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Abstract

The identification of new scientific challenges, as well as the increasing high-performance computing
support, indicate that the benefits of applying novel nonlinear techniques for crack detection will continue
to grow. So, significant effort has been invested in recent years to develop effective techniques to detect
crack in mechanical structures. The objective of this paperis to discuss and propose a robust diagnostic
of damage based on non-linear vibrational measurements with particular regard to the Higher-Order Fre-
quency Response Functions. An important observation is that the appearances of the non-linear harmonic
components and the emerging anti-resonances in Higher-Order Frequency Response Functions can provide
useful information on the presence of cracks and may be used on an on-line crack monitoring system for
small levels of damage. Efficiency of the proposed methodology is illustrated through numerical examples
for a pipeline beam including a breathing crack.

1 Introduction

The presence of a crack may lead to serious damage and dangerous effect on the dynamic behavior of me-
chanical structures. In order to avoid severe damage, the detection of a crack in the early stage can be of great
interest. In recent years a lot of effort has been devoted to the detection of cracks in mechanical structures and
many researchers have proposed various developments of non-destructive techniques based on changes in the
structural vibrations [1–4]. Basic methods based on linearcondition monitoring techniques have been exten-
sively developed by considering not only changes in naturalfrequencies and modes shapes [5], but also the
appearances of resonant peaks due to vibration coupling [6,7], different changes in the measurements of the
Frequency Responses Functions and the motion of anti-resonances [8–10].

Even if in the case of simple structures, the damage severitycan be determined from changes by using var-
ious linear analysis previously presented (changes in natural frequencies, modes shapes, Frequency Response
Functions, anti-resonances, coupling measurements,...), some researchers have illustrated the fact that the pres-
ence of damage can induce more complicated behavior. For example Gudmundson [11] noted that decrease in
natural frequencies for a cantilever beam is not always observed during experimental tests due to the closing of
the crack. So the linear analysis appears to be insufficient to describe the non-linear behavior of the crack, the
so called ”‘breathing phenomena”’ corresponding to the fact that the crack alternately opens and closes during
experimental tests. Also, the common use of robust developments based on the presence of the nonlinear com-
ponents in the vibrational responses of damaged structureshas to be taken into account to avoid worse damage
identification [4,12,13].

However few efforts have been dedicated to discuss the main advantages of using the non-linear vibrational
signatures and anti-resonances of the Higher-Order Frequency Response Functions for an efficient and robust
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(a) Description of the pipeline beam system (b) Crack element

(c) Description of the degrees of freedom inη andξ-axes

Figure 1: Finite-element model of the pipeline beam and the crack section

detection and localization of damage. In order to propose some answers, the present study proposes to show
that not only an appropriate use of the super-harmonic frequency components of the non-linear dynamical
behaviour but also the anti-resonances of the super-harmonics components can be useful for crack identification
in mechanical systems. The paper is organized as follows: firstly, a description of the cracked simply supported
pipeline beam and the estimation of the non-linear vibrational response of the mechanical system are discussed.
Secondly, explanation is given of the most common uses of thenon-linear signatures to detect the presence
of damage. Finally, damage detection and detection of the crack location based on the emergence of anti-
resonances for the super-harmonics components are discussed.

2 The model of the cracked beam

The system is composed of a beam of length0.5m with an inner and outer diameters of0.06m and0.1m
respectively (see Figure 1(a)). The beam is discretized into 20 Timoshenko beam finite elements, with four
degrees of freedoms at each node, the axial and torsional degrees of freedom being not considered. The pipeline
beam is simply supported at each end, as indicated in Figure 1(a)). The layout of the cracked beam element
under consideration is shown in Figure 1(b). All the values of the material properties and dimensions of the
beam are given in Table 1.
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The equations of the simply supported cracked pipeline beamcan be written as

Mẍ+Cẋ+ (K+ q (t))x = f (1)

whereẍ, ẋ andx are the acceleration, velocity and displacement vectors.M, C andK are the mass, damping
and stiffness matrices of the complete uncracked pipeline beam. f is an external force (periodic excitation of
pulsationω). q (t) defines the breathing behavior of the global stiffnessKc at the crack location due to the
evolution of the external forces. If we assume the open crackat theith element, the global stiffness matrixKc

defines the global stiffness matrix due to the presence of thecrack in the fixed frame(X,Y,Z). It is given by

diag (Kc) = ( 0 · · · 0 Kcrack 0 · · · 0 )
↑

ith element

(2)

In the present study, it is assumed that the opening and closing of the crack depends on the level of load [14,15].
The crack breathing phenomenon varies with time due to vibration. Examining the dynamic response of a
breathing crack at its first mode, it can be decomposed in the following way [15]

q (t) =
1

2
(Kc −K) (1− cosωt) (3)

whereω is equal to the excitation and is defined as the crack breathing frequency. If(1− cosωt) = 0 (i.e.
ωt = 2nπ with n any integer), the crack is closed and has no effect on the dynamic behaviour: the beam may
be treated as uncracked. If(1− cosωt) = 1 (i.e. ωt = (2n− 1) π with n any integer), the crack is in the fully
open state. Otherwise the crack is in a state of partial closure given by the relation (3).

The modeling of a transverse crack that was described extensively in [16,17] is briefly presented here. The
model proposed by Mayes and Davies [18, 19] is used in order tolocally represent the stiffness properties of
the crack cross section. Due to strain energy concentrationin the vicinity of the tip of the crack under load, the
presence of a transverse crack introduces local flexibility. So, this model considers the reduction of the second
moment of area∆I of the element at the location of the crack that may be defined by

∆I = I0







R

l

(

1− ν2
)

F (µ)

1 +
R

l

(

1− ν2
)

F (µ)






(4)

whereI0,R , l, andν are the second moments of area, beam external radius, lengthof the section and Poisson’s
ratio, respectively.µ is the non-dimensional crack depth and is given byµ = h

R
whereh defines the crack depth

of the beam, as shown in Figure 1(b). As indicated in Figure 1(b), the total angleα subtended by the crack is
related to the depth of crack by the relationα = 2cos−1 (1− µ). F (µ) defines the non-linear compliance as
a function of variations in non-dimensional crack depthµ, which can be derived from a series of experiments
using chordal cracks (see Mayes and Davies [18,19]). Considering the finite element formulation and the local
reduction of the second moments of area that are given in Equation (4), the stiffness contributionKη,ξ

crack of an
open crack about the centroidal axesη andξ for a two nodes Timoshenko beam element of lengthl and Young’s
modulusE (corresponding to the flexible degree-of-freedom[u1; v1; θ1;ψ1;u2; v2; θ2;ψ2], see Figure 1(c)) can
be defined at the crack location

Kη,ξ
crack =

E

l3

























12Iη 0 0 6lIη −12Iη 0 0 6lIη
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


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















(5)
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Finally,Kcrack that is defined in Equation (2) is obtained by passing from thefixed frames(η, ξ, Z) to (X,Y,Z)
via the rotationχ (see Figure 1(b) for more details).

Notation Description Value
Re outer radius of the beam 0.1m
Ri inner radius of the beam 0.06m
L length of the rotor shaft 0.5m
E Young’s modulus of elasticity 2.1 1011N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
ζ modal damping 10−3

Table 1: Value of the physical parameters

3 Determination of the nonlinear response of the cracked beam

As previously indicated, the above equations of the crackedpipeline beam have a time-dependent coefficient
due to the fact that the crack breathes when the excitation force changes. The non-linear dynamic response of
the system can be approximated by finite Fourier series

x (t) =

m
∑

k=1

(Ak cos (kωt) +Bk sin (kωt)) (6)

whereω defines the crack breathing frequency.Ak andBk (with k = 1, · · · ,m) define the unknown co-
efficients of the finite Fourier series. The number of harmonic coefficientsm is selected on the basis of the
number of significant harmonics expected in the dynamical response of the cracked beam. The excitation force
f can be exactly defined by finite Fourier series with first-order periodic components in the frequency domain.
Expressions are given byf = C1 cos (ωt) +S1 sin (ωt) with C1 andS1 the first-order periodic components in
the frequency domain.

As previously explained, the amount of open part of the crackconstantly varies with the excitation force,
thereby changing the stiffnessq (t) of the cracked beam. So, by considering the approximated nonlinear solu-
tion of the cracked beam (see Equation (6)) and the global mechanism of the time dependent part for the crack
breathing phenomenon (see Equation (3)), the expressionq (t)x (t) can be approximated by the following
expression

q (t)x (t) =
1

2
(Kc −K) (1− cosωt)

(

m
∑

k=1

(Ak cos (kωt) +Bk sin (kωt))

)

(7)

By substituting expressions (6) and (7) in Equation (1), theunknown coefficients of the finite Fourier seriesAk

andBk (with k = 1, · · · ,m) can be found solving the following equations

(

K− k2ω2M
)

Ak − kωCBk + (Kc −K)

(

Ak−1

4
+

Ak

2
+

Ak+1

4

)

= δk=1C1 (8)

kωCAk +
(

K− k2ω2M
)

Bk + (Kc −K)

(

Bk−1

4
+

Bk

2
+

Bk+1

4

)

= δk=1S1 (9)

with An = 0 andBn = 0 if n < 1. The complete algorithm and process of the computation is given in Figure
2.
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Figure 2: Process of the numerical computation for the calculation of the non-linear displacements of the simply
supported cracked pipeline beam

Case Crack element Lcrack(m) µ χ Excitation element Lexcitation(m)
1 7 0.1625 0.3 0 10 0.25
2 10 0.2375 0.1 0 10 0.25
3 7 0.1625 0.3 π

3
10 0.25

4 15 0.3625 0.3 π
3

2 0.05

Table 2: Description of cases

4 Numerical results

In this section, the effects of a breathing crack on the nonlinear dynamic response of the beam are quantified.
The basic deterministic parameters used in all cases are given in Table 1. For each case, the location of the
external force, the position, orientation and depth of the crack are given in Table 2. First of all, the detection
of the presence of one crack by using the appearance of the non-linear components will be investigated. Sec-
ondly, we undertake the determination of the crack locationbased on the appearances of anti-resonances in the
signature of the non-linear components.
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4.1 Crack detection based on the non-linear response

First of all, we consider a horizontal crack (χ = 0 degree) with a crack severityµ = 0.3 at the7th element
(case 1 given in Table 2). Figure 3(a) shows the non-linear response for the pipeline beam with the breathing
crack. It clearly appears that the global response is composed by not only the first harmonic component but also
by the components of higher order. For example, the second, third and fourth orders are predicted when the
crack breathing frequency is approximately one-half, one-third and one-fourth of the first resonance frequency,
as indicated in Figure 3(a). Moreover, due to the presence ofthe crack, thenth orders increase when the
frequency of the excitation force is near1

m
of the first resonance frequency (withm < n or anym positive

integer). It is recalled that the response will be composed by only the first harmonic component (i.e. a linear
response) for the uncracked beam. Then, Figure 3(b) shows the non-linear response for a small crack that is
situated at the10th element withχ = 0 degree (see case 2 in Table 2). It is observed that the global non-
linear response has a significant peak at one-half of the firstfrequency of the cracked system. However, only
small changes in the vibration amplitude are observed at one-third or one-fourth of the first frequency. So, it
may be concluded that the non-linear behavior for a small crack is mainly due to the predominance of the first
and second harmonic components. Therefore it should be considered that contributions of the third and fourth
harmonic components are too small to allow the detection of crack in realistic cases.

Now, we consider case 3 given in Table 2. Compared to the previous case 1, the crack orientationχ that
defines the angle between the orientation of the crack front and the vertical axis (see Figure 1(b)) has changed.
Figures 4(a) and 4(b) show some interesting features for thecoupling measurements (i.e. horizontal and vertical
directions) of the nonlinear components due to the presenceof the crack. Indeed, the presence of the crack
introduces excitation on the principal X-axis (i.e. horizontal displacement) even if the external force is only
on the principal Y-axis (i.e. vertical displacement). The appearance of nonlinear vibrations in the horizontal
direction is only due to the breathing behavior of the crack and the fact that the crack front is not in the same
direction than the external force (i.e.χ 6= 0). In the two previous cases (i.e. cases 1 and 2), there is no
coupling between the two lateral vibrations due to the fact that the external force is on the same direction than
the crack front (i.e.χ = 0). Thereby, the crack does not induce excitation on the principal horizontal axis. So
no vibration on the X-axis exists.
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(a) Case 1
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(b) Case 2

Figure 3: Non-linear vertical amplitudes for cases 1 and 2 atthe middle of the beam (blue=global non-linear
response, black=order 1, red=order 2, magenta=order 3, green=order 4)
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(a) Vertical displacement
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(b) Horizontal displacement

Figure 4: Non-linear vertical and horizontal amplitudes for case 3 at the middle of the beam (blue=global
non-linear response, black=order 1, red=order 2, magenta=order 3, green=order 4)

4.2 Crack location based on the anti-resonances of the non-linear components

In this part of the paper, we propose to use evolutions of anti-resonances of the Higher-order Frequency Re-
sponse Functions for detecting the damage location.

Indeed, it is well known that the breathing behavior of the crack induces an additional internal force for the
linear and non-linear components at the crack location [20]. Due to the fact that the external forcef given in
Equation (1) only induces first-order periodic components in the frequency domain, it can be concluded that
only the presence of the breathing crack adds an excitation for higher orders. So, the position of the crack can
be identified by considering the evolution of anti-resonances of the super-harmonic components.

To illustrate this, Figures 5(a), 5(b) and 5(c) give the evolutions of the second, third and fourth harmonic
components of the cracked beam in the vertical axis for case 2. First of all, the appearances of peak amplitudes
for the second, third and fourth harmonic components that form the signature of the presence of a crack are
visible for all the positions of the pipeline beam. Secondly, it appears that the emerging and location of some
new anti-resonances and the variation in the anti-resonance frequency along the beam depend on the crack
location. For example, it can be observed that the anti-resonance frequency decrease from3300Hz to 2200Hz
for the variations of the beam location from0m to 0.25m. Then increased values of anti-resonance frequency is
observed along the beam (from0.25m to 0.5m). The minimum of anti-resonances (in frequency) for the second
order harmonic components of the cracked system appears at the crack location (see the red circle in Figure
5(a)). The same conclusions can be made for the third and fourth harmonic components, as indicated in Figures
5(b) and 5(c). Here again, the red circle indicated the minimum of anti-resonance frequency for the third and
fourth-order Frequency Response Functions. So it can be concluded that the beam position where the minimum
value of anti-resonance frequency is observed for all the non-linear harmonic components corresponds to the
location of the crack.

Then, Figures 6(a), 6(b), 6(c), 6(d), 6(e) and 6(f) give the evolutions of all harmonic components in the
vertical and horizontal directions for case 3. It is recalled that the presence of horizontal responses of the
system is due to the coupling measurements via excitation ofthe crack in the horizontal axis and the breathing
behavior. In both directions and for all harmonic components, the minimum value of anti-resonance frequency
is detected at the position of the crack (see the red circle for all Figures 6).

Now, we consider case 4 that is concerns with a different position for both the crack location and the
external excitation. The same behavior for the variation ofthe anti-resonance frequency is observed in case 4,
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(b) Order 3
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(c) Order 4

Figure 5: Vertical displacement for all the beam positions -Case 2

as illustrated in Figures 7(a), 7(b), 7(c), 7(d), 7(e) and 7(f). The minimum of the anti-resonance frequency is
located at the crack position indicated in the previous figures by the red circle.

Considering all these results, it can be concluded that one of the main advantage of using the anti-resonances
for the Higher-order Frequency Response Functions is that the detection of the crack location is not sensitive
to the excitation position and can be easily applied for the detection of small cracks.

Finally, Figure 8 gives the first harmonic component in the horizontal direction for case 4. Due to the fact
that the external excitation is in the vertical direction, the appearance of the first harmonic component in the
horizontal direction is only due to the crack. So, the position of the minimum of anti-resonance frequency gives
the crack location (indicated by the red circle in Figure8).For all the present study, it is also remained that
the breathing behavior given in Equation (3) is only valuable around the first frequency. So all the previous
comments discussed in the present section are limited to thenon-linear dynamic behavior of the cracked system
around its first frequency.

5 Conclusion

This paper highlights the possibility of crack detection through the observation of the non-linear dynamic
behaviour of a simply supported cracked pipeline beam. Thisstudy has demonstrated that the introduction of
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(a) Vertical displacement - Order 2
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(b) Horizontal displacement - Order 2
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(c) Vertical displacement - Order 3
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(d) Horizontal displacement - Order 3
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(e) Vertical displacement - Order 4
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(f) Horizontal displacement - Order 4

Figure 6: Vertical and horizontal displacements for all thebeam positions - Case 3
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(a) Vertical displacement - Order 2
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(b) Horizontal displacement - Order 2
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(c) Vertical displacement - Order 3
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(d) Horizontal displacement - Order 3
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(e) Vertical displacement - Order 4
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(f) Horizontal displacement - Order 4

Figure 7: Vertical and horizontal displacements for all thebeam positions - Case 4

10



0
1000

2000
3000

4000 0

0.1

0.2

0.3

0.4

0.5

10
−15

10
−10

10
−5

Shaft position (m)

Frequency (Hz)

H
or

iz
on

ta
l a

m
pl

itu
de

 (
m

) 
−

 O
rd

er
 1

Figure 8: Vertical displacement of the first harmonic component - Case 4

a crack breathing phenomenon that varies with time due to vibration induces the emerging of thenth super-
harmonic frequency components. The appearances of non-linear components can be considered as one of the
most practical indicators of the presence of a crack for health monitoring purposes.

The localization of anti-resonances for Higher-Order Frequency Response Functionsn provides useful in-
formation on the location of a crack and can be used on an on-line robust crack monitoring system.
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