
HAL Id: hal-00703176
https://hal.science/hal-00703176v1

Submitted on 1 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACME vs PDDL: support for dynamic reconfiguration
of software architectures

Jean-Eudes Méhus, Thais Batista, Jérémy Buisson

To cite this version:
Jean-Eudes Méhus, Thais Batista, Jérémy Buisson. ACME vs PDDL: support for dynamic reconfig-
uration of software architectures. 6ème édition de la Conférence Francophone sur les Architectures
Logicielles (CAL 2012), May 2012, Montpellier, France. pp.48-57. �hal-00703176�

https://hal.science/hal-00703176v1
https://hal.archives-ouvertes.fr

ACME vs PDDL: support for dynamic reconfiguration of
software architectures

Jean-Eudes Méhus
Écoles de St-Cyr Coëtquidan

Guer, France
jean-eudes.mehus@st-

cyr.terre-
net.defense.gouv.fr

Thais Batista
Federal University of Rio

Grande do Norte
Natal (RN) Brazil

thais@dimap.ufrn.br

Jérémy Buisson
UEB / Écoles de St-Cyr

Coëtquidan / Université de
Bretagne Sud
Guer, France

jeremy.buisson@st-
cyr.terre-

net.defense.gouv.fr

ABSTRACT
On the one hand, ACME is a language designed in the late
90s as an interchange format for software architectures. The
need for reconfiguration at runtime has led to extend the lan-
guage with specific support in Plastik. On the other hand,
PDDL is a predicative language for the description of plan-
ning problems. It has been designed in the AI community
for the International Planning Competition of the ICAPS
conferences. Several related works have already proposed to
encode software architectures into PDDL. Existing planning
algorithms can then be used in order to generate automat-
ically a plan that updates an architecture to another one,
i.e., the program of a reconfiguration. In this paper, we im-
prove the encoding in PDDL. Noticeably we propose how
to encode ADL types and constraints in the PDDL rep-
resentation. That way, we can statically check our design
and express PDDL constraints in order to ensure that the
generated plan never goes through any bad or inconsistent
architecture, not even temporarily.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
dynamic reconfiguration, ACME, PDDL, planning, software
architecture

1. INTRODUCTION
With long-running software systems, we sometimes want to
change the software program at runtime. That way, one
can deploy new features or fix bugs without any service dis-
ruption. Continuous operation and critical systems have
such requirements for dynamic reconfiguration. Dynamic
reconfiguration have been studied at different levels (control
flow [12], functions [3, 24], objects [2, 11], components [6,

7, 10]). In this paper we consider only structural changes
of the component-based software architecture. At this level,
dynamic reconfigurations typically consist in adding and re-
moving components and connectors, as well as changing the
connections between architectural elements.

Several software architecture reconfiguration languages have
been proposed [6, 10, 27] to let developers program reconfig-
urations by-hand. These languages provide primitive opera-
tions that add, remove and modify architectural elements at
runtime. The developer uses these operations in combina-
tion with usual connectives (sequence, iteration, condition)
to describe imperatively how to transform the software ar-
chitecture to the new desired version.

In order to relieve from the burden of programming recon-
figurations, some related works have tried to automate the
issuing of reconfiguration instructions [1, 4, 5, 13, 20, 23].
These techniques compare the original and target architec-
tures in order to identify the changes. Then a tool computes
a suitable sequence of primitive operations that performs the
reconfiguration.

Instead of designing domain-specific algorithms, it is appeal-
ing to reuse off-the-shelf techniques to generate reconfigura-
tion scripts. That way we can benefit from advances and
expertise in other research fields. Automatic action plan-
ning from the AI community is one candidate technology. It
is a field of research that focuses on the generation of a se-
quence of actions that brings a system from an initial state
to a goal state, based on the specification of all possible
actions. Planners such as POPF [9], Fast Downward [18],
LAMA [25] and Madagascar [26] are general-purpose tools
that can be used if software architecture reconfigurations
can be translated to planning problems.

In the AI community, the de facto standard description lan-
guage for planning problems is PDDL [16]. This language is
designed and used by the International Planning Competi-
tion of the ICAPS conferences. PDDL is therefore a widely
spread language that is implemented by many planners.

As noticed by André et al. [1], PDDL let us switch easily
from one planner to another. Furthermore, regular planners
usually generate better reconfiguration scripts than simple

domain-specific heuristics such as [23]. However, in the cur-
rent state of the art, constraints (coming from either the
software architecture, the component model or the execu-
tion platform) are not taken into account. Even if the spec-
ification of reconfiguration operations is correctly designed,
there is no guaranty (in the current state of the art) that
the planner cannot generate operations that infringe any
constraint. In order to address this issue, we propose in this
paper that we statically verify general constraints and that
we embed the other constraints in the planning problem.

This paper improves the current state of the art (described
in Section 2) in order to take into account constraints. Our
presentation is based on a synthetic client-server example
described in Section 3. We program this example using the
ACME [14] architecture description language in Section 4.
As exposed, ACME is richer than the architecture descrip-
tion languages used by Arshad et al., André et al. and In-
gstrup et al. Indeed, ACME supports the component-and-
connector paradigm with types, as well as invariants and
architectural styles. By means of its extension Armani [21],
ACME let the software architect state constraints. ACME
has also built-in support for dynamic reconfiguration thanks
to Plastik [6]. In this paper, we do not refrain from defin-
ing new reconfiguration operations, e.g., modifying types.
Section 5 describes the same example using PDDL. We first
presents this language. We give the specification of the prim-
itive reconfiguration operations as well as the predicates that
we use to encode software architectures. A set of invariants
relates the predicates according to the ACME component
model. In Section 6 we show how some of the constraints
coming either from the ACME language itself (e.g., typ-
ing) or from architectural styles (e.g., client-server) can be
checked statically, and therefore we show that the planning
problem is consistent with these invariants. The remaining
invariants can be embedded in the planning problem in order
to tell the planner not to infringe any of the constraints. Sec-
tion 7 contains a discussion of our results, reports our first
experiments and concludes the paper with future works.

2. STATE OF THE ART
In the current state of the art, regular PDDL planners from
the AI community have already been used successfully to
generate automatically reconfiguration scripts [1, 4, 5, 13,
20]. With these systems, the original architecture and the
target one are encoded together as a planning problem. Each
reconfiguration primitive is modelled as an action in a plan-
ning domain. From these descriptions, a planner generates
a sequence (possibly partially ordered if concurrency is sup-
ported) of primitive operations that brings the architecture
from its original state to the target configuration. It is im-
portant that the planning problem states clearly the con-
straints imposed by, e.g., the execution platform in order
that the planner does not generate an infeasible plan.

We build on the previous state-of-the-art results of Arshad
et al. [4, 5], André et al. [1], Ingstrup et al. [20] and El
Maghraoui et al. [13] in order to improve their techniques.
All of these previous works translate reconfigurations to
PDDL planning problems. They define a set of predicates to
describe a software architecture as the conjunction of logical
facts. For example in [5], the connected−component predi-
cate states whether a given component and a given connector

are connected to one another. A set of actions models the
semantics (preconditions and effects) of the reconfiguration
primitive operations. An action named connect−component

for instance requires that a component and a connector are
instantiated and that none of them is connected; its effect
establishes the connected−component fact. André et al., In-
gstrup et al. and El Maghraoui et al. [13] do the same even
if they define different sets of predicates and actions, taking
into account their respective contexts (i.e., their component
model and their execution platform).

El Maghraoui et al. [13] propose in addition an encoding for
properties that is based on predicates. A predicate named
set states whether a given property of a given object has a
value. For each property of each type, a specific predicates
relates an object to the value of the attribute.

In summary, the main achievements and limits of previous
works are:

• Arshad et al. [4, 5] use the approach in the context
of a component-and-connector ADL. However, their
model does not take into account ports, roles, types,
constraints or architectural styles.

• André et al. [1] use the approach in the context of
DiVA ART [22]. They support component instances
and types as well as ports. However, they do not have
the connector concept and they do not support con-
straints or architectural styles.

• Ingstrup et al. [20] have done similar experiments on
the generation of deployment plans for OSGi bundles.
However, they do not consider types or architectural
styles.

• El Maghraoui et al. [13] use PDDL planning in order
to generate deployment plans for datacenters managed
by tools such as IBM Tivoli Provisioning Manager [19].
They support object-relationship models with proper-
ties. While types are taken into account, their struc-
ture is not modelled in PDDL. They do not support
constraints.

Each of these previous works assume consistency rules that
relate the predicates. For instance, El Maghraoui et al. [13]
assume the consistency rules that states that if a property
is set for an object then the property has a value for that
object; at there is at most one value per property-and-object
pair; and so on. Only few of such rules are explicitly given.
While Ingstrup et al. have analyzed their reconfiguration
actions using Alloy, they acknowledge that the version used
with AI planning is different from the verified one [17]. None
of Arshad et al. [4, 5], André et al. [1] or El Maghraoui et
al. [13] take any preventive measure in regard to such con-
straints. None of these works avoid that the planner gener-
ates inconsistent, ill-typed or non-conformant architectures
as intermediate reconfiguration steps. This is the point we
address in this paper.

3. A RUNNING EXAMPLE
Figure 1 depicts the architecture that we use as the run-
ning example of this paper. It is a client-server architec-
ture, which contains two components (Client is the client;

Table 1: ACME extensions for programmed reconfiguration.

Reconfiguration statements Description
On (<Armani exp>) do {<statements>} expresses runtime conditions under which programmed reconfig-

urations should take place, and a specification (in terms of the
other reconfiguration statements) of what should change.

Detach <element> from <element> removes an attachment between a port and a role.
Remove <element> destroys an existing component, connector or representation.
Dependencies {<ACME statements>} expresses runtime dependencies among components/connectors

(e.g., if X is to be removed, Y should be removed also).

ClientServer

∀c1, c2 : component,

c1 → c2 ⇒ c1 : ClientT ∧ c2 : ServerT

Client Conn PrimServer

When PrimServer.failure:

Client Conn BackupServer

Figure 1: Architecture of the running example.

PrimServer is the server) and a connector named Conn. An
invariant is attached to this architecture in order to ensure
the client-server style. It states that for any pair c1, c2 of
components, if c1 is connected to c2, then c1 conforms to
type ClientT and c2 conforms to type ServerT. This in-
variant prevents from connecting one client component to
another client, or one server component to another server.

Regarding reconfiguration, one may want to replace the pri-
mary server component PrimServer in case it fails. Ob-
viously the reconfigured architecture, i.e., using a backup
server named BackupServer in place of PrimServer, con-
forms to the invariant.

In PDDL, the states of a system, including the initial state
and the goal state, are described by formulas in the first-
order predicate logic. A planner may generate any plan
that conforms to the goal. Conformance is defined by impli-
cation: as long as the final state implies the goal, the plan is
acceptable. Consequently, the resulting architecture is not
exactly the same as the goal architecture. For example, the
resulting architecture may contain components, connectors
and bindings that are not required, as long as they are not
forbiden by the goal formula.

Therefore if we don’t take any preventive measure, despite
the target architecture respects invariants and constraints,
the resulting architecture (after effective execution of the
generated reconfiguration) may not.

A planner may execute any action as long as it can be exe-
cuted. For instance, a planner may freely trigger an action,
then undo that action at the next step. While planner im-
plementors do their best not to issue useless actions, it is
not mandatory that a planner generate optimal plans.

Therefore if we don’t take any preventive measure, some in-
termediate steps shall be invalid with respect to invariants

and constraints even if the resulting architecture is confor-
mant.

In our example, we would like that the connector is de-
tached from PrimServer before it is connected to the backup
server; that the backup server is instantiated before its port
is bound. The reconfiguration designer may also want to
state that the architecture must continuously conform to its
invariant during the reconfiguration; or a specific invariant
shall be given for the time of the reconfiguration.

While the current state-of-the-art techniques [1, 4, 5, 13, 20]
propose carefully designed planning problems, none of these
previous works describe how to verify that they enforce the
constraints. Despite they verify reconfiguration operations
using Alloy [17], Ingstrup et al. acknowledge that the PDDL
specification is not the verified one. In addition, in case
some constraints cannot be checked statically, none of these
previous works propose how to embed the constraints in the
planning problem. None of [1, 4, 5, 13, 17, 20] take into
account invariants given by the software architect.

4. THE EXAMPLE USING ACME ADL
ACME [14] is an extensible generic ADL that provides a
syntax for representing structures and an annotation mech-
anism for describing additional semantics. The ACME core
concepts are:

• Components: the basic building blocks in an ACME
description of a system. Components expose their
functionality through their ports. A port represents
a point of contact between the component and its en-
vironment.

• Connectors: represent communication glue that cap-
tures the nature of an interaction between components.
Ports are bound to ports on other components using
connectors. Like components, connectors may be used
to model a variety of different sorts of interactions un-
der a number of different models. A connector includes
a set of interfaces in the form of roles.

• Systems: describe a set of components and connectors,
and how they interact. A property might also be used
to represent properties of the environment in which the
system is operating, or “global” properties that apply
to all elements of the system. The graph of a system
(how everything is connected) is defined by a set of
attachments.

• Representations: are alternative decompositions of a
given component; they reify the notion that a compo-

nent may have multiple alternative implementations.
Elements in ACME may have more than one represen-
tation.

• Element types: are defined in the same way as in-
stances; they define a prototype that is instantiated by
copying its structure. The ACME type model states
that all instances of a type must include the structure
defined by this type. For properties, this means that if
a set of properties is defined for a particular type, any
instances must have the same properties.

• Attachments: define a set of port/role associations.

• Properties: are <name, type, value> triples that an-
notate to any of the above ACME elements. ACME
allows user-defined property types that may be defined
in terms of built-in property data types. Systems, com-
ponents, connectors, ports and roles may include a list
of properties and a list of representations.

• Architectural styles: define sets of types of compo-
nents, connectors, properties, and sets of rules that
specify how elements of those types may be legally
composed in a reusable architectural domain.

Armani [21] extends ACME with a language based on first-
order predicates used to express architectural constraints
over architectures. For example, it can be used to express
constraints on system composition, behaviour, and proper-
ties. Constraints are defined in terms of so-called invariants
which in turn are composed of standard logical connectives
and predicates (both built-in and user-defined) which are
referred to as functions.

ACME may also be used as a way of representing recon-
figurable architectures by expressing the possible reconfigu-
rations in terms of the ACME structures. For example, a
system might include properties that describe components
that may be added at run-time and how to attach them
to the current system. This means that ACME does not
include first class elements to describe dynamic reconfigu-
ration of the architecture. In other words, dynamic recon-
figuration is not originally addressed by ACME but it can
be handled using the extensible mechanism of the language.
In order to address this issue, Plastik [6] defines ACME ex-
tensions to represent different types of reconfigurations at
the architecture level. Table 1 summarizes the set of such
ACME extensions for programmed reconfiguration, that is,
reconfiguration that can be foreseen at design time. Ad-hoc
reconfiguration, which involves changes unforeseen at design
time, can be specified at the architecture level by submitting
a partial architecture specification to a configurator. At the
architecture level Plastik is based on styles to constrain the
allowable range of permissible ad-hoc reconfigurations.

Figure 2 illustrates the use of Armani and Plastik in our ex-
ample. A programmed reconfiguration specifies the removal
of the PrimServer component if it fails: the Conn connec-
tor and the PrimServer component are disconnected, then
PrimServer is removed, and a BackupServer component is
inserted and attached to Conn.

The description of an architecture in ACME with dynamic
reconfiguration statements follows the following steps:

Family ClientServerFam extends PlastikMF with {
Component Type ClientT = { Port request = new RequiredPort; }
Component Type ServerT = { Port service = new ProvidedPort; }

Invariant Forall c1, c2: Component in self.Components |
connected(c1, c2) −> (satisfiesType(c1, ?ClientT?) and

satisfiesType(c2, ?ServerT?));
}

System ClientServer = new ClientServerFam extended with {
Component Client = new ClientT;
Component PrimServer = new ServerT extended with {

Property failure: boolean = false;
}

Connector Conn = { Role requestor; Role servicer; }
Attachments { Client.request to Conn.requestor;

Conn.servicer to PrimServer.service; }

On (PrimServer.failure == true) do {
Detach Conn.servicer from PrimServer.service;

Remove PrimServer;
Component BackupServer = new ServerT extended with {

Dependencies {
Attachments { Conn.servicer to BackupServer.service; }

}

}
}

Figure 2: A dependable client-server in Plastik.

• Identify the concepts in the source model that cor-
respond to the ACME architectural concept: system,
component, connector, port, role or representation

• Define a family or set of families for the model. Define
a component, connector, port or role type to represent
each of the architectural concepts

• Define a set of property types, which will make up a
property language for describing elements in the model

• Define the reconfiguration actions

5. THE EXAMPLE USING PDDL
PDDL is a standard encoding language for planning tasks.
The components of a PDDL planning task are: (i) Objects
(ii) Predicates: properties of objects that can be true or
false, as in first order logic; (iii) Initial state: the list of all
facts that are true in the initial state; (iv) Goal specification:
the objective of the problem that specifies what need to be
true at the end of the plan; (v) State trajectory constraints:
a logical formula used to restrict the space of states; (vi)
Actions/Operators: ways of changing the truth and falsity
of facts. Actions are parameterized with objects. An action
is composed of a precondition, that states the constraints to
the action be executed, and an effect that lists the facts that
become true or false after the execution of the action.

The planning task is usually split into two files:

1. A domain file for the definition of the domain predi-
cates and actions. To some extent, the domain defines
the language used to describe situations and planning
problems in a specific application.

2. A problem file containing the objects of the problem
instance, initial state and goal specifications.

In summary, the description of predicates structures the rep-
resentation of states; the description of actions characterizes

(define (domain <domain name>)
<PDDL code for predicates>

<PDDL code for first action>
[...]

<PDDL code for last action>
)

Figure 3: Domain File in PDDL.

(define (problem <problem name>)

(:domain <domain name>)
<PDDL code for objects>

<PDDL code for initial state>
<PDDL code for goal specification>

)

Figure 4: Problem File in PDDL.

domain behaviours. Predicates and actions (the domain) are
separated from the description of specific instance objects,
initial conditions, and goals that characterize a problem in-
stance. A planning problem is created by joining a domain
description with a problem description. The same domain
description can be joined with many different problem de-
scriptions to yield different planning problems in the same
domain. The structure of a domain file is depicted in Fig-
ure 3. The structure of a problem file is depicted in Figure 4.

In this work, we inspire from previous works: most archi-
tecture elements (components, connectors, ports, roles, sys-
tems and types) are encoded as objects. The relationships
between elements (including attachments) are encoded as
facts, thanks to predicates. Each reconfiguration primitive
operation reflects as a PDDL action. Architectural styles
are either checked statically or programmed as trajectory
constraints. In this paper, we ignore representations and
properties. We do not consider the reconfiguration of in-
variants or styles.

5.1 A domain for software architectures
Like [5], we use PDDL types only to classify objects depend-
ing on the kind of architecture elements. The reason why
we don’t encode ACME types using PDDL types is because
the two type systems are different. On the one side, ACME
component and connector types are structural types: a com-
ponent is an instance of a type if and only if it contains at
least the same structure as the one described in the type. On
the other side, PDDL types are nominal types. The type of
an object is given by name. Two types with different names
are different types.

The relationship between components and connectors in-
stances on the one side, and types on the other side is mod-
elled by has−component−type and has−connector−type.

The containment relationships are implemented by a set of
predicates, one per level in the hierarchy. Table 2 summa-
rizes these predicates. Our model assumes that if a compo-
nent c has type t, then c contains the same ports as t. The
same invariant applies to connectors and roles.

The bound predicate binds a port of a component to a role of

a connector. The predicate named exist−component (resp.
exist−connector) states that a component (resp. connec-
tor) is instantiated.

We also define negative predicates: the predicate named
unbound−port (resp. unbound−role) states that a port of
a component (resp. a role of a connector) is not bound to
any role (resp. port).

We model each reconfiguration primitive operation as an
action, expliciting the preconditions and effects on the ar-
chitecture in terms of the above predicates.

• create−component: instantiate a component named
?c in a system ?s.
Precondition: ¬exist−component (?c).
Effects: exist−component (?c),
contains−component (?s, ?c).

• create−connector: instantiate a connector named ?c

in a system ?s.
Precondition: ¬exist−connector (?c).
Effects: exist−connector (?c),
contains−connector (?s, ?c).

• remove−component: remove a component named ?c

from a system ?s.
Precondition: contains−component (?s, ?c).
Effects: ¬exist−component (?c),
¬contains−component (?s, ?c).

• remove−connector: remove a connector ?c from a sys-
tem ?s.
Precondition: contains−connector (?s, ?c).
Effects: ¬exist−connector (?c),
¬contains−connector (?s, ?c).

• attach: bind a port ?p of a component ?c to a role ?r

of a connector ?co.
Precondition: exist−component (?c),
exist−connector (?co), has−port (?c, ?p),
has−role (?co, ?r), unbound−port (?c, ?p),
unbound−role (?co, ?r).
Effects: ¬unbound−port (?c, ?p),
¬unbound−role (?co, ?r), bound (?c, ?p, ?co, ?r).

• detach: unbind a port ?p of a component ?c from a
role ?r of a connector ?co.
Precondition: bound (?c, ?p, ?co, ?r).
Effects: ¬bound (?c, ?p, ?co, ?r),
unbound−port (?c, ?p), unbound−role (?co, ?r).

As we model the types of architectural elements, we can also
define operations that affect types. As in ACME each ele-
ment has its own type (defined by its own structure) we can
define operations that consistently change a component or a
connector and its type at once. No question arises whether
such modifications should propagate to a whole group of
instances as each type is bound to one instance at most.

• add−port: add a port ?p to a component ?c of type
?t.
Precondition: has−component−type (?c, ?t),

Table 2: Predicates for containment relationships.
Types Instances

system constains−component contains−connector

component/connector type−has−port type−has−role has−port has−role

¬has−port (?c, ?p).
Effects: has−port (?c, ?p), type−has−port (?t, ?p),
unbound−port (?c, ?p).

• add−role: add a role ?r to a connector ?c of type ?t.
Precondition: has−connector−type (?c, ?t),
¬has−role (?c, ?r).
Effects: has−role (?c, ?r), type−has−role (?t, ?r),
unbound−role (?c, ?r).

• remove−port: remove a port ?p from a component ?c

of type ?t.
Precondition: has−component−type (?c, ?t),
has−port (?c, ?p), unbound−port (?c, ?p).
Effects: ¬has−port (?c, ?p),
¬type−has−port (?t, ?p).

• remove−role: remove a role ?r from a connector ?c

of type ?t.
Precondition: has−connector−type (?c, ?t),
has−role (?c, ?r), unbound−role (?c, ?r).
Effects: ¬has−role (?c, ?r),
¬type−has−role (?t, ?r).

In case a type is not bound to any instance, we can also
reconfigure that type independently of any instance.

• add−type−port: add a port ?p to a component type
?t.
Precondition:
∀?c : component,¬has−component−type (?c, ?t),
¬type−has−port (?t, ?p).
Effects: type−has−port (?t, ?p).

• add−type−role: add a role ?r to a connector type ?t.
Precondition:
∀?c : connector,¬has−connector−type (?c, ?t),
¬type−has−role (?t, ?r).
Effects: type−has−role (?t, ?r).

• remove−type−port: remove a port ?p from a compo-
nent type ?t.
Precondition:
∀?c : component,¬has−component−type (?c, ?t),
type−has−port (?t, ?p).
Effects: ¬type−has−port (?t, ?p).

• remove−type−role: remove a role ?r from a connec-
tor type ?t.
Precondition:
∀?c : connector,¬has−connector−type (?c, ?t),
type−has−role (?t, ?r).
Effects: ¬type−has−role (?t, ?r).

It is the role of the constraints such as subtyping or type
satisfaction to restrict the use of the operation that affect
types.

In this design, we assume that any situation conforms to the
following consistency constraints. The equality = denotes
the identity over PDDL objects (including components, con-
nectors, their types, ...).

• Each component has a type:

∀c : component, ∃t : component−type,

has−component−type (c, t)

• The type of a component is unique:

∀c : component,∀t1, t2 : component−type,

has−component−type (c, t1)
∧has−component−type (c, t2)
⇒ t1 = t2

• Each component has a different type:

∀c1, c1 : component,∀t : component−type,

has−component−type (c1, t)
∧has−component−type (c2, t)
⇒ c1 = c2

• A component and its type have the same ports:

∀c : component,∀t : component−type,

has−component−type (c, t)
⇒ ∀p : port,

has−port (c, p) ⇔ type−has−port (t, p)

• A system contains only instantiated components:

∀s : system, ∀c : component,

contains−component (s, c)
⇒ exist−component (c)

• Any instantiated component lies in a system:

∀c : component, exist−component (c)
⇒ ∃s : system, contains−component (s, c)

• A component is in a single system:

∀c : component,∀s1, s2 : system,

contains−component (s1, c)
∧contains−component (s2, c)
⇒ s1 = s2

• Only instantiated components can be bound:

∀c : component, ∀p : port,∀co : connector,

∀r : role, bound (c, p, co, r) ⇒ exist−component (c)

• Only the ports of a component can be bound:

∀c : component,∀p : port,∀co : connector,

∀r : role, bound (c, p, co, r) ⇒ has−port (c, p)

(:objects ClientServer − system
Client PrimServer − component
BackupServer − component

Conn − connector
ClientT Client−type − component−type

ServerT PrimServer−type − component−type
BackupServer−type − component−type

Conn−type − connector−type
request service − port
requestor servicer − role)

Figure 5: The client-server PDDL objects.

(:init (exist−component Client)

(exist−component PrimServer)
(exist−connector Conn)

(contains−component ClientServer Client)
(contains−component ClientServer PrimServer)
(contains−connector ClientServer Conn)

(has−component−type Client Client−type)
(has−component−type PrimServer PrimServer−type)

(has−connector−type Conn Conn−type)
(has−port Client request)

(has−port PrimServer service)
(has−role Conn requestor)
(has−role Conn servicer)

(type−has−port Client−type request)
(type−has−port PrimServer−type service)

(type−has−role Conn−type requestor)
(type−has−role Conn−type servicer)
(type−has−port ClientT request)

(type−has−port PrimServer−type service)
(bound Client request Conn requestor)

(bound PrimServer service Conn servicer)
(has−component−type BackupServer BackupServer−type))

Figure 6: The client-server architecture in PDDL.

• A port of a component can be bound only once:

∀c : component,∀p : port,

∀co1, co2 : connector,∀r1, r2 : role,

bound (c, p, co1, r1) ∧ bound (c, p, co2, r2)
⇒ co1 = co2 ∧ r1 = r2

• A port is unbound iff it is not bound to any role:

∀c : component,∀p : port,

unbound−port (c, p)
⇔ ∀co : connector,∀r : role,

¬bound (c, p, co, r)

The same constraints hold for connectors and roles.

5.2 The architecture in our PDDL domain
Figure 5 gives the PDDL listing for the objects in the archi-
tecture. It enumerates all of the architectural elements that
are mapped onto PDDL objects: systems, components, con-
nectors, ports, roles, component types and connector types.
It contains all the objects that could exist before, during
and after the reconfiguration.

Figure 6 defines the client-server of our running example
using our PDDL domain. It extensively states the facts that
are true in the architecture. The facts that are not listed
are assumed false. This conjonction of facts conforms to the
constraints that we have identified in the PDDL domain.

(:goal (and (exist−component Client)
(exist−component BackupServer)
(exist−connector Conn)

(contains−component ClientServer Client)
(contains−component ClientServer BackupServer)

(contains−connector ClientServer Conn)
(has−component−type Client Client−type)

(has−component−type BackupServer BackupServer−type)
(has−connector−type Conn Conn−type)
(has−port Client request)

(has−port BackupServer service)
(has−role Conn requestor)

(has−role Conn servicer)
(type−has−port Client−type request)
(type−has−port BackupServer−type service)

(type−has−role Conn−type requestor)
(type−has−role Conn−type servicer)

(type−has−port ClientT request)
(type−has−port BackupServer−type service)

(bound Client request Conn requestor)
(bound BackupServer service Conn servicer)))

Figure 7: The reconfigured client-server architec-

ture in PDDL.

(add−port BackupServer BackupServer−type service)

(detach PrimServer service Conn servicer)
(create−component ClientServer BackupServer)
(attach BackupServer service Conn servicer)

Figure 8: The generated reconfiguration plan.

Following the same principle, Figure 7 defines the client-
server of our running example after the reconfiguration. This
is the goal clause of the PDDL problem file. With this ex-
ample, the generated plan is the one given in Figure 8:

1. First, a service port is added to the BackupServer

component. Indeed this port is absent in the initial
architecture of Figure 6.

2. Second, the service port of the PrimServer compo-
nent is detached from the servicer role of the Conn

connector.

3. Third, the BackupServer component is instantiated
within the ClientServer system.

4. Last, the service port of the BackupServer compo-
nent is bound to the servicer role of the Conn con-
nector.

As the goal does not state that the PrimServer component
should be destroyed, the generated plan does not executes
the remove−component action. Except few differences as
noticed, the generated plan is almost the same as the hand-
written reconfiguration of Figure 2. According to the specifi-
cation of the actions, the add−port and create−component

actions can be executed in any arbitrary order.

Architectural styles are translated as additional constraints
in the problem file.

6. CHECKING INVARIANTS
During a reconfiguration, the software system passes by a
succession of intermediate architectures, at the end of each

(:constraints (always (and
(forall (?c1 ?c2 − component

?co − connector

?request ?service − port
?requestor ?servicer− role

?c1T ?c2T − component−type
(implies

(and (has−port ?c1 ?request)
(has−port ?c2 ?service)
(has−role ?co ?requestor)

(has−role ?co ?servicer)
(bound ?c1 ?request ?co ?requestor)

(bound ?c2 ?service ?co ?servicer)
(has−component−type ?c1 ?c1T)
(has−component−type ?c2 ?c2T))

(and (forall (?p− port) (implies (type−has−port ClientT ?p)
(type−has−port ?c1T ?p)))

(forall (?p− port) (implies (type−has−port ServerT ?p)
(type−has−port ?c2T ?p))))))))))

Figure 9: The client-server invariant of Figure 2 as

a PDDL trajectory constraint.

primitive reconfiguration operation. Several invariants must
hold in any architecture: some of them are inherent of the
ADL itself; some of them come from the architectural style.
Even if we choose to relax these constraints temporarily dur-
ing reconfiguration, we have to ensure that the still-required
properties are always satisfied. For instance, Fractal [7] and
André et al. [1] forbid a component to be active if any of
its client ports is not bound. Depending on the implemen-
tation, some orderings of the ACME Detach / Attachments

might be forbiden as well, e.g., to prevent a client from being
temporarily bound to two servers at the same time.

We consider two strategies in order to enforce invariants.

On the one side, we can encode the invariants as trajec-
tory constraints, which have been introduced in PDDL3 [15].
Constraints are used to prune the search space of the plan-
ner. The underlying logic is equivalent to a limited subset
of LTL. Temporal operators can be used to constrain dy-
namic architectures. As ACME does not support dynamic
architectures, temporal operators are not needed in order
to encode invariants. For instance, the clause in Figure 9
gives the PDDL syntax in order to encode the invariant for
the client-server style. It states that if any two components
?c1 and ?c2 are connected by a connector ?co, then their
respective types are included in ClientT and ServerT, re-
spectively.

The Armani language for ACME invariants is based on the
first-order predicate logic, restricted to quantification over
finite sets only, like PDDL. The only restriction is therefore
the ability to encode the Armani primitive functions using
our PDDL predicates. For instance, in the list of primitive
functions of [21], the satisfiesType function can be imple-
mented as the verification that the element has the same
subelements as declared in the type. However, in our sys-
tem, we do not provide the necessary mechanism for the
declaresType function. Indeed, we do not keep track of
subtyping declarations in the PDDL encoding. We would
need to define additional predicates in order to implement
the declaresType function.

On the other side, some of the invariants can be checked

(: derived (unbound−port ?c − component ?p − port)
(forall (?co − connector ?r − role)

(not (bound ?c ?p ?co ?r))))

(: derived (unbound−role ?co − connector ?r − role)
(forall (?c − component ?p − port)

(not (bound ?c ?p ?co ?r))))

Figure 10: PDDL definition of derived predicates.

statically. Indeed, if the primitive reconfiguration opera-
tions are properly modelled, they should at least preserve
the invariants coming from the ADL, whatever the context.
Therefore, we aim at proving that primitive operations are
consistent with the invariants. Let I be the invariant. Given
an operation with parameters p, if the precondition P (p)
holds, then the invariant must still be satisfied after the ef-
fect in [E (p)] I:

I ⇒ ∀p,P (p) ⇒ [E (p)] I

As a simple example, we may want to ensure that any port
is bound to at most one role and that no action can infringe
that rule. This property is formalized as:

∀c : component,∀p : port,

∀r1, r2 : role,∀co1, co2 : connector,

bound (c, p, co1, r1) ∧ bound (c, p, co2, r2)
⇒ co1 = co2 ∧ r1 = r2

Any operation that does not have any bound positive ef-
fect obviously preserves this invariant. When we check the
attach operation, the positive effect bound (?c, ?p, ?co, ?r)
is established only if the precondition unbound−port (?c, ?p)
is true. The invariant holds as our predicates are such that
∀c,∀p, (unbound−port (c, p) ⇔ ∀co,∀r,¬bound (c, p, co, r)).

Of course, the system has to be checked against this property
and all other constraints of section 5.1 as well.

Only invariants that are general, at the level of the architec-
ture description language, can be verified statically. Indeed,
we involve solely the PDDL domain, i.e., the specification of
predicates and reconfiguration actions, which is common to
all of the possible architectures.

7. CONCLUSION
In this paper, we propose a schema to encode an ACME
architecture using the PDDL language. This work has sev-
eral interests. First, as pointed out by related works, the
approach allows using automatic planner from the AI com-
munity in order to generate automatically reconfiguration
scripts. Second, it lets us study reconfiguration operations
that do not exist currently in Plastik, e.g., operations that
affect the type of architectural elements. Third, we give a
sound semantics to our reconfiguration framework.

In comparison to related works, we improve the technique
in that we propose how to manage the type of architecture
elements, as well as architectural styles and constraints. We
furthermore formally state consistency constraints for our
PDDL domain. We explain how all of these constraints can
either be checked statically or used to restrict the state space
of the planner.

In this paper, we do several design choices:

• We decide not to use PDDL derived predicates, i.e.,
predicates that are given as a formula of the other
predicates. We can use this feature for instance for the
unbound−port and unbound−role predicates. Using
the definitions of Figure 10, we do not have to explic-
itly manage these predicates in the effects of attach

and detach. We can implement the exist−component

and exist−connector predicates as derived predicates
using contains−component and contains−connector

as well. However, while derived predicates are appeal-
ing, only few planners support this fragment of the
PDDL language.

• We translate straightforwardly the invariants of the
software architecture into PDDL constraints. As a
consequence, the invariants must hold during the whole
reconfiguration plan; and no reconfiguration action can
change the set of enforced invariants.

• We assign a unique type to each component or connec-
tor. That way, we can safely elude the question: what
happens to its type and to the components (resp. con-
nectors) that share the same type when a port (resp.
role) is added or removed to a component (resp. con-
nector).

• We ignore some fragments of the ACME architecture
description language. We do not consider properties,
representations, type satisfaction declarations, fami-
lies. Representations and type satisfaction declara-
tions are relations between architectural elements; fam-
ilies are types for systems. We can therefore use the
same approach as for the other kinds of relations. The
properties store values of primitive types (integer, floa-
ting-point number, string, boolean), enumerated types
or constructed types (sequence, set, record). Storing
values is supported by PDDL fluents, which are func-
tions that map a value to PDDL objects. However,
fluents are restricted to either objects (which may suit
well, e.g., enumerated types) or numbers. Instead of
fluents, we can use the schema of El Maghraoui et
al. [13].

This work is still in early stage. As short-term future work,
we plan to experiment our PDDL domain with real plan-
ners. Indeed, it is well-known that almost no existing plan-
ner implements the whole PDDL standard, as reported at
the International Planning Competition’2011. In our pre-
liminary results using 65 planners1, only 17 planners pass the
running example of this paper (without using constraints).
Among them, 14 planners generate the 4 actions plan of
Figure 82; the 3 other planners generate additional useless

155 competing planners and 3 non competing planners come
from the International Planning Competition’2011 public
subversion repository; 7 planners are downloaded from pub-
lic web sites. Some of these 65 planners differ only in the
heuristics and parameters they use.
2Some planners generate a different sequence, but the ac-
tions are the same. Some planners propose to execute sev-
eral of these actions in parallel. We have verified that all of
the generated solutions are correct.

actions. Only 1 planner succeeds when we use derived predi-
cates; no planner supports constraints. Among the 48 failing
planners, 6 planners report that they do not support nega-
tion in action preconditions. We still need to investigate the
reason why the 42 remaining planners fail.

Even if more experiments confirm that no planner support
all of the PDDL features that we use, we notice that: neg-
ative preconditions can be removed by the introduction of
additional predicates and effects; derived predicates can be
expanded like we do in this paper, e.g., for unbound−port;
quantifiers can be expanded as quantification is over finite
sets; constraints can be encoded into preconditions. Fur-
thermore, these features are not implemented probably due
to the fact that they are not used in the International Plan-
ning Competition. We can therefore expect that they will
be supported as the competition evolves next years.

The performance of planners is also affected by some metrics
in the domain definition such as maximum number of posi-
tive or negative effects and preconditions [8]. We therefore
have to ensure that existing planners behave correctly with
our improvements. During our first experiments, simple re-
configurations are solved in less than 300ms with an Intel
E5400 / Linux x64 PC, except one planner that takes 2.5s.
In our future work, we will evaluate the planners with more
complex reconfigurations.

8. REFERENCES
[1] F. André, E. Daubert, G. Nain, B. Morin, and

O. Barais. F4Plan: an approach to build efficient
adaptation plans. In 7th International ICST
Conference on Mobile and Ubiquitous Systems,
Sydney, Australia, Dec. 2010.

[2] J. Appavoo, K. Hui, C. Soules, R. Wisniewski, D. D.
Silva, O. Krieger, D. Edelsohn, M. Auslander,
B. Gamsa, G. Ganger, P. McKenney, M. Ostrowski,
B. Rosenburg, M. Stumm, and J. Xenidis. Enabling
autonomic behavior in systems software with
hot-swapping. IBM Systems Journal, 42(1), Jan. 2003.

[3] J. Armstrong. Programming Erlang: software for a
concurrent world. The Pragmatic Bookshelf, 2007.

[4] N. Arshad and D. Heimbigner. A comparison of
planning based models for component reconfiguration.
Technical Report CU-CS-995-05, University of
Colorado, Boulder, Colorado, USA, 2005.

[5] N. Arshad, D. Heimbigner, and A. Wolf. Deployment
and dynamic reconfiguration planning for distributed
software systems. Software Quality Journal,
15(3):265–281, Sept. 2007.

[6] T. Batista, A. Joolia, and G. Coulson. Managing
dynamic reconfiguration in component-based systems.
In Software Architecture, volume 3527 of LNCS, pages
439–480, Pisa, Italy, June 2005.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in Java. Software: Practice and
Experience, 36(11-12):1257–1284, Sept. 2006.

[8] T. Bylander. The computational complexity of
propositional STRIPS planning. Artificial Intelligence,
69(1–2):165–204, Sept. 1994.

[9] A. Coles, A. Coles, M. Fox, and D. Long.

Forward-chaining partial-order planning. In
International Conference on Automated Planning and
Scheduling, pages 42–49, Toronto, Ontario, Canada,
May 2010.

[10] P.-C. David and T. Ledoux. Safe dynamic
reconfigurations of Fractal architectures with FScript.
In Proceedings of the 5th Fractal Workshop at
ECOOP, Nantes, France, July 2006.

[11] M. Dmitriev. Safe class and data evolution in large
and long-lived Java applications. PhD thesis,
University of Glasgow, Mar. 2001.

[12] P. Duquesne and C. Bryce. A language model for
dynamic code updating. In International Workshop on
Hot Topics in Software Upgrades, Nashville,
Tennessee, USA, Oct. 2008.

[13] K. El Maghraoui, A. Medhranjani, T. Ailam,
M. Kalantar, and A. Konstantinou. Model driven
provisioning: bridging the gap between declarative
object models and procedural provisioning tools. In
Middleware, volume 4290 of Lecture Notes in
Computer Science, pages 404–423, Melbourne,
Australia, Nov. 2006.

[14] D. Garlan, R. Monroe, and D. Wile. Acme: an
architecture description interchange language. In
CASCON First Decade High Impact Papers, pages
159–173, 2010.

[15] A. Gerevini and D. Long. Plan constraints and
preferences in PDDL3. Technical Report RT
2005-08-47, Università degli Studi di Brescia, 2005.

[16] M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL –
the planning domain definition language. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control, Oct. 1998.

[17] K. M. Hansen and M. Ingstrup. Modeling and
analyzing architectural change with Alloy. In
Symposium on Applied Computing, pages 2257–2264,
Sierre, Switzerland, Mar. 2010.

[18] M. Helmert. The Fast Downward planning system.
Journal of Artificial Intelligence Research, 26:191–246,
2006.

[19] IBM. Tivoli provisioning manager. http://www-
01.ibm.com/software/tivoli/products/prov-mgr/.

[20] M. Ingstrup and K. M. Hansen. Modeling
architectural change: architectural scripting and its
applications to reconfiguration. In European
Conference on Software Architecture, pages 337–340,
Cambridge, UK, Sept. 2009.

[21] R. Monroe. Capturing software architecture design
expertise with Armani. Technical Report
CMU-CS-98-163, Carnegie Mellon University School
of Computer Science, Jan. 2001.

[22] B. Morin, O. Barais, J.-M. Jézéquel, B. Surajbali,
G. Blair, A. Rashid, and N. Bencomo. Diva reference
architecture. Technical Report D3.3, DiVA, Aug. 2010.

[23] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel,
A. Solberg, V. Dehlen, and G. Blair. An
aspect-oriented and model-driven approach for
managing dynamic variability. In Model driven
engineering languages and systems, volume 5301 of
LNCS, pages 782–796, Toulouse, France, Oct. 2008.
Springer.

[24] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oril. Practical
dynamic software updating for C. In ACM SIGPLAN
conference on Programming Language Design and
Implementation, Ottawa, Canada, June 2006.

[25] S. Richter and M. Westphal. The LAMA planner:
guiding cost-based anytime planning with landmarks.
Journal of Artificial Intelligence Research, 39:127–177,
2010.

[26] J. Rintanen. Planning with specialized SAT solvers. In
AAAI Conference on Artificial Intelligence, pages
1563–1566, San Francisco, California, USA, Aug. 2011.

[27] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
graph based architectural (re)configuration language.
In European Software Engineering Conference, pages
21–32, Vienna, Austria, Sept. 2001.

