exp (i2π (PA0 (f∗ − I))) .

Hence if we choose the flat connection A0 so that

exp (i2π (PA0 (f∗ − I))) = rA,

then the condition (2.4) is realized for the modified connection A′ = A + A0. From
Assumption 2, this is possible. Indeed, if we can write rA = ei2πRA with RA : H1 (M,Z)→
R and choose a flat connection A0 so that PA0 = −RA (f∗ − I)−1.

From Lemma 2.1, the conclusion of the corollary above implies that there is an equiv-
ariant lifted map f̃ : P → P , which is unique up to a global phase. This proves Theorem
1.4.
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2.2 Semiclassical description of the prequantum operator F̂N
We give a local expression of the transfer operator F̂N defined in (1.18) with respect to
local charts and local trivialization of the bundle P . These local expressions will be useful
in the sequel of the paper.

As in Section 1.2.2, let (Uα)α∈I be a finite collection of simply connected open subsets
which cover M and, for every open set Uα ⊂M , let

τα : Uα → P

be a local section of the bundle. For a given N ∈ Z, an equivariant function u ∈ C∞N (P )
defines the set of associated functions5 uα : Uα → C, α ∈ I, defined by

uα (x) := u (τα (x)) (2.6)

for x ∈ Uα. Conversely one reconstructs u from (uα)α∈I by the relation

u (p) = u
(
eiθτα (x)

)
= eiNθu (τα (x)) = eiNθuα (x) for p = eiθτα (x) and x ∈ Uα.

Recall the one forms ηα in the local expression (1.9) of the connection A.

Proposition 2.3. “Local expression of F̂N”. Let u ∈ C∞N (P ) and u′ := F̂Nu ∈
C∞N (P ) with respective associated functions uα (x) = u (τα (x)) and u′α (x) = u′ (τα (x)),
with x ∈ Uβ, f−1 (x) ∈ Uα . Then

u′β = eV · Lfuα

with
(Lfuα) (x) := ei2πNAβ,α(x)uα

(
f−1 (x)

)
(2.7)

where

Aβ,α (x) =

∫
f−1(γ)

ηα −
∫
γ

ηβ + c (x0)

=

∫
γ

((
f−1
)∗

(ηα)− ηβ
)

+ c (x0) . (2.8)

In the last integral, x0 ∈ Uβ is any point of reference, γ ⊂ Uβ is a path from x0 to x and
c (x0) does not depend on x. In other words, the prequantum operator F̂N is expressed
locally by the transfer operator eVLf defined in (2.7).

5In the language of associate line bundle, these functions ψα are sections of L⊗N expressed with respect
to the trivializations.
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Remark 2.4. Notice that the integral (2.8) does not depend on the path γ from x0 to x
because the one form

(
(f−1)

∗
(ηα)− ηβ

)
is closed. Indeed d

(
(f−1)

∗
(ηα)− ηβ

)
= (f−1)

∗
ω−

ω = 0 since f−1 is symplectic.

Proof. From definition (1.16) of the transfer operator

u′β (x) = u′ (τβ (x)) =
(
F̂ u
)

(τβ (x)) eV (x)u
(
f̃−1 (τβ (x))

)
.

To prove the proposition, we have to show f̃−1 (τβ (x)) = Lfuα. Let γ ⊂ Uβ be a path from
x0 to x. Let γ̃ : t → γ̃ (t) be the lifted path parallel transported above γ starting from
τβ (x0) and ending at point p. (See Figure 2.2.) Since the connection one form vanishes
along the path γ̃, we have

0 =
(
T ∗βA

)(dγ̃β
dt

)
= (idθ − i2πηβ)

(
dγ̃β
dt

)
with γ̃β = T−1

β (γ̃). From the construction of the lifted map f̃ in the proof of Lemma 2.1,
we have

p = eia(x)τβ (x) (2.9)

with
a (x) =

∫
γ̃

dθ = 2π

∫
γ

ηβ.

τβ

x0

γ
τα

M

γ̃

τβ(x)

x

p

eia(x)

f−1(γ)

f̃−1(p)

τβ(x0)
eiθ0

f−1(τβ(x0))

f−1(x0)

f−1(x)

f̃−1(γ)

τα(f−1(x))

Figure 2.2:

Let θ0 given by f̃−1 (τβ (x0)) = eiθ0τα (f−1 (x0)). Similarly we have

f̃−1 (p) = eiθ0eia
′(x)τα

(
f−1 (x)

)
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with
a′ (x) = 2π

∫
f−1(γ)

ηα.

From equivariance of f̃ and (2.9), we have f̃−1 (p) = eia(x)f̃−1 (τβ (x)). Therefore

f̃−1 (τβ (x)) = e−ia(x)f̃−1 (p) = e−ia(x)eiθ0eia
′(x)τα

(
f−1 (x)

)
= ei2πAβ,α(x)τα

(
f−1 (x)

)
with

Aβ,α (x) =

∫
f−1(γ)

ηα −
∫
γ

ηβ +
θ0

2π
.

We conclude

u′β (x) = eV (x)u
(
f̃−1 (τβ (x))

)
= eV (x)u

(
ei2πAβ,α(x)τα

(
f−1 (x)

))
= eV (x)ei2πNAβ,α(x)u

(
τα
(
f−1 (x)

))
= eV (x)ei2πNAβ,α(x)uα

(
f−1 (x)

)
as required.

The following composition formula should be obvious but will be useful.

Lemma 2.5. “Composition formula”. If f1, f2 : M →M are symplectic diffeomor-
phism with corresponding prequantum transfer operators F̂f1u := u◦f̃−1

1 , F̂f2u := u◦f̃−1
2

then
F̂f2 ◦ F̂f1 = F̂f2◦f1

(equality up to some global rotation). Consequently in local charts their local expression
(2.7) satisfy

Lf2 ◦ Lf1 = Lf2◦f1 (2.10)

with appropriate setting of local trivializations.

The next few results will concern some semiclassical aspects of the transfer operator.
The first easy result but of fundamental importance is the following Proposition. (It is not
used in the proofs in this paper and the explanation below may be a bit sloppy. But it
gives the background of the following argument.)

Remark 2.6. For the general definition of the Fourier Integral Operator, we refer to Mar-
tinez [28], Evans-Zworski [14] or Duistermaat [13]. If the reader is not familiar with Fourier
Integral Operator, it is enough for the reading of this paper to understand the rough idea
of a Fourier integral operator F̂ , which is quite simple as explained in [10]: if a function
ψ is localized at point x ∈ M and its Fourier transform is localized at point ξ ∈ T ∗xM
(which means that these functions decay fast outside these points and we say that ϕ is

21



micro-localized at (x, ξ) ∈ T ∗M ) then the operator F̂ transforms this function ψ to a
function ψ′ micro-localized in another point (x′, ξ′) ∈ T ∗M . The map F : (x, ξ)→ (x′, ξ′)
is called the associated canonical map. Note that we are interested in the situation
|ξ| & N = (2π~)−1 � 1 and, in the limit N → ∞ (or ~ → +0), we will normalize ξ
by multiplying ~.

Proposition 2.7. The prequantum transfer operator F̂N is a Fourier Integral Operator
if we view it in the local trivializations as in (2.7). The associated canonical map on
the cotangent space is given by

Fα,β : T ∗Uα → T ∗Uβ, Fα,β

(
x
ξ

)
=

(
f (x)

t
(
Df−1

x′

)
(ξ + ηα (x))− ηβ (x′)

)
(2.11)

where x ∈ Uα, f (x) ∈ Uβ and ξ ∈ T ∗xUα . The map Fα,β preserves the canonical
symplectic structure

Ω =
2d∑
j=1

dxj ∧ dξj

on the cotangent space on T ∗Uα.

Proof. The transfer operator is given in local chart by (2.7). This expression shows that it
is the composition of two operators F̂2◦ F̂1 where F̂1 is the pull-back by the diffeomorphism
f−1 and F̂2 is the multiplication by a phase function. Both operators are basic examples
of F.I.O as explained in [28, chap.5] and the Proposition 2.7 follows. See the explanation
below.

We give here a more detailed explanation of the associated canonical map (2.11). From
(2.7), the transfer operator F̂N can be decomposed as elementary operators. Let

F̂1 : u (x)→ u
(
f−1 (x)

)
.

This is a F.I.O. with canonical map

F1

(
x
ξ

)
=

(
x′

ξ′

)
=

(
f (x)

t
(
Df−1

x′

)
ξ

)
(2.12)

Indeed it is clear that supp (ψ) is transported to f (supp (ψ)) hence x′ = f (x). Also an
oscillating function u (x) = e

i
~ ξ.x is transformed to u′ (y) = e

i
~ ξ.f

−1(y) and, for y = f (x) + y′

with |y′| � 1, we have f−1 (y) = x+Df−1
y .y′ + o (|y′|) , hence

u′ (y) ' e
i
~ ξ.(x+Df−1

x′ .y
′) = Ce

i
~
t(Df−1

x′ )ξ.y = Ce
i
~ ξ
′.y
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with ξ′ = t
(
Df−1

x′

)
ξ and C = e

i
~ ξ·(x−Df

−1
x′ ·f(x)). We deduce (2.12).

Next we consider a multiplication operator by a “fast oscillating phase” (recall ~� 1):

F̂2 : ψ (x)→ eiS(x)/~ψ (x)

For the same reasons, it is a F.I.O. and its canonical map is

F2

(
x
ξ

)
=

(
x

ξ + dS(x)

)
Indeed u (x) = e

i
~ ξ.x is transformed to u′ (y) = e

i
~ (ξ.y+S(y)) and, for y = x+ y′ with |y| � 1,

we have
u′ (x′) ' e

i
~ (ξ.y+dS·y)

with ξ′ = ξ+dS. From these two previous examples and (2.7), we can deduce (2.11). Notice
that the multiplication operator by eV does not appear in the canonical map because it is
not a “fast oscillating function” (in the limit ~→ 0).

Notice that the canonical maps Fα,β in the last proposition is not consistent for different
choice of local trivializations if we simply regard T ∗Uα and T ∗Uβ as a subset of T ∗M . This
is because of the curvature of the bundle P . The following proposition gives a global and
geometric description of the canonical map (2.11).

Proposition 2.8. Consider the following change of variable on T ∗Uα for every α ∈ I:(
x
ξ

)
∈ T ∗Uα →

(
x

ζ := ξ + ηα (x)

)
∈ T ∗M (2.13)

Then the canonical map (2.11) get the simpler and global expression (independent on
the set Uα) on the phase space T ∗M

F : T ∗M → T ∗M, F

(
x
ζ

)
= (DF ∗)−1

(
x
ζ

)
=

(
f(x)

t
(
Df−1

x′

)
ζ

)
. (2.14)

The symplectic form preserved by F is:

Ω =
2d∑
j=1

(dxj ∧ dζj) + π∗ (ω) . (2.15)

Remark 2.9. The change of variables (2.13) to get the global geometric description (2.14)
is standard in the semiclassical problems involving large magnetic fields on manifolds. In
a more geometric (but more abstract) approach one can show that the cotangent space
(T ∗M,Ω) is interpreted as an “affine cotangent space” and can be geometrically defined as
the space of connections on the principal bundle P →M , see [8, appendix].
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Proof. The relation (2.14) is obvious from (2.11) and (2.13). To prove (2.15), we write in
coordinates

ηα =
2d∑
j=1

ηjdxi

and the fact
ω = dηα =

∑
i,j

(
∂ηj
∂xi

)
(dxi ∧ dxj) .

Then

Ω =
2d∑
j=1

dxj ∧ dξj =
2d∑
j=1

dxj ∧ (dζj − dηj) =
2d∑
j=1

dxj ∧

(
dζj −

2d∑
i=1

(
∂ηj
∂xi

)
dxi

)

=
2d∑
j=1

(dxj ∧ dζj) + ω

In relation to the global expression (2.14) of the canonical map associated to the pre-
quantum transfer operator F̂N , it should be natural to introduce the following definition.

Definition 2.10. The trapped set K b T ∗M is the set of points (x, ξ) ∈ T ∗M which
do not escape to infinity in the past neither in the future n→ ±∞ under the dynamics
of the canonical map F :

K := {(x, ξ) ,∃C > 0, |ξ (n)| ≤ C, ∀n ∈ Z, with (x (n) , ξ (n)) := F n (x, ξ)} .

In terms of the theory of dynamical systems, the trapped set K is the non-wandering
set for the dynamical system generated by F .

As one expects naturally, we will show that the trapped setK ⊂ T ∗M and the dynamics
of the canonical map F on its vicinity are the main geometrical objects which explain all
the results of this paper about the resonances. It should be noted that, in the context of
quantum scattering, this idea has been investigated extensively (but, for different types
of evolution equations than the prequantum transfer operator), initiated by Combes and
Baslev in the 70’ and Hellfer-Sjöstrand in the 80’.

Proposition 2.11. “Description of the trapped set K”. The trapped set K ⊂ T ∗M
is the zero section:

K = {(x, ζ) ∈ T ∗M | x ∈M, ζ = 0} . (2.16)
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This is a symplectic submanifold of (T ∗M,Ω) isomorphic to (M,ω). For every point
ρ ∈ K the tangent space is decomposed as an Ω-orthogonal sum of symplectic linear
subspaces

Tρ (T ∗M) = TρK
⊥
⊕ (TρK)⊥ (2.17)

Moreover each part is decomposed into isotropic unstable/stable linear spaces

TρK = E (1)
u (ρ)⊕ E (1)

s (ρ) , (TρK)⊥ = E (2)
u (ρ)⊕ E (2)

s (ρ) (2.18)

where the subspaces E (i)
σ (ρ) for i = 1, 2 and σ = s, u are d-dimensional subspaces

defined by

E (1)
σ (ρ) = TρK ∩ E∗σ(ρ), E (2)

σ (ρ) = (TρK)⊥ ∩ E∗σ(ρ) for σ = s, u.

Here the decomposition

Tρ(T
∗M) = E∗u (ρ)⊕ E∗s (ρ)

is that into the unstable and stable subspaces with respect to the action of DF ,(which
is dual to the decomposition (1.1)):

E∗u(ρ) := {v ∈ Tρ(T ∗M) | |DF−nρ (v)| → 0 as n→∞}

and
E∗u(ρ) := {v ∈ Tρ(T ∗M) | |DF n

ρ (v)| → 0 as n→∞}.

All the decompositions above are invariant by the map F . See figure 2.3.

Remark 2.12. There is another F -invariant decomposition:

Tρ (T ∗M)︸ ︷︷ ︸
4d

= TρK︸︷︷︸
2d

⊕T ∗xM︸ ︷︷ ︸
2d

with x = π̃ (ρ) and T ∗xM the fiber of the cotangent space. However this sum is not Ω-
orthogonal and moreover T ∗xM is Ω-Lagrangian.

Proof. First it is clear that the trapped set is the zero section {(x, ζ) , ζ = 0} since it is
invariant and, if ζ 6= 0, we have |F n (x, ζ)| → ∞ at least either as n → ∞ or n → −∞.
From (2.15) Ω/K = ω therefore π̃ : (K,ω) → (M,ω) is a symplectomorphism. The
symplectic maps f : M → M and F : K → K are conjugated. For every point ρ ∈ K,
TρK is a linear symplectic subspace of the symplectic linear space Tρ (T ∗M) and therefore
admits a unique symplectic orthogonal (TρK)⊥. The decomposition (2.17) is invariant
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symplectic

x

π̃

f(x)
(M,ω)

f

TρK

νq

νp

F

(TρK)⊥

F (ρ)

ζq

ζp (T ∗M,Ω)

Trapped set

ρ is Ω− symplectic
K = {ζ = 0}

TρT (∗M)

Figure 2.3: The decompositions of the tangent space Tρ(T ∗M).

under the map F because the trapped set K is invariant and because F preserves the
symplectic form Ω.

In the next proposition, we introduce convenient local coordinates, called normal or Dar-
boux coordinates. We will use them later in the proof.

Proposition 2.13. “Normal coordinates”. On a sufficiently small neighborhood U
of every point x ∈M , there exist coordinates

x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
and a trivialization of P such that the connection one-form in (1.9) is given by

η =
d∑
i=1

(
1

2
qidpi − 1

2
pidqi

)
(2.19)

and consequently the symplectic form ω is given by

ω = dη =
d∑
i=1

dqi ∧ dpi. (2.20)

On the cotangent bundle T ∗U , there is a change of coordinates Φ : (x, ξ)→ (ν, ζ) where
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the variables ζ =
(
ζjq , ζ

j
p

)
j=1,...,d

are already defined in (2.13) as

ζ ip : = ξip + ηip = ξip +
1

2
qi (2.21)

ζ iq : = ξiq + ηiq = ξiq −
1

2
pi

while ν =
(
νjq , ν

j
p

)
j=1,...,d

are given by

νjq = qj − ζjp =
1

2
qj − ξjp (2.22)

νjp = pj + ζjq =
1

2
pj + ξjq

This change of variables transforms the symplectic form Ω in (2.15) to the normal
form:

Ω =
d∑
j=1

(
dνjq ∧ dνjp

)
+
(
dζjp ∧ dζjq

)
. (2.23)

Remark 2.14. Recall from (2.16) that TρK = {(ν, ζ) , ζ = 0}. Then (2.23) implies that
its symplectic orthogonal is given by (TρK)⊥ = {(ν, ζ) , ν = 0}. In other words, (ν, ζ)
are symplectic coordinates related to the decomposition (2.17). These coordinates were
introduced in the paper [16] treating the linear case, under the different names (Q1, P1) ≡
(νq, νp) and (Q2, P2) ≡ (ζp, ζq).

Proof. Darboux theorem on symplectic structure (see [1]) tells that, if we take sufficiently
small neighborhood U of x, there exist coordinates x = (q, p) =

(
q1, . . . qd, p1, . . . pd

)
such

that the symplectic form is expressed in the normal form ω = dq ∧ dp =
∑d

i=1 dq
i ∧ dpi.

Take any local smooth section τ ′ : U → P and let η′ be the local connection one form
(see (1.9)) with respect to the corresponding local trivialization of P . Since we have
d(η′ − η) = ω − ω = 0 for η in (2.19), there is a smooth function χ : U → R such that
η′ − η = 1

2π
dχ. Setting τ = eiχτ ′ and recalling the formula (1.10), we see that the former

statement of the proposition holds for the coordinates x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
and the trivialization of P associated to the local smooth section τ thus taken.

We prove the latter statement. (2.13) and (2.19) imply (2.21). Clearly (2.21) and
(2.22) are coordinates on U as we can give the inverse explicitly. Starting from (2.15) we
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get

Ω =
d∑
j=1

(
dqj ∧ dζjq + dpj ∧ dζjp + dqj ∧ dpj

)
=

d∑
j=1

((
dνjq + dζjp

)
∧ dζjq +

(
dνjp − dζjq

)
∧ dζjp + d

(
νjq + ζjp

)
∧
(
dνjp − dζjq

))
=

d∑
j=1

dνjq ∧ dνjp − dζjq ∧ dζjp =
d∑
j=1

dνjq ∧ dνjp + dζjp ∧ dζjq .

This completes the proof.

Remark 2.15. Since the symplectic 2-form ω =
∑

j dq
j ∧ dpj on T ∗xM ≡ R2d is non degen-

erate, it defines an isomorphism, called flat operator,

[ : R2d →
(
R2d
)∗
, v[ = ω (v, ·) .

Its inverse is called the sharp operator.

] = [−1 :
(
R2d
)∗ → R2d.

For a one-form α ∈
(
R2d
)∗, α] is defined by the relation α = ω

(
α], .

)
. In coordinates, for

v =
n∑
j=1

vjq
∂

∂qj
+ vjp

∂

∂pj
≡ (vq, vp) ∈ R2d and α =

n∑
j=1

αjqdq
j +αjpdp

j ≡ (αq, αp) ∈
(
R2d
)∗

we have

v[ =
n∑
j=1

−vjpdqj + vjqdp
j ≡ (−vp, vq) ∈

(
R2d
)∗ (2.24)

α] =
n∑
j=1

αjp
∂

∂qj
− αjq

∂

∂pj
≡ (αp,−αq) ∈ R2d (2.25)

We also have
α (v) = −v[

(
α]
)
∈ R, [t = −[, ]t = −]. (2.26)

where [t, ]t denote the transposed maps. Using these notation, the relation (2.22) can be
written in a more intrinsic manner:

ν := x− ζ#. (2.27)
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Proposition 2.16. The normal coordinates (νq, νp, ζp, ζq) introduced in the last propo-
sition can be chosen so that the differential of the coordinate map Φ : π−1(U) → R4d

at any point ρ ∈ K such that π̃ (ρ) = x ∈ U carries the subspaces E (1)
u (ρ), E (1)

s (ρ),
E (2)
u (ρ), E (2)

s (ρ) in (2.18) to the subspaces

Rd
νq := {(νq, 0, 0, 0) | νq ∈ Rd}, Rd

νp := {(0, νp, 0, 0) | νq ∈ Rd},
Rd
ζp := {(0, 0, ζp, 0) | ζp ∈ Rd}, Rd

ζq := {(0, 0, 0, ζq) | ζq ∈ Rd}

respectively. That is to say,

Tρ (T ∗M) = E (1)
u (ρ)⊕ E (1)

s (ρ)︸ ︷︷ ︸
TρK

⊥
⊕E (2)

u (ρ)⊕ E (2)
s (ρ)︸ ︷︷ ︸

(TρK)⊥

DΦ ↓ ↓ ↓

T ∗R2d
(q,p) =

(
Rd
νq ⊕ Rd

νp

)
︸ ︷︷ ︸

T ∗Rdνq

⊥
⊕

(
Rd
ζp ⊕ Rd

ζq

)
︸ ︷︷ ︸

T ∗Rdζp

With respect to these coordinates the differential of the canonical map DFρ :
Tρ (T ∗M)→ TF (ρ) (T ∗M) is expressed as

Φ ◦DFρ ◦ Φ−1 = F (1) ⊕ F (2), F (1) ≡
(
Ax 0
0 tA−1

x

)
, F (2) ≡

(
Ax 0
0 tA−1

x

)
(2.28)

where Ax : Rd → Rd is an expanding linear map.

Proof. We can take the coordinates x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
in the beginning of

the proof of the last proposition so that the stable and unstable subspaces, Es(x) and Eu(x),
correspond to the subspaces given by the equations p = 0 and q = 0 respectively, because
they are Lagrangian subspaces. Then the coordinates and the trivialization constructed in
the proof have the required property. The differential of the Anosov map Dfx : TxM →
Tf(x)M splits according to the invariant decomposition TxM = Eu (x) ⊕ Es (x) as Dfx =
(Ax, Bx) with

Ax := Df |Eu(x): Eu (x)→ Eu (f (x))

and
Bx := Df |Es(x): Es (x)→ Es (f (x))

But since Eu (x) and Es (x) are Lagrangian subspaces, ω provides an isomorphism [ :
Es (x) → Eu (x)∗ by [ (S) : U ∈ Eu (x) → ω (S, U) ∈ R for S ∈ Es (x). Because Dfx is
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symplectic, i.e. preserves ω, then Bx = [ ◦ tA−1
x ◦ [−1 is isomorphic to tA−1

x and

Dfx ≡
(
Ax 0
0 tA−1

x

)
(2.29)

2.3 The covariant derivative D

The connection one form A on P induces a differential operator D called the covariant
derivative. We recall its general definition and give its expression in local coordinates. We
will use it for the definition of the rough Laplacian operator ∆ in the Section 2.4 and also
to treat the affine models on R2d in Section 4.2.

Recall that the exterior derivative du of a function u ∈ C∞ (P ) (i.e. the differential of
u) is defined at point p ∈ P by

(du)p (V ) = V (u) (p)

where V ∈ TpP is any tangent vector. The connection one form A ∈ C∞ (P,Λ1 ⊗ (iR))
on the principal bundle π : P →M defines a splitting of the tangent space at every point
p ∈ P :

TpP = VpP ⊕HpP

with HpP = Ker (A (p)) and VpP = Ker ((Dπ) (p)). The subspaces VpP and HpP called
respectively vertical subspace and horizontal subspace. We will denote

H : TpP → HpP (2.30)

the projection onto the horizontal space with Ker (H) = VpP . Explicitly if V ∈ TpP then
from (1.8) its horizontal component is

HV = V + iA (V )
∂

∂θ
. (2.31)

This can be checked easily from the requirements that A (HV ) = 0 and V −HV ∈ VpP .

Definition 2.17. If u ∈ C∞ (P ) is a smooth function, its exterior covariant derivative
Du ∈ C∞ (P ; Λ1) is a one form on P defined by

(Du)p (V ) = ((HV ) (u)) (p) for p ∈ P, V ∈ TpP (2.32)

The operator D is equivariant with respect to (or commutes with) the U(1) action (1.6)
in P and therefore restricts naturally to the operator

D : C∞N (P )→ C∞N
(
P,Λ1

)
for every N ∈ Z.
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2.3.1 Expression of D in local charts

Proposition 2.18. With respect to the local trivialization (1.7) of the bundle P over
open sets Uα ⊂ M , if u ∈ C∞N (P ) then Du is expressed as the first order differential
operator Dα : C∞ (Uα)→ C∞ (Uα,Λ

1) given by:

Dαuα = duα +
i

~
uαηα (2.33)

with uα := (u ◦ τα) ∈ C∞ (Uα) and Dαuα := (Du)◦τα ∈ C∞ (Uα,Λ
1). More specifically,

in the normal coordinates x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
and the local trivialization

on Uα in Proposition 2.13, it is expressed as

Dαuα =
i

~

d∑
j=1

(
ζ̂jquα

)
dqj +

(
ζ̂jpuα

)
dpj (2.34)

with the basis (dq, dp) of Λ1
x, where ζ̂

j
q and ζ̂jp are the differential operators on C∞

(
R2d
)

defined respectively by

ζ̂jq := ξ̂jq −
1

2
pj with ξ̂jq := −i~ ∂

∂qj
and by (2.35)

ζ̂jp := ξ̂jp +
1

2
qj with ξ̂jp := −i~ ∂

∂pj
.

Remark 2.19. Notice that the canonical variables (ζq, ζp) defined in (2.21) are the symbol
of the operators (2.35) as a pseudodifferential operator. In more geometrical terms, the
symbol of the covariant derivative−i~D is the one form σ (−i~D) = ζdx =

∑
j ζ

j
qdq

j+ζjpdp
j

on T ∗Uα. This can be understood as a generalization of the simpler case of the exterior
derivative d : C∞ (M,Λp) → C∞ (M,Λp+1) (by taking η = 0, i.e. a connection with zero
curvature), for which the principal symbol is known to be σ (d) = i

~ (ξdx) ∧ ., [37, (10.12)
on p.162].

Proof. Consider local coordinates x =
(
x1, . . . x2d

)
∈ Uα ⊂ M and let V = V x ∂

∂x
+ V θ ∂

∂θ

be a vector field on P . From (2.31) and (1.9) we have

HV = V + iA (V )
∂

∂θ
= V + (−dθ (V ) + 2πηα (V ))

∂

∂θ

= V x ∂

∂x
+ 2πηα (V x)

∂

∂θ
.

Then, from the definition (2.32),

(Du) (V ) = (HV ) (u) = V x∂u

∂x
+ 2πηα (V x)

∂u

∂θ
.
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Suppose now that u ∈ C∞N (P ) and write p = eiθτα (x) ∈ P . Then

u
(
eiθτα (x)

)
= eiNθu (τα (x)) = eiNθuα (x)

and hence

(Du)p (V ) = eiNθ
(
V x∂uα

∂x
+ iN2πηα (V x)uα

)
= eiNθ (duα (V ) + iN2πηα (V )uα)

= eiNθ
(
duα +

i

~
uαηα

)
(V ).

Hence
Dαuα = (Du)p ◦ τα = duα +

i

~
uαηα

We obtain the rest of the claims by simple calculation.

2.4 The rough Laplacian ∆

In order to define the adjoint operator D∗ and the Laplacian ∆ = D∗D which is used
in geometric quantization we need an additional structure on the manifold M , namely a
metric g compatible with ω. References are [41, p.400],[7, p.168],[38, p.504].

2.4.1 Compatible metrics and Laplacian

We recall [34, p.72] that on a symplectic manifold (M,ω), there exists a Riemannian metric
g compatible with ω in the sense that there exists an almost complex structure J on M
such that

ω (Ju, Jv) = ω (u, v) and g (u, v) = ω (u, Jv) for all x ∈M and u, v ∈ TxM. (2.36)

In general J is not integrable, i.e. it is not a complex structure. In the rest of this Section
we suppose given such a metric g and an almost complex structure J on M .

The metric g on M induces an equivariant metric gP on P by declaring that [38,
ex.1,ex.2 p.508]:

(1) for every point p ∈ P , VpP ⊥ HpP are orthogonal,

(2) on the horizontal space HpP , gP is the pull back of g by π: (gP )/HpP = π∗ (g)

(3) on the vertical space VpP , gP is the canonical (Killing) metric on u (1) i.e.
∥∥ ∂
∂θ

∥∥
gP

= 1.

This metric gP induces a L2 scalar product 〈α|β〉Λ1(p) in the space of one forms Λ1 (p).
Using the volume form µP on P in (1.15), we define a L2 scalar product in the space of
differential one forms C∞ (P,Λ1) by

〈α|β〉L2(P,Λ1) :=

∫
〈α (p) |β (p)〉Λ1(p)dµP (p) for α,β ∈ C∞

(
P,Λ1

)
.
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The L2 product of functions is of course define by

〈α|β〉L2(P ) :=

∫
α (p) · β (p) dµP (p) for α,β ∈ C∞

(
P,Λ1

)
.

Then the operators D∗ and ∆ are defined as follows.

Definition 2.20. The adjoint covariant derivative D∗ : C∞ (P,Λ1) → C∞ (P ) is
defined by the relation

〈u|D∗α〉L2(P,Λ1) = 〈Du|α〉L2(P ) for all u ∈ C∞ (P ) and α ∈ C∞
(
P,Λ1

)
.

The rough Laplacian ∆ : C∞ (P )→ C∞ (P ) is defined as the composition

∆ = D∗D.

The operators introduced above is equivariant, i.e. D∗Rθ = RθD
∗ and ∆Rθ = Rθ∆,

because so is the metric gP . Hence D∗ and ∆ restrict naturally to

D∗ : C∞N
(
P,Λ1

)
→ C∞N (P ) and ∆N : C∞N (P )→ C∞N (P )

for each N ∈ Z. We have denoted ∆N for the restriction of ∆ to C∞N (P ).
It is known that, for every N ∈ Z, the operator ∆N is an essentially self-adjoint

positive operator with compact resolvent. Hence its spectrum is discrete and consists
of real positive eigenvalues. The next theorem shows that these eigenvalues form some
“clusters” (also called “bands”) in the lower part of this spectrum. Precisely the eigenvalues
of 1

2πN
∆N concentrate around the specific half-integer values 1

2
d + k with d = 1

2
dimM ,

k ∈ N. (These half-integer values correspond essentially to the eigenvalues of a harmonic
oscillator model as we will see later.) See Figure 2.4. These clusters of eigenvalues are
called Landau levels or Landau bands in physics. The existence of the first band is given
in various papers, see [27, cor 1.2] and reference therein.6

Theorem 2.21. “The bottom spectrum of ∆N has band structure”. For any
α > 0, the spectral set of the rough Laplacian 1

2πN
∆N in the interval [0, α] is contained

in the N−ε-neighborhood of the subset
{
d
2

+ k, k ∈ N ∪ {0}
}

for sufficiently large N ,
with some ε > 0. The number of eigenvalues in the N−ε-neighborhood of d

2
+ k (or in

6 The result for all the bands seems to be known to specialists although it does not appear explicitly
in the literature to the best of our knowledge.
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the k-th band) is proportional to Nd, that is, if we write Pk for the spectral projector
for the eigenvalues on the k-th band, we have

C−1Nd < rankPk < CNd

for some constant C independent of N . In particular, for the spectral projector P0 for
the first band, we have

rank (P0) =

∫
M

[
eNωTodd (TM)

]
2d
. (2.37)

Further, for the relation to the prequantum transfer operator F̂N , we have

rankPk = rank τ (k) = dim Hk for 0 ≤ k ≤ n

for sufficiently large N , where n, τ (k) and Hk are those in Theorem 1.18

{

λ

λ = d/2 + 2

λ = d/2

λ = d/2 + 1

rankP0

Figure 2.4: The Landau levels of the spectrum of the rough Laplacian 1
2πN

∆ : L2
N (P ) →

L2
N (P ) for N � 1.

A proof of this theorem will be given in Section 6.6. Note that the proof of the index
formula (2.37) is given in [21, th. 2], see also [27, cor. 1.2] and references therein.

2.4.2 Expression of D∗ and ∆ in local charts

Let us see the expression of differential operators D∗ and ∆ introduced above in the local
trivialization. Consider a local trivialization (1.7) of the bundle P over an open set Uα ⊂M .
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The operator D : C∞N (P ) → C∞N (P,Λ1) in such local trivialization is represented by the
operator

Dα : C∞ (Uα)→ C∞
(
Uα,Λ

1
)
, Dαuα = (Du) ◦ τα

where u ∈ C∞N (P ) and uα := (u ◦ τα) ∈ C∞ (Uα). Similarly D∗ : C∞N (P,Λ1) → C∞N (P )
and ∆N = D∗D are represented by operators

D∗α : C∞
(
Uα,Λ

1
)
→ C∞ (Uα) and ∆α : C∞ (Uα)→ C∞ (Uα) .

The next proposition gives the explicit expression of the operators Dα, D∗α and ∆α using
a local coordinates

(
x1, . . . , x2d

)
on Uα, though we have already obtain such expression

for Dα in Proposition 2.18. Note that the operators D∗α and ∆α depend on the Riemann
metric g on M and also on N (or ~) though it is not explicit in the notation. We write
g =

∑
j,k gj,kdx

j⊗dxk for the metric tensor and gj,k = (gj,k)
−1
j,k for the entries of the inverse

matrix.

Proposition 2.22. With respect to the local trivialization and coordinate system de-
scribed above, we have the following expressions for D,D∗ and ∆ = D∗D:

Dαuα =
i

~

2d∑
j=1

(
ζ̂juα

)
dxj, with ζ̂j = −i~ ∂

∂xj
+ ηj, (2.38)

D∗α

(
2d∑
j=1

vjdx
j

)
= − i

~

2d∑
j,k=1

(
gj,kζ̂j − i~

(
∂jg

j,k
))
vk,

∆αuα =
1

~2

2d∑
j,k=1

(
gjkζ̂j ζ̂k − i~

(
∂jg

jk
)
ζ̂k
)
uα. (2.39)

Proof. The expression (2.34) gives (2.38). Let v =
∑2d

j=1 vjdx
j ∈ C∞ (Uα,Λ

1). Using
integration by parts, we have

(u,D∗αv)L2(P ) = (Dαu, v)L2(P,Λ) =

∫
〈du+

i

~
ηu|v〉dx

=
∑
j,k

∫ (
∂ju+

i

~
ηju

)
gjkvkdx = −

∑
j,k

∫ (
u∂j

(
gjkvk

)
+
i

~
ηjug

jkvk

)
dx

= −
∫
u
∑
j,k

((
∂jg

jk
)
vk + gjk

(
∂jvk +

i

~
ηjvk

))
dx.

Hence
D∗αv = − i

~
∑
j,k

(
gjkζ̂j − i~

(
∂jg

jk
))
vk.
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We deduce (2.39) from the computation

∆αuα = D∗αDαuα = − i
~
∑
j,k

(
gjkζ̂j − i~

(
∂jg

jk
)) i

~

(
ζ̂kuα

)
=

1

~2

∑
j,k

(
gjkζ̂j ζ̂k − i~

(
∂jg

jk
)
ζ̂k
)
uα

Corollary 2.23. In local Darboux coordinates x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
on Uα

and in the special case of the Euclidean metric g = 1
2

∑d
j=1 dq

j ⊗ dqj + dpj ⊗ dpj, we
have

∆α =
1

2~2

(
d∑
j=1

ζ̂jp
2

+ ζ̂jq
2
)

(2.40)

with ζ̂jq , ζ̂jp given in (2.35).

The operator (2.40) is called the Euclidean rough Laplacian. In Section 4.6, we will
deduce the cluster structure (or the Landau levels) of the spectrum of the Euclidean rough
Laplacian by identifying it with the harmonic oscillator.

2.5 Sketch of the proof of the main theorems

So far, we have presented preliminary results which contain some aspects essential in the
proof of the main theorems of this paper. The main idea is somehow depicted in Figure 2.3
page 26: It give a schematic picture of the action of the canonical map F associated to the
prequantum transfer operator F̂N ; the trapped set K is a compact symplectic submanifold
of the phase space T ∗M ; and the dynamics is hyperbolic in the transverse directions.

In order to focus on the action of the canonical map on the vicinity of the trapped set
and relate it to the spectral properties of the prequantum transfer operator F̂N , we use
an escape function (or a weight function) W~ (x, ξ) on the phase space, which decreases
strictly along the flow outside a vicinity of the trapped set K, and use it to define some
associate norm and associated anisotropic Sobolev spaces7. From the fact that the trapped
set is compact in phase space and from the property of the escape function mentioned
above, we deduce that the spectrum of the prequantum transfer operator F̂N is discrete

7This idea of defining a generalized Sobolev space using an escape (or weight) function on the phase
space has been used several times before and not new in this paper. For instance, in the context of
semiclassical scattering theory in the phase space, such an idea was developed by B. Helffer and J. Sjöstrand
in [22]. In the context of transfer operators for hyperbolic dynamical systems, it was developed in [4, 5]
more recently.
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in these anisotropic Sobolev spaces. The eigenvalues are called “resonances” (from the
physical meaning in scattering theory).

The fundamental process of using an escape function W~ (x, ξ) in phase space will be
explain below. Here are the main stages for the proof (though those will be presented in
different order):

(1) In Section 6.1 we will consider a system of local charts on the manifold M depending
on ~ (or on N), which is of small size ~1/2−θ � 1 in the semiclassical limit ~ → 0,
and then consider the local trivializations of the prequantum bundle P → M on
each chart, as in Proposition 2.13 and 2.16. On each of such charts, the map f is
approximated at first order by its linear approximation, namely its differential Df
which is a linear hyperbolic map as given in (2.29). In Section 6.2, we show how to
decompose the global prequantum operator into “prequantum operators on charts”
and how to recompose it, i.e. passing from global to local and vice versa.

(2) In view of the decomposition above, we study first the spectrum of resonances of a
prequantum operator associated to a linear hyperbolic map. This is done in Section
4. The prequantum operator for a linear hyperbolic map turns out to be the tensor
product of two operators, according to the decomposition (2.28): one operator is
a prequantum operator associated to the linear map tangent to the trapped set K
and the other is that associated to the linear map in its (symplectic) orthogonal.
The first part is a unitary operator, while the second part is treated by using the
property of the escape function W~ (x, ξ) as described above and shown to display
discrete spectrum in Proposition 3.20. For rigorous argument, we will present some
technical tools first:

(a) the Bargmann transform B~ which represents functions and operators in phase
space, is explained in Section 3.1.

(b) definition of the escape function in phase space and the associated anisotropic
Sobolev space, for the hyperbolic dynamics orthogonal to the trapped set, in
Section 3.3.

(3) In Section 5 we develop some results that will be used in Section 6 in order to show
that non-linearity of the map f can be neglected in the reconstruction of the global
prequantum operator from its local parts.

(4) Finally in Section 6, we assemble all these previous results and obtain the proofs of
the main theorems.

In parallel to the treatment of the prequantum operator, we will also consider the rough
Laplacian ∆ = D∗D in every sections. In Section 6.6 the Laplacian is decomposed into
local charts and approximated by an Euclidean Laplacian. In Section 5.4 we establish some
lemmas in order to show that non-linearity can be neglected. In Section 4.6, we describe
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the spectrum of the rough Euclidean Laplacian. For this, we use the Harmonic oscillator
described in Section 3.5.

Finally let us mention that Sections 3 and 4, where we study the resonances of the linear
model, are the core of our argument because they reveal the main mechanism responsible
for the band structure of the spectrum described in Theorem 1.16. This mechanism was
discovered in the paper [16] originally in the study of the prequantum linear cat map.

3 Resonances of linear expanding maps
This Section is self-contained. The main result of this Section is Proposition 3.20.

3.1 The Bargmann transform

3.1.1 Definitions

In this section, we recall some basic facts related to the so-called Bargmann transform.
For more detailed account about the Bargmann transform, we refer the books [28, chap.3]
[19, p.39] [3] [30, p.19].

Let D be a positive integer. Let ~ > 0. We consider the Euclidean space RD with its
canonical Euclidean norm written |.|. For each point (x, ξ) ∈ T ∗RD = RD ⊕RD, we assign
the complex-valued smooth function φx,ξ ∈ S

(
RD
)
defined by

φx,ξ(y) = aD exp

(
i

~
ξ · (y − x

2
)− 1

2~
|y − x|2

)
(3.1)

with
aD = (π~)−D/4. (3.2)

We will henceforth consider the measure dx on RD defining the Hilbert spaces L2
(
RD
)

and the measure (2π~)−D dxdξ on T ∗RD = R2D defining L2
(
R2D

)
. The constant aD is

taken so that ‖φx,ξ‖L2(RD) = 1.

Definition 3.1. The Bargmann transform is the continuous operator

B~ : S(RD)→ S(R2D), (B~u) (x, ξ) =

∫
φx,ξ(y) · u(y)dy (3.3)

on the Schwartz space S(RD). The (formal) adjoint of B~ is

B∗~ : S(R2D)→ S(RD), (B∗~v) (y) =

∫
φx,ξ(y) · v(x, ξ)

dxdξ

(2π~)D
.

Lemma 3.2. [28, p70, Proposition 3.1.1] We have that

(1) B~ extends uniquely to an isometric embedding B~ : L2(RD)→ L2(R2D).
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(2) B∗~ extends uniquely to a bounded operator B∗~ : L2(R2D)→ L2(RD).

(3) B∗~ ◦ B~ = Id on L2(RD).

Proof. For any u ∈ S(RD), we have

‖B~u‖L2(R2D) =
a2
D

(2π~)D

∫
φx,ξ(y

′)u(y′) · φx,ξ(y)u(y)dxdξdydy′

=
a2
D

(2π~)D

∫
u(y)u(y′) exp

(
i

~
ξ(y′ − y)− 1

2~
(
|x− y|2 + |x− y′|2

))
dxdξdydy′

= (π~)−D/2
∫
|u(y)|2 exp(−|x− y|2/~)dxdy

=

∫
|u(y)|2dy = ‖u‖L2(RD).

This gives the claims of the lemma by the usual continuity argument.

This lemma implies that the space L2(R2D) is orthogonally decomposed as

L2(R2D) = ImB~ ⊕ kerB∗~. (3.4)

3.1.2 Bargmann projector

Proposition 3.3. The Bargmann projector P~ is defined by

P~ := B~ ◦ B∗~ : L2(R2D)→ L2(R2D). (3.5)

This is the orthogonal projection onto ImB~ ⊂ L2(R2D). It can be expressed as an integral
operator P~v(z) =

∫
KP,~ (z, z′) v(z′)dz′ with the kernel:

KP,~ (z, z′) = exp

(
i

2~
ω(z, z′)− 1

4~
|z − z′|2

)
(3.6)

with z = (x, ξ) , z′ = (x′, ξ′) ∈ R2D, the measure dz′ = dx′dξ′/ (2π~)D, the Euclidean norm
|z|2 := |x|2 + |ξ|2 and the canonical symplectic form on T ∗RD, ω (z, z′) = x · ξ′ − ξ · x′

Proof. P~ is an orthogonal projection because P∗h = (B~ ◦ B∗~)∗ = P~ and P2
~ = B~ ◦ B∗~ ◦

B~ ◦ B∗~ = P~ from Lemma 3.2. From Definition 3.1, the kernel of P~ = B~ ◦ B∗~ is

KP,~ (z, z′) =

∫
dyφz(y)φz′(y)

= a2
D

∫
RD
dy exp

(
−i ξ

~
(y − x

2
) + i

ξ′

~
(y − x′

2
)− 1

2~
(
|y − x|2 + |y − x′|2

))
= a2

D exp

(
i

1

2~
(ξx− ξ′x′)− 1

2~
(
|x|2 + |x′|2

))
×
∫
dy exp

(
1

~
〈i (ξ′ − ξ) + (x+ x′) |y〉 − 1

~
|y|2
)
.
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We use the following formula for Gaussian integral in RD:

∫
RD
e−

1
2
〈y|Ay〉+b.ydy =

√
(2π)D

detA
exp

(
1

2

〈
b|A−1b

〉)
, b ∈ CD, A ∈ L

(
RD
)

(3.7)

with A = (2/~) · Id, b = i
~ (ξ′ − ξ) + 1

~ (x+ x′) and get

KP,~ (z, z′) =
1

(π~)D/2
(2π)D/2

(2/~)D/2
exp

(
1

4~
(i (ξ′ − ξ) + (x+ x′))

2

)
× exp

(
i

1

2~
(ξx− ξ′x′)− 1

2~
(
|x|2 + |x′|2

))
= exp

(
1

4~
(
−|ξ′ − ξ|2 − |x− x′|2

)
+

i

2~
(ξx− ξ′x′ + (ξ′ − ξ) (x+ x′))

)
= exp

(
i

2~
ω(z, z′)− 1

4~
|z − z′|2

)
.

3.1.3 The Bargmann transform in more general setting

We have seen that the Bargmann transform gives a phase-space representation, i.e. a
unitary isomorphism: B~ : L2(RD) → Im (B~) ⊂ L2(T ∗RD). The next proposition gives
the Bargmann transform in a slightly more general setting. We start from a symplectic
linear space (E,ω) of dimension 2D and a Lagrangian subspace L ⊂ E. Let g(·, ·) be a
scalar product on E that is compatible with the symplectic form ω on E in the sense that
there is a linear map J : E → E such that J ◦ J = −Id and holds

g (z, z′) = ω (z, Jz′) for all z, z′ ∈ E.

This is nothing but the point-wise version of the condition (2.36). Let L⊥g be the orthogonal
complement of L with respect to the inner product g, so that a point z ∈ E can be
decomposed uniquely as z = x+ ξ, x ∈ L, ξ ∈ L⊥g .

For each point z = x+ ξ, x ∈ L, ξ ∈ L⊥g , we define the wave packet φz (y) ∈ S (L) by

φz(y) = aD exp

(
i

~
ω(ξ, y − x

2
)− 1

2~
|y − x|2g

)
for y ∈ L.

We define the Bargmann transform B~ : S (L)→ S (E) and its adjoint B∗~ : S (E)→ S (L)
as in Definition 3.1. Then the statement corresponding to Lemma 3.2 and Proposition 3.3
holds. Namely

Proposition 3.4. For the Bargmann transform B~ and its adjoint defined as above,

(1) B~ extends uniquely to an isometric embedding B~ : L2(L)→ L2(E).
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(2) B∗~ extends uniquely to a bounded operator B∗~ : L2(E)→ L2(L).

(3) B∗~ ◦ B~ = Id on L2(L).

(4) The Bargmann projector P~ : L2 (E) → L2 (E), defined by P~ := B~ ◦ B∗~, is the
orthogonal projection onto ImB~ ⊂ L2(E). It is expressed as an integral operator
with kernel (3.6) with | · | replaced by | · |g.

Remark 3.5. Notice that the Bargmann projector P~ : L2 (E) → L2 (E) can be defined
directly from its kernel (3.6) and is independant on the choice of the Lagrangian subspace
L.

Proof. There are linear isomorphisms ψ : RD → L and Ψ : R2D → E such that the
following diagram commutes:

R2D Ψ−−−→ E

p

y p′

y
RD ψ−−−→ L

where p : R2D = RD ⊕ RD → RD is the projection to the first D components: p(x, ξ) = x,
and p′ : E → L is the orthogonal projection to L with respect to g, and moreover that
the pull-back of the symplectic form ω and the inner product g by Ψ coincides with the
standard Euclidean inner product g0 (z, z′) = z · z′ and the standard symplectic form:

ω0 (z, z′) = x · ξ′ − ξ · x′ for z=(x, ξ), z’=(x′, ξ′) ∈ T ∗RD.

Through such correspondence by Ψ and ψ, the definition of the Bargmann transform and
its adjoint above coincides with those that we made in the last subsection. Therefore the
claims are just restatement of Lemma 3.2 and Proposition 3.3.

The next proposition will be useful later on in Lemma 4.6. Note that the Bargmann
transform and its adjoint are defined for each combination (E,ω, g, L) of a linear space E,
symplectic form ω, a compatible Euclidean metric g on E and a Lagrangian subspace L ⊂
E. Let (Ei, ωi, gi, Li) for i = 1, 2, be two such combination and suppose that (E,ω, g, L)
is the direct product of them in the sense that

E = E1 ⊕ E2, ω = ω1 ⊕ ω2, g = g1 ⊕ g2, L = L1 ⊕ L2.

Then the Bargmann transform B~, its adjoint B∗~ and the Bargmann projection P~ defined
for (E,ω, g, L) are the tensor product of those, denoted by Bi,~, B∗i,~ and Pi,~, defined for
(Ei, ωi, gi, Li), i = 1, 2. More precisely

Proposition 3.6. The following diagram commutes:

L2 (E)
B∗~−−−→ L2(L)

B~−−−→ L2(E)y y y
L2 (E1)⊗ L2 (E2)

B∗1,~⊗B
∗
2,~−−−−−→ L2 (L1)⊗ L2 (L2)

B1,~⊗B2,~−−−−−→ L2 (E1)⊗ L2 (E2)
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where the vertical arrows denotes the natural identification. Consequently the Bargmann
projector P~ = B~ ◦ B∗~ defined for (E,ω, g, L) is identified with the tensor product P1,~ ⊗
P2,~ = (B∗1,~ ◦ B1,~)⊗ (B∗2,~ ◦ B2,~).

3.1.4 Scaling

The operators B~ and B∗~ are related to B1 and B∗1 (i.e. with ~ = 1) by the simple scaling
x 7→ ~1/2x. Though this fact should be obvious, we give the relations explicitly for the
later use. Let us introduce the unitary operators

s~ : L2(RD)→ L2(RD), s~u(x) = ~−D/4u(~−1/2x) (3.8)

and
S~ : L2(R2D)→ L2(R2D), S~u(x, ξ) = u(~−1/2x, ~−1/2ξ) (3.9)

Then we have8

Lemma 3.7. The following diagram commutes:

L2
(
R2D

) S~−−−→ L2
(
R2D

)
B~

x B1

x
L2
(
RD
) s~−−−→ L2

(
RD
)

3.2 Action of linear transforms

Definition 3.8. The lift of a bounded operator L : L2(RD)→ L2(RD) with respect to the
Bargmann transform B~ is defined as the operator

Llift := B~ ◦ L ◦ B∗~ : L2(R2D)→ L2(R2D) (3.10)

By definition, it makes the following diagram commutes:

L2(R2D)
Llift

−−−→ L2(R2D)

B~

x B~

x
L2(RD)

L−−−→ L2(RD).

(3.11)

Since P~ ◦ Llift ◦ P~ = Llift, the lift Llift is always trivial on the second factor with respect
to the decomposition L2(R2D) = ImB~ ⊕ kerB∗~ = ImP~ ⊕ ker P~ in (3.4), that is,

Llift = (B~ ◦ L ◦ B∗~)ImP~
⊕ (0)KerP~

. (3.12)

8Recall the convention on the norm on L2(RD) and L2(R2D) made in the beginning of this section.
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Lemma 3.9. For a invertible linear transformation A : RD → RD, we associate a unitary
transfer operator defined by

LA : L2(RD)→ L2(RD), LAu =
1√

detA
· u ◦ A−1 (3.13)

Then we have
LA = d(A) · B∗~ ◦ LA⊕tA−1 ◦ B~, (3.14)

where LA⊕tA−1 : L2(R2D)→ L2(R2D) is the unitary transfer operator given by

(LA⊕tA−1u) (x, ξ) := u
(
A−1x, tAξ

)
(3.15)

and we set

d(A) = det

(
1

2

(
A+ tA−1

))1/2

.

Consequently the lift of LA,
Llift
A := B~ ◦ LA ◦ B∗~ (3.16)

is an isometry on Im B~ = ImP~ ⊂ L2(R2D) (hence, a bounded operator from (3.12)) and
expressed as

Llift
A = d(A) · P~ ◦ LA⊕tA−1 ◦ P~. (3.17)

Remark 3.10. (1) The expression (3.14) shows that LA can be expressed as an operator
on the phase space defined in terms of the Bargmann projector and the transfer op-
erator LA⊕tA−1 , but with an additional factor d (A), sometimes called the metaplectic
correction. This may be regarded as a realization of the idea explained in the last
section: LA can be seen as a Fourier integral operator and canonical map is A⊕ tA−1

on T ∗RD. But notice that the correction term d(A) will be crucially important for
our argument.

(2) For an orthogonal transform A ∈ SO (D), we have d (A) = 1.

Proof. To prove (3.14), we write the operator B∗~ ◦ LA⊕tA−1 ◦ B~ as an integral operator

B∗~ ◦ LA⊕tA−1 ◦ B~u(y) =

∫
K(y, y′)u(y′)dy′

with the kernel
K(y, y′) =

∫
φx,ξ(y) · φA−1x,tAξ(y′)

dxdξ

(2π~)D
.
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Using the formula (3.7) for the Gaussian integral and change of variables, we can calculate
the integral on the right hand side as

K(y, y′) =

∫
φAx′,tA−1ξ′(y) · φx′,ξ′(y′)

dx′dξ′

(2π~)D

′

(x′ = A−1x, ξ′ = tAξ)

= a2
D ·
∫
e
i
~ 〈ξ
′,y′−A−1y〉−|y′−x′|2/(2~)−|y−Ax′|2/(2~) dx

′dξ′

(2π~)D

= (π~)−D/2 · δ(y′ − A−1y) ·
∫
e−|A

−1y−x′|2/(2~)−|y−Ax′|2/(2~)dx′

= π−D/2 · δ(y′ − A−1y) ·
∫
e−|t|

2/2−|At|2/2dt (t = (x′ − A−1y)/~)

= det((I + tAA)/2)−1/2 · δ(y′ − A−1y).

Therefore we have

(B∗~ ◦ LA⊕tA−1 ◦ B~)u(y) = det((I + tAA)/2)−1/2 · u(A−1y) = d(A)−1 · (LAu) (y)

and hence the claim (3.14) follows. This implies

Llift
A = B~ ◦ LA ◦ B∗~ = d(A) · P~ ◦ LA⊕tA−1 ◦ P~.

The other claims follow immediately.

Lemma 3.11. For (x0, ξ0) ∈ T ∗RD = R2D, we associate a unitary operator defined by

T(x0,ξ0) : L2(RD)→ L2(RD),
(
T(x0,ξ0)v

)
(y) = e

i
~ ξ0.(y+

x0
2 )v (y − x0) (3.18)

Then we have
T(x0,ξ0) = B∗~ ◦ T(x0,ξ0) ◦ B~, (3.19)

where T(x0,ξ0) : L2(R2D)→ L2(R2D) is the unitary transfer operator given by

T(x0,ξ0)u(x, ξ) := e
i

2~ (ξ0·x−x0·ξ)u (x− x0, ξ − ξ0) (3.20)

Consequently the lift of T(x0,ξ0) is

T lift
(x0,ξ0) := B~ ◦ T(x0,ξ0) ◦ B∗~ = P~ ◦ T(x0,ξ0) ◦ P~. (3.21)

Proof. The Schwartz kernel of B∗~ ◦ T(x0,ξ0) ◦ B~ is

K (y, y′) =

∫
R2D

e
i

2~ (ξ0·x−x0·ξ)φx,ξ(y) · φx−x0,ξ−ξ0(y′)
dxdξ

(2π~)D

=a2
D ·
∫

dxdξ

(2π~)D
e
i

2~ (ξ0·x−x0·ξ)e
i
~(ξ·(y−x2 )−(ξ−ξ0)·(y′−x−x0

2 ))e−
1
2~(|y′−(x−x0)|2+|y−x|2)

= (π~)−D/2 δ (y′ − y + x0) e
i
~ ξ0·(y+

x0
2 )
∫
e−

1
~ |y−x|

2

dx

=δ (y′ − y + x0) · e
i
~ ξ0·(y+

x0
2 ).

This is the kernel of the operator T(x0,ξ0).
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Corollary 3.12. The lift of the operator T(x0,ξ0) is expressed as

T lift
(x0,ξ0) := B~ ◦ T(x0,ξ0) ◦ B∗~ = T(x0,ξ0) ◦ P~ = P~ ◦ T(x0,ξ0). (3.22)

Proof. We can check the equality T(x0,ξ0) ◦P~ = P~ ◦T(x0,ξ0) on the left by showing that the
Schwartz kernels of T(x0,ξ0) ◦ P~ and P ◦ T(x0,ξ0) are equal. This an easy computation using
the expressions (3.6) and (3.20). The rest of the claim follows from Lemma 3.11.

3.3 The weighted L2 spaces : L2(R2D, (W r
~ )2)

For each t > 0, we define the cones

C+(t) = {(x, ξ) ∈ R2D | |ξ| ≤ t · |x|}, C−(t) = {(x, ξ) ∈ R2D | |x| ≤ t · |ξ|}.

Take and fix a C∞ function m : P
(
R2D

)
→ [−r, r], called order function, on the projective

space P
(
R2D

)
so that

m ([(x, ξ)]) =

{
−r, if (x, ξ) ∈ C+(1/2);

+r, if (x, ξ) ∈ C−(1/2).
(3.23)

We then define the escape function (or the weight function) by

W r : R2D → R+, W r(x, ξ) = 〈|(x, ξ)|〉m([(x,ξ)])

where 〈s〉 := (1 + s2)
1/2 for s ∈ R and |(x, ξ)|2 := |x|2 + |ξ|2. From this definition we have

W r(x, ξ) ∼ 〈|(x, ξ)|〉−r if |x| ≥ 2|ξ|and |(x, ξ)| � 1

and
W r(x, ξ) ∼ 〈|(x, ξ)|〉r if |x| ≤ |ξ|/2and |(x, ξ)| � 1.

For convenience in the later argument, we also take and fix C∞ functions

m+,m− : P
(
R2D

)
→ [−r, r]

such that

m+([(x, ξ)]) =

{
−r, if (x, ξ) ∈ C+(1/9);

+r, if (x, ξ) ∈ C−(3),

and

m−([(x, ξ)]) =

{
−r, if (x, ξ) ∈ C+(3);

+r, if (x, ξ) ∈ C−(1/9),
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and define the functions W r,± : R2D → R+ by

W r,±(x, ξ) := 〈|(x, ξ)|〉m±([(x,ξ)]). (3.24)

Obviously we have
W r,−(x, ξ) ≤ W r(x, ξ) ≤ W r,+(x, ξ). (3.25)

These functions, W r andW r,±, satisfy the following preferable condition that we will make
use of later on: For any ε > 0 and multi-index α, there exists a constant Cα,ε > 0 such that

|∂αx,ξW r(x, ξ)| ≤ Cα,ε〈|(x, ξ)|〉−(1−ε)|α| ·W r(x, ξ) for all (x, ξ) ∈ R2D (3.26)

and the same inequalities for W r,±(·) hold.

Definition 3.13. For ~ > 0, let

W r
~ : R2D → R+, W r

~ (x, ξ) := W r(~−1/2x, ~−1/2ξ) = W r ◦ S~(x, ξ) (3.27)

where S~ is the operator defined in (3.9). We consider the weighted L2 space defined as

L2(R2D, (W r
~ )2) = {v ∈ L2

loc(R2D) | ‖W r
~ · v‖L2(R2D) <∞}. (3.28)

Likewise, we define the functionsW r,±
~ and the weighted L2 spaces L2(R2D, (W r,±

~ )2) in the
parallel manner, replacing W r by W r,±.

Note that the function W r (and W r,±) satisfies the condition

W r(x, ξ) ≤ C ·W r(y, η) · 〈|(x, ξ)− (y, η)|〉2r for any x, y ∈ Rd (3.29)

for some constant C > 0. Consequently the function W r
~ (and W r,±

~ ) satisfies

W r
~ (x, ξ) ≤ C ·W r

~ (y, η) · 〈~−1/2|(x, ξ)− (y, η)|〉2r for any x, y ∈ Rd. (3.30)

The next Lemma characterizes a class of bounded integral operators in L2(R2D, (W r
~ )2)

in terms of its kernel.

Lemma 3.14. If R : S(R2D)→ S(R2D) is an integral operator of the form

Ru(x, ξ) =

∫
KR(x, ξ;x′, ξ′)u(x′, ξ′)dx′dξ′

and if the kernel KR(·) is a continuous function satisfying

|KR(x, ξ;x′, ξ′)| ≤ 〈~−1/2|(x, ξ)− (x′, ξ′)|〉−ν

for some ν > 2r + 2D, then it extends to a bounded operator on L2(R2D, (W r
~ )2) and

‖R : L2(R2D, (W r
~ )2)→ L2(R2D, (W r

~ )2)‖ ≤ Cν

where Cν is a constant which depends only on ν.
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Proof. From (3.30), we have∣∣∣∣ W r
~ (x, ξ)

W r
~ (x′, ξ′)

·KR(x, ξ;x′, ξ′)

∣∣∣∣ ≤ C〈~−1/2|(x, ξ)− (x′, ξ′)|〉2r−ν .

Hence, by Young inequality, the operator norm of u 7→ W r
~ · R ((W r

~ ) −1 · u) with respect
to the L2 norm is bounded by a constant Cν . This implies the claim of the lemma.

From expression (3.6), the Bargmann projector P~ satisfies the assumption of the last
lemma. Thus we have

Corollary 3.15. The Bargmann projector P~ is a bounded operator on L2(R2D, (W r
~ )2).

3.4 Spectrum of transfer operator for linear expanding map

Below we consider the action of a linear expanding map.

Lemma 3.16. If A : RD → RD is an expanding linear map satisfying

‖A−1‖ ≤ 1

λ
for some λ > 1. (3.31)

Then the lift Llift
A of LA, defined in (3.16), extends to a bounded operator

Llift
A : L2(R2D, (W r

~ )2)→ L2(R2D, (W r
~ )2). (3.32)

Further, if λ > 1 is sufficiently large (say λ > 9), Llift
A extends to a bounded operator

Llift
A : L2(R2D, (W r,−

~ )2)→ L2(R2D, (W r,+
~ )2). (3.33)

Proof. From (3.17) in Lemma 3.9 and Corollary 3.15, we have only to check bound-
edness of LA⊕tA−1 as an operator on L2(R2D, (W r)2) (resp. from L2(R2D, (W r,−)2) to
L2(R2D, (W r,+)2). But this is clear from the definitions of W r and W r,±.

To look into more detailed structure of the operator LA and Llift
A , we introduce some

definitions. For k ∈ N ∪ {0}, let Polynom(k) be the space of homogeneous polynomial on
RD of order k. Then we consider the operator

T (k) : C∞(RD)→ Polynom(k),
(
T (k)u

)
(x) =

∑
|α|=k

∂αu(0)

α!
· xα. (3.34)

This is a projector which extracts the terms of order k in the Taylor expansion. Clearly
the operator T (k) is of finite rank and satisfies the following relations

T (k) ◦ T (k′) =

{
T (k), if k = k′;
0 otherwise,

(3.35)
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and

T (k) ◦ LA = LA ◦ T (k). (3.36)

As in (3.10) we define the lift of the operator T (k) by

T (k)
~ := B~ ◦ T (k) ◦ B∗~. (3.37)

Lemma 3.17. Let n ∈ N and r > 0 such that

r > n+ 2 +
D

2
. (3.38)

Then for 0 ≤ k ≤ n the operator T (k)
~ extends naturally to bounded operators

T (k)
~ : L2(R2D, (W r,−

~ )2)→ L2(R2D, (W r,+
~ )2) (3.39)

and

T (k)
~ : L2(R2D, (W r

~ )2)→ L2(R2D, (W r
~ )2). (3.40)

Further if we write the operator T (k)
~ as an integral operator(

T (k)
~ u

)
(x, ξ) =

∫
K(x, ξ;x′, ξ′)u(x′, ξ′)dx′dξ′,

the kernel K(·) satisfies the estimate∣∣∣∣ W r,+
~ (x, ξ)

W r,−
~ (x′, ξ′)

·K(x, ξ;x′, ξ′)

∣∣∣∣ ≤ C〈~−1/2|(x, ξ)|〉k−r · 〈~−1/2|(x′, ξ′)|〉k−r (3.41)

≤ C ′〈~−1/2|(x, ξ)− (x′, ξ′)|〉k−r (3.42)

for some constants C,C ′ > 0 that do not depend on ~ > 0.

Proof. For each multi-index α ∈ (Z+)D with |α| = k, we set

T (α) : S(RD)→ S(RD)′, T (α)u(x) =
∂αu(0)

α!
· xα

and hence to

T (α)
~ = B~ ◦ T (α) ◦ B∗~ : S(R2D)→ S(R2D)′.

Since T (k)
~ =

∑
α:|α|=k T

(α)
~ , the claims of the lemma follows if one prove the corresponding

claim for T (α)
~ . The kernel of the operator T (α)

~ is written as

K(x, ξ;x′, ξ′) =
1

α!
· k+(x, ξ) · k−(x′, ξ′)
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with
k+(x, ξ) =

∫
φx,ξ(y) · (~−1/2y)αdy, k−(x′, ξ′) = ~k/2 · ∂αφx′,ξ′(0).

Applying integration by parts to the integral in the definition of k+(·) above, we see

|k+(x, ξ)| ≤ Cν · 〈~−1/2|x|〉k · 〈~−1/2|ξ|〉−ν

for arbitrarily large integer ν, where Cν is a constant depending only on ν. Also a straight-
forward computation gives the similar estimate for k−(·):

|k−(x′, ξ′)| ≤ Cν · 〈~−1/2|ξ′|〉k · 〈~−1/2|x′|〉−ν .

These estimates for sufficiently large ν imply that

W r
~ (x, ξ) · |k+(x, ξ)| ≤ C〈~−1/2|(x, ξ)|〉k−r

and
1

W r
~ (x′, ξ′)

· |k−(x′, ξ′)| ≤ C〈~−1/2|(x′, ξ′)|〉k−r

for some constant C > 0 independent of ~ > 0. Thus we have obtained the last claim on
the kernel K(·). Since r − k ≥ r − n > 2D from the assumption (3.38) on the choice of
r, the former claim on boundedness of the operators follows from this claim and Young
inequality.

The following is a direct consequence of the relation (3.36).

Corollary 3.18. For 0 ≤ k, k′ ≤ n, we have

T (k)
~ ◦ T (k′)

~ =

{
T (k)
~ , if k = k′;

0, otherwise,

and
Llift
A ◦ T

(k)
~ = T (k)

~ ◦ Llift
A = B~ ◦ LA ◦ T (k) ◦ B∗~.

Let us set

T̃~ = Id−
n∑
k=0

T (k)
~ : L2(R2D, (W r

~ )2)→ L2(R2D, (W r
~ )2). (3.43)

Then the set of operators T (k)
~ , 0 ≤ k ≤ n, and T̃~ form a complete set of mutually

commuting projection operators on L2(R2D, (W r
~ )2) such that

rank T (k)
~ = dim Polynom(k) =

(
D + k − 1

D − 1

)
=

(D + k − 1)!

(D − 1)!k!
, rank T̃~ =∞.

Let
Hk := ImT (k)

~ and H̃ = ImT̃~.
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Then the Hilbert space L2(R2D, (W r
~ )2) is decomposed as

L2(R2D, (W r
~ )2) = H0 ⊕H1 ⊕H2 ⊕ · · · ⊕Hn ⊕ H̃ (3.44)

Since the operator Llift
A commutes with the projections T (k)

~ and T̃~, it preserves this de-
composition and therefore the operator Llift

A acting on L(R2D,W r
~ ) is identified with the

direct sum of the operators

Llift
A : Hk → Hk for 0 ≤ k ≤ n, and Llift

A : H̃ → H̃.

The former is identified with the action of LA on Polynom(k), because the diagram

Hk

Llift
A−−−→ Hk

B~

x B~

x
Polynom(k) LA−−−→ Polynom(k)

(3.45)

commutes and the operator B~ : Polynom(k) → Hk in the vertical direction is an isomor-
phism between finite dimensional linear spaces.

To state the next proposition which is the main result of this Section, we introduce the
following definition:

Definition 3.19. The Hilbert space Hr
~
(
RD
)
⊂ S ′

(
RD
)
of distributions is the completion

of S
(
RD
)
with respect to the norm induced by the scalar product

(u, v)Hr
~ (RD) := (B~u,B~v)L2(R2D,(W r

~ )2) =

∫
(W r

~ )2 · B~u · B~v
dxdξ

(2π~)D
for u, v ∈ S(RD).

The induced norm on Hr
~
(
RD
)
will be written as ‖u‖Hr

~(RD) := ‖B~u‖L2(R2D,(W r
~ )2).

Proposition 3.20. ”Discrete spectrum of the linear expanding map”. Let A :
RD → RD be a linear expanding map satisfying ‖A−1‖ ≤ 1/λ for some λ > 1. Let LA
be the unitary transfer operator defined in (3.13): LAu = 1√

detA
u ◦ A−1. Let n > 0

and r > n+ 2 + D
2
. Then the Hilbert space Hr

~
(
RD
)
defined above is decomposed into

subspaces of homogeneous polynomial of degree k for 0 ≤ k ≤ n and the remainder:

Hr
~
(
RD
)

=

(
n⊕
k=0

Polynom(k)

)
⊕ H̃~

where H̃~ := T̃ (Hr
~
(
RD
)
) with setting

T̃ := Id−
n∑
k=0

T (k). (3.46)

(The operators T (k) are defined in (3.34).) This decomposition is preserved by LA.
There exists a constant C0 > 0 independent of A and ~ such that
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(1) For 0 ≤ k ≤ n and 0 6= u ∈ Polynom(k), we have

C−1
0 ‖A‖−kmax · | detA|−1/2 ≤

‖LAu‖Hr
~ (RD)

‖u‖Hr
~(RD)

≤ C0‖A‖−kmin · | detA|−1/2 (3.47)

(Recall (1.22) for the definition of ‖ · ‖max and ‖ · ‖min.)

(2) The operator norm of the restriction of LA to H̃~ is bounded by

C0 max{‖A‖−(n+1)
min · | detA|−1/2, ‖A‖−rmin · | detA|1/2}. (3.48)

The following equivalent statements holds for the lifted operator:

Llift
A : L2(R2D, (W r

~ )2)→ L2(R2D, (W r
~ )2).

The operator Llift
A preserves the decomposition of L2(R2D, (W r

~ )2) in (3.44) and

(1) For 0 ≤ k ≤ n and for 0 6= u ∈ Hk, we have

C−1
0 ‖A‖−kmax · | detA|−1/2 ≤

‖Llift
A u‖L2(R2D,(W r

~ )2)

‖u‖L2(R2D,(W r
~ )2)

≤ C0‖A‖−kmax · | detA|−1/2. (3.49)

(2) The operator norm of the restriction of Llift
A to H̃ is bounded by (3.48).

Remark 3.21. Proposition 3.20 shows that the spectrum of the transfer operator LA in
the Hilbert space Hr

~
(
RD
)
is discrete outside the radius given by (3.48). The eigenvalues

outside this radius are given by the action of LA in the finite dimensional space Polynom(k).
These eigenvalues can be compute explicitly from the Jordan block decomposition of A.
In particular if A is diagonal then the monomials are obviously eigenvectors.

Proof. For the proof of (3.47) and (3.49), we use the fact that the space Polynom(k) is
identical to the space Symk

(
RD
)
of totally symmetric tensors of rank k. For the linear

operator (A−1)
⊗k acting on

(
RD
)⊗k, we have a commutative diagram:

(
RD
)⊗k (A−1)

⊗k

−−−−−→
(
RD
)⊗k

Sym

y Sym

y
Symk

(
RD
) |detA|1/2LA−−−−−−−→ Symk

(
RD
)
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where Sym denotes the symmetrization operation. For every 0 6= ũ ∈
(
RD
)⊗k we have

‖A‖−kmax ≤

∥∥∥(A−1)
⊗k
ũ
∥∥∥

‖ũ‖
≤ ‖A‖−kmin .

Since the spaces are finite dimensional (and hence all norms are equivalent), we deduce
(3.47) for some constant C0 > 0 independent of A, and also independent on ~ because of
the scaling invariance (3.27). The proof of the Claim (2) is postponed to Subsection 3.6,
as it requires more detailed argument.

3.5 The harmonic oscillator

In this subsection we present the harmonic oscillator in the setting of Bargmann transform.
(We refer [19],[14] for more detailed treatment.) We will need it in dealing with the
(Euclidean) rough Laplacian ∆~ later on. Associated to the standard coordinates

(x, ξ) = (x1, x2, · · · , xD, ξ1, ξ2, · · · , ξD)

on T ∗RD = R2D, we consider the operators

x̂i :

{
S(R2D) → S(R2D)

u → (P~ ◦M (xi) ◦ P~)u
and ξ̂i :

{
S(R2D) → S(R2D)

u → (P~ ◦M (ξi) ◦ P~)u

where M (xi) and M (ξi) on the right hand sides denote the multiplication by the corre-
sponding functions. These operators are usually called Toeplitz quantization of xi and ξi.
Then we set

P̂ :=
1

2~

(
x̂2 + ξ̂2

)
:=

1

2~

D∑
i=1

(
x̂i ◦ x̂i + ξ̂i ◦ ξ̂i

)
, (3.50)

which is usually called the harmonic oscillator operator.

Lemma 3.22. ”Spectrum of the harmonic oscillator”. The operator P̂ in (3.50) is
a closed self-adjoint operator on L2(R2D) and its spectral set consists of eigenvalues

D

2
+ k, k ∈ N ∪ {0}.

The spectral projector Q(k)
~ for the eigenvalue D

2
+ k is an orthogonal projection operator

of rank
(
D+k−1
D−1

)
. We have

ImQ(k)
~ = {B~(p · ϕ0) | p∈ Polynom(k) } (3.51)

where
ϕ0(x) = e−|x|

2/(2~).
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In particular, we have the following orthogonal decomposition of L2(R2D):

L2(R2D) =
∞⊕
k=0

ImQ(k)
~ .

Proof. Since x̂i and ξ̂i are the lift of the operators

u 7→ xi · u and u 7→ −i~ · ∂xiu

respectively, the operator P̂ = 1
2~

(
x̂2 + ξ̂2

)
is the lift of

H : L2(RD)→ L2(RD), (H u) (x) =
1

~

(
−~2

2

(
D∑
i=1

∂2u

∂x2
i

)
(x) +

1

2
|x|2 · u(x)

)
(3.52)

Therefore the conclusion follows from the argument on quantization of the harmonic oscil-
lator H [38, p.105].

Remark 3.23. It is possible to compute directly that the eigenfunctions of P̂ using the
“creation operator” aj = 1√

2

(
x̂j + iξ̂j

)
and showing that it is multiplication par zj in phase

space. (See [19, 3]) Then we can identify Q(i)
~ as projection onto homogeneous polynomials

of degree i in zi = xi + iξi.

Recall that operators Q(k)
~ and T (k)

~ have the same rank
(
D+k−1
D−1

)
. The next lemma gives

a more precise relation between them.

Lemma 3.24. For 0 ≤ k ≤ n, the operator Q(k)
~ extends to a continuous operator

Q(k)
~ : S ′(R2D)→ S(R2D).

The restrictions: (
⊕ki=0Q

(i)
~

)
: ⊕ki=1ImT

(i)
~ → ⊕ki=0ImQ

(i)
~ (3.53)

and (
⊕ki=0T

(i)
~

)
: ⊕ki=0ImQ

(i)
~ → ⊕

k
i=0ImT

(i)
~ (3.54)

are well-defined and bijective. The operator norms of (3.53), (3.54) and their inverses are
bounded by a constant independent of ~.

Proof. Recall that the operator Q(k)
~ is the orthogonal projection to its image (3.51), which

is finite dimensional and contained in S(R2D). Hence we have the first claim and well
definiteness of the operators (3.53) and (3.54) is an immediate consequence.

To prove that (3.53) and (3.54) are bijective, we have only to show that they are
injective, because the subspaces in the source and target have the same finite dimension.
We prove injectivity of (3.53). Let u ∈

(
⊕ki=0ImT

(i)
~

)
. Such u can be expressed as u = B~p
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with p a polynomial of degree at most k on RD. Suppose that
(
⊕ki=0Q

(i)
~

)
u = 0. Since(

⊕ki=0Q
(i)
~

)
is an orthogonal projection operator, u is orthogonal to ⊕ki=0ImQ

(i)
~ and hence

we have
(p, q · ϕ0)L2(RD) = (B~p,B~(q · ϕ0))L2(R2D) = 0

for any polynomial q of order at most k on RD. Setting q = p, we see that (p, p ·ϕ0)L2(RD) =
(|p|2, ϕ0)L2(RD) = 0, showing p = 0 and u = 0. We have shown that (3.53) is injective.

To prove injectivity of (3.54), let u = qϕ0 ∈
(
⊕ki=0ImQ

(i)
~

)
with q a polynomial of

degree at most k on RD. Let p =
(
⊕ki=0T

(i)
~

)
u be the Taylor expansion of u at 0 up to

order k. Suppose that p = 0. Since ϕ0(0) 6= 0, ϕ0 is invertible as a formal power series, we
deduce that q = 0. Hence (3.54) is injective.

The operators (3.53) (resp. (3.54)) for different ~ > 0 are related by the scaling (3.9)
and hence we get the last claim.

3.6 Proof of Claim (2) in Proposition 3.20

We prove Claim (2) on the lifted operator Llift
A in the latter part of the statement, which

is equivalent to Claim (2) in the former part. In the proof below, we may and do assume
~ = 1, because the Bargmann transforms for different parameter ~ are related by the
scaling (3.9), as we noted in Subsection 3.1. Accordingly we will drop the subscript ~ from
the notation. Let χ : RD → [0, 1] be a smooth function such that

χ (x) =

{
1 if |x| ≤ 1

0 if |x| ≥ 2.
(3.55)

Below we use C0 as a generic symbol for the constants which do not depend on A (but
may depend on r, n and D). Letting λ smaller if necessary, we suppose

λ = ‖A−1‖−1 > 1

for simplicity. We write M (ϕ) for the multiplication operator by ϕ.
To prove the claim, it is enough to show

‖Llift
A ◦ T̃ ‖L2(R2D,(W r)2) ≤ C0 ·max{λ−n−1| detA|−1/2, λ−r| detA|1/2}

where T̃ is the operator defined in (3.43) with ~ = 1 and ‖ · ‖L2(R2D,(W r)2) denotes the
operator norm on L2(R2D, (W r)2).

Let us consider the operators

X = B ◦M (χ) ◦ B∗ : L2(R2D,W r)→ L2(R2D,W r)

and
Ξ : L2(R2D, (W r)2)→ L2(R2D, (W r)2), (Ξv) (x, ξ) = χ

(
|ξ|
λ

)
· v (x, ξ) .

The next lemma is the main ingredient of the proof.
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Lemma 3.25. ‖Llift
A ◦X ◦ T̃ ◦ Ξ‖L2(R2D,(W r)2) ≤ C0 · λ−(n+1)| detA|−1/2.

Proof. Let 1C−(2) be the indicator function of the cone

C−(2) := {(x, ξ) | |x| ≤ 2|ξ|} = R2D \C+(1/2)

and set
W r

+(x, ξ) := 1C−(2)(x, ξ) · 〈|ξ|〉r, W r
−(x, ξ) := 〈|x|〉−r.

Then the weight function W r(x, ξ) satisfies

W r(x, ξ) ≤ C0 ·W r
+(x, ξ) + C0 ·W r

−(x, ξ)

for a constant C0 > 0. Hence, to prove the lemma, it is enough to show the claim

‖W r
σ ·B◦LA◦M (χ)◦ T̃ ◦B∗◦Ξu‖L2 ≤ C0 ·λ−(n+1)| detA|−1/2‖u‖ for any u∈ L2(R2D,W r)

(3.56)
in the cases σ = ±, where T̃ is the operator defined in (3.46). Before proceeding to the
proof of (3.56), we prepare a few estimates. Take u ∈ L2(R2D,W r) arbitrarily and set

v(y) := (B∗ ◦ Ξu) (y) =

∫
φx,ξ(y)χ

(
|ξ|
λ

)
u(x, ξ) dxdξ.

Then, for any multi-index α ∈ ND and arbitrarily large ν, we have

|∂αy v(y)| ≤ Cα,ν

∫
|ξ|≤2λ

〈|x− y|〉−ν · 〈|ξ|〉|α| · |u(x, ξ)| dxdξ for any y ∈ RD. (3.57)

Note that we have

〈|x− y|〉−r · 〈|ξ|〉r ≤ C0 ·W r(x, ξ) for any x, y, ξ ∈ RDwith |y| ≤ 2.

Hence

〈|x− y|〉−ν · 〈|ξ|〉|α| ≤ C0(〈|x− y|〉−ν+r · 〈|ξ|〉−D/2+1) · 〈|ξ|〉|α|+D/2+1−r ·W r(x, ξ).

Putting this estimate in (3.57) with ν ≥ D/2 + 1 + r, we obtain, by Cauchy-Schwarz
inequality,

|∂αy v(y)| ≤ Cαλ
max{|α|+D/2+1−r,0}‖u‖L2(R2D,(W r)2) for any y ∈ RDwith |y| ≤ 2. (3.58)

Notice that, if |α| ≤ n+ 1, we have |α|+D/2 + 1− r ≤ 0 from the assumption (3.38) and
hence the last inequality implies

|∂αy v(y)| ≤ Cα‖u‖L2(R2D,(W r)2) for any y ∈ RDwith |y| ≤ 2. (3.59)

Next we consider the function

w := M (χ) ◦ T̃ v = M (χ) ◦ T̃ ◦ B∗ ◦ Ξu.
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Note that the support of w is contained in that of χ. It follows from (3.58) that, for each
multi-index α,

|∂αw(y)| ≤ Cαλ
max{|α|+D/2+1−r,0}‖u‖L2(R2D,(W r)2) for all y ∈ RD. (3.60)

Further, if |α| ≤ n+ 1, it follows from (3.59) and the definition of T̃ that

|∂αyw(y)| ≤ Cα |y|n+1−|α| ·max
|y|≤2

∣∣∂n+1
y v

∣∣ ≤ Cα|y|n+1−|α|‖u‖L2(R2D,(W r)2) for all y ∈ RD.

(3.61)
Now we prove the claim (3.56) in the case σ = +. Let u, v, w be as above. We are

going to estimate the quantity

ξα · (B ◦ LA ◦M (χ) ◦ T̃ ◦ B∗ ◦ Ξu)(x, ξ) = | detA|−1/2 · ξα
∫
φx,ξ(y) · w(A−1y) dy.

By integration by parts, we see that this is bounded in absolute value by

Cα,ν | detA|−1/2
∑
α′≤α

∫
〈|x− y|〉−ν · λ−|α′| · |∂α′w(A−1y)| dy

for each ν > 0, where Cα,ν is a constant depending only on α and ν. If ν is sufficiently
large, we have from (3.60), (3.61) and then from (3.38) that∑
α′≤α

∫
〈|x− y|〉−ν · λ−|α′| · |∂α′w(A−1y)| dy

≤ Cαλ
−|α′|

( ∑
α′:|α′|≤n+1

(
〈|x|〉
λ

)n+1−|α′|

+
∑

α′:n+2≤|α′|≤|α|

λmax{|α′|+D/2+1−r,0}
)
‖u‖L2(R2D,(W r)2)

≤ Cα · λ−(n+1)〈|x|〉n+1 · ‖u‖L2(R2D,(W r)2).

Therefore we obtain

〈|ξ|〉ν · |B ◦ LA ◦M (χ) ◦ T̃ ◦ B∗ ◦ Ξu(x, ξ)| ≤ Cνλ
−(n+1)| detA|−1/2‖u‖L2(R2D,(W r)2) · 〈|x|〉n+1

for arbitrarily large ν. For (x, ξ) on suppW r
+ = C−(2), we have 〈|x|〉 ≤ 2〈|ξ|〉 and hence

W r
+(x, ξ) ≤ 〈|ξ|〉r ≤ C0〈|ξ|〉r+D/1+1+(n+1) · 〈|x|〉−D/2−1−(n+1).

Using this in the last inequality, we get

W r
+(x, ξ)|(B ◦ LA ◦M (χ) ◦ (Id−Tn) ◦ B∗ ◦ Ξu)(x, ξ)|

≤ Cνλ
−(n+1)| detA|−1/2‖u‖L2(R2D,(W r)2)〈|x|〉−D/2−1〈|ξ|〉−ν+r+D/1+1+(n+1).

This estimate for sufficiently large ν implies the claim (3.56) in the case σ = +, by Cauchy-
Schwarz inequality.
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We prove the claim (3.56) for σ = −. The proof is easier than the previous case actually.
Note that we have

‖W r
− · Bϕ‖L2 ≤ C0 · ‖〈·〉−r · ϕ(·)‖L2(RD).

Hence, from (3.61) with α = ∅, we get

‖W r
−· B ◦ LA ◦M (χ) ◦ T̃ ◦ B∗ ◦ Ξu‖L2 = ‖W r

− · B ◦ LA ◦ w‖L2

≤ C0 · | detA|−1/2 ·
∣∣∣∣∫ 〈x〉−2r〈x/λ〉2(n+1)dx

∣∣∣∣1/2 · ‖u‖L2(R2D,(W r)2)

≤ C0 · | detA|−1/2 · λ−n−1 · ‖u‖L2(R2D,(W r)2).

Clearly this implies (3.56) for σ = −.

To finish, it is enough to show

‖Llift
A ◦ T̃ − Llift

A ◦X ◦ T̃ ◦ Ξ‖L2(R2D,(W r)2) ≤ C0λ
−r| detA|1/2. (3.62)

Note the relations

Llift
A ◦ T̃ = B ◦ LA ◦ T̃ ◦ B = B ◦ T̃ ◦ LA ◦ B = T̃ ◦ Llift

A

and

Llift
A ◦ (Id−X) = B ◦ LA ◦M (1− χ) ◦ B∗

= B ◦M (1− χA) ◦ LA ◦ B∗ = (Id−XA) ◦ Llift
A

where χA = χ ◦ A−1 and XA = B ◦ χA ◦ B∗. Below we will prove the claims

‖Llift
A ◦ (Id−X)‖L2(R2D,(W r)2) ≤ C0λ

−r| detA|1/2 (3.63)

and
‖Llift

A ◦ (Id− Ξ)‖L2(R2D,(W r)2) ≤ C0λ
−r| detA|1/2. (3.64)

Since T̃ = Id−
∑n

k=0 T (k) is a bounded operator on L2(R2D,W r), these claims would imply

‖Llift
A ◦ (Id−X) ◦ T̃ ‖L2(R2D,(W r)2) ≤ C0 · λ−r| detA|1/2

and

‖Llift
A ◦X◦T̃ ◦(Id−Ξ)‖L2(R2D,(W r)2) = ‖XA◦T̃ ◦Llift

A ◦(Id−Ξ)‖L2(R2D,(W r)2) ≤ C0λ
−r| detA|1/2

and therefore the conclusion (3.62) would follow.
We can prove (3.63) and (3.64) by straightforward estimate. Writing the kernel of the

operator XA explicitly and applying integration by parts to it, we get the estimate

|(Id−XA)v(x, ξ)| ≤ Cν

∫
K

(ν)
1 (x, ξ;x′, ξ′) · v(x′, ξ′)dx′dξ′
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for arbitrarily large ν, where

K
(ν)
1 (x, ξ;x′, ξ′) =

∫
supp (1−χA)

〈|x− y|〉−ν〈|y − x′|〉−ν〈|ξ − ξ′|〉−νdy.

From the expression (3.17) of the operator Llift
A in Lemma 3.9, we also have

|Llift
A v(x′, ξ′)| ≤ Cν | detA|1/2

∫
K

(ν)
2 (x′, ξ′;x′′, ξ′′)v(x′′, ξ′′)dx′dξ′

for arbitrarily large ν, where

K
(ν)
2 (x′, ξ′;x′′, ξ′′) =

∫
〈|x′ − x†|〉−ν〈|ξ′ − ξ†|〉−ν〈|A−1x† − x′′|〉−ν〈|tAξ† − ξ′′|〉−νdx†dξ†.

(We used d(A) ≤ detA also.) From the definition of the function W r and the expanding
property (3.31) of A, we have

W r(x†, ξ†)

W r(A−1x†, tAξ†)
· 〈|x− y|〉−2r ≤ C0λ

−r if y ∈ supp (1− χA).

Also note that, from the property (3.30) of W r, we have

W r(x, ξ) · 〈|x− y|〉−2r〈|y − x′|〉−2r〈|x′ − x†|〉−2r ≤ C0 ·W r(x†, ξ†)

and
1

W r(x′′, ξ′′)
· 〈|A−1x† − x′′|〉−2r〈|tAξ† − ξ′′|〉−2r ≤ C0 ·

1

W r(A−1x†, tAξ†)
.

Summarizing these estimates, we obtain

W r(x, ξ)

W r(x′′, ξ′′)
·
∫
K

(ν)
1 (x, ξ;x′, ξ′; y) ·K(ν)

2 (x′, ξ′;x′′, ξ′′)dx′dξ′

≤ C0λ
−r ·

∫ ∫
K

(ν−4r)
1 (x, ξ;x′, ξ′; y) ·K(ν−2r)

2 (x′, ξ′;x′′, ξ′′)dx′dξ′.

By Young inequality, the integral operators with the kernels K(ν−4r)
1 (·) and K(ν−2r)

2 (·) are
bounded operators on L2(R2D) and the operator norms are bounded by a constant that
does not depend on A, provided ν is sufficiently large. Therefore the last estimate implies
(3.63). We can prove the claim (3.64) in the same manner.

4 Resonance of hyperbolic linear prequantum maps
The main result of this section, Proposition 4.9, concerns the spectrum of the prequantum
transfer operator for hyperbolic symplectic affine maps. In the last subsection, we will also
consider the spectrum of the Euclidean rough Laplacian ∆ = D∗D on R2d.

58



4.1 Prequantum transfer operator and rough Laplacian on R2d

In this section, we study prequantum transfer operators and rough Laplacian in a special
and easy case: The Riemann manifold M is the linear space R2d with the coordinates

x ≡ (q, p) =
(
q1, . . . qd, p1, . . . pd

)
∈ R2d. (4.1)

We regard it as a symplectic manifold equipped with the symplectic two form

ω = dq ∧ dp :=
d∑
i=1

dqi ∧ dpi. (4.2)

The prequantum bundle P is the trivial U(1)-bundle π : P = R2d × U(1)→ R2d over R2d

equipped with the connection one form A = idθ − i(2π)η where

η =
d∑
i=1

(
1

2
qidpi − 1

2
pidqi

)
. (4.3)

The corresponding curvature two form is then

Θ = −i(2π)(π∗ω)

because ω = dη. Under these settings, we may rephrase the construction of the prequan-
tum transfer operator for a symplectic diffeomorphism on R2d and also that of the rough
Laplacian.

Let f : U → U ′ be a symplectic diffeomorphism between two domains U and U ′ in
R2d with respect to the symplectic two form ω. Let f̃ : U × U(1) → U ′ × U(1) be the
equivariant lift of f preserving the connection A, that is, the map satisfying the conditions
(1.12), (1.13) and (1.14) in Proposition 1.4. Then we define

F̂ : C∞(U ×U(1))→ C∞(U ′ ×U(1)), F̂ u(x) = u ◦ f̃−1(x)

and let
F̂N : C∞N (U ×U(1))→ C∞N (U ′ ×U(1))

be its restriction to the space of functions in the N -th Fourier mode. This construction is
exactly parallel to that we have given in Subsection 1.2, but for the set V ≡ 0. Let

Lf : C∞(R2d)→ C∞(R2d)

be the expression of the prequantum transfer operator F̂N with respect to the trivialization
using the trivial section τ0 : R2d → P = R2d×U(1) defined by τ0(x) = (x, 1). This operator
Lf is called the prequantum transfer operator for a diffeomorphism f : U → U ′. (Note
that Lf depends on the integer N ∈ Z and hence on ~.) We recall its concrete form from
Proposition 2.3.
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Proposition 4.1. The operator Lf as above is written

Lfu (x) := e
i
~Af (x)u

(
f−1 (x)

)
(4.4)

with the (action) function

Af (x) =

∫
γ

(f−1)∗η − η (4.5)

where γ is a path from a fixed point x0 ∈ U ′ to x.

Let us assume now an Euclidean (and ω-compatible) metric

g =
1

2

(
d∑
i=1

dqi ⊗ dqi + dpi ⊗ dpi
)

on R2d. We may consider the rough Laplacian in the setting above as the operator

∆~ = D∗D : C∞(R2d)→ C∞(R2d).

This operator is called the Euclidean rough Laplacian and given in Proposition 2.40.

4.2 Prequantum operator for a symplectic affine map on R2d

Let f : R2d → R2d be an affine map preserving the symplectic form ω, written:

f : R2d → R2d, f(x) = Bx+ b (4.6)

where B : R2d → R2d a linear symplectic map and b ∈ R2d a constant vector.

Proposition 4.2. The prequantum transfer operator Lf for an affine map f as above is
written as

Lfu (x) := e
i
~Af (x)u

(
f−1 (x)

)
(4.7)

with the (action) function

Af (x) = −1

2
ω (b, x) . (4.8)

Remark 4.3. Notice that the function Af in (4.8) does not depend on the linear map B
which enters in (4.6).

Proof. For simpler notations we can write the one form η in (4.3) as η = 1
2
x ∧ dx. Then,

for any x ∈ R2d, we have∫ x

0

η =

∫ x

0

1

2
y ∧ dy =

∫ 1

0

1

2
(tx ∧ x) dt = 0 with setting y (t) = tx.
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Therefore for a linear symplectic map f2 (x) = Bx, the action defined in (2.8) vanishes:

Af2 (x) =

∫ f−1
2 (x)

f−1
2 (0)

η −
∫ x

0

η = 0.

For a translation map f1 (x) = x+ b, the action is

Af1 (x) =

∫ x−b

−b
η −

∫ x

0

η =

∫ x−b

−b

1

2
y ∧ dy =

∫ 1

0

1

2
((tx− b) ∧ x) dt = −1

2
b ∧ x

with setting y (t) = tx − b. Finally for the affine map f (x) = Bx + b = (f1 ◦ f2) (x), the
action is

Af = Af1 +Af2 ◦ f−1
2 = Af1 = −1

2
b ∧ x = −1

2
ω (b, x) .

We next consider the lift of the operator Lf above with respect to the Bargmann
transform B~. Following the idea explained in Subsection 2.2, we express it with respect
to the coordinates (ν, ζ) introduced in Proposition 2.13. Then, in the next proposition, we
obtain an expression of Lf as a tensor product of two operators: each of the two operators
is associated to the dynamics of the canonical map F =t Df−1 : T ∗R2d → T ∗R2d of Lf in
the directions along and orthogonal to the trapped set K, which is

K = {(x, ξ) ∈ R2d | ζ = 0}

in the simple setting we are considering. (See Proposition 2.13.)
Let us write the change of variable given in Proposition 2.13 as

Φ :

 q, p︸︷︷︸
x

, ξq, ξp︸ ︷︷ ︸
ξ

 ∈ R2d ⊕ R2d →

νq, νp︸ ︷︷ ︸
ν

, ζp, ζq︸ ︷︷ ︸
ζ

 ∈ R2d ⊕ R2d. (4.9)

It transfers the standard symplectic form Ω0 = dx ∧ dξ on R2d ⊕ R2d to

(DΦ∗)−1(Ω0) = dνq ∧ dνp + dζp ∧ dζq

and the metric g0 = 1
2
dx2 + 2dξ2 on R2d ⊕ R2d (g0 is the metric induced by g on T ∗R2d as

explained in Section 2.4.1) to the standard Euclidean metric on R2d ⊕ R2d:

(DΦ∗)−1(g0) = dν2 + dζ2.

The unitary operator associated to the coordinate change Φ is defined as

Φ∗ : L2
(
R2d
ν ⊕ R2d

ζ

)
→ L2

(
R2d
x ⊕ R2d

ξ

)
, (Φ∗u) := u ◦ Φ.

Here (and henceforth) we make the convention that the subscript in the notation such as
R2d
ν indicates the name of the coordinates on the space.
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We define the operators

Bνq : L2
(
Rd
νq

)
→ L2

(
R2d

(νq ,νp)

)
and B∗νq : L2

(
R2d

(νq ,νp)

)
→ L2

(
Rd
νq

)
as the Bargmann transform B~ and its adjoint B∗~ in Subsection 3.1 for the case D = d.
We define

Bζp : L2
(
Rd
ζp

)
→ L2

(
R2d

(ζp,ζq)

)
and B∗ζp : L2

(
R2d

(ζp,ζq)

)
→ L2

(
Rd
ζp

)
similarly. Suppose that Pνq and Pζp are defined correspondingly: That is to say, with
setting D = d, we define

Bνq = Bζp = B~, B∗νq = B∗ζp = B∗~ and Pνq = Pζp = P~.

Next we define the operators

Bx : L2
(
R2d
x

)
→ L2

(
R4d

(x,ξ)

)
and B∗x : L2

(
R4d

(x,ξ)

)
→ L2

(
R2d
x

)
by

Bx := σ̃−1 ◦ B~ ◦ σ and B∗x := σ−1 ◦ B∗~ ◦ σ̃ (4.10)

where B~ and B∗~ are now those in the case D = 2d, and

σ : L2(R2d
x )→ L2(R2d

x ) and σ̃ : L2(R4d
(x,ξ))→ L2(R4d

(x,ξ))

are simple unitary operators defined by

σu(x) = 2−du(2−1/2x) and σ̃v(x, ξ) = v(2−1/2x, 21/2ξ).

Correspondingly we set
Px = Bx ◦ B∗x = σ̃−1 ◦ P~ ◦ σ̃. (4.11)

Remark 4.4. (1) In terms of the (generalized) Bargmann transforms considered in Sub-
section 3.1.3, the operators Bx and B∗x are the Bargmann transform and its adjoint
for the combination of the Euclidean space E = R4d, the standard symplectic form
Ω0 = dx ∧ dξ, the metric g0 = 1

2
dx2 + 2dξ2 and the Lagrangian subspace R2d

x . Since
the metric g0 corresponds to the standard Euclidean metric through Φ, the defini-
tion of the operators Bx, B∗x and Px above is more convenient and natural for our
argument than those without σ and σ̃. Indeed, from Proposition 3.6, we have

P∗x ◦ Φ∗ = Φ∗ ◦ (Pνq ⊗ Pζp)∗. (4.12)

(2) In the notation introduced above, the subscripts indicate the related coordinates.
Though this may deviate from the standard usage, it is convenient for our argument.
Notice that the operators introduced above, such as Bx, depend on the parameter ~
(and hence on N).
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Lemma 4.5. Let Lf be the associated prequantum transfer operator (4.7) for a symplectic
affine map in (4.6). Then the following diagram commutes:

L2
(
R2d
x

) Lf−−−→ L2
(
R2d
x

)xU xU
L2
(
Rd
νq

)
⊗ L2

(
Rd
ζp

)
Mν(f)⊗Mζ(B)
−−−−−−−−→ L2

(
Rd
νq

)
⊗ L2

(
Rd
ζp

)
where U , Mν(f) and Mζ(B) are the unitary operators defined respectively by

U : L2
(
Rd
νq

)
⊗ L2

(
Rd
ζp

)
→ L2

(
R2d
x

)
, U =B∗x ◦ Φ∗ ◦

(
Bνq ⊗ Bζp

)
, (4.13)

Mν (f) : L
(
Rd
νq

)
→ L2

(
Rd
νq

)
, Mν (f) =

√
d (B) · B∗νq ◦ (e

i
2~ω(ν,b) · Lf ) ◦ Bνq ,

Mζ (B) : L2
(
Rd
ζp

)
→ L2

(
Rd
ζp

)
, Mζ (B) =

√
d (B) · B∗ζp ◦ LB ◦ Bζp

with d (B) = det ((B + tB−1) /2)
1/2, e

i
2~ω(ν,b) (Lfu) (ν) = e

i
2~ω(ν,b) (u ◦ f−1) (ν) and LBu =

u ◦ B−1 as before. Equivalently, in terms of lifted operators, we have the following com-
muting diagram:

L2
(
R2d
x ⊕ R2d

ξ

) Llift
f−−−→ L2

(
R2d
x ⊕ R2d

ξ

)xΦ∗

xΦ∗

L2
(
R2d
ν

)
⊗ L2

(
R2d
ζ

) M lift
ν (f)⊗M lift

ζ (B)
−−−−−−−−−−→ L2

(
R2d
ν

)
⊗ L2

(
R2d
ζ

) (4.14)

Proof. Recall the operators [ : R2d → (R2d)∗ = R2d and ] : (R2d)∗ = R2d → R2d introduced
in Remark 2.15. The expression (4.7) shows that Lf can be written Lf = T(b,− 1

2
b[) ◦ LB

where the unitary transfer operator T(b,− 1
2
b[) is defined in (3.18). We apply Lemma 3.11,

Lemma 3.9 to obtain

Lf = B∗x ◦ T(b,− 1
2
b[) ◦ Bx ◦ (d(B) · B∗x) ◦ LB⊕tB−1 ◦ Bx

= d(B) · B∗x ◦ T(b,− 1
2
b[) ◦ Bx ◦ B

∗
x ◦ LB⊕tB−1 ◦ Bx

= d(B) · B∗x ◦ (e
i

2~ϕ · LF ) ◦ Bx (4.15)

with F (x, ξ) =
(
Bx+ b,tB−1ξ − 1

2
b[
)
and ϕ(x, ξ) = −1

2
b[ · x − b · ξ. Since we have

tB−1 = [ ◦ B◦[−1 for B symplectic, we get the following expression of F in the new
coordinates (ν, ζ):(

Φ ◦ F ◦ Φ−1
)

(ν, ζ) =
(
Bν + b,tB−1ζ

)
=
(
f (ν) ,tDf−1ζ

)
.

This implies
LF = Φ∗ ◦ (Lf ⊗ LB) ◦ (Φ∗)−1 .
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From (4.12), we have
4.24

B∗x ◦ Φ∗ = B∗x ◦ Px ◦ Φ∗ = B∗x ◦ Φ∗ ◦ (Pνq ⊗ Pζp) = U ◦ (Bνq ⊗ Bζp)∗

and

(Φ∗)−1 ◦ Bx = (Φ∗)−1 ◦ Px ◦ Bx = (Pνq ⊗ Pζp) ◦ (Φ∗)−1 ◦ Bx = (Bνq ⊗ Bζp) ◦ U−1.

Using these relations to continue (4.15) and noting that ϕ = ω(ν, b), we conclude

Lf = d(B) · B∗x ◦ e
i

2~ϕLF ◦ Bx
= d(B) · B∗x ◦ Φ∗ ◦

(
e
i

2~ϕLf ⊗ LB
)
◦ (Φ∗)−1 ◦ Bx

= d(B) · U ◦
((
B∗νq ◦ (e

i
2~ϕ · Lf ) ◦ Bνq

)
⊗
(
B∗ζp ◦ LB ◦ B

∗
ζp

))
◦ U−1

= U ◦ (Mν (f)⊗Mζ (B)) ◦ U−1.

Remarks:

• In the expression (??) for Lf , it is remarkable that we get a product of two operators
Mν (f)⊗Mζ (B) (this is due of course to the fact that Df is constant). Each of these
operators is usually called a metaplectic operator, we refer to [19]. Here we have used
a derivation in phase using the Bargmann transform.

4.3 The prequantum transfer operator for a linear hyperbolic map

In this subsection, we restrict the argument in the last subsection to the case where f
in (4.6) is hyperbolic in the sense that f is expanding in Rd ⊕ {0} while contracting in
{0} ⊕ Rd. Since f preserves the symplectic form ω, we may express it as (see last remark
in the proof of Proposition 2.16)

f (q, p) = B(q, p) =
(
Aq, tA−1p

)
where B =

(
A 0
0 tA−1

)
(4.16)

with A : Rd → Rd an expanding linear map satisfying ‖A−1‖ ≤ 1/λ for some λ > 1. Notice
that, since b = 0, the action A vanishes in (4.7) and the prequantum transfer operator gets
the simpler expression:

(Lfu) (x) = u
(
B−1x

)
= LBu (x) . (4.17)

The next proposition is a special case of Proposition 4.5.
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Proposition 4.6. The following diagram commutes:

L2
(
R2d
x

) Lf−−−→ L2
(
R2d
x

)xU xU
L2
(
Rd
νq

)
⊗ L2

(
Rd
ζp

)
LA⊗LA−−−−→ L2

(
Rd
νq

)
⊗ L2

(
Rd
ζp

) (4.18)

with the unitary operator U defined in (4.13). Equivalently using lifted operators, expressed
in Lemma 3.9, we have the following commuting diagram:

L2
(
R2d
x ⊕ R2d

ξ

) Llift
f−−−→ L2

(
R2d
x ⊕ R2d

ξ

)xΦ∗

xΦ∗

L2
(
R2d
ν

)
⊗ L2

(
R2d
ζ

) Llift
A ⊗L

lift
A−−−−−→ L2

(
R2d
ν

)
⊗ L2

(
R2d
ζ

) (4.19)

Proof. We have
d(B) = det((B + tB−1)/2)1/2 = (d(A))2

and Lf = LB = LA⊕tA−1 . Hence, by the expression (3.14), we get

Mν (f) :=
√
d (B) · B∗νq ◦ (e

i
2~ω(ν,b) · Lf ) ◦ Bνq = d (A) · B∗νq ◦ LA⊕tA−1 ◦ Bνq = LA

and

Mζ (B) :=
√
d (B) · B∗ζp ◦ LB ◦ Bζp = d (A) · B∗ζp ◦ LA⊕tA−1 ◦ Bζp = LA.

Putting these in Proposition 4.5, we obtain the conclusion.

4.4 Anisotropic Sobolev space

In order to observe discrete spectrum of resonances, we have to consider the action of the
prequantum transfer operator Lf on an appropriate spaces of functions. As we explained in
Section 2.5, we define such space of function, called anisotropic Sobolev space, by changing
the norm in the directions transverse to the trapped set K (that is, in the directions of the
variables ζ ). Below is the precise definition.

Definition 4.7. We define the escape function or weight function

Wr
~ : R2d

x ⊕ R2d
ξ → R+ and Wr,±

~ : R2d
x ⊕ R2d

ξ → R+

by

Wr
~ (x, ξ) := W r

~ (ζp, ζq) and Wr,± (x, ξ) := W r
~ (ζp, ζq) (4.20)
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where the functions W r
~ and W r,±

~ are defined in Definition 3.13, and (ζp, ζq) is part of
the coordinates introduced in (4.9). The anisotropic Sobolev space Hr

~
(
R2d
)
is the Hilbert

space obtained as the completion of the Schwartz space S(R2d) with respect to the norm

‖u‖Hr~ := ‖Wr
~ · Bxu‖L2

where Bx is the operator defined in (4.10). Similarly, let Hr,±
~ (R2d) be the Hilbert space

defined in the parallel manner by replacing Wr
~(·) by Wr,±

~ (·).

By definition, the operator Bx extends to an isometric embedding

Bx : Hr
~(R2d

x )→ L2(R2d
x ⊕ R2d

ξ , (Wr
~)2).

Since the weight function Wr(·) can be expressed as

Wr
~ = (1⊗W r

~ ) ◦ Φ,

where Φ is given in (4.9), we see that the following diagram commutes:

Hr
~
(
R2d
x

) Lf−−−→ Hr
~
(
R2d
x

)yBx yBx
L2
(
R2d
x ⊕ R2d

ξ , (Wr
~)2) Llift

−−−→ L2
(
R2d
x ⊕ R2d

ξ , (Wr
~)2)xΦ∗

xΦ∗

L2
(
R2d
ν

)
⊗ L2

(
R2d
ζ , (W

r
~ )2) Llift

A ⊗L
lift
A−−−−−→ L2

(
R2d
ν

)
⊗ L2

(
R2d
ζ , (W

r
~ )2)xBνq⊗Bζp xBνq⊗Bζp

L2
(
R2d
νq

)
⊗Hr

~

(
Rd
ζp

)
LA⊗LA−−−−→ L2

(
R2d
νq

)
⊗Hr

~

(
Rd
ζp

)

(4.21)

where Φ∗ is an isomorphism between Hilbert spaces, and Hr
~

(
Rd
ζp

)
in the last line is defined

in Definition 3.19. Hence, skipping the lines in the middle, we get:

Hr
~
(
R2d
x

) Lf−−−→ Hr
~
(
R2d
x

)xU xU
L2
(
R2
νq

)
⊗Hr

~

(
Rd
ζp

)
LA⊗LA−−−−→ L2

(
R2
νq

)
⊗Hr

~

(
Rd
ζp

) (4.22)

with U the unitary operator defined in (4.13). For the operator LA ⊗ LA on the bottom
line, we know that the operator LA : L2

(
R2d
νq

)
→ L2

(
R2d
νq

)
is unitary and Proposition 3.20

gives a description on the spectral structure of the operator LA : Hr
~

(
Rd
ζp

)
→ Hr

~

(
Rd
ζp

)
.
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Therefore we obtain the next proposition as a consequence. We fix some integer n ≥ 0 and
assume

r > n+ 2 +
d

2
. (4.23)

This assumption on r corresponds to (3.38) in the last section.
Definition 4.8. For 0 ≤ k ≤ n, we consider the projection operators

t
(k)
~ := U ◦

(
Id⊗ T (k)

)
◦ U−1 : Hr

~(R2d)→ Hr
~(R2d) (4.24)

and

t̃~ := Id−
n∑
k=0

t
(k)
~ = U ◦

(
Id⊗ T̃

)
◦ U−1 : Hr

~(R2d)→ Hr
~(R2d) (4.25)

where T (k) and T̃ are the projection operators introduced in (3.34) and (3.46) respectively.

Proposition 4.9. The operators t(k)
~ , 0 ≤ k ≤ n, and t̃~ form a complete set of mutually

commutative projection operators on Hr
~(R2d). These operators also commute with the

prequantum transfer operator Lf defined in (4.17). Consequently the space Hr
~(R2d) has

a decomposition invariant under the action of Lf :

Hr
~(R2d) = H ′0 ⊕H ′1 ⊕ · · · ⊕H ′n ⊕ H̃ ′ where H ′k = Im t

(k)
~ and H̃ ′ = Im t̃~

For this decomposition, we have

(1) For every 0 ≤ k ≤ n, the operator Lf : H ′k → H ′k is conjugated by the isometric bi-
jection U to the tensor product of the unitary operator LA : L2

(
R2
νq

)
→ L2

(
R2
νq

)
and the finite rank operator LA : Polynom(k) → Polynom(k). In particular, we
have for every u ∈ H ′k,

C−1
0 ‖A‖−k · | det(A)|−1/2 · ‖u‖Hr~ ≤ ‖Lfu‖Hr~ ≤ C0‖A−1‖k · | det(A)|−1/2 · ‖u‖Hr~ .

(2) The operator norm of Lf : H̃ ′ → H̃ ′ is bounded by

C0 ·max{‖A−1‖n+1 · | detA|−1/2, ‖A−1‖r · | detA|1/2}.

The constant C0 is independent of A and ~.

4.5 A few technical lemmas

In this subsection, we collect a few miscellaneous technical lemmas related to the anisotropic
Sobolev spaces Hr

~(R2d) and Hr,±
~ (R2d), which we will use in the later sections. The fol-

lowing are immediate consequences of Lemma 3.16 and 3.17 respectively.
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Lemma 4.10. Suppose that f is a hyperbolic linear transformation (4.16) defined for an
expanding linear map A satisfying (3.31) for some large λ (say λ > 9). Then the operator
Lf extends to a bounded operator Lf : Hr,−

~ (R2d) → Hr,+
~ (R2d) and the operator norm is

bounded by a constant independent of ~ > 0 and f .

Corollary 4.11. The operator t(k)
~ for 0 ≤ k ≤ n, defined in (4.24), extends to a bounded

operator
t
(k)
~ : Hr,−

~ (R2d)→ Hr,+
~ (R2d)

whose operator norm is bounded by a constant independent of ~.

For convenience in the later argument, let us put the following definition:

Definition 4.12. Let A be the group of affine transformation on R2d that preserves the
symplectic form ω, the Euclidean norm and the splitting R2d = Rd ⊕ Rd simultaneously.

Note that the function Wr
~ is invariant with respect to the transformation (a,tDa−1)

on T ∗R2d = R2d × R2d when a ∈ A. This fact, together with Lemma 3.9, yields

Lemma 4.13. If a ∈ A, then the prequantum operator La, defined in (4.7) extends to an
isometry on Hr

~(R2d).

The norm ‖ · ‖Hr~ on the Hilbert space Hr
~(R2d) is induced by a (unique) inner product

(·, ·)Hr~(R2d). Notice that even if two functions u and v in Hr
~(R2d) have mutually disjoint

supports, the inner product (u, v)Hr~(R2d) may not vanish. This is somewhat inconvenient.
But we have the following “pseudo-local ” property. We omit the proof because it can be
given by a straightforward estimate.

Lemma 4.14. Let ε > 0. If d(suppu, supp v) ≥ ~(1−ε)/2 for u, v ∈ Hr
~(R2d), we have

|(u, v)Hr~(R2d)| ≤ Cν,ε · ~ν · ‖u‖Hr~(R2d)‖v‖Hr~(R2d) for u, v ∈ Hr
~(R2d)

for arbitrarily large ν, with Cν,ε > 0 a constant depending on ε and ν.

From the definition of the function Wr
~(·) and (3.29), we have

Wr
~(x, ξ) ≤ C · Wr

~(y, η) · 〈~−1/2|(x, ξ)− (y, η)|〉2r. (4.26)

The next lemma and corollary are direct consequences of this estimate. The proof is
completely parallel to that of Lemma 3.14.

Lemma 4.15. If R~ : S(R2d ⊕ R2d)→ S(R2d ⊕ R2d) is an integral operator of the form

(R~u) (x, ξ) =

∫
K~(x, ξ;x

′, ξ′)u(x′, ξ′)dx′dξ′

depending on ~ and if the kernel K~(·; ·) is a continuous function satisfying

|K~(x, ξ;x
′, ξ′)| ≤ 〈~−1/2 · |(x, ξ)− (x′, ξ′)|〉−ν

68



for some ν > 2r + 4d, then the operator R~ extends uniquely to a bounded operator on
L2(R2d ⊕ R2d, (Wr

~)2) and
‖R~‖L2(R2d⊕R2d,(Wr

~ )2) ≤ Cν

where Cν is a constant independent of ~. The same holds true with Wr
~ replaced by Wr,±

~
simultaneously.

Corollary 4.16. The Bargmann projector P~ extends uniquely to a bounded operator on
L2(R2d⊕R2d, (Wr

~)2) and its operator norm is bounded by a constant that does not depend
on ~ > 0. The same holds true with Wr

~ replaced by Wr,±
~ simultaneously.

4.6 The rough Laplacian on R2d

In this subsection, we consider the spectrum of the Euclidean rough Laplacian on R2d

defined in Subsection 4.1. This operator ∆~ is a closed self-adjoint operator on L2(R2d)
and its domain of definition is

D(∆~) = {u ∈ L2(R2d) | ‖∆~u‖L2 <∞}.

Note that D(∆~) becomes a Hilbert space if we consider the norm

‖u‖∆~ = ((u, u)∆~)
1/2 (4.27)

induced by the inner product

(u, v)∆~ = (u, v)L2 + (∆~u,∆~v)L2 .

Obviously, ∆~ gives a bounded operator

∆~ : (D(∆~), ‖ · ‖∆~)→ L2(R2d).

An important property of the operator ∆~ that follows from the definition is that it
is invariant with respect to the action of prequantum transfer operators for symplectic
isometries:

Lemma 4.17. Suppose that f : R2d → R2d is an isometric affine map preserving the
symplectic form ω, then we have ∆~ ◦Lf = Lf ◦∆~ for the associated prequantum transfer
operator Lf given in (4.7).

By considering a commutative diagram corresponding to (4.21), we obtain the following
commutative diagram similar to (4.22):

L2
(
R2d
x

) ~∆~−−−→ L2
(
R2d
x

)xU xU
L2
(
R2
νq

)
⊗ L2

(
Rd
ζp

)
Id⊗H−−−→ L2

(
R2
νq

)
⊗ L2

(
Rd
ζp

)
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where H is the harmonic oscillator operator defined in (3.52) with setting D = d.
From the expression of the Euclidean rough Laplacian obtained in (2.40), we have

~∆ = U ◦
(

Id⊗ 1

2~

(
ζ̂q

2
+ ζ̂p

2
))
◦ U−1.

Thus we may invoke the argument in Subsection 3.5, especially Lemma 3.22 and 3.24, to
derive the next proposition on the spectral structure of the rough Laplacian ∆~. For k ≥ 0,
let us consider the spectral projection operator

q
(k)
~ := U ◦

(
Id⊗Q(k)

~

)
◦ U−1 : L2

(
R2d
x

)
→ L2

(
R2d
x

)
(4.28)

where Q(k)
~ is the projection operator on level k of the harmonic oscillator H . Note that

it restricts to a bounded operator

q
(k)
~ : L2(R2d)→ (D(∆~), ‖ · ‖∆~) ⊂ L2(R2d) (4.29)

whose operator norm is bounded by a constant independent of ~.

Proposition 4.18. The rough Laplacian ∆~ = D∗D on the Euclidean space R2d is a closed
self-adjoint operator on L2(R2d) and its spectrum consists of integer eigenvalues d

2
+k with

k ∈ N∪{0}. The spectral projector corresponding to the eigenvalue d
2
+k is the operator q(k)

~
given in (4.28) and together they form a complete set of mutually commuting orthogonal
projections in L2(R2d). Consequently we have

L2(R2d) =
∞⊕
k=0

H ′′k , with H ′′k := Im q
(k)
~ .

The next proposition is an immediate consequence of Lemma 3.24.

Proposition 4.19. The operator ⊕ki=0q
(i)
~ and ⊕ki=0t

(i)
~ restricts to the bijections

⊕ki=0q
(i)
~ : ⊕ki=0Im t

(i)
~ → ⊕

k
i=0Im q

(i)
~

and
⊕ki=0t

(i)
~ : ⊕ki=0Im q

(i)
~ → ⊕

k
i=0Im t

(i)
~

respectively. The operator norms of these operators and their inverses are bounded by some
constant independent of ~.

5 Nonlinear prequantum maps on R2d

In this section, we prepare some basic estimates on the effect of non-linearity of the Anosov
diffeomorphism f on the anisotrpic Sobolev space Hr

~(R2d). Most of the results in this
section may be rather obvious at least for those readers who are familar with Fourier
analysis. However we have to be attentive to the following particular situations in our
argument:
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• The escape functionWr
~ in the definition of the anisotorpic Sobolev spaceHr

~(R2d) has
variable growth order m(·) depending on the directions. This leads to the fact that
the (prequantum) transfer operators associated to a non-liner map may be unbounded
even if the map is very close to identity.

• The spectral projection operators t(k)
~ in Proposition 4.9 is also very anisotropic and

rather singular. It is not well-defined (or bounded) on any usual (isotropic) Sobolev
spaces of positive or negative order.

• The escape function Wr
~ is not very smooth, viewed in the scale (∼ ~1/2) of the

smallest-possible wave packets in the phase space. In terms of the theory of pseu-
dodifferential operators, this implies that the escape functionWr

~ belongs only to the
symbol class of “critical order”. We have to avoid carefully the difficulties caused by
this fact.

For these reasons, we are going to give the argument to some detail. The main result in
this section is Proposition 5.12, which concerns the third item above.

Recall that the stable and unstable subspaces Es(x) and Eu(x) for the Anosov diffeo-
morphism f depend on the point x ∈ M not smoothly but only Hölder continuously. We
let 0 < β < 1 be the Hölder exponent. (See Remark 1.2(1).) In what follows, we fix a
small positive constant θ such that

0 < θ < β/8. (5.1)

The open ball of radius c > 0 on R2d is denoted by

D (c) =
{
x ∈ R2d | |x| < c

}
.

5.1 Truncation operations in the real space

We first consider the operation of truncating functions in the (real) space by multiplying
smooth functions with small supports. Below we consider the following setting:

Setting I: For each ~ > 0, there is a given set X~ of C∞ functions on R2d such that, for
all ψ ∈X~ and ~ > 0,

(C1) the support of ψ is contained in the disk D
(
C∗~1/2−θ) and

(C2) |∂αxψ(x)| < Cα~( 1
2
−θ)|α| for each multi-index α ∈ N2d,

where C∗ > 0 and Cα > 0 are constants independent of ψ ∈X~ and ~ > 0.

In the next section, we will consider a few specific sets of functions as X~ and apply
the argument in this section to them.
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Remark 5.1. The condition above on X~ is equivalent to the condition that the normalized
family

X̃~ =
{
ϕ (x) = ψ

(
~1/2−θx

)
∈ C∞

(
R2d
) ∣∣ ψ ∈X~

}
for ~ > 0 (5.2)

are uniformly bounded in the (uniform) C∞ topology and supported in a fixed bounded
subset of R2d.

Recall the transformations

Bx : L2(R2d)→ L2(R2d ⊕ R2d), B∗x : L2(R2d ⊕ R2d)→ L2(R2d)

and
Px := B∗x ◦ Bx : L2(R2d ⊕ R2d)→ L2(R2d ⊕ R2d),

which are defined in (4.10) and (4.11) as slight modifications of the Bargmann transform
B~, its adjoint B∗~ and the Bargmann projector P~ in the case D = 2d. Notice that the
operators Bx, B∗x and Px depend on the parameter ~ (and hence on N).

Below we write M (ϕ) for the multiplication operator by a function ϕ. Since ~1/2−θ �
~1/2 for small ~, the functions in X~ are very smooth (or flat) viewed in the scale of the
wave packet φx,ξ(·) used in the Bargmann transform B~. This observation naturally leads
to the following few statements.

Lemma 5.2. For each ψ ∈ X~, let M lift(ψ) = Bx ◦M (ψ) ◦ B∗x be the lift of the multipli-
cation operator M (ψ) with respect to the (modified) Bargmann transfrom Bx. Then it is
approximated by the multiplication by the funtion ψ ◦ π. Precisely, there exists a constant
C > 0 such that, for any ~ > 0 and ψ ∈X~, we have∥∥M lift(ψ)−M (ψ ◦ π) ◦ Px

∥∥
L2(R2d⊕R2d,(Wr

~ )2)
< C~θ (5.3)

and ∥∥M lift(ψ)− Px ◦M (ψ ◦ π)
∥∥
L2(R2d⊕R2d,(Wr

~ )2)
< C~θ

Consequently we have

‖[Px,M (ψ ◦ π)]‖L2(R2d⊕R2d,(Wr
~ )2) < C~θ (5.4)

where [A,B] denotes the commutator of two operators: [A,B] = A ◦B −B ◦A. The same
statement holds true with Wr

~ replaced by Wr,±
~ .

Proof. The kernel of the operator

M lift(ψ)−M (ψ ◦ π) ◦ Px = Bx ◦M (ψ) ◦ B∗x −M (ψ ◦ π) ◦ Bx ◦ B∗x

is written

K(x, ξ;x′, ξ′) = (2π~)−d
∫
e(i/~)(ξ(y−x)−ξ′(x′−y) · e−|y−x|2/4~−|y−x′|2/4~(ψ(y)− ψ(x))dy.
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We apply integration by parts, using the differential operator

L =
1− i(ξ − ξ′)∂y

1 + ~−1(ξ − ξ′)2
,

which satisfies L
(
e(i/~)(ξ(y−x)−ξ′(x′−y)

)
= e(i/~)(ξ(y−x)−ξ′(x′−y) for ν times. Then we get

K(x, ξ;x′, ξ′) = (2π~)d
∫
e(i/~)(ξ(y−x)−ξ′(x′−y) · (tL)ν

(
e−|y−x|

2/4~−|y−x′|2/4~(ψ(y)− ψ(x))
)
dy

where tL = (1− i(ξ − ξ′)∂y)/(1 + ~−1(ξ − ξ′)2) is the transpose of L. Using the conditions
(C1) and (C2) on the family X~ and, in particular, the estimate

|ψ(x)− ψ(y)| · 〈~−1/2|x− y|〉−1 < C~θ (5.5)

that follows from the condition (C2), we see that the integrand is bounded in absolute
value by

C~θ · 〈~−1/2|ξ − ξ′|〉−ν · 〈~−1/2|x− y|〉−ν · 〈~−1/2|x′ − y|〉−ν .
Hence, letting ν large, we obtain

|K(x, ξ;x′, ξ′)| ≤ C~θ · 〈~−1/2|ξ − ξ′|〉−ν · 〈~−1/2|x− x′|〉−ν .

This estimate for sufficiently large ν and Lemma 4.15 give the first inequality (5.3). We
can get the second inequality in the same manner.

Corollary 5.3. The multiplication operator M (ψ) by ψ ∈X~ extends to a bounded oper-
ator on Hr

~(R2d) and, for the operator norm, we have ‖M (ψ)‖Hr~(R2d) < ‖ψ‖∞ + C~θ for
all ψ ∈X~, with a constant C > 0 independent of ~.

Proof. From the commutative diagram (3.11), the operator norm of M (ψ) : Hr
~(R2d) →

Hr
~(R2d) coincides with that of the operator

M lift(ψ) : L2(R2d ⊕ R2d, (Wr
~)2)→ L2(R2d ⊕ R2d, (Wr

~)2)

restricted to the image of Bx : Hr
~(R2d) → L2(R2d ⊕ R2d, (Wr

~)2). Hence the claim follows
from the last lemma.

Corollary 5.4. For u, v ∈ Hr
~(R2d) and ψ ∈X~ we have

(u, ψ · v)Hr~(R2d) = (ψ · u, v)Hr~ +O(~θ) · ‖u‖Hr~(R2d) · ‖v‖Hr~(R2d)

where O(~θ) denotes a term whose absolute value is bounded by C~θ with C a constant
independent of ~.

Proof. This is a consequence of the equality

(u, ψ · v)Hr~(R2d) = (Bxu,M lift(ψ) ◦ Bxv)L2(R2d⊕R2d,(Wr
~ )2)

= (Bxu,M (ψ ◦ π) ◦ Bxv)L2(R2d⊕R2d,(Wr
~ )2) +O(~θ) · ‖u‖Hr~(R2d) · ‖v‖Hr~(R2d)

and the parallel estimate for (ψ · u, v)Hr~(R2d), which follow from Lemma 5.2.
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Remark 5.5. The statements of Corollary 5.3 and Corollary 5.4 above hold true with
Hr

~(R2d) replaced by Hr,±
~ (R2d) and the proofs are completely parallel. This is the case for

a few statements ( Lemma 5.8, Proposition 5.12, Lemma 5.16 and Corollary 5.17, precisely)
in this section.

Next we recall the projection operators t(k)
~ for 0 ≤ k ≤ n in (4.24) and t̃~ in (4.25).

We henceforth assume
r > n+ 2 + 4d (5.6)

for the choice of r. (This is a little more restrictive than (4.23).)

Lemma 5.6. There exists a constant C > 0 such that∥∥∥[M (ψ), t
(k)
~

]∥∥∥
Hr,−~ (R2d)→Hr,+~ (R2d)

< C~θ

for any ~ > 0, ψ ∈X~ and 0 ≤ k ≤ n.

Proof. From (4.12) and the definition of the operator t(k)
~ , we have

M (ψ) ◦ t(k)
~ = B∗x ◦M lift(ψ) ◦ Bx ◦ U ◦ (Id⊗ T (k)) ◦ U−1

= B∗x ◦M lift(ψ) ◦ Φ∗ ◦ (Bνq ⊗ Bζp) ◦ (Id⊗ T (k)) ◦ (B∗νq ⊗ B
∗
ζp) ◦ (Φ∗)−1 ◦ Bx

= B∗x ◦M lift(ψ) ◦ Φ∗ ◦ (Pνq ⊗ T
(k)
~ ) ◦ (Φ∗)−1 ◦ Bx

and, similarly

t
(k)
~ ◦M (ψ) = B∗x ◦ Φ∗ ◦ (Pνq ⊗ T

(k)
~ ) ◦ (Φ∗)−1 ◦M lift(ψ) ◦ Bx.

Thus, from 5.2, it is enough to show that∥∥∥∥[M (ψ ◦ π),Φ∗ ◦ (Pνq ⊗ T
(k)
~ ) ◦ (Φ∗)−1

]∥∥∥∥
L2(R2d⊕R2d,(Wr,−

~ )2)→L2(R2d⊕R2d,(Wr,+
~ )2)

< C~θ.

(5.7)
From Proposition 3.3 and Lemma 3.17, if we write K(x, ξ;x′, ξ′) for the kernel of the
operator Φ∗ ◦ (Pνq ⊗ T

(k)
~ ) ◦ (Φ∗)−1, it satisfies

Wr,+
~ (x, ξ)

Wr,−
~ (x′, ξ′)

|K(x, ξ;x′, ξ′)| (5.8)

≤ Cν〈~−1/2|νq − ν ′q|〉−ν〈~−1/2|νp − ν ′p|〉−ν〈~−1/2|(ζp, ζq)|〉−(r−k)〈~−1/2|(ζ ′p, ζ ′q)|〉−(r−k) (5.9)

≤ C ′ν〈~−1/2|(νq, νp)− (ν ′q, ν
′
p)|〉−ν〈~−1/2|(ζp, ζq)− (ζ ′p, ζ

′
q)|〉−(r−k) (5.10)

for arbitrarily large ν > 0, where Cν , C ′ν , C ′′ν > 0 are constants independent of ~ . The
variables νq, νp, ζq, ζp (resp. ν ′q, ν

′
p, ζ
′
q, ζ
′
p) are the coordinates for (x, ξ) (resp. (x′, ξ′)) in-

troduced in (4.9) and | · | denotes the Euclidean norms. The kernel K̃(x, ξ;x′, ξ′) of the
commutator in (5.7) is then

K̃(x, ξ;x′, ξ′) = (ψ(x)− ψ(x′)) ·K(x, ξ;x′, ξ′).
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By (5.10) with sufficiently large ν and (5.5), we get

Wr,+
~ (x, ξ)

Wr,−
~ (x′, ξ′)

|K̃(x, ξ;x′, ξ′)| ≤ C~θ · 〈~−1/2|(x, ξ)− (y, η)|〉−(r−k−1).

Hence we obtain the required estimate by Young inequality, noting that r − k − 1 ≥
r − n− 1 > 4d from the assumption (5.6).

Corollary 5.7. There exists a constant C > 0, such that∥∥∥[M (ψ), t
(k)
~

]∥∥∥
Hr~(R2d)

< C~θ for 0 ≤ k ≤ n

and

∥∥[M (ψ), t̃~
]∥∥
Hr~(R2d)

< C~θ

for any ψ ∈X~, with C > 0 a constant independent of ~.

Proof. The former claim is an immediate consequence of the last lemma. Since t̃~ =
Id−

∑n
k=0 t

(k)
~ by definition, the latter claim follows.

5.2 Truncation operations in the phase space

In order to truncate functions in the phase space T ∗R2d = R2d ⊕ R2d, we consider the
smooth function

Y~ : T ∗R2d → [0, 1], Y~(x, ξ) = χ(~2θ−1/2|(x, ξ)|) (5.11)

with χ : R→ [0, 1] a C∞ function satisfying (3.55), and then introduce the operator

Y~ : L2(R2d)→ L2(R2d), Y~u = B∗x ◦M (Y~) ◦ Bx. (5.12)

Note that the size (∼ ~1/2−2θ) of the support of the function Y~ is much larger than the
size (∼ ~1/2−θ) of the region on which the Bargmann transform of the functions in X~
concentrates, when ~ > 0 is small.

First of all, we show

Lemma 5.8. The operator Y~ extends naturally to a bounded operator on Hr
~(R2d) and

we have
‖Y~‖Hr~(R2d) < 1 + C~θ

and
‖[Y~,M (ψ)]‖Hr~(R2d) < C~θ for any ψ ∈X~

with some positive constants C independent of ~.
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Proof. It is enough to show

‖Px ◦M (Y~) : L2(R2d ⊕ R2d, (Wr
~)2)→ L2(R2d ⊕ R2d, (Wr

~)2)‖ < 1 + C~θ

and

‖[Px ◦M (Y~) ◦ Px,M lift(ψ)] : L2(R2d ⊕ R2d, (Wr
~)2)→ L2(R2d ⊕ R2d, (Wr

~)2)‖ < C~θ.

Note that we have ‖[Px,M (Y~)]‖L2(R2d⊕R2d,(Wr
~ )2) ≤ C~θ by a simple estimate on the kernel.

The first claim is a concequence of this estimate. For the second, we use Lemma 5.2.

The next lemma tells roughly that the truncation operator Y~ hardly affect the projec-
tion operators t(k)

~ , 0 ≤ k ≤ n, defined in Definition 4.24, if we veiw it in the anisotropic
Sobolev spaces.

Lemma 5.9. For 0 ≤ k ≤ n and ψ ∈X~, we have

‖(Id− Y~) ◦M (ψ) ◦ t(k)
~ ‖Hr,−~ (R2d)→Hr,+~ (R2d) < C~θ

and

‖t(k)
~ ◦ (Id− Y~) ◦M (ψ)‖Hr,−~ (R2d)→Hr,+~ (R2d) < C~θ

with some constant C > 0 independent of ~.

Proof. For the proof of the first inequality, it suffices to show the estimate

‖A : L2(R2d ⊕ R2d, (Wr,−
~ )2)→ L2(R2d ⊕ R2d, (Wr,+

~ )2)‖ < C~θ

for the operator

A := Px ◦ (Id−M (Y~)) ◦ Px ◦M lift(ψ) ◦ Φ∗ ◦ (Pνq ⊗ T
(k)
~ ) ◦ (Φ∗)−1.

Recall that we already have the estimates (3.6) and (5.9) respectively for the kernel of the
operator Px and Φ∗ ◦ (Pνq ⊗T

(k)
~ ) ◦ (Φ∗)−1. Using those estimates with the property (4.26)

of the escape function Wr,±
~ and noting that

|(x, ξ)| ≥ ~1/2−2θ for (x, ξ) ∈ suppY~ (resp. |x| ≤ 2~1/2−θ for x ∈ suppψ),

we can estimate the kernel of the operator M (Wr,+
~ )◦A◦M (Wr,−

~ )−1 in absolute value and
obtain the required estimate. The second inequality can be proved in the parallel manner.
We omit the tedious details.
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5.3 Prequantum transfer operators for non-linear transformations
close to the identity

In this subsection, we study the Euclidean prequantum transfer operators for diffeomor-
phisms defined on small open subsets on R2d and is close to the identity map. Roughly we
show that the action of those prequantum operators are close to the identity as an operator
on Hr

~(R2d), though this is not true in the literal sense.
In this subsection, we consider the following setting in addition to Setting I:

Setting II: For every ~ > 0, there is a given set G~ of C∞ diffeomorphisms

g : D(~1/2−2θ)→ g(D(~1/2−2θ)) ⊂ R2d

such that every g ∈ G~ satisfies

(G1) g is symplectic with respect to the symplectic form ω in (4.2),

(G2) g(0) = 0 and ‖Dg(0)− Id‖ < C~β(1/2−θ), and

(G3) ‖g‖Cs < Cs

where C and Cs are positive constants that does not depend on ~ nor g ∈ G~.

Remark 5.10. In the next section we will consider a few different sets of diffeomorphisms as
G~ and apply the argument below. At this moment, the meaning of the bound C~β(1/2−θ) in
the condition (G2) may not be clear. This is a consequence of the fact that the hyperbolic
splitting (1.1) is β-Hölder continuous. The reason will become clear when we introduce a
family of local coordinates on M in the beginning of the next section.

For g ∈ G~, we consider the Euclidean prequantum transfer operator Lg defined in
Subsection 4.1. Recall from Proposition 4.1 that this operator is of the form

Lg : C∞0 (D(~1/2−2θ))→ C∞0 (g(D(~1/2−2θ))), Lg u(x) = e(i/~)·Ag(x) · u(g−1(x)) (5.13)

with
Ag(x) =

∫
γ

(
g−1
)∗
η − η

where γ is a path from the origin 0 to x. (For convenience, we take the origin 0 as a fixed
point of reference.)

We first show the following lemma for the (action) function Ag(x).

Lemma 5.11. If g ∈ G~, we have

|∂αAg(x)| ≤ Cα ·min{|x|3−|α|, 1}

for any multi-index α with |α| > 0, where Cα > 0 is a constant independent of ~.
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Proof. From the definition, we have

|∂αAg(x)| ≤ Cα

for any multi-index α. Hence the conclusion holds obviously in the case |α| ≥ 3. The
first derivatives of Ag at 0 vanishes from the assumption g(0) = 0 in the condition (G2).
Actually the second derivatives of Ag also vanishes. Indeed, from the condition (G1), we
have (g−1)∗ω = ω. If we write the diffeomorphism g−1 as

g−1(p, q) = (gp(p, q), gq(p, q))

in the coordinate x = (p, q) in (4.1), we see that the condition (g−1)∗ω = ω implies

∂gq
∂qi
· ∂gp
∂qj
− ∂gq
∂qj
· ∂gp
∂qi

= 0,
∂gq
∂pi
· ∂gp
∂pj
− ∂gq
∂pj
· ∂gp
∂pi

= 0

and

∂gq
∂qj
· ∂gp
∂pi
− ∂gq
∂pi
· ∂gp
∂qj

=

{
1 (i = j);

0 (i 6= j).

If we write the one form (g−1)
∗
η − η in the coordinates as above, we have

(
g−1
)∗
η − η =

1

2

d∑
i=1

(
gq ·

∂gp
∂pi
− gp ·

∂gq
∂pi
− qi

)
dpi +

1

2

d∑
i=1

(
gq ·

∂gp
∂qi
− gp ·

∂gq
∂qi

+ pi

)
dqi.

Then we can check that all of the first order partial derivatives of the coefficients of dpi
and dqi vanish at the origin 0 ∈ R2d from the equalities above. (Note that we have
gp(0, 0) = gq(0, 0) = 0 from (G2).) This implies that the second derivatives of Ag vanishes
at the origin. The claim of the lemma for the case |α| ≤ 2 then follows immediately.

In the next section, we consider the action of the operator Lg maily on functions sup-
ported on D(~1/2−θ) (or sometimes on D(2~1/2−θ). For this reason, we take the C∞function

χ~ : R2d → [0, 1], χ~(x) = χ(~−1/2+θx/2) (5.14)

with letting χ be a C∞function satisfying (3.55) and consider the operator

Lg ◦M (χ~) : C∞(R2d)→ C∞0 (R2d)

instead of the operator Lg itself. The next lemma is the main ingredient of this subsection,
which tells roughly that the operator Lg for g ∈ G~ is close to the identity, under the effect
of truncation by the operator Y~.
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Proposition 5.12. There exist constants C > 0 and ε > 0 such that, for any ~ > 0 and
g ∈ G~, we have

‖Y~ ◦ (Lg − Id) ◦M (χ~)‖Hr~(R2d) < C~ε and ‖(Lg − Id) ◦ Y~ ◦M (χ~)‖Hr~(R2d) < C~ε.

Proof. The proof below is elementary but a little demanding. We will use the following
estimate which follows from Lemma 5.11 and the conditions in Setting II on G~: For any
x ∈ R2d with |x| ≤ ~1/2−θ, it holds

|Ag(x)−Ag(0)| ≤ C|x|3 < C~3(1/2−θ), ‖DAg(x)‖ ≤ C|x|2 < C~2(1/2−θ),

‖Dg(x)− Id‖ ≤ C~β(1/2−θ) and |g(x)− x| ≤ C|x|1+β < C~(1+β)(1/2−θ)

with C a constant independent of ~ > 0 and g ∈ G~. Also we note that, if (x, ξ) ∈ suppY~,
we have |(x, ξ)| ≤ 2~1/2−2θ and, in particular, |ξ| ≤ 2~1/2−2θ.

From Corollary 4.16, the first claim follows if we show

‖M (Y~) ◦ Bx ◦ (Lg − Id) ◦M (χ~) ◦ B∗x‖L2(R2d⊕R2d,(Wr
~ )2) ≤ C~ε. (5.15)

Recalling the definition of the operators Bx and B∗x in (4.10), we write the operator Bx ◦
(Lg − Id) ◦M (χ~) ◦ B∗x as an integral operator of the form

(Bx ◦ (Lg − Id) ◦M (χ~) ◦ B∗xu)(x, ξ) =

∫
K(2−1/2x, 21/2ξ; 2−1/2x′, 21/2ξ′)u(x′, ξ′)

dx′dξ′

(2π~)2d
,

where

K(x,ξ;x′, ξ′) = a2
D

∫
e(i/~)ξ((x/2)−y)+(i/~)ξ′(y−(x′/2)) · e−|y−x|2/(2~)−|y−x′|2/(2~) · χ~(y) · k(x, ξ, x′, ξ′, y) dy

and
k(x, ξ, x′, ξ′, y) = e(i/~)Ag(g(y))−(i/~)ξ(g(y)−y)−(|g(y)−x|2−|y−x|2)/(2~) − 1.

(The factor 2±1 appears because of the change of variable σ̃ in the definition of Bx and
Bx∗ . But this is not important in any sense.) Applying integration by parts to the integral
above for ν times, we see

K(x, ξ;x′, ξ′)

= a2
D

∫
Lν(e(i/~)ξ((x/2)−y)+(i/~)ξ′(y−(x′/2))) · e−|y−x|2/(2~)−|y−x′|2/(2~)χ~(y)k(x, ξ, x′, ξ′, y) dy

= a2
D

∫
e(i/~)ξ((x/2)−y)+(i/~)ξ′(y−(x′/2)) · (tL)ν(e−|y−x|

2/(2~)−|y−x′|2/(2~)χ~(y)k(x, ξ, x′, ξ′, y)) dy

where L is the differential operators defined by

Lu =
1

1 + ~−1|ξ − ξ′|2
·

(
1 + i

2d∑
j=1

(ξj − ξ′j)
∂

∂yj

)
u
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and tL is its transpose:

tLu =

(
1− i

2d∑
j=1

(ξj − ξ′j)
∂

∂yj

)(
1

1 + ~−1|ξ − ξ′|2
· u
)
.

Using the estimates noted in the beginning in the resulting terms, we can get the estimate

|K(x, ξ;x′, ξ′)| ≤ Cν · ~ε · 〈~−1/2|(x, ξ)− (x′, ξ′)|〉−ν for (x, ξ) ∈ suppY~

for a small constant ε > 0 and arbitrarily large ν > 0, where Cν is a constant independent
of ~.
Remark 5.13. The result of integration by part is not very simple. But we have only to
consider the order about the parameter ~, since we allow the constant Cν to depend on the
derivatives of g. Hence it is not too difficult to do. Just note that θ satisfies the condition
(5.1).

This estimate for sufficiently large ν and (4.26) yields the required estimate. The second
claim is proved in the parallel manner.

As we noted in the beginning of this section, the operator Lg◦M (χ~) may not extends to
a bounded operator from Hr

~(R2d) to itself, even though g ∈ G~ is very close to the identity
map. The next proposition (and hyperbolicity of f) will compensate this inconvenience.

Proposition 5.14. For any g ∈ G~, we have

‖Lg ◦M (χ~)‖Hr,+~ (R2d)→Hr~(R2d) ≤ C0 and ‖Lg ◦M (χ~)‖Hr~(R2d)→Hr,−~ (R2d) ≤ C0 (5.16)

for sufficiently small ~ > 0, where C0 > 1 is a constant that depend only on n, r, d, θ
and the choice of the escape functions W and W± in subsection 3.3. (In particular, C0 is
independent of the choice of the family G~.)

The conclusion of this proposition is quite natural in view of the facts that

Wr
~ ◦G(x, ξ) · χ~(x) ≤ Wr,+

~ (x, ξ), Wr,−
~ ◦G(x, ξ) · χ~(x) ≤ Wr

~(x, ξ) (5.17)

for the canonical map

G : R2d ⊕ R2d → R2d ⊕ R2d, G(x, ξ) = (g(x), t(Dg(x))−1(ξ))

associated to the operator Lg. (Recall the argument in Subsection 2.2.) And it can be
proved in essentially same ways as the argument given in the papers [5] and [17], where
Littlewood-Paley theory and the theory of pesudodifferential operator is used respectively.
Below we give a proof below by interpreting the argument in [5] in terms of the Bargmann
transform. (But the reader may skip it because this is not a very essential part of our
argument and may be proved in various ways. )
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Proof. We decompose the operator Bx ◦ Lg ◦M (χ~) ◦ B∗x as

Bx ◦ Lg ◦M (χ~) ◦ B∗x = M (1− Y~) ◦ Bx ◦ Lg ◦M (χ~) ◦ B∗x
+ M (Y~) ◦ Bx ◦ (Lg − Id) ◦M (χ~) ◦ B∗x
+ M (1− Y~) ◦ Bx ◦M (χ~) ◦ B∗x.

If we apply Lemma 5.12 (or more precisely (5.15) in the proof) to the second term and
Lemma 5.8 to the third term, we see that these two operators are bounded operators on
Hr

~(R2d) and the operator norms are bounded by an absolute constant. Hence, in order to
prove the former claim of the theorem, it suffices to show that the operator norm of

M (1− Y~) ◦ Bx ◦ Lg ◦M (χ~) ◦ B∗x : L2(R2d, (Wr,+
~ )2)→ L2(R2d, (Wr

~)2) (5.18)

is bounded by a constant C0 with the same property as stated in the proposition. (The
latter claim is proved in the parallel manner.) Below we give a proof9.

We take and fix 1/3 < a+ < b+ < a < b < 1/2. Then we introduce a C∞partition of
unity {ψn}n∈Z (resp. {ψ+

n }n∈Z) on R2d with the following properties:

• The function ψn (resp. ψ+
n ) is supported on the disk |ξ| ≤ 1 if n = 0 and on the

annulus 2|n|−1 ≤ |ξ| ≤ 2|n|+1 otherwise.

• The function ψn is supported on the cone C+(b) if n > 0 and on the cone C−(1/a) =
R2d \C+(a) if n < 0. Respectively, the function ψ+

n is supported on the cone C+(b+)
if n > 0 and on the cone C−(1/a+) = R2d \C+(a+) if n < 0.

• The normalized functions ξ 7→ ψn(2nξ) (resp. ξ 7→ ψ+
n (2nξ)) are uniformly bounded

in C∞ norm.

For each ~ > 0, we define functions ψn and ψ+
n on T ∗R2d = R2d ⊕ R2d for n ∈ Z by

ψn,~(x, ξ) = ψn(~−1/2ζ) resp. ψ+
n,~(x, ξ) = ψ+

n (~−1/2ζ)

where ζ = (ζp, ζq) is the coordinates introduced in Proposition 2.13. Then, from the
definition of the partition of unities above, we have

‖Wr
~ · u‖2

L2 ≤ C0

∞∑
n=−∞

22rn‖ψn,~ · u‖L2

and also
∞∑

n=−∞

22rn‖ψ+
n,~ · u‖

2
L2 ≤ C0‖Wr,+

~ · u‖2
L2 (5.19)

9

Remark 5.15. The argument in the following part is a little sketchy. For the details, we refer the argument
in [6], though it will not be very necessary.
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for any function u(x, ξ) ∈ C∞(R2d⊕R2d). From the first inequality above and the definition
of the function Y~, we have

‖Wr
~ · (1− Y~) · Bx ◦ Lg ◦M (χ~) ◦ B∗xu‖L2

≤ C0

∑
|n|≥~−θ

∞∑
n′=−∞

22rn‖ψn,~ · Bx ◦ Lg ◦M (χ~) ◦ B∗x(ψ+
n′,~ · u)‖2

L2 .

For the summands on the right hand side, we observe that

• From Lemma 3.2, the L2-operator norm of Bx ◦ Lg ◦M (χ~) ◦ B∗x is bounded by 1, so

‖ψn,~ · Bx ◦ Lg ◦M (χ~) ◦ B∗x(ψ+
n′,~ · u)‖2

L2 ≤ ‖ψ+
n′,~ · u‖

2
L2 .

• If either |n| − |n′| ≥ 3 or n < 0 < n′, we have

dist(Dgtx(suppψn,~), suppψn′,~) > C0 · ~1/22max{n,n′} for x ∈ suppχ~

and, by crude estimate using integration by parts, we get the estimate

‖ψn,~ · Bx ◦ Lg ◦M (χ~) ◦ B∗x(ψ+
n,~ · u)‖2

L2 ≤ Cν(g) · 2−ν·max{n,n′}‖ψ+
n′,~ · u‖

2
L2

where the constant Cν(g) may depend on g and ν but not on ~. Otherwise we have
n < n+ 3 and 2rn ≤ C02rn

′ .

From these observations and (5.19), we can conclude the required estimate:

‖Wr
~ · (1− Y~) · Bx ◦ Lg ◦M (χ~) ◦ B∗xu‖2

L2 ≤ C0

∞∑
n′=−∞

22rn‖ψ+
n′ · u‖

2
L2 ≤ C0‖W~u‖2

L2

for sufficiently small ~ > 0.

The next lemma will be used in the key step in the proof of Theorem 1.18.

Lemma 5.16. There exist constants ε > 0 and C > 0 independent of ~ such that the
following holds: Let ψ ∈X~ be supported on the disk D(2~1/2−θ) and let g ∈ G~, 0 ≤ k ≤ n,
then it holds ∥∥∥(Lg − Id) ◦M (ψ) ◦ t(k)

~

∥∥∥
Hr~(R2d)

≤ C~ε

and ∥∥∥t(k)
~ ◦ (Lg − Id) ◦M (ψ)

∥∥∥
Hr~(R2d)

≤ C~ε.

Proof. We decompose the operator (Lg − Id) ◦M (ψ) ◦ t(k)
~ into

(Lg◦M (χ~)−Id)◦Y~◦M (ψ)◦t(k)
~ and (Lg◦M (χ~)−Id)◦(Id−Y~)◦M (ψ)◦t(k)

~ . (5.20)
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(Note that we have χ~ · ψ = ψ from the assumption.) The operator norm of the latter is
also bounded by C~ε from Lemma 5.9 and Proposition 5.14. We further write the former
part as

(Lg − Id) ◦M (ψ) ◦ Y~ ◦ t(k)
~ + (Lg ◦M (χ~)− Id) ◦ [Y~,M (ψ)] ◦ t(k)

~

Then we see that the operator norm of the former part is bounded by C~ε, from Lemma
5.12, Lemma 4.11, Lemma 5.8 and Proposition 5.14. Thus we obtain the former claim.
The latter claim can be proved in the parallel manner.

Corollary 5.17. There exist constants ε > 0 and C > 0 independent of ~ such that, for
any ψ ∈X~ and g ∈ G~ it holds∥∥∥[Lg ◦M (ψ), t

(k)
~ ]
∥∥∥
Hr~(R2d)→Hr~(R2d)

≤ C~ε for 0 ≤ k ≤ n

and also ∥∥[Lg ◦M (ψ), t̃~]
∥∥
Hr~(R2d)

≤ C~ε.

Proof. The former claim is an immediate consequence of the last lemma and Lemma 5.7.
The latter claim then follows from the relation t̃~ = Id−

∑n
k=0 t

(k)
~ .

5.4 The multiplication operators and the rough Laplacian on R2d

We close this section by the following lemma on the Euclidean rough Laplacian ∆~ con-
sidered in Subsection 4.6.

Lemma 5.18. For any ψ ∈X~, we have

‖[M (ψ),∆~]‖(D(∆~),‖·‖∆~ )→L2(R2d) ≤ C~θ

and ∥∥∥[M (ψ), q
(k)
~

]∥∥∥
L2(R2d)

≤ C~θ

where C is a constant independent of ψ ∈X~ and ~.
Proof. The first claim can be checked easily from the expression of ∆~ given in Proposition
2.22. For the second claim, we can just follow the argument in the proof of Lemma 5.6,
replacing t(k)

~ by q(k)
~ . (The proof is simpler actually.)

6 Proofs of the main theorems
In this section, we give the proofs of the main theorems of this paper, Theorem 1.18 and
Theorem 2.21. We henceforth consider the setting assumed in Section 1. In particular
λ > 1 is the constant in the condition (1.2) in the definition (Definition 1.1) that f is an
Anosov diffeomorphism. Note that, by replacing f by its iterate if necessary, we may and
do suppose that λ is a large number. Below we write C0 for positive constants independent
of f , V and ~ and write C for those independent of ~ but may (or may not) dependent on
f and V . Also we assume (5.6) for the choice of r.
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6.1 Local charts onM and local trivialization of the bundle P →M

As in the last section, we fix a constant 0 < θ < β/8 with 0 < β < 1 being the Hölder
exponent of the stable and unstable sub-bundle given in (1.3). Below we take an atlas
on M depending on the semiclassical parameter ~ = 1

2πN
> 0 so that it consists of charts

of diameter of order ~ 1
2
−θ. We consider R2d as a linear symplectic space with coordinates

x = (q, p) =
(
q1, . . . qd, p1, . . . pd

)
and symplectic form ω =

∑d
i=1 dq

i ∧ dpi. The open ball
of radius c > 0 is denoted by D(c) := {x ∈ R2d | |x| < c}.

Proposition 6.1. “Local chart and trivialization”. For each ~ = 1
2πN

> 0, there exist
a set of distinct points

P~ = {mi ∈M | 1 ≤ i ≤ I~}

and a coordinate map associated to each point mi ∈P~,

κi = κi,~ : D (c) ⊂ R2d →M, 1 ≤ i ≤ I~

with c > 0 a constant independent of ~, so that the following conditions hold:

(1) κi (0) = mi.

(2) The differential of κi at the origin 0 maps the subspaces Rd ⊕ {0} and {0} ⊕Rd (or,
the q- and p- axis) isometrically onto the unstable and stable subspace respectively:

(Dκi)0

(
Rd ⊕ {0}

)
= Eu (mi) , (Dκi)0

(
{0} ⊕ Rd

)
= Es (mi) .

(3) The open subsets Ui := κi

(
D
(

3~ 1
2
−θ
))
⊂ M for 1 ≤ i ≤ I~ cover the manifold M .

The cardinality I~ of the set P~ is bounded by C0 · ~−d(1−2θ) and we have

max
1≤i≤I~

] {1 ≤ j ≤ I~ | U ∩ Uj 6= ∅} ≤ C0 (6.1)

with C0 a constant independent of ~.

(4) For every 1 ≤ i ≤ I~, κ∗i (ω) =
∑

i dq
i ∧ dpi on Ui and with an appropriate choice of

a section τi : Ui → P , the statement of Proposition 2.13 holds true.

(5) If Ui ∩ Uj 6= ∅, we denote the coordinate change transformation by κj,i := κ−1
j ◦ κi :

D (c)→ R2d. Then there exists symplectic and isometric affine map Aj,i : R2d → R2d

that belongs to A (see Definition 4.12) such that gj,i := Aj,i ◦ κj,i satisfies

gj,i (0) = 0, ‖Dgj,i(0)− Id‖C1 ≤ C1 · ~β(
1
2
−θ) and ‖gj,i‖Cs < Cs for s ≥ 2

where Cs for s ≥ 1 are constant independent of ~ and 1 ≤ i, j ≤ I~.
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(6) There exists a family of C∞functions {ψi : R2d → [0, 1]}I~i=1 which is supported on the
disk D(~1/2−θ) and gives a partition of unity on M :

I~∑
i=1

ψi ◦ κ−1
i ≡ 1 on M. (6.2)

The set of functions ψi satisfies the conditions (C1) and (C2) in Subsection 5.1.

Remark 6.2. Since the vector unstable and stable sub-bundles, Eu and Es may be non-
trivial in general, we need to put the affine isometries Aj,i ∈ A in the condition (5) above.

Proof. For each point m ∈ M, we first define κm as the composition of the exponential
mapping (in Riemannian geometry) expm : TmM → M and a linear map R2d → TmM so
that the condition 1 (with κi = κm) holds true. Then, using Darboux theorem, we can
deform such κm into a symplectic map (condition 4) with keeping the condition 1. (See
Lemma 3.14 in [29, p.94] and its proof). We may then take a section τ as in the proof of
Proposition 2.13 so that the condition 4 (with κi = κm) holds. It is then clear that, if we
take the points in P~ appropriately, the conditions 1 to 3 hold true with setting κi := κmi .
The condition 5 and 6 are also obvious from this construction.

In the following subsections, we fix the set P~, the coordinate maps κi, the isometric
affine maps Aj,i ∈ A and the functions ψi taken in Proposition 6.1 above.

6.2 The prequantum transfer operator decomposed on local charts

To proceed, we express the transfer operator F̂~ as the totality of operators between local
charts. First we discuss about an expression of an equivariant section u ∈ C∞N (P ) as a set
of functions on local charts.

Definition 6.3. Let

E~ :=

I~⊕
i=1

C∞0 (D(~1/2−θ)).

Let I~ : C∞N (P )→ E be the operator that associates each equivariant function u ∈ C∞N (P )
a set of functions I~(u) = (ui)

I~
i=1 ∈ E~ on local charts defined by the relation

ui (x) = ψi (x) · u (τi (κi (x))) for 1 ≤ i ≤ I~. (6.3)

The inverse operation is given as follows.

Proposition 6.4. Let I∗~ :
⊕I~

i=1 S(R2d)→ C∞N (P ) be the operator defined by

(
I∗~
(
(ui)

I~
i=1

))
(p) =

I~∑
i=1

eiN ·αi(p) · χ~(x) · ui(x) (6.4)
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where χ~ is the function defined in (5.14), and x = κ−1
i (π(p)) and αi(p) is the real number

such that p = eiαi(p) · τi(π(p)). This operator reconstructs u ∈ C∞N (P ) from its local data
ui = (I~(u))i :

I∗~ ◦ I~ = IdC∞N (P ). (6.5)

Consequently, I~ ◦ I∗~ : E~ → E~ is a projection onto the image of I~.

Proof. Let w := (I∗~ ◦ I~) (v). From the expressions of I~ and I∗~ and equivariance of v, we
compute

w (p) =

I~∑
i=1

eiNαi(p) (χ~(x) · ψi (x) · v (τi (κi (x)))) =

I~∑
i=1

ψi (x) v (p) = v (p) .

Finally I~ ◦ I∗~ is a projector since (I~ ◦ I∗~)
2 = I~ ◦ (I∗~ ◦ I~) ◦ I∗~ = I~ ◦ I∗~.

Definition 6.5. We define the lift of the prequantum transfer operator F̂~ with respect to
I~ as

F~ := I~ ◦ F̂N ◦ I∗~ :

I~⊕
i=1

S(R2d)→ E~ ⊂
I~⊕
i=1

S(R2d). (6.6)

The operator F~ is nothing but the prequantum transfer operator F̂N : C∞N (P ) →
C∞N (P ) viewed through the local charts and local trivialization that we have chosen. This
is a matrix of operators that describe transition between local data that F̂~ induces. The
next proposition gives it in a concrete form.

Definition 6.6. We write i→ j for 0 ≤ i, j ≤ I~ if and only if f (Ui)
⋂
Uj 6= ∅.

Clearly we have
max

1≤i≤I~
#{1 ≤ j ≤ I~ | i→ j} ≤ C(f) (6.7)

for some constant C(f) which may depend on f but not on ~.

Proposition 6.7. The operator F~ is written as

F~((vi)i∈I~) =

(
I~∑
i=1

Fj,i(vi)

)
j∈I~

where the component
Fj,i : S(R2d)→ C∞0 (D(~1/2−θ))

is defined by Fj,i ≡ 0 if i 6→ j and, otherwise, by

Fj,i(vi) = Lfj,i
(
eV ◦f◦κi · ψj,i · χ~ · vi

)
where we set

fj,i := κ−1
j ◦ f ◦ κi, (6.8)

ψj,i (x) := ψj ◦ fj,i (6.9)

and Lfj,i is the Euclidean prequantum transfer operator defined in (2.7) with g = fj,i.
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Proof. The expression of the operator F̂N in local coordinates has been given in Proposition
2.3. Taking the multiplication by functions ψi, 1 ≤ i ≤ I~, in the definitions of the operators
I~ and I~

∗ into account, we obtain the expression of Fj,i as above.

We define
Vj = max{V (m) | m ∈ Uj} for 1 ≤ j ≤ I~.

Since the function V is almost constant on each Uj, we have

Lemma 6.8. If we set

X~ ={ψj,i·χ~ | 1 ≤ i, j ≤ I~, i→ j} (resp. X~ ={eV ◦f◦κi ·ψj,i·χ~ | 1 ≤ i, j ≤ I~, i→ j}),

it satisfies the conditions (C1) and (C2) in Subsection 5.1. (The constants C and Cα will
depend on f and V though not on ~.) For 1 ≤ i, j ≤ I~ such that i→ j, we have∥∥M (eV ◦f◦κi · ψj,i · χ~)− eVj ·M (ψj,i · χ~)

∥∥
Hr~(R2d)

≤ C(f, V ) · ~θ

for some constant C(f, V ) independent of ~.

Proof. The former claim should be obvious from the choice of the coordinates κi and the
functions ψi for i ∈ I~. We can get the latter claim if we apply Corollary 5.3 to the
multiplication operators by eV ◦f◦κi · ψj,i · χ~ − eVj · ψj,i · χ~ = (eV ◦f◦κi − eVj) · ψj,i · χ~.

6.3 The anisotropic Sobolev spaces

Definition 6.9. The Anisotropic Sobolev space Hr
~ (P ) is defined as the completion of

C∞N (P ) with respect to the norm

‖u‖Hr~ :=

(
I~∑
i=1

‖ui‖2
Hr~(R2d)

)1/2

for u ∈ C∞N (P ) ,

where ui = (I~ (u))i ∈ C∞0
(
D(~1/2−θ)

)
are the local data defined in (6.3) and ‖ui‖2

Hr~(R2d)

is the anisotropic Sobolev norm on C∞0
(
R2d
)
in Definition 4.7. We define the Hilbert

spaces Hr,±
~ (P ) in the parallel manner, replacing ‖ui‖2

Hr~(R2d)
by the norms ‖ui‖2

Hr,±~ (R2d)

respectively.

Remark 6.10. (1) By definition, the operation I~ extends uniquely to an isometric injection

I~ : Hr
~(P )→

I~⊕
i=1

Hr
~(D(~1/2−θ)) ⊂

I~⊕
i=1

Hr
~(R2d)

where Hr
~(D(~1/2−θ)) denotes the subspace that consists of elements supported on the disk

D(~1/2−θ).
(2) From (6.5), we have I∗~ ◦ I~ = Id on Hr

~ (P ) and also on Hr,±
~ (P ).
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Lemma 6.11. The projector I~ ◦ I∗~ : E~ → E~ extends to bounded operators

I~ ◦ I∗~ :

I~⊕
i=1

Hr,+
~ (R2d)→

I~⊕
i=1

Hr
~(D(~1/2−θ))

and

I~ ◦ I∗~ :

I~⊕
i=1

Hr
~(R2d)→

I~⊕
i=1

Hr,−
~ (D(~1/2−θ)).

Further the operator norms of these projectors are bounded by a constant independent of ~.

Remark 6.12. The operator I~ ◦ I∗~ will not be a bounded operator from
⊕I~

i=1Hr
~(R2d) to

itself.

Proof. To prove the claim, it is enough to apply Proposition 5.14 and Corollary 5.3 to each
component of I~ ◦ I∗~ with setting

G~ = {Aj,i ◦ κj,i | 1 ≤ i, j ≤ I~, Ui ∩ Uj 6= ∅} (6.10)

and
X~ = {ψj ◦ κj,i · χ~ | 1 ≤ i, j ≤ I~, Ui ∩ Uj 6= ∅},

and use (6.1). (See also the remark below.)

Remark 6.13. The affine transformation Aj,i in (6.10) is that appeared in the choice of
local coordinates in Proposition 6.1. Note that the prequantum transfer operator LAj,i
is a unitary operator on Hr

~(R2d) (and on Hr,±
~ (R2d)), by Lemma 4.13, and hence we

may neglect the post- or pre-composition of LAij when we consider the operator norm on
Hr

~(R2d) (and on Hr,±
~ (R2d)). For the later argument, we also note that, from Lemma 4.13,

the the prequantum transfer operator LAj,i commutes with the projection operators t(k)
~

defined in (4.24).
For the operator F̂~ on the Hilbert space Hr

~(P ), we confirm the following fact at this
point, though we will give a more detailed description later.

Lemma 6.14. The operator F~ defined in (6.6) extends uniquely to the bounded operator

F~ :

I~⊕
i=1

Hr
~(R2d)→

I~⊕
i=1

Hr
~(D(~1/2−θ)) (6.11)

and the operator norm is bounded by a constant independent of ~. Consequently the same
result holds for the prequantum transfer operator F̂~ : Hr

~ (P )→ Hr
~ (P ).

Proof. From (6.7), it is enough to prove that the operators Fj,i for 1 ≤ i, j ≤ I~ with i→ j
are bounded operators on Hr

~(R2d) and that the operator norms are bounded by a constant
independent of ~. To see this, we express the diffeomorphism fj,i in (6.8) as a composition

fj,i = aj,i ◦ gj,i ◦Bj,i (6.12)

where
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• aj,i : R2d → R2d is a translation on R2d,

• Bj,i : R2d → R2d is a linear map of the form (4.16), i.e. Bj,i =

(
A 0
0 tA−1

)
, with A

an expanding map such that ‖A−1‖ ≤ 1/λ,

• gj,i is a diffeomorphism such that G~ = {gj,i}1≤i,j≤I~ satisfies the condition (G1), (G2)
and (G3) in Subsection 5.3.

This is possible because, if we let Bj,i be the linearization of fj,i at the origin and let aj,i ∈ A
be the translation such that aj,i(fj,i(0)) = 0, then aj,i, Bj,i and gj,i := a−1

j,i ◦fj,i◦B−1
j,i satisfies

the required conditions.
Remark 6.15. This decomposition of the diffeomorphism fj,i will be used later in the proof
of Proposition 6.17 where we study more detailed properties of fj,i.

From the expression (6.12) of fj,i above, the operator Fj,i is expressed as the composition

Fj,i = L(0) ◦ L(1) ◦ L(2) (6.13)

where L(0) := Laj,i and L(2) := LBj,i are the Euclidean prequantum transfer operators (2.7)
for the diffeomorphism aij and Bij respectively, while L(1) is the operator of the form

L(1)u = Lgj,i
((

(eV ◦f◦κi · ψj,i · χ~) ◦B−1
j,i

)
· u
)

with ψj,i the function defined in (6.9). Note that the functions

(eV ◦f◦κi · ψj,i · χ~) ◦B−1
j,i = (eV ◦f◦κi · χ~) ◦B−1

j,i · (ψj ◦ aj,i ◦ gj,i)

is supported on the disk D(2~1/2−θ), provided that ~ is sufficiently small. Hence we may
write the operator L(1) as

L(1)u = Lgj,i ◦M (χ~)

((
(eV ◦f◦κi · ψj,i · χ~) ◦B−1

j,i

)
· u
)
.

From Lemma 4.13, Laj,i : Hr
~(R2d)→ Hr

~(R2d) is a unitary operator. From Lemma 4.10,
the operator LBj,i : Hr

~(R2d) → Hr,+
~ (R2d) is bounded and the operator norm is bounded

by a constant independent of ~. From Lemma 5.14 and Corollary 5.2, so is the operator
L(1) : Hr,+

~ (R2d)→ Hr
~(R2d), because

X~ = {(eV ◦f◦κi · ψj,i · χ~) ◦B−1
j,i }1≤i,j≤I~ , G~ = {gj,i}1≤i,j≤I~ (6.14)

satisfy respectively the conditions (C1), (C2) in Section 5.1 and (G1), (G2), (G3) in Section
5.3.
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6.4 The main propositions

In this subsection, we give two key propositions which will give Theorem 1.18 as a conse-
quence. To state the propositions, we introduce the projection operators

t
(k)
~ :

I~⊕
i=1

Hr
~(R2d)→

I~⊕
i=1

Hr
~(R2d), t

(k)
~ ((ui)

I~
i=1) = (t

(k)
~ (ui))

I~
i=1,

for 0 ≤ k ≤ n and

t̃~ :

I~⊕
i=1

Hr
~(R2d)→

I~⊕
i=1

Hr
~(R2d), t̃~((ui)

I~
i=1) = (t̃~(ui))

I~
i=1,

which are just applications of the projection operators t(k)
~ and t̃~ introduced in (4.24) and

(4.25) to each component. For brevity of notation, we set

t
(n+1)
~ = t̃~. (6.15)

Then the set of operators {t(k)
~ }

n+1
k=0 are complete sets of mutually commuting projection

operators .
The following Proposition shows that the projectors t

(k)
~ almost commute with the

projector (I~ ◦ I∗~).

Proposition 6.16. There are constants ε > 0 and C > 0, independent of ~, such that the
following holds: We have that∥∥∥t(k)

~ ◦ (I~ ◦ I∗~)
∥∥∥⊕I~

i=1H
r,−
~ (R2d)→

⊕I~
i=1H

r,+
~ (R2d)

< C, and

∥∥∥(I~ ◦ I∗~) ◦ t
(k)
~

∥∥∥⊕I~
i=1H

r,−
~ (R2d)→

⊕I~
i=1H

r,+
~ (R2d)

< C

for 0 ≤ k ≤ n. (Hence the same statement holds as operators on
⊕I~

i=1Hr
~(R2d).) Also we

have, for the norm of the commutators, that∥∥∥[t(k)
~ , (I~ ◦ I∗~)

]∥∥∥⊕I~
i=1H

r,−
~ (R2d)→

⊕I~
i=1H

r,+
~ (R2d)

≤ C~ε (6.16)

for 0 ≤ k ≤ n.

Proof. From Lemma 6.11, I~◦I∗~ are bounded as operators from
⊕I~

i=1H
r,+
~ (R2d) to

⊕I~
i=1Hr

~(R2d)

(resp. from
⊕I~

i=1Hr
~(R2d) to

⊕I~
i=1H

r,−
~ (R2d)) and the operator norm is bounded by a con-

stant independent of ~. From Lemma 4.11, so are the operators t(k) as operators from⊕I~
i=1H

r,−
~ (R2d) to

⊕I~
i=1Hr

~(R2d) (resp. from
⊕I~

i=1Hr
~(R2d) to

⊕I~
i=1H

r,+
~ (R2d)). Hence
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we obtain the first two inequalities. To prove (6.16), we take u = (ui) ∈
⊕I~

i=1Hr
~(R2d)

arbitrarily. From the definition, we have

t(k) ◦ (I~ ◦ I∗~)(u) =

 ∑
i:Ui∩Uj 6=∅

t
(k)
~ ◦M (ψj) ◦ Lκj,i ◦M (χ~)(ui)

I~

j=1

and

(I~ ◦ I∗~) ◦ t(k)(u) =

 ∑
i:Ui∩Uj 6=∅

M (χj) ◦ Lκj,i ◦M (χ~) ◦ t(k)
~ (ui)

I~

j=1

.

Applying Corollary 5.17 and Corollary 5.7 to each components with the setting (6.10) and
recalling Remark 6.13, we obtain (6.16).

The next Proposition stated for F~ is now very close to Theorem 1.18.

Proposition 6.17. There are constants ε > 0 and C > 0 independent of ~ such that∥∥∥[F~, t
(k)
~

]∥∥∥⊕I~
i=1H

r,−
~ (R2d)→

⊕I~
i=1Hr~(R2d)

≤ C~ε for 1 ≤ k ≤ n+ 1. (6.17)

Further there exists a constant C0 > 0, which is independent of f , V and ~, such that

(1) For 0 ≤ k ≤ n+ 1, it holds∥∥∥t(k)
~ ◦ F~ ◦ t(k)

~

∥∥∥⊕I~
i=1Hr~(R2d)→

⊕I~
i=1H

r,+
~ (R2d)

≤ C0 sup
(
|eV |‖Df |Eu‖−kmin| detDf |Eu|−1/2

)
(2) If u ∈

⊕I~
i=1Hr

~(R2d) satisfies I~ ◦ I∗~(u) = u and

‖u− (I~ ◦ I∗~) ◦ t
(k)
~ (u)‖Hr~ < ‖u‖Hr~/2 for some 0 ≤ k ≤ n,

then we have

‖t(k)
~ ◦ F~ ◦ t(k)

~ (u)‖Hr~ ≥ C−1
0 · inf

(
|eV |‖Df |Eu‖−kmax| detDf |Eu|−1/2

)
· ‖u‖Hr~ .

Proof. We recall the argument in the proof of Lemma 6.14, in particular, the expression
(6.13) of the operator Fij. Then we observe that, for each i, j such that i→ j,

(i) From Proposition 4.9 and Lemma 4.13, the projection operators t(k)
~ for 0 ≤ k ≤ n and

t̃~ commute with the operator L(0) and L(2) (defined in (6.13)).

(ii) From Lemma 4.13, the operator L(0) is a unitary operator on Hr
~(R2d) and also on

Hr,±
~ (R2d).
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(iii) From Proposition 5.12, the operator L(1) extends to a bounded operator fromHr,+
~ (R2d)

to Hr
~(R2d) (resp. from Hr

~(R2d) to Hr,−
~ (R2d)) and the operator norm is bounded by

a constant C0, provided that ~ is sufficiently small.

(iv) Applying Proposition 4.9 to L(2), we see that the operator L(2) is a bounded operator
on Hr

~(R2d) and that

C−1
0 ‖Bj,i|E+‖−k · | detBj,i|E+|−1/2 ≤

‖L(2)u‖Hr~(R2d)

‖u‖Hr~(R2d)

≤ C0‖B−1
j,i |E+‖k · | detBj,i|E+|−1/2

for 0 6= u ∈ H ′k := Im t
(k)
~ and for 0 ≤ k ≤ n, where E+ = R2d ⊕ {0}. Further we

have
‖L(2)u‖Hr~(R2d) ≤ C0‖B−1

j,i |E+‖n+1| detBj,i|E+|−1/2‖u‖Hr~(R2d)

for u ∈ H̃ ′ := Im t̃~. (We used (5.6) to see that the former term in (??) dominates
the latter.)

(v) By simple comparison, we have

C−1
0 · inf

(
|eV |‖Df |Eu‖−kmax| detDf |Eu|−1/2

)
< eVj · ‖B−1

j,i |E+‖k · | detBj,i|E+|−1/2

< C0 sup
(
|eV |‖Df |Eu‖−kmin| detDf |Eu|−1/2

)
.

Here (and henceforth) C0 denotes positive constants independent of f , V and ~. For the
operator L(1), we further observe from the argument in Section 5 that

(vi) Applying Lemma 5.16 to the setting (6.14) and Lemma 6.8, we have

‖L(1) ◦ t(k)
~ − e

Vj ·M (ψj,i · χ~) ◦B−1
j,i ) ◦ t(k)

~ ‖Hr~(R2d) ≤ C~ε for 0 ≤ k ≤ n (6.18)

with some positive constants C and ε independent of ~.

(vii) Applying Corollary 5.17 to the setting (6.14), we have that

‖[L(1), t
(k)
~ ]‖Hr~(R2d) ≤ C~ε for 0 ≤ k ≤ n+ 1

with setting t(n+1)
~ = t̃~ for the case k = n + 1. This is true with Hr

~(R2d) replaced
by Hr,±

~ (R2d).

From the observations (i), (ii),(iv) and (vii) above, it follows

‖[Fj,i, t
(k)
~ ]‖Hr,−~ (R2d)→Hr,+~ (R2d) ≤ C~ε for 0 ≤ k ≤ n+ 1.

This, together with (6.7), implies (6.17).
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We prove Claim (1). Take u = (ui)
I~
i=1 ∈

⊕I~
i=1Hr

~(R2d) arbitrarily. Let 0 ≤ k ≤ n + 1
and set

vj,i = t
(k)
~ ◦ Fj,i ◦ t(k)

~ (ui), uj,i = ψj,i · χ~ · ui = (ψj ◦ fj,i) · χ~ · ui (6.19)

for 1 ≤ i, j ≤ I~ such that i → j. Suppose that 0 ≤ k ≤ n. Then, using the expression
(6.13) of Fj,i, we obtain, by (vi), (vii) and Corollary 5.7,

‖vj,i‖Hr~(R2d) = ‖t(k)
~ ◦ L

(1) ◦ L(2) ◦ t(k)
~ ui‖Hr~(R2d)

= eVj · ‖L(2) ◦M (ψj,i · χ~) ◦ t(k)
~ (ui)‖Hr~(R2d) +O(~ε‖ui‖Hr~(R2d))

= eVj · ‖L(2) ◦ t(k)
~ (uj,i)‖Hr~(R2d) +O(~ε · ‖ui‖Hr~(R2d))

where O(~ε · ‖ui‖Hr~(R2d)) denotes positive terms that are bounded by C~ε · ‖ui‖Hr~(R2d).
Hence, from (iv), we get the estimates

‖vj,i‖Hr~ ≤ C0 ·eVj · ‖Bj,i|E+‖−kmin · | detBj,i|E+|−1/2 · ‖t(k)
~ (uj,i)‖Hr~ +O(~ε · ‖ui‖Hr~(R2d)) (6.20)

and

‖vj,i‖Hr~ ≥ C−1
0 ·eVj ·‖Bj,i|E+‖−kmax ·| detBj,i|E+|−1/2 ·‖t(k)

~ (uj,i)‖Hr~−O(~ε ·‖ui‖Hr~(R2d)) (6.21)

for 0 ≤ k ≤ n.
Actually the upper estimate (6.21) can be strengthen by modifying the argument above,

so that it also holds for k = n+1. (Note that the argument above is not true for k = n+1,
because (6.18) does not hold in that case.) Indeed we can show that

‖vj,i‖Hr,+~
≤ C0e

Vj‖Bj,i|E+‖−kmin| detBj,i|E+ |−1/2 · ‖t(k)
~ (uj,i)‖Hr~ (6.22)

for all 0 ≤ k ≤ n+ 1. Let B0 : R2d → R2d be the linear map defined by

B0(x+, x−) = (λ0 · x+, λ
−1
0 · x−) for (x+, x−) ∈ R2d = Rd ⊕ Rd

where λ0 is an absolute constant greater than 9. (Say λ0 = 10.) Then we write the operator
Fij as

Fij = L(0) ◦ LB0 ◦ L̃(1) ◦ L̃(2) with setting L̃(1) = LB−1
0
◦ L(1) ◦ LB0 , L̃(2) = LB−1

0 ◦Bj,i
.

The operator LB0 is a bounded operator from Hr,−
~ (R2d) to Hr,+

~ (R2d), from Lemma 4.10.
The operator L̃(1) is a bounded operator from Hr

~(R2d) to Hr,−
~ (R2d) and the operator norm

is bounded by C0e
Vj , from Proposition 5.14. And the observation (iv) holds true with L(2)

replaced by L̃(2). Hence we obtain (6.22).
From (6.1) in the choice of the coordinate system {κi}I~i=1 (see Proposition 6.1) and

from Lemma 4.14, we have

‖F ◦ t(k)(u)‖2
Hr~(R2d) =

∥∥∥∥∥∥
(∑
i:i→j

vj,i

)
j

∥∥∥∥∥∥
2

Hr~

≤ C0

∑
i,j:i→j

‖vj,i‖2
Hr~(R2d) +O(~ε · ‖u‖2

Hr~
)
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and ∑
i,j:i→j

‖uj,i‖2
Hr~(R2d) ≤ C0‖u‖2

Hr~
.

Hence we obtain Claim 1 as a consequence of (6.22) and the observation (v).
Remark 6.18. Because of the inconvenient property of the inner product (·, ·)Hr~ , noted in
the paragraph just before Lemma 4.14, the two inequalities above are not an immediate
consequence of the estimate (6.1) on the intersection multiplicities of the supports of vj,i
and uj,i. We have to use Lemma 4.14.

We prove Claim (2). We continue the argument in the proof of Claim (1). Note that
we already have the estimate (6.21) for each vj,i. Below we show that the functions vj,i do
not cancel out too much when we sum up them with respect to i such that i → j. More
precisely, we prove the estimate∑

i,i′,j:i→j,i′→j,i6=i′
Re(vj,i, vj,i′)Hr~(R2d) ≥ −C~ε · ‖u‖2

Hr (6.23)

where
∑

i,i′,j:i→j,i′→j,i6=i′ denotes the sum over 1 ≤ i, i′, j ≤ I~ that satisfies i → j, i → j′

and i 6= i′. For 1 ≤ j ≤ I~, let I(j) be the set of integers 1 ≤ ` ≤ I~ such that there exists
1 ≤ `′, `′′ ≤ I~ satisfying U` ∩ U`′ 6= ∅, U`′ ∩ U`′′ 6= ∅ and `′ → j. Note that we have

max
1≤j≤I~

#I(j) ≤ C0. (6.24)

Consider 1 ≤ i, i′, j ≤ I~ that satisfies i→ j, i→ j′ and i 6= i′. We express vj,i as

vj,i = t
(k)
~ ◦M (eV ◦κj · ψj) ◦ Lfj,i ◦ t

(k)
~

ψi · ∑
`∈I(j)

Lκi,`(u`)

 .

We can of course write vj,i′ in the same form with i replaced by i′, but we rewrite it as

vj,i′ = t
(k)
~ ◦M (eV ◦κj · ψj) ◦ Lfj,i ◦ Lκi,i′ ◦ t

(k)
~

ψi′ · ∑
`∈I(j)

Lκi′,`(u`)

 .

We change the order of operators on the right hand sides above, estimating the commuta-
tors by Corollary 5.7 and Corollary 5.17 and noting the relation κi,i′ ◦ κi′,` = κi,`. Then we
get∥∥∥∥∥∥vj,i −M (eV ◦κi′ · ψj · ψi ◦ f−1

j,i ) ◦ Lfj,i ◦ t
(k)
~

∑
`∈I(j)

Lκi,`(u`)

∥∥∥∥∥∥
Hr~(R2d)

≤ C~ε
∑
`∈I(j)

‖u`‖Hr~(R2d)

and∥∥∥∥∥∥vj,i′ −M (eV ◦κi′ · ψj · ψi′ ◦ f−1
j,i′ ) ◦ Lfj,i ◦ t

(k)
~

∑
`∈I(j)

Lκi,`(u`)

∥∥∥∥∥∥
Hr~(R2d)

≤ C~ε
∑
`∈I(j)

‖u`‖Hr~(R2d).
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Therefore, by Corollary 5.4, we get

Re(vj,i, vj,i′) ≥

∥∥∥∥∥∥M
(
eV ◦κi′ψj ·

√
ψi ◦ f−1

j,i · ψi′ ◦ f−1
j,i′

)
◦ Lfj,i ◦ t

(k)
~

∑
`∈I(j)

Lκi,`(u`)

∥∥∥∥∥∥
2

Hr~(R2d)

− C~ε ·
∑
`∈I(j)

‖u`‖2
Hr~(R2d)

≥ −C~ε ·
∑
`∈I(j)

‖u`‖2
Hr~(R2d).

Summing up the both sides of the inequality above for all j, i, i′ with i → j, i′ → j and
i 6= i′ and using (6.24), we obtain (6.23).

From (6.23), (6.21) and the observation (iv), we get

‖F~ ◦ t(k)(u)‖2
Hr~

=
∑
j

∑
i,i′

<(vj,i, vj,i′)Hr~(R2d)

≥
∑
i,j:i→j

‖vj,i‖2
Hr~(R2d) − C~

ε‖u‖2
Hr~

≥
∑
i,j:i→j

C−1
0 eVj · ‖Bj,i|E+‖−kmax| detBj,i|E+ |−1/2‖t(k)

~ (uj,i)‖2
Hr~(R2d) − C~

ε‖u‖2
Hr~

≥ C−1
0 inf

(
|eV |‖Df |Eu‖−kmax| detDf |Eu|−1/2

) ∑
i,j:i→j

‖t(k)
~ (uj,i)‖2

Hr~(R2d) − C~
ε‖u‖2

Hr~
. (6.25)

To finish the proof, we compare
∑

i,j:i→j ‖t
(k)
~ (uj,i)‖2

Hr~(R2d)
and ‖u‖2

Hr~
. To this end, we use

the assumptions in Claim (2), of course. From the assumption and (6.16) in Proposition
6.16, we have

‖u‖Hr~ ≤ 2 · ‖(I~ ◦ I∗~) ◦ t
(k)
~ (u)‖Hr~ ≤ 2‖t(k)

~ ◦ (I~ ◦ I∗~)(u)‖Hr~ + C~ε‖u‖Hr~
= 2‖t(k)

~ (u)‖Hr~ + C~ε‖u‖Hr~ . (6.26)
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We also have, from Corollary 5.7, Lemma 4.14 and (6.1), that

‖t(k)
~ (u)‖2

Hr~
=
∑
i

‖t(k)
~ (ui)‖ =

∥∥∥∥∥∑
i

t
(k)
~ (
∑
j:i→j

uj,i)

∥∥∥∥∥
2

Hr~(R2d)

=
∑
i

∥∥∥∥∥t(k)
~

(∑
j:i→j

M (ψj,i · χ~)ui

)∥∥∥∥∥
2

Hr~(R2d)

≤
∑
i

∥∥∥∥∥∑
j:i→j

M (ψj,i · χ~) ◦ t(k)
~ (ui)

∥∥∥∥∥
2

Hr~(R2d)

+ C~ε‖u‖Hr~

≤ C0

∑
i,j:i→j

‖M (ψj,i · χ~) ◦ t(k)
~ (uj)‖2

Hr~(R2d) + C~ε‖u‖Hr~

C0

∑
i,j:i→j

‖t(k)
~ (uj,i)‖2

Hr~(R2d) + C~ε‖u‖Hr~ .

We conclude Claim (2) from these inequalities and (6.25).

6.5 Proof of Theorem 1.18

We finish the proof of Theorem 1.18. Actually we have almost done with the essential
part of the proof. Below we give a formal argument to complete it. Let us begin with
introducing the operators

τ̌
(k)
~ = I∗~ ◦ t

(k)
~ ◦ I~ : Hr

~(P )→ Hr
~(P )

for 0 ≤ k ≤ n + 1. From Proposition 6.16, these are bounded operators with operator
norms bounded by a constant C independent of ~, and satisfy

τ̌
(1)
~ + τ̌

(2)
~ + · · ·+ τ̌

(n)
~ + τ̌

(n+1)
~ = Id, (6.27)

‖τ̌ (k)
~ ◦ τ̌

(k)
~ − τ̌

(k)
~ ‖Hr~(P ) ≤ C~ε for 0 ≤ k ≤ n+ 1, and (6.28)

‖τ̌ (k) ◦ τ̌ (k′)‖Hr~(P ) ≤ C~ε for 0 ≤ k, k′ ≤ n+ 1with k 6= k′ (6.29)

for some constants ε > 0 and C > 0.
We modify the operators τ̌ (k)

~ , 0 ≤ k ≤ n + 1, to get the projection operators τ (k)
~ ,

0 ≤ k ≤ n, and τ̃~ = τ
(n+1)
~ in the statement of the theorem. The estimate (6.28) implies

that the spectral set of the operator τ̌ (k)
~ ◦ τ̌

(k)
~ − τ̌

(k)
~ is contained in the disk |z| ≤ C~ε. By

the spectral mapping theorem [Dunford-Schwartz, Part I, VII.3.11], the spectral set of the
operators τ̌ (k)

~ is contained in the union of two small disks around 0 and 1:

D(0, C~ε) ∪ D(1, C~ε) where D(z, r) := {w ∈ C | |w − x| < r}. (6.30)

For 0 ≤ k ≤ n + 1, let τ̂ (k)
~ be the spectral projector of τ̌ (k)

~ for the part of its spectral set
contained in D(1, C~ε). The next lemma should be easy to prove. (We provide a proof in
the appendix for completeness.)
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Lemma 6.19. ‖τ̌ (k)
~ − τ̂

(k)
~ ‖Hr~ ≤ C~ε for some C > 0 independent of ~.

Thus we get the set of projection operators τ̂ (k)
~ for 0 ≤ k ≤ n+ 1, which approximate

τ̌
(k)
~ . As consequences of (6.27) and (6.29), we have

‖Id− (τ̂
(0)
~ + τ̂

(1)
~ + · · ·+ τ̂

(n)
~ + τ̂

(n+1)
~ )‖Hr~(P ) ≤ C~ε (6.31)

and
‖τ̂ (k)

~ ◦ τ̂
(k′)
~ ‖Hr~(P ) ≤ C~ε if k 6= k′. (6.32)

We set Hk := Im τ̂
(k)
~ for 0 ≤ k ≤ n+ 1 and put H̃ = Hn+1. We have

Lemma 6.20. The Hilbert space Hr
~(P ) is decomposed into the direct sum:

Hr
~(P ) = H0 ⊕H1 ⊕H2 ⊕ · · · ⊕ Hn ⊕ H̃.

Proof. Since the sum τ̂
(0)
~ + τ̂

(1)
~ + · · ·+ τ̂

(n)
~ + τ̂

(n+1)
~ is invertible from (6.31), we can set

τ
(k)
~ := τ̂

(k)
~ (τ̂

(0)
~ + τ̂

(1)
~ + · · ·+ τ̂

(n)
~ + τ̂

(n+1)
~ )−1 for 0 ≤ k ≤ n+ 1.

We can express any v ∈ Hr
~(P ) as

v =
n+1∑
k=1

vk with vk := τ
(k)
~ (v) ∈ Hk.

Thus the subspaces Hk for 0 ≤ k ≤ n+ 1 span the whole space Hr
~(P ). Uniqueness of such

expression follows from (6.32).

From the argument in the proof above, the operator τ (k)
~ : Hr

~(P )→ Hk(P ) for 0 ≤ k ≤
n+ 1 are the projections to the subspace Hk along other subspaces. Clearly we have

‖τ (k)
~ − τ̂

(k)
~ ‖Hr~ ≤ C~ε and hence ‖τ (k)

~ − τ̌
(k)
~ ‖Hr~ ≤ C~ε. (6.33)

6.5.1 Proof of Claim (1)

We actually postpone the proof of Claim 1 to the last part of the next subsection, Subsection
6.6, where we show that the rank of τ (k)

~ for 0 ≤ k ≤ n is same as those of some spectral
projection operator for the rough Laplacian ∆~.

6.5.2 Proof of Claim (2)

For the proof of Claim (2)-(5), it is enough to prove the statements with τ (k)
~ replaced by

τ̌
(k)
~ because we have (6.33). The operator norm of τ̌ (k)

~ : Hr
~(P ) → Hr

~(P ) is bounded by
a constant independent of ~ from Proposition 6.16, as we noted in the beginning of this
subsection.
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6.5.3 Proof of Claim (3) and (4)

From the definition of the operators F~ and τ̌ (k)
~ , the following diagram commutes:

⊕I~
i=1Hr

~(R2d)
I~◦I∗~◦t

(k)
~ ◦F~◦t

(k′)
~−−−−−−−−−−−→

⊕I~
i=1Hr

~(R2d)xI~

xI~

Hr
~(P )

τ̌
(k)
~ ◦F̂~◦τ̌

(k′)
~−−−−−−−→ Hr

~(P )

Since the operator I~ in the vertical direction is an isometric embedding, we have

‖τ̌ (k)
~ ◦F̂~ ◦ τ̌ (k′)

~ ‖Hr~(P ) ≤ ‖I~ ◦ I∗~ ◦ t
(k)
~ ◦ F~ ◦ t(k′)

~ ‖Hr~ = ‖(I~ ◦ I∗~ ◦ t
(k)
~ ) ◦ (t

(k)
~ ◦ F~ ◦ t(k′)

~ )‖Hr~ .

From Proposition 6.16, we have∥∥∥I~ ◦ I∗~ ◦ t
(k)
~

∥∥∥
Hr~
≤ C0 for 0 ≤ k ≤ n

where C is a constant independent of ~, f and V . These estimates give also∥∥∥I~ ◦ I∗~ ◦ t
(n+1)
~

∥∥∥⊕I~
i=1H

r,+
~ (R2d)→

⊕I~
i=1Hr~(R2d)

≤ C0,

because of the relation t
(n+1)
~ = t̃~ = Id−

∑n
k=0 t

(k)
~ and Lemma 6.11. Now Claim (4) is an

immediate consequence of Proposition 6.17 (1). From Proposition 6.17 and Lemma 6.14,
we have

‖t(k)
~ ◦ F~ ◦ t(k′)

~ ‖Hr~ ≤ ‖t
(k)
~ ◦ t

(k′)
~ ◦ F~‖Hr~ + C~ε = C~ε

if k 6= k′ and hence Claim (3) follows.

6.5.4 Proof of Claim (5)

Take 0 6= u ∈ Hk = Im τ
(k)
~ for 0 ≤ k ≤ n arbitrarily and set u = I~(u). Then we have,

from (6.33), that

‖u− (I~ ◦ I∗~) ◦ t
(k)
~ (u)‖Hr~ = ‖I~(u)− I~ ◦ τ̌ (k)

~ (u)‖Hr~ = ‖u− τ̌ (k)
~ (u)‖Hr~(P )

= ‖(τ (k)
~ − τ̌

(k)
~ )u‖Hr~(P ) ≤ C~ε‖u‖Hr~(P ) = C~ε‖u‖Hr~

Hence we can apply the second claim in Proposition 6.17 to u and obtain Claim (5), noting
that ‖F~u‖Hr~ = ‖F~u‖Hr~(P ) by definition.
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6.6 Proof of Theorem 2.21

In this subsection, we give a proof of Theorem 2.21 on the rough Laplacian. In former part
of the proof, we consider a rough Laplacian ∆̃~ constructed from local data instead of the
geometric rough Laplacian ∆~, and prove the claims of Theorem 2.21 for ∆̃~. In the latter
part, we show that we can deform the rough Laplacian ∆̃~ continuously to ∆~ keeping
the “band structure” of the eigenvalues. This will imply that the cardinality of eigenvalues
in the first (or lowest) band coincides for ∆̃~ and ∆~. We note at this moment that, for
the argument on rough Laplacian below, we do not need Condition (2) in Proposition
6.1 (i.e. ortohogonality of stable and unstable subspaces) in the choice of the coordinate
charts {κi}I~i=1 in Proposition 6.1, that is, our argument below holds true for any choice of
coordinate charts {κi}I~i=1 satisfying the conditions other than that condition.

We introduce a rough Laplacian ∆̃~ acting on the space C∞N (P ) of equivariant functions.
We start from the operators on local data. Let

∆~ :

I~⊕
i=1

D(∆~)→
I~⊕
i=1

L2(R2d), ∆((ui)
I~
i=1) = (∆~ui)

I~
i=1

where ∆~ denotes the Euclidean rough Laplacian on R2d defined in Subsection 4.6. The
next proposition is an immediate consequence of Lemma 5.18. (So we omit the proof.)

Proposition 6.21. There exist constants C > 0 and ε > 0, independent of ~, such that

‖[∆~, (I~ ◦ I∗~)]‖⊕I~
i=1(D(∆~),‖·‖∆~ )→

⊕I~
i=1 L

2(R2d)
≤ C~θ. (6.34)

We define a rough Laplacian ∆̃~ acting on C∞N (P ) by

∆̃~ := I∗~ ◦∆~ ◦ I~ : C∞N (P )→ C∞N (P ) . (6.35)

Remark 6.22. Notice that this rough Laplacian operator ∆̃~ is defined by gluing Euclidean
rough Laplacian on local charts and does not coincide with the geometric rough Laplacian
∆~ = D∗D with respect to a global metric on M defined in Subsection 2.4.

The operator ∆̃~ defined above is a closed densely defined operator on C∞N (P ). Its
domain of definition is by definition

D(∆̃~) = {u ∈ L2
N (P ) | ‖∆̃~u‖L2 <∞},

which becomes a Hilbert space if we equip it with the inner product

(u, v)∆̃~
= (u, v)L2 + (∆̃~u, ∆̃~v)L2 .

We will write ‖ · ‖∆̃~
for the corresponding norm. It is easy to see the following Lemma.

(So we omit the proof.)
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Lemma 6.23. The norm ‖ · ‖∆̃~
above is equivalent to the norm

‖u‖′
∆̃~

=

(
I~∑
i=1

‖ui‖2
∆~

)1/2

defined in terms of local data, where ‖ ·‖∆~ on the right hand side denotes the norm defined
in (4.27). Consequently we have

D(∆̃~) =

{
u ∈ L2

N(P )

∣∣∣∣∣
I~∑
i=1

‖ui‖2
∆~
<∞

}
.

Below we are going to construct the spectral projectors for ∆̃~, corresponding to the
“bands of eigenvalues”. Again we start from local data: We consider the operators

q
(k)
~ :

I~⊕
i=1

L2(R2d)→
I~⊕
i=1

(D(∆~), ‖ · ‖∆~) ⊂
I~⊕
i=1

L2(R2d), q
(k)
~ ((ui)

I~
i=1) = (q

(k)
~ (ui))

I~
i=1,

for 0 ≤ k ≤ n, where q(k)
~ is the operator defined in (4.28). Recall (4.29) for boundedness

of these projection operators. The remainder is denoted as

q̃~ = q
(n+1)
~ :

I~⊕
i=1

L2(R2d)→
I~⊕
i=1

L2(R2d), q̃~ = q
(n+1)
~ := Id− (q

(1)
~ + q

(2)
~ + · · ·+ q

(n)
~ ).

The last operator restricts to a bounded operator

q̃~ = q
(n+1)
~ :

I~⊕
i=1

(D(∆~), ‖ · ‖∆~)→
I~⊕
i=1

(D(∆~), ‖ · ‖∆~).

We next introduce the operators

λ̌
(k)
~ := I∗~ ◦ q

(k)
~ ◦ I~ : L2

N(P )→ (D(∆̃~), ‖ · ‖∆̃~
)

for 0 ≤ k ≤ n. These are bounded operators and the operator norms are bounded by a
constant independent of ~. For k = n+ 1, we set

λ̌
(n+1)
~ := I∗~ ◦ q

(n+1)
~ ◦ I~ = Id− (λ̌

(0)
~ + λ̌

(1)
~ + · · ·+ λ̌

(n)
~ ). (6.36)

Further we can prove the estimates∥∥∥λ̌(k)
~ ◦ λ̌

(k)
~ − λ̌

(k)
~

∥∥∥
L2
N (P )→(D(∆̃~),‖·‖∆̃~

)
≤ C~ε for 0 ≤ k ≤ n+ 1 (6.37)

and ∥∥∥λ̌(k)
~ ◦ λ̌

(k′)
~

∥∥∥
L2
N (P )→(D(∆̃~),‖·‖∆̃~

)
≤ C~ε for 0 ≤ k, k′ ≤ n+ 1with k 6= k′ (6.38)
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for some constants ε > 0 and C > 0. (For the case where either of k or k′ equals n+ 1, use
the definition (6.36) to check (6.38).)

Now we proceed in parallel to the argument in Subsection 6.5 and obtain the following
lemma.

Lemma 6.24. There exist a decomposition of the Hilbert space (D(∆̃~), ‖ · ‖∆̃~
)

D(∆̃~) = H0 ⊕ H1 ⊕ H2 ⊕ · · · ⊕ Hn ⊕ H̃

and that of L2
N(P )

L2
N(P ) = H0 ⊕ H1 ⊕ H2 ⊕ · · · ⊕ Hn ⊕ H

where H is the closure of H̃ in L2
N(P ). The subspaces Hk for 0 ≤ k ≤ n are of finite

dimension. If we write λ(k)
~ for projection operators to Hk (resp. to H in the case k=n+1)

along other subspaces, then we have

(1)
∥∥∥λ(k)

~ − λ̌
(k)
~

∥∥∥
(D(∆̃~),‖·‖∆̃~

)
≤ C~ε for 0 ≤ k ≤ n,

(2) if k 6= k′,
‖λ(k)

~ ◦ ~∆̃~ ◦ λ(k′)
~ ‖(D(∆~),‖·‖∆~ )→L2

N (P ) ≤ C~ε,

(3) if 0 ≤ k ≤ n,∥∥∥∥λ(k)
~ ◦ ~∆̃~ ◦ λ(k)

~ −
(
d

2
+ k

)
· λ(k)

~

∥∥∥∥
(D(∆~),‖·‖∆~ )→L2

N (P )

≤ C · ~ε,

(4) for k = n+ 1, we have

‖λ(n+1)
~ ◦ ~∆̃~(u)‖L2 ≥

(
d

2
+ k + 1− C~ε

)
‖u‖L2 for u ∈ H̃ = H(n+1).

Therefore, by the general theorem on perturbation of closed linear operators [23, chap.IV,
th. 1.16], we obtain an analogue of Theorem 2.21 for the rough Laplacian ∆̃~.

Theorem 6.25. There exists a small constant ε > 0 such that, for any α > 0, we have

dist

(
Spec

(
~∆̃~

)
∩ [0, α], {d

2
+ k, k ∈ N} ∩ [0, α]

)
≤ ~ε

when ~ is sufficiently small.
Further we have

Lemma 6.26. For sufficiently small ~ > 0, we have

dimHk = dimHk � ~−d � Nd for 0 ≤ k ≤ n.
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Proof. To prove the equality dimHk = dimHk, it is enough to check that

rank τ
(k)
~ = rankλ

(k)
~ for 0 ≤ k ≤ n,

or equivalently
rank ⊕ki=0 τ

(i)
~ = rank ⊕ki=0 λ

(i)
~ for 0 ≤ k ≤ n.

The latter relation would follow if we show

c‖
(
⊕ki=0λ

(i)
~

)
u‖L2 ≤ ‖

(
⊕ki=0λ

(i)
~

)
◦
(
⊕ki=0τ

(i)
~

)
◦
(
⊕ki=0λ

(i)
~

)
u‖L2 ≤ C‖

(
⊕ki=0λ

(i)
~

)
u‖L2

and

c‖
(
⊕ki=0τ

(i)
~

)
u‖Hr~ ≤ ‖

(
⊕ki=0τ

(i)
~

)
◦
(
⊕ki=0λ

(i)
~

)
◦
(
⊕ki=0τ

(i)
~

)
u‖Hr~ ≤ C‖

(
⊕ki=0τ

(i)
~

)
u‖Hr~

for a constant 0 < c < C, independent of ~. But these are immediate consequences of
Proposition 4.19 (and the construction of the projection operators τ (k)

~ and λ(k)
~ .

It remains to show
rankλ

(k)
~ � ~−d for 0 ≤ k ≤ n. (6.39)

For each point x ∈M , we associate a smooth function

ϕx := λ̌
(k)
~ (δx)

where δx is the Dirac measure at the point x. (The right hand side is well-defined and give
a smooth function that concentrates around x.) Consider positive constants 0 < c < C
and take a finite subset of points Q~ on M so that the mutual distance between two points
in Q~ is in between c · ~1/2 and C · ~1/2. Let

Q~ = {λ(k)
~ (ϕx) | x ∈ Q~} ⊂ Imλ

(k)
~ .

Note that λ(k)
~ (ϕx) is close to ϕx from Claim 1 in Proposition 6.24. It is not difficult to

check that

(1) if we let the constants c, C large, the subset Q~ is linearly independent, and

(2) if we let the constants c, C small, the subset Q~ span the whole space Imλ
(k)
~ .

Indeed, to prove (1), we have only to observe that, if the constants c, C are sufficiently
large, the L2-scalar product between different elements ϕx, ϕx′ in Q~ decay rapidly with
respect the distance between the corresponding points x, x′(relative to the size ~1/2). To
prove (2), we see that, if the constants c, C are sufficiently small, any element of Imλ

(k)
~ is

well approximated by the linear combinations of the element in Q~ and then, by successive
approximation, it is really contained in the subspace spanned by Q~. Clearly the claims
(1) and (2) imply (6.39).
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Finally we compete the proof of Theorem 2.21 and Claim 1 of Theorem 1.18. We show
that the operator ∆̃~ is continuously deformed to the geometric Laplacian ∆~, keeping
the band structure described in Theorem 6.25. For this purpose, we take a continuous
one-parameter family of splitting of the tangent bundle

TM = E
(t)
+ ⊕ E

(t)
−

with t ∈ [0, 1] the parameter, such that

• E(0)
+ = Eu and E(0)

− = Es, that is, the splitting above coincides with the hyperbolic
splitting associated to f when t = 0.

• the sub-bundles E(1)
± for t = 1 are C∞ and orthogonal with respect to the Riemann

metric g on M .

Then we consider a continuous deformation {κi,t}I~i=1 of the atlas {κi}I~i=1 and, correspond-
ingly, the deformation {ψi,t; 1 ≤ i ≤ I~} of the family {ψi; 1 ≤ i ≤ I~} of functions so
that the all the conditions in Proposition 6.1 hold uniformly for t ∈ [0, 1], but with the
sub-bundles Eu and Es in the condition (2) replaced by Et

+ and Et
−.

We consider the rough Laplacian ∆̃~,t defined, similarly to ∆̃~ in (6.35), from the
Euclidean rough Laplacian on local charts {κi,t}I~i=1 and the family of functions {ψi,t; 1 ≤
i ≤ I~}. The argument in the former part of this subsection holds true uniformly for
t ∈ [0, 1], that is, we can consider the spectral projection operators λ(k)

~,t , 0 ≤ k ≤ n + 1,
for ∆̃~,t, which corresponds to λ(k)

~ for ∆̃~. Since the deformation is continuous, we see by
homotopy argument that rank λ

(k)
~,ρ = dimHk,ρ is constant for t ∈ [0, 1]. In particular we

have rank λ
(k)
~,1 = rank λ

(k)
~,0.

Note that the operator ∆̃~,1 is close to the geometric rough Laplacian ∆~. In fact, since
the derivative (Dκi,1)0 at the origin is an isometry with respect to the Euclidean metric
on R2d and the Riemann metric g on M , we can check by using the local expression of the
geometric rough Laplacian in Proposition 2.39 that we have

‖~∆̃~,1 − ~∆~ : (D(∆~), ‖ · ‖∆~)→ L2
N(P )‖ ≤ C~ε.

Therefore, by the perturbation theorem [23, chap.IV, th. 1.16] for closed operators, we
obtain the “band structure” stated in the former part of Theorem 2.21. We can also see
that the number of eigenvalues of the geometric rough Laplacian ∆~ = D∗D in the k-th
band is same as that for ∆̃~. Hence, from Lemma 6.26, we obtain the rough upper and
lower bound on the rank of spectral projectors Pk in Theorem 2.21 and also Claim (1) of
Theorem 1.18.
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A Appendix

A.1 Proof of Theorem 1.16 from Theorem 1.18

Assume that Theorem 1.18 holds true. We will prove Theorem 1.16. Let m ≥ 1 and apply
Theorem 1.18 to fm and F̂m

N . On the right hand side of (1.26) and (1.27) we have

r+
k,m := sup

x∈M

(
eVm(x)

∥∥∥(Dfm/Eu (x)
)−1
∥∥∥+k ∣∣detDfm/Eu (x)

∣∣−1/2
)

and
r−k,m := C−1

0 · inf
x∈M

(
eVm(x)

∥∥Dfm/Eu (x)
∥∥−k ∣∣detDfm/Eu (x)

∣∣−1/2
)
.

The following arguments using Neumann series for resolvents are very standard. For
0 ≤ k ≤ n+ 1, let Ak := πk ◦ F̂N ◦πk : Hk → Hk. From Theorem 1.18 we have ‖Ak‖ ≤ r+

k,m

and for k ≤ n we have also
∥∥A−1

k

∥∥ ≤ (r−k,m)−1. For convenience, we define r−k,m = 0 if
k = n+ 1.

Lemma A.1. Let 0 ≤ k ≤ n+ 1, and z ∈ C with |z| < r−k,m or |z| > r+
k,m. Then (z − Ak)

is invertible and its inverse RAk (z), the resolvent operator, satisfies

‖RAk (z)‖ ≤ 1

dist
(
|z| ,

[
r−k,m, r

+
k,m

])
Proof. If |z| > r+

k,m ≥ ‖Ak‖, then
∥∥Ak

z

∥∥ < 1 and we can write a convergent Neuman series
for

RAk (z) = (z − Ak)−1 =
1

z

(
1− Ak

z

)−1

giving

‖RAk (z)‖ ≤ 1

|z|

(
1− ‖Ak‖

|z|

)−1

=
1

(|z| − ‖Ak‖)
≤ 1

dist
(
|z| ,

[
r−k,m, r

+
k,m

])
Similarly if |z| < r−k,m ≤

∥∥A−1
k

∥∥−1 then we have
∥∥zA−1

k

∥∥ < 1 and a convergent Neuman
series for

RAk (z) = (z − Ak)−1 = −A−1
k

(
1− zA−1

k

)−1

giving

‖RAk (z)‖ ≤
∥∥A−1

k

∥∥ (1− |z|∥∥A−1
k

∥∥)−1
=

1(∥∥A−1
k

∥∥−1 − |z|
) ≤ 1

dist
(
|z| ,

[
r−k,m, r

+
k,m

])
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Thus A := A0 ⊕A1 ⊕ . . .⊕An+1 is an operator A : Hr
~ → Hr

~ and its resolvent satisfies

‖RA (z)‖ ≤
n+1∑
k=0

1

dist
(
|z| ,

[
r−k,m, r

+
k,m

]) (A.1)

The operator F̂m
N can be written F̂m

N = A + B with ‖B‖ ≤ C0~ε. We use a standard
“perturbation argument” [36, p.311] to show that if z ∈ C is such that ‖RA (z)‖ ‖B‖ < 1

then it is not in the spectrum of F̂m
N : z /∈ σ

(
F̂m
N

)
. For this we write

z − F̂m
N = z − A−B

= (z − A)
(
1− (z − A)−1B

)
hence (

z − F̂m
N

)−1

=
(
1− (z − A)−1B

)−1
(z − A)−1

and using Neumann series we deduce:∥∥∥RF̂mN
(z)
∥∥∥ ≤ (1− ‖RA (z)‖ ‖B‖)−1 ‖RA (z)‖

hence z is in the resolvent set of F̂m
N , i.e. z /∈ σ

(
F̂m
N

)
.

From (A.1) and ‖B‖ ≤ C0~ε, we see that the condition ‖RA (z)‖ ‖B‖ < 1 is satisfied if
for every k ∈ {0, n+ 1}

dist
(
|z| ,

[
r−k,m, r

+
k,m

])
> (n+ 1)C0~ε.

and then z /∈ σ
(
F̂m
N

)
. Taking the power 1/m and making ~ → 0 first and then m → ∞

we get the result (1.23).

A.2 Proof of Lemma 6.19

It is enough to show that there exist constants C1 > 0 and C2 > 0 independent of ~ such
that

‖(ρ · Id− τ̌ (k)
~ )−1‖Hr~(P ) ≤

C1

min{|ρ|, |1− ρ|}
(A.2)

whenever ρ ∈ C satisfies
min{|ρ|, |1− ρ|} ≥ C2~ε. (A.3)

In fact, the estimate (A.2) would imply that, for r0 = C2~ε,

‖τ̌ (k)
~ − τ̂

(k)
~ ‖Hr~ =

∥∥∥∥∫
|ρ−1|=r0,|ρ|=r0

ρ(ρ · Id− τ̌ (k)
~ )−1dρ−

∫
|ρ−1|=r0

(ρ · Id− τ̌ (k)
~ )−1dρ

∥∥∥∥
Hr~(P )

≤
∥∥∥∥∫
|ρ|=r0

ρ(ρ · Id− τ̌ (k)
~ )−1dρ

∥∥∥∥
Hr~

+

∥∥∥∥∫
|ρ−1|=r0

(ρ− 1)(ρ · Id− τ̌ (k)
~ )−1dρ

∥∥∥∥
Hr~(P )

≤ 2C1 · r0 = 2C1 · C2 · ~ε.
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To prove (A.2), we may and do assume |ρ| ≤ 2‖τ̌ (k)
~ ‖Hr~(P ) because the claim is trivial

otherwise. Take u ∈ Hr
~(P ) arbitrarily. From the assumption made in the preceding

sentence, we have

‖ρ2u− τ̌ (k)
~ ◦ τ̌

(k)
~ u‖Hr~(P ) ≤ ‖ρ2u− ρτ̌ (k)

~ u‖Hr~(P ) + ‖τ̌ (k)
~ (ρu− τ̌ (k)

~ u)‖Hr~(P )

≤ (|ρ|+ ‖τ̌ (k)
~ ‖Hr~(P )) · ‖(ρ · Id− τ̌ (k)

~ )u‖Hr~(P )

≤ 3‖τ̌ (k)
~ ‖Hr~(P ) · ‖(ρ · Id− τ̌ (k)

~ )u‖Hr~(P ).

On the other hand, from (6.28), we have

‖ρ2u− τ̌ (k)
~ ◦ τ̌

(k)
~ u‖Hr~(P ) ≥ ‖ρ2u− τ̌ (k)

~ u‖Hr~(P ) − C · ~ε‖u‖Hr~(P )

≥ |ρ(ρ− 1)| · ‖u‖Hr~(P ) − ‖(ρ · Id− τ̌ (k)
~ )u‖Hr~(P ) − C · ~ε‖u‖Hr~(P ).

Hence we obtain the estimate

(|ρ(ρ− 1)| − C ′ · ~ε) · ‖u‖Hr~ ≤ (3‖τ̌ (k)
~ ‖Hr~(P ) + 1) · ‖(ρ · Id− τ̌ (k)

~ )u‖Hr~(P )

for some constant C ′ > 0. If we choose C2 so large that C2 > 4C ′, the assumption (A.3)
implies

|ρ(ρ− 1)| − C · ~ε ≥ 1

2
min{|ρ|, |1− ρ|} − C · ~ε ≥ 1

4
min{|ρ|, |1− ρ|}.

Therefore, with such choice of C2, the inequality (A.2) holds if we let

C1 > 4 · (3‖τ̌ (k)
~ ‖Hr~(P ) + 1),

recalling that ‖τ̌ (k)
~ ‖Hr~(P ) is bounded by a constant independent of ~.
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