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Abstract

The identification of new scientific challenges, as well asiticreasing high-performance computing
support, indicate that the benefits of applying novel nadmtechniques for crack detection will continue
to grow. So, significant effort has been invested in receaty¢o develop effective techniques to detect
crack in mechanical structures. The objective of this papéo discuss and propose a robust diagnostic
of damage based on non-linear vibrational measuremenitspaitticular regard to the Higher-Order Fre-
guency Response Functions. An important observation isthlesappearances of the non-linear harmonic
components and the emerging anti-resonances in Highesr®réquency Response Functions can provide
useful information on the presence of cracks and may be useth@n-line crack monitoring system for
small levels of damage. Efficiency of the proposed methagois illustrated through numerical examples
for a pipeline beam including a breathing crack.

1 Introduction

The presence of a crack may lead to serious damage and dasgsffect on the dynamic behavior of me-
chanical structures. In order to avoid severe damage, teetiten of a crack in the early stage can be of great
interest. In recent years a lot of effort has been devotetdaletection of cracks in mechanical structures and
many researchers have proposed various developments afesbructive techniques based on changes in the
structural vibrations [1-4]. Basic methods based on lireeardition monitoring techniques have been exten-
sively developed by considering not only changes in natinemjuencies and modes shapes [5], but also the
appearances of resonant peaks due to vibration coupling, [@ifferent changes in the measurements of the
Frequency Responses Functions and the motion of anti-eses [8—10].

Even if in the case of simple structures, the damage sewaitybe determined from changes by using var-
ious linear analysis previously presented (changes irralafiequencies, modes shapes, Frequency Response
Functions, anti-resonances, coupling measurementsatre researchers have illustrated the fact that the pres-
ence of damage can induce more complicated behavior. For@gaGudmundson [11] noted that decrease in
natural frequencies for a cantilever beam is not alwaysmwbsgeduring experimental tests due to the closing of
the crack. So the linear analysis appears to be insuffictedéscribe the non-linear behavior of the crack, the
so called "breathing phenomena™ corresponding to the fiaat the crack alternately opens and closes during
experimental tests. Also, the common use of robust devetopsrbased on the presence of the nonlinear com-
ponents in the vibrational responses of damaged struchag$o be taken into account to avoid worse damage
identification [4,12,13].

However few efforts have been dedicated to discuss the nd@emsages of using the non-linear vibrational
signatures and anti-resonances of the Higher-Order FreguResponse Functions for an efficient and robust
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Figure 1: Finite-element model of the pipeline beam and thekcsection

detection and localization of damage. In order to proposeesanswers, the present study proposes to show
that not only an appropriate use of the super-harmonic &agy components of the non-linear dynamical
behaviour but also the anti-resonances of the super-hacgioomponents can be useful for crack identification
in mechanical systems. The paper is organized as follovgityfia description of the cracked simply supported
pipeline beam and the estimation of the non-linear vibretioesponse of the mechanical system are discussed.
Secondly, explanation is given of the most common uses ohdimelinear signatures to detect the presence
of damage. Finally, damage detection and detection of thekclocation based on the emergence of anti-
resonances for the super-harmonics components are distuss

2 Themodd of the cracked beam

The system is composed of a beam of lengthn with an inner and outer diameters 0f06m and0.1m
respectively (see Figure 1(a)). The beam is discretizen 26t Timoshenko beam finite elements, with four
degrees of freedoms at each node, the axial and torsionedekegf freedom being not considered. The pipeline
beam is simply supported at each end, as indicated in Figadg. 1The layout of the cracked beam element
under consideration is shown in Figure 1(b). All the valuéshe material properties and dimensions of the
beam are given in Table 1.



The equations of the simply supported cracked pipeline besmbe written as
Mx+Cx+ (K+q(t)x=f 1)

wherex, x andx are the acceleration, velocity and displacement vectdtsC andK are the mass, damping
and stiffness matrices of the complete uncracked pipeleshf is an external force (periodic excitation of
pulsationw). q(t) defines the breathing behavior of the global stiffnEsat the crack location due to the
evolution of the external forces. If we assume the open caatkei” element, the global stiffness matig..
defines the global stiffness matrix due to the presence afréek in the fixed framéX, Y, Z). It is given by

diag(Ke)= (0 -+ 0  Keaok 0 -~ 0 )
. 0 (2)

7 element

In the present study, it is assumed that the opening andhglagithe crack depends on the level of load [14,15].
The crack breathing phenomenon varies with time due to tidora Examining the dynamic response of a
breathing crack at its first mode, it can be decomposed indltmxfing way [15]

a(1) = 5 (K.~ K) (1~ cos) 3)

wherew is equal to the excitation and is defined as the crack bregtingguency. If(1 — coswt) = 0 (i.e.
wt = 2nm with n any integer), the crack is closed and has no effect on thendignlaehaviour: the beam may
be treated as uncracked.(If — coswt) = 1 (i.e. wt = (2n — 1) = with n any integer), the crack is in the fully
open state. Otherwise the crack is in a state of partial otogiven by the relation (3).

The modeling of a transverse crack that was described axébnan [16,17] is briefly presented here. The
model proposed by Mayes and Davies [18, 19] is used in ordkerctdly represent the stiffness properties of
the crack cross section. Due to strain energy concentratitime vicinity of the tip of the crack under load, the
presence of a transverse crack introduces local flexib8ty, this model considers the reduction of the second
moment of area\ I of the element at the location of the crack that may be defiyed b

R 2
—(1—-v*) F
AT =1, | —L ( )P ) (4)

1+§(1—V2)F(,u)

wherely, R, [, andv are the second moments of area, beam external radius, lefidia section and Poisson’s
ratio, respectivelyy is the non-dimensional crack depth and is givenuby % whereh defines the crack depth
of the beam, as shown in Figure 1(b). As indicated in Figuby,1tie total anglex subtended by the crack is
related to the depth of crack by the relatian= 2cos~! (1 — ). F (1) defines the non-linear compliance as
a function of variations in non-dimensional crack depthwhich can be derived from a series of experiments
using chordal cracks (see Mayes and Davies [18, 19]). Censglthe finite element formulation and the local
reduction of the second moments of area that are given intiqui), the stiffness contributiok ¢ of an
open crack about the centroidal axeand¢ for a two nodes Timoshenko beam element of lerigthd Young’s
modulusE (corresponding to the flexible degree-of-freedpy; v1; 61; ¢1; ua; va; O2; 12], see Figure 1(c)) can
be defined at the crack location
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Finally, K.« that is defined in Equation (2) is obtained by passing fronfigeel framegn, ¢, Z) to (X, Y, Z)
via the rotationy (see Figure 1(b) for more details).

Notation Description Value
R, outer radius of the beam 0.1m
R; inner radius of the beam 0.06m
L length of the rotor shaft 0.5m
E Young’s modulus of elasticity 2.1 101! N.m 2
p density 7800kg.m =3
v Poisson ratio 0.3
¢ modal damping 1073

Table 1: Value of the physical parameters

3 Determination of the nonlinear response of the cracked beam

As previously indicated, the above equations of the cragipdline beam have a time-dependent coefficient
due to the fact that the crack breathes when the excitatiae fthanges. The non-linear dynamic response of
the system can be approximated by finite Fourier series

m
Z (A cos (kwt) + By sin (kwt)) (6)
k=1
wherew defines the crack breathing frequenck, andB, (with & = 1,---,m) define the unknown co-

efficients of the finite Fourier series. The number of harmaiefficientsm is selected on the basis of the
number of significant harmonics expected in the dynamicgaase of the cracked beam. The excitation force
f can be exactly defined by finite Fourier series with first-ojkeriodic components in the frequency domain.
Expressions are given lfy= C; cos (wt) + S; sin (wt) with C; andS; the first-order periodic components in
the frequency domain.

As previously explained, the amount of open part of the ciamhkstantly varies with the excitation force,
thereby changing the stiffnesg(t) of the cracked beam. So, by considering the approximatetineam solu-
tion of the cracked beam (see Equation (6)) and the globahamésm of the time dependent part for the crack

breathing phenomenon (see Equation (3)), the expresgiohx (¢) can be approximated by the following
expression

q(t)x(t) = % (K. — K) (1 — coswt) <Z (A cos (kwt) + By, sin (k:wt))) (7
k=1
By substituting expressions (6) and (7) in Equation (1) uhlkenown coefficients of the finite Fourier seriag
andBy;, (with kK = 1,--- ,m) can be found solving the following equations
(K — k*w?M) A}, — kwCB;, + (K, — K) (AZ t + % + AZ“) = 0321Cy (8)
kwCAy + (K — k*w?M) By, + (K. — K) <BZ -+ % — B’jl“) — 6315 9)

with A,, = 0 andB,, = 0if n < 1. The complete algorithm and process of the computatiornvisngn Figure
2.



Model of the cracked element K,
and expression of the breathing behavior
Mx+Cx+Kx=1f q(t,):%(Kr—K)(l—(:oswt)

Equations of the simply supported pipeline beam

Equations of the simply supported cracked pipeline beam
Mx+Cx+ (K+q(t)x="f

Expressions of the excitation force and the crack

SIS breathing phenomenon in the frequency domain

response by finite Fourier series
—> f = Cjcos (wt) + S sin (wt)

m

x(t) = 2 (A cos (kwt) + By sin (kwt))
k=1 q(t)x(t) =

(K:— K) (1 — coswt) <Z (Ax cos (kwt) + By sin (kwl)))

k=1

v

Estimation of the Fourier coefficients by solving the following expressions

(K — K%w?M) Aj — kwCBy + (K, — K) (M + A A‘4’+'

7 ) )=5k:101

kwCAy, + (K — k%w’M) By + (K. — K) (B"*‘ + B, Bk“) =821

4 2 4
with A, =0and B, =0ifn<1

FREQUENCY DOMAIN

Estimation of the non-linear response of the cracked pipeline beam

x(t) = i (A cos (kwt) + By sin (kwt))
k=1

Figure 2: Process of the numerical computation for the ¢afimn of the non-linear displacements of the simply
supported cracked pipeline beam

Case Crack element Leracr(M) 1 x Excitation element Legcitation (M)
1 7 0.1625 0.3 0 10 0.25
2 10 0.2375 0.1 0 10 0.25
3 7 0.1625 0.3 3 10 0.25
4 15 0.3625 0.3 g 2 0.05

Table 2: Description of cases

4 Numerical results

In this section, the effects of a breathing crack on the mewli dynamic response of the beam are quantified.
The basic deterministic parameters used in all cases aem givTable 1. For each case, the location of the
external force, the position, orientation and depth of tteek are given in Table 2. First of all, the detection
of the presence of one crack by using the appearance of thénsam components will be investigated. Sec-
ondly, we undertake the determination of the crack locatiased on the appearances of anti-resonances in the
signature of the non-linear components.



4.1 Crack detection based on the non-linear response

First of all, we consider a horizontal crack (= 0 degree) with a crack severify = 0.3 at the7** element
(case 1 given in Table 2). Figure 3(a) shows the non-linegwarse for the pipeline beam with the breathing
crack. It clearly appears that the global response is coatpbyg not only the first harmonic component but also
by the components of higher order. For example, the sectind, and fourth orders are predicted when the
crack breathing frequency is approximately one-half, tnet and one-fourth of the first resonance frequency,
as indicated in Figure 3(a). Moreover, due to the presenddetrack, then'” orders increase when the
frequency of the excitation force is ne%r of the first resonance frequency (with < n or anym positive
integer). It is recalled that the response will be composedriy the first harmonic component (i.e. a linear
response) for the uncracked beam. Then, Figure 3(b) shavsah-linear response for a small crack that is
situated at the0'” element withy = 0 degree (see case 2 in Table 2). It is observed that the glamal n
linear response has a significant peak at one-half of theffiegtiency of the cracked system. However, only
small changes in the vibration amplitude are observed atluine or one-fourth of the first frequency. So, it
may be concluded that the non-linear behavior for a smatikcimmainly due to the predominance of the first
and second harmonic components. Therefore it should beédswed that contributions of the third and fourth
harmonic components are too small to allow the detectiomaxficin realistic cases.

Now, we consider case 3 given in Table 2. Compared to the queviase 1, the crack orientatignthat
defines the angle between the orientation of the crack frodtlae vertical axis (see Figure 1(b)) has changed.
Figures 4(a) and 4(b) show some interesting features farabpling measurements (i.e. horizontal and vertical
directions) of the nonlinear components due to the presehtiee crack. Indeed, the presence of the crack
introduces excitation on the principal X-axis (i.e. hontal displacement) even if the external force is only
on the principal Y-axis (i.e. vertical displacement). Timp@arance of nonlinear vibrations in the horizontal
direction is only due to the breathing behavior of the cract the fact that the crack front is not in the same
direction than the external force (i.ex # 0). In the two previous cases (i.e. cases 1 and 2), there is no
coupling between the two lateral vibrations due to the flaat the external force is on the same direction than
the crack front (i.e.y = 0). Thereby, the crack does not induce excitation on the paihorizontal axis. So
no vibration on the X-axis exists.

Vertical amplitude (m)
Vertical amplitude (m)

| \/
i i i -14 i |
0 500 1000 1500 2000 0 500 1000

1500 2000

Frequency (Hz) Frequency (Hz)
(a) Case 1 (b) Case 2

Figure 3: Non-linear vertical amplitudes for cases 1 and thatmiddle of the beam (blue=global non-linear
response, black=order 1, red=order 2, magenta=order 8ngmder 4)
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Figure 4: Non-linear vertical and horizontal amplitudes ¢ase 3 at the middle of the beam (blue=global
non-linear response, black=order 1, red=order 2, magentar 3, green=order 4)

4.2 Crack location based on the anti-resonances of the non-linear components

In this part of the paper, we propose to use evolutions ofrastinances of the Higher-order Frequency Re-
sponse Functions for detecting the damage location.

Indeed, it is well known that the breathing behavior of theckrinduces an additional internal force for the
linear and non-linear components at the crack location. [BQ]e to the fact that the external for€agiven in
Equation (1) only induces first-order periodic componentshie frequency domain, it can be concluded that
only the presence of the breathing crack adds an excitadiohi§her orders. So, the position of the crack can
be identified by considering the evolution of anti-resorenef the super-harmonic components.

To illustrate this, Figures 5(a), 5(b) and 5(c) give the atiohs of the second, third and fourth harmonic
components of the cracked beam in the vertical axis for caf&r& of all, the appearances of peak amplitudes
for the second, third and fourth harmonic components tham fine signature of the presence of a crack are
visible for all the positions of the pipeline beam. Secondlgppears that the emerging and location of some
new anti-resonances and the variation in the anti-resen&ecjuency along the beam depend on the crack
location. For example, it can be observed that the antin@sce frequency decrease fr@800H z to 2200H =
for the variations of the beam location fraim to 0.25m. Then increased values of anti-resonance frequency is
observed along the beam (frdim25m to 0.5m). The minimum of anti-resonances (in frequency) for theoselc
order harmonic components of the cracked system appeahng atdck location (see the red circle in Figure
5(a)). The same conclusions can be made for the third anthfbarmonic components, as indicated in Figures
5(b) and 5(c). Here again, the red circle indicated the mimmof anti-resonance frequency for the third and
fourth-order Frequency Response Functions. So it can behwded that the beam position where the minimum
value of anti-resonance frequency is observed for all thelm®zar harmonic components corresponds to the
location of the crack.

Then, Figures 6(a), 6(b), 6(c), 6(d), 6(e) and 6(f) give thel@ions of all harmonic components in the
vertical and horizontal directions for case 3. It is readltbat the presence of horizontal responses of the
system is due to the coupling measurements via excitatitimeotrack in the horizontal axis and the breathing
behavior. In both directions and for all harmonic compoggtite minimum value of anti-resonance frequency
is detected at the position of the crack (see the red circlalfé-igures 6).

Now, we consider case 4 that is concerns with a differenttiposfor both the crack location and the
external excitation. The same behavior for the variatiothefanti-resonance frequency is observed in case 4,
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Figure 5: Vertical displacement for all the beam positio&ase 2

as illustrated in Figures 7(a), 7(b), 7(c), 7(d), 7(e) amdl. 7The minimum of the anti-resonance frequency is
located at the crack position indicated in the previous &guny the red circle.

Considering all these results, it can be concluded that btieonain advantage of using the anti-resonances
for the Higher-order Frequency Response Functions is kieatétection of the crack location is not sensitive
to the excitation position and can be easily applied for #tection of small cracks.

Finally, Figure 8 gives the first harmonic component in theZumtal direction for case 4. Due to the fact
that the external excitation is in the vertical directiolne appearance of the first harmonic component in the
horizontal direction is only due to the crack. So, the positf the minimum of anti-resonance frequency gives
the crack location (indicated by the red circle in FigureBpr all the present study, it is also remained that
the breathing behavior given in Equation (3) is only valeaéiound the first frequency. So all the previous
comments discussed in the present section are limited toaiidinear dynamic behavior of the cracked system
around its first frequency.

5 Conclusion

This paper highlights the possibility of crack detectiomotigh the observation of the non-linear dynamic
behaviour of a simply supported cracked pipeline beam. 3tudy has demonstrated that the introduction of
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a crack breathing phenomenon that varies with time due t@tidn induces the emerging of thé" super-
harmonic frequency components. The appearances of nearlztomponents can be considered as one of the
most practical indicators of the presence of a crack fortheabnitoring purposes.

The localization of anti-resonances for Higher-Order bty Response Functionsn provides useful in-
formation on the location of a crack and can be used on amenrtibust crack monitoring system.
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