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Introduction

We stress that the main purpose of this paper is to extend and complete the study of the notion of generalized Riesz product associated to the rank one flows on R formulated in the same manner as Peyriére in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF]. The authors in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] mentioned that Peyriére extended the notion of Riesz product to the real line using a class of kernel functions. Furthermore, it is noted by Peyriére in his pioneer paper [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF] that an alternative extension of the classical Riesz products can be done using the Bohr compactification of R.

Indeed, it is usual that the extension of some notions from the periodic setting to the almost periodic deals with the Bohr compactification bR of R (or more generally, the Bohr compactification of Local Abelian Groups). The Bohr compactification plays in the almost periodic case the same role played by the torus T def " tt P C, |t| " 1u in the periodic case as the domain of the fast scale variables. As opposed to the torus, the Bohr compactification is often a non-separable compact topological space and this lack of separability is a source of difficulties in trying to adapt the arguments from the periodic context to the almost periodic one. Peyriére [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF] mentioned this difficulty and introduced the Riesz products on R associated to some class of kernels.

Notice that here we use the notion of separability used in Hirotada-Kakutani paper [START_REF] Hirotada | Bohr compactifications of a locally compact Abelian group[END_REF], That is, the topological group (or space) is called separable if it satisfies the second countability axiom of Hausdorff which means that it has a countable basis. In that paper, Hirotada and Kakutani established that the Bohr compactification of a given locally compact Abelian group has a countable basis if and only if the union of the spectrum of all almost periodic functions is countable.

Our analysis here is also motivated by the recent growing interest in the problem of the flat polynomials suggested by A.A. Prikhod'ko [START_REF] Prikhod'ko | On flat trigonometric sums and ergodic flow with simple Lebesgue spectrum[END_REF] in the context of R. It turns out that the main idea developed in [START_REF] Prikhod'ko | On flat trigonometric sums and ergodic flow with simple Lebesgue spectrum[END_REF] does not seem well adapted to the context of our extension of generalized Riesz products to the Bohr compactification of R. This is due to the fact that the sequence of trigonometric polynomials constructed by A.A. Prikhod'ko is only locally L 1 -flat and not L 1 -flat in the usual sense (see, for instance, Remark 6.11).

The paper is organized as follows. In section 2 we review some standard facts on the almost periodic functions including the ergodicity of the action of R by translations on its Bohr compactification. In section 3 we define the notion of the generalized Riesz products on the Bohr compactification of R.

In section 4 we summarize and extend the relevant material on the Kakutani criterion and the Bourgain criterion on the singularity of the generalized Riesz products introduced in section 3. In section 5 we state and prove the Central Limit Theorem due to M. Kac. In section 6 we apply the Central Limit Theorem of Kac to prove our main result concerning the singularity of a large class of generalized Riesz products on bR. Finally, in the appendix, we consider the problem of the flat polynomials on the Bohr compactification of R and we add a short note based on Hirodata-Kakutani paper [START_REF] Hirotada | Bohr compactifications of a locally compact Abelian group[END_REF] on the Bohr compactification compared with the Stone-Čech compactification.

The Bohr compactification of R

The Bohr compactification of R is based on the theory of almost periodic functions initiated by H. Bohr [START_REF] Bohr | Almost Periodic Functions[END_REF] in connection with the celebrated ζ-function of Riemann. In this section we are going to recall the basic ingredients of this theory. For the basic facts about almost periodic functions and generalizations of this concept the reader is referred to the classical presentation of Bohr [START_REF] Bohr | Almost Periodic Functions[END_REF] and Besicovitch [START_REF] Besicovitch | Almost Periodic Functions[END_REF].

We point out that the theory of almost periodic functions can be extended to more general setting with applications in many context including the nonlinear differential equations [START_REF] Corduneanu | Almost periodic functions, With the collaboration of N[END_REF]. Definition 2.1. Let f : R ÝÑ C be a bounded continuous function and ε ą 0; we say that τ P R is an ε-almost period for f if sup xPR |f px `τ q ´f pxq| def " ||f p. `τ q ´f p.q|| 8 ă ε.

The mapping f is said to be almost periodic if for any ε ą 0 the set of ε-almost periods of f is relatively dense, i.e., there is l " lpεq ą 0 such that any interval with length l contains at least one ε-almost period.

The space of all almost periodic functions is denoted by AP pRq. From the above definition we easily deduce that AP pRq is a subspace of the space of bounded continuous functions on R. An important characterization of almost periodic functions is due to Bochner and it can be stated as follows Theorem 2.2 (Bochner's characterization of AP pRq). A bounded function f is almost periodic function if, and only if, the family of translates tf p. tqu tPR is relatively compact in the space bounded continuous functions on R endowed with the sup-norm topology.

The proof of Theorem 2.2 can be found in [START_REF] Bohr | Almost Periodic Functions[END_REF], [START_REF] Besicovitch | Almost Periodic Functions[END_REF] or [START_REF] Dunford | Linear Operators. I and II[END_REF]. Furthermore, we have the following fundamental theorem (see for instance [START_REF] Bohr | Almost Periodic Functions[END_REF] or [START_REF] Besicovitch | Almost Periodic Functions[END_REF]).

Theorem 2.3 (Bohr). A bounded continuous function f is almost periodic function if, and only if, f is uniformly approximated by finite linear combinations of functions in the set tcosptxq, sinptxqu tPR .

The space of all continuous functions on bR is denoted by CpbRq. CpbRq is a commutative C ‹ -algebra under pointwise multiplication and addition. Below, we give an important topological characterization of the Bohr compactification of R due to Gelfand, Raikov and Chilov. They obtain this characterization as an application of their theory of commutative Banach algebras.

Theorem 2.4 (Gelfand-Raikov-Chilov [START_REF] Gelfand | Commutative normed rings[END_REF]). The group R, equipped with the usual addition operation, may be embedded as a dense subgroup of a compact Abelian group bR in such way as to make AP pRq the family of all restrictions functions f |R to R of functions f P CpbRq. The operator f Þ ÝÑ f |R is an isometric ‹-isomorphism of CpbRq onto AP pRq. Moreover, the addition operation `: R ˆR ÝÑ R extends uniquely to the continuous group operation of bR, `: bR ˆbR ÝÑ bR. The group bR is called the Bohr compactification of bR.

For simplicity of notation, for any f in AP pRq, we use the same letter f for its canonical extension to bR. As a consequence of Theorem 2.4 combined with the Riesz representation Theorem we have Theorem 2.5 ([18]). The dual of the space AP pRq is isometrically isomorphic to the space MpbRq of all Radon measures on the Bohr compactification of R. The isomorphism x ˚Þ ÝÑ µ x ˚is given by the formula

x ˚pf q " ż bR f ptqdµ x ˚ptq.
We recall in the following the definition of the characters. The characters play a important role in the Abelian group and, by Koopmann observation, in the spectral analysis of dynamical systems. Definition 2.6. Let G be an Abelian group and e its identity element, then a character of G is a complex valued function χ defined on G such that χpeq " 1 and χpstq " χpsqχptq for all s, t P G.

Let us recall the following basic fact on compact Abelian groups due to Peter and Weyl.

Theorem 2.7 (Peter-Weyl). Let G be a compact Abelian group, with BpGq its Borel field and h its Haar measure. Then the set of continuous characters is fundamental both in CpGq and in L 2 pG, BpGq, hq.

The proof of Peter-Weyl Theorem can be found in [START_REF] Rudin | Fourier analysis on groups[END_REF] and for the thorough treatment we refer the reader to [START_REF] Rudin | Fourier analysis on groups[END_REF].

It is obvious that the continuous characters of bR are the functions e iω : bR ÝÑ T. In addition the orthogonality of two distinct characters can be checked directly. Indeed, ż bR e iωt .e iω 1 t dhptq " lim

T ÝÑ`8 1 2T
ż T ´T e ipω´ω 1 qt dt " 0, whenever ω ‰ ω 1 .

For f P AP pRq we denote by $ R f ptqdt the asymptotic mean value of f , given by

$ R f ptqdt " lim T ÝÑ`8 1 2T ż T ´T f ptqdt.
As a consequence of the averaging properties of almost periodic functions we have the following Lemma 1. For any f P AP pRq we have

ż bR f dhptq " $ R f ptqdt,
where dhptq is the Haar measure in bR, normalized to be a probability measure, and dt is the usual Lebesgue measure in R. Moreover we have

ż bR f ptqdhptq " lim T ÝÑ`8 1 T |K| ż T.K f ptqdt,
where K is any bounded subset of R with |K| ‰ 0, |K| is the Lebesgue measure of K.

Following [START_REF] Katznelson | An introduction to harmonic analysis[END_REF], for any f P AP pRq, we introduce the notation

p f `tλu ˘" $ R f ptqe ´iλt dt.
That is, `p f `tλu ˘˘λPR are the Fourier coefficients of f relative to orthonormal family te iλt u λPR ; the inner product is defined by

ă f, g ą"ă f, g ą" ż bR f pκqgpκqdhpκq.
2.1. On Besicovitch space. Since the functions f P AP pRq correspond to restrictions, f " r f |R , of continuous functions f on bR, a natural question is whether it is possible to define a class of functions f which correspond to "restrictions" f " r f |R , of functions r f P L 1 pbRq. This motivates the following definition.

Definition 2.8. Given p P r1, `8q the space BAP p pRq, of Besicovitch's generalized almost periodic functions on R, consists of those functions f P L p loc pRq for which there exists a sequence f n P AP pRq satisfying lim nÝÑ`8 lim sup

T ÝÑ`8 1 2T
ż T

´T

ˇˇf n pxq ´f pxq ˇˇpdx " 0 p1q

We denote BAP p pRq simply by B p pRq.

The space of generalized almost periodic functions B p pRq was introduced by Besicovitch, who also gave them a structural characterization. We refer to [START_REF] Besicovitch | Almost Periodic Functions[END_REF] for more details about functions in B p pRq. We immediately have AP pRq Ă B p pRq Ă B 1 pRq for any p ě 1 and it is easy to see that any f P B 1 pRq has the mean value property, that is, for any bounded measurable B Ă R, with |B| ‰ 0, we have

M pf q " lim LÝÑ`8 1 L|B| ż B L f dx,
where B L " tx P R : x L P Bu. The space corresponds to L p pbRq in a way similar to the one in which the space AP pRq corresponds to CpbRq. Indeed, notice first that the definition of B p pRq immediately gives that the asymptotic mean value $ ˇˇf ˇˇp dx of a function in B p pRq is well defined; moreover, any approximating sequence f n P AP pRq satisfying p1q can be viewed as a Cauchy sequence in L p pbRq and, hence, there exists r f P L p pbRq such that Ă f n converge to f in L p pbRq. Since r f is easily seen to be independent of the approximating sequence, in this way we may associate with each f P B p pRq a well determined function r f P L p pbRq which we may view as an "extension" of f to bR. Notice that the map f Þ Ñ r f is a linear map and that the approximation procedure together with Lemma 1 show that $ R ˇˇf ˇˇp " ż bR ˇˇr f pκq ˇˇpdκ, @f P B p pRq. p2q

As a consequence, the kernel of the map f Þ ÝÑ r f is made by the functions f such that the asymptotic mean value of ˇˇf ˇˇp is 0. The corresponding quotient space is denoted by B p pRq{ ". For f P B p pRq we set

|f | p def " ¨$ R ˇˇf ˇˇpdx ‹ ‹ ' 1 p
, so that ˇˇˇˇp is a semi-norm on B p pRq. It is well known that B p pRq is complete with respect to the semi-norm ˇˇˇˇp (see for instance [START_REF] Morsli | On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions[END_REF]). The space B 2 pRq is endowed with the scalar product

ă f, g ą" $ R f pxqgpxqdx " ż bR r f pκqr gpκqdκ, p3q
The second equality follows by p2q with p " 2, implying that the scalar product is preserved under the map f Þ Ñ r f . Finally, we define

B 8 pRq def " # f P č pě1 B p pRq : sup pě1 ˇˇf ˇˇp ă `8+ , Again, ˇˇˇˇ8
is a semi-norm on B 8 pRq and the corresponding quotient space is denoted by B 8 pRq{ ". We finish this paragraph by stating the following important fact on the properties of the map f Þ Ñ r f . The proof of it is left to the reader.

Proposition 2.9. The map f Þ Ñ r f is an isometric isomorphism between the Banach spaces B p pRq{ " and L p pbRq for any p P r1, `8s Furthermore, we point out that a suitable extension of Lebesgue and Fatou's convergence results is obtained in [START_REF] Morsli | On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions[END_REF].

Gelfand-Raikov-Chilov Theorem 2.4 allows us to define the Bohr compactification of R. But, in the Harmonic Analysis, it is well known that the Pontrygain Theorem gives an alternative definition. We briefly recall it here and we refer the reader to the large literature on the subject [START_REF] Rudin | Fourier analysis on groups[END_REF] and for a deeper discussion on the relation between the almost periodic functions and the Bohr compactification of R to [START_REF] Khavin | Commutative harmonic analysis. I. General survey. Classical aspects[END_REF], [START_REF] Grigoryan | Shift-invariant uniform algebras on groups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne[END_REF].

Let G be locally compact Abelian group and let p G be its dual, i.e., p G is the set of the characters endowed with the topology inherited from G. Let p G d be p G with the discrete topology. Then

x x G d def " bG is the Bohr compactification of G. bG is a compact group such that G is a dense subset of bG.
We end this section by stating and proving the classical result on the ergodicity of the action of R by translation on bR. We recall that the action of R by translation is defined by τ x pκq " κ `x where the extended addition is given by Theorem 2.4. Clearly, the family pτ x q xPR is a flow acting on bR since τ x pτ x 1 pκqq " τ x`x 1 pκq and the Haar measure is invariant under translation.

Theorem 2.10. The action of R on bR is ergodic, that is, for any Borel set A Ă bR which is invariant under the translation action we have hpAq P t0, 1u, where hpAq denotes the normalized Haar measure of A. Moreover hpRq " 0.

Proof. Let A Ă bR be an invariant Borel set. We have

hpAq " hpA X τ x Aq " ż bR 1 1 A pβq 1 1 A pβ `xqdhpβq.
Now, translations are strongly continuous on L 2 pRq. Indeed, this is a standard consequence of the density of CpbRq in L 2 pbRq, which follows from Theorem 2.4, and the invariance of the Haar measure. Therefore, the righthand side is a continuous function of x, and so the identity still holds with x P bR. Hence we get, using Fubini theorem and the invariance of the Haar measure,

hpAq " ż bR ż bR 1 1 A pκq 1 1 A pκ `ξqdhpκqdhpξq " ż bR 1 1 A pκqdhpκq ż bR 1 1 A pξqdhpξq " hpAq 2 ,
from which it follows that hpAq P t0, 1u, as asserted. It remains to show that hpRq " 0. First we observe that R is a Borel subset of bR, since it is the union of a countable family of compact sets, e.g., the images of the intervals r´k, ks, k P N. Since R is invariant under the translation action we have hpRq P t0, 1u. But, for any κ P bRzR, κ`R is also an invariant Borel set and R Ş tκ `Ru " H. By the invariance of the Haar measure hpκ `Rq " hpRq. Hence, we conclude that hpRq " 0 and the proof is achieved.

Generalized Riesz Products on bR

Riesz products were discovered in 1918 by F. Riesz [START_REF] Riesz | Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung[END_REF] to answer affirmatively a special question in the theory of Fourier series, namely, whether there exists a continuous measure whose Fourier coefficients do not vanish at infinity. Roughly speaking, the Riesz products are a kind of measures on the circle constructed inductively. The pioneer Riesz product construction gives a concrete example. Since then, the Riesz construction proved to be the source of powerful ideas that can be used to produce concrete counterexample of measures with a number of desired properties (controllability of the convergence of the Fourier coefficients being the goal of the original construction).

Later, A. Zygmund extended Riesz construction and introduced what it is nowadays called classical Riesz products [53, p.208].

In 1975, that Riesz products appear as a spectral type of some dynamical systems was shown by F. Ledrappier [START_REF] Ledrappier | Des produits de Riesz comme mesures spectrales[END_REF]. Ten years later, M. Queffelec [START_REF] Queffelec | Mesures spectrales associées à certaines suites arithmétiques[END_REF], inspired by the work of Coquet-Kamae and Mandes-France [START_REF] Coquet | Mendés France, Sur la mesure spectrale de certaines suites arithmétiques[END_REF], showed that the specific generalized Riesz products are the right tool to describe the spectrum of the class of dynamical systems arising from the substitution (see [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF] and the references therein). In 1991, B. Host, J.-F. Méla, F. Parreau in [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF] realized a large class of Riesz products as the maximal spectral type of the unitary operator associated with a non-singular dynamical system and a cocycle. Finally, in the more general setting, J. Bourgain established the connections between some class of generalized Riesz products on the circle and the maximal spectral type of a class of maps called rank one maps [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. One year later, an alternative proof is given by Choksi-Nadkarni using the Host-Méla-Parreau argument [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF], [START_REF] Nadkarni | Spectral theory of dynamical systems[END_REF] and at the same time a simple proof is obtained by Klemes-Reinhold [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF] using the standard Fourier analysis argument.

In [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF], el Abdalaoui-Lemańczyk-Lesigne and Ulcigrai proved that the generalized Riesz products analogous to Peyriére-Riesz products can be realized as a spectral type of some class of rank one flows.

Here our aim is to extend the notion of generalized Riesz products to the Bohr compactification of R. It turns out that such generalization can be done directly. More precisely, in the study of the spectrum of some class of rank one flows, the following trigonometric polynomials on R appears

P k pθq " 1 ? p k ÿ p k ´1
j"0 e iθpjh k `q s j q , p4q where q s 0 " 0 and q s j " j´1 ÿ l"0 s k,l , j ě 1, with pp k q kPN is a sequence of positive integers greater than 1 and ps k,j q j"0,¨¨¨,p k is a sequence of positive real numbers with s k,0 " 0 for any k P N; the sequence ph k q is defined inductively by

h 0 " 1 and h k`1 " p k h k `pk ÿ l"0 s k,l . p5q
For simplicity, for any p, q P t0, ¨¨¨, p k ´1u we introduce the following sequence of real numbers q s n,p,q " maxpp,qq´1 ÿ j"minpp,qq s n,j , p6q and for any real number t, we put eptq " e it . Theorem 3.1 (Generalized Riesz Products on bR). Let pP n q nPN be a family of trigonometric polynomials given by p4q. Then the weak limit of the sequence of probability measures on bR 

n ź k"0 ˇˇˇP k pθq ˇˇˇ2
$ R Q n dt " 1.
Therefore, σ n is a probability measure on bR. In addition, for any t P R, we have

Q n`1 ptq " Q n ptqP n ptq " Q n ptq `Qn ptq∆ n ptq Hence z σ n`1 `λ˘" z Q n`1 `tλuq " x Q n `tλuq `x Q n ˚x ∆ n pλq ě x Q n `tλuq " x σ n `λC
onsequently the limit r λ of the sequence px σ n `λ˘q exists. Now, since bR is compact and pσ n q is a sequence of probability measure on bR we can extract a subsequence pσ n k q which converge weakly to some probability measure on bR. We deduce that the limit of pσ n q exists in the weak topology and this finishes the proof.

The proof above is largely inspired by lemma 2.1 in [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF]; it gives more, namely, the polynomials P n can be chosen with positive coefficients and satisfying

$ ˇˇˇP n ptq ˇˇˇ2 dt " 1 and $ n ź j"1 ˇˇˇP j ptq ˇˇˇ2 dt " 1.
We mention also that we have

$ k ź j"1 ˇˇˇP n j ptq ˇˇˇ2 dt " 1, p7q
for any given sequence of positive integers n 1 ă n 2 ă ¨¨¨ă n k , k P N ˚.

We can now formulate our main result whose proof occupies all Section 6. Theorem 3.2 (Main result). Let pp m q mPN be a sequence of positive integers greater than 1 and pps m,j q pm´1 j"0 q mPN be a sequence of positive real numbers. Assume that there exists a sequence of positive integers m 1 ă m 2 ă ¨¨¨, such that for any positive integer j, the numbers ph m j , s m j ,0 , ¨¨¨, s m j ,pm j ´1q are rationally independent. Then the generalized Riesz product

µ " n ź k"0 ˇˇP k pθq ˇˇ2 dhpθq,
where

P k pθq " 1 ? p k ÿ p k ´1 j"0 e `iθ `jh k `q s k,0,j ˘˘.
is singular with respect to the Haar measure on bR.

4. On the Kakutani criterion and the Bourgain singularity criterion of the Riesz products on the Bohr compactification of R

The famous dichotomy theorem of Kakutani has a rather long history. In his 1948 celebrated paper [START_REF] Kakutani | On equivalence of infinite product measures[END_REF], Kakutani established a purity law for infinite product measures. Precisely, if P "

`8 â i"1 P i and Q " `8 â i"1
Q i are a infinite product measures, where P i , Q i are probability measures such that P i is absolutely continuous with respect to Q i , for each positive integer i, then

P ! Q or P K Q according as ź i ż ˆdP i dQ i ˙dQ i converges or diverges.
There are a several proofs of Kakutani criterion in literature (see [START_REF] Brown | Products of random variables and Kakutani's criterion for orthogonality of product measures[END_REF] and the references given there). For a proof based on the Hellinger integral we refer the reader to [17, p.60].

Kakutani's Theorem was specialized to the Gaussian measures on Hilbert space with identical correlation operators in [START_REF] Grenander | Stochastic processes and statistical inference[END_REF] and it was extended to Gaussian measures with non-identical correlation operators by Segal [START_REF] Segal | Distributions in Hilbert space and canonical systems of operators[END_REF], Hajek [START_REF] Hajek | On a property of normal distribution of any stochastic process[END_REF], Feldman [START_REF] Feldman | Equivalence and perpendicularity of Gaussian processes[END_REF] and Rozanov [START_REF] Rozanov | Certain remarks to the work "On the densities of Gaussian distributions an the Wiener-Hopf integral equations[END_REF]. Later, in 1979, Ritter in [START_REF] Ritter | On Kakutani's dichotomy theorem for infinite products of not necessarily independent functions[END_REF], [START_REF] Ritter | On dichotomy of Riesz products[END_REF] generalized Kakutani's Theorem to a certain non-products measures with application to the classical Riesz products.

Here, applying the Bourgain methods, we obtain a new extension of Kakutani's Theorem to the class of generalized Riesz products on the Bohr compactification of R. Indeed, we show that the independence along subsequence suffices to prove the singularity.

Nevertheless, our strategy is similar to the strategy of [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] and it is based on the extension of Bourgain methods to the generalized Riesz products on the Bohr compactification of R combined with the Central Limit tools introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF].

Moreover, having in mind applications beyond the context of this paper, we shall state and prove a Guenais sufficient condition on the L 1 flatness of the polynomials which implies the existence of generalized Riesz products on bR with Haar component. We recall that the generalized Riesz products µ is given by µ "

`8 ź k"0 ˇˇP k pθq ˇˇ2 dhpθq
where

P k ptq " 1 ? p k ÿ p k ´1 j"0 e `iθpjh k `q s k,j q ˘and q s k,j " j´1 ÿ l"0 s k,l
Theorem 4.1 (bR version of Bourgain criterion). The following are equivalent (i) µ is singular with respect to Haar measure.

(ii) inf

$ & % ż bR L ź ℓ"1 ˇˇP n ℓ ˇˇdh : L P N, n 1 ă n 2 ă . . . ă n L , .
-" 0.

The proof of bR version of Bourgain criterion is based on the following lemma.

Lemma 4.2. The following are equivalent

ż bR N ź k"0 ˇˇP k ˇˇdh ´´´´Ñ N Ñ`8 (1) 
(2) inf

$ & % ż bR L ź ℓ"1 |P n ℓ | dh : L P N, n 1 ă n 2 ă . . . ă n L , .
-" 0.

Proof. The proof is a simple application of Cauchy-Schwarz inequality. Consider n 1 ă n 2 ă . . . ă n L and N ě n L . Denote N " tn 1 ă n 2 ă . . . ă n L u and N c its complement in t1, ¨¨¨, N u. Let a ă b be two real numbers and define a probability measure on R by dλ a,b ptq " 1 1 ra,bs ptq b ´a dt, where dt is the Lebesgue measure. Then we have

ż N ź k"0 |P k | dλ a,b " ż ź kPN |P k | 1 2 ˆź kPN c |P k | 1 2 N ź k"0 |P k | 1 2 dλ a,b ď ¨ż ź kPN |P k | dλ a,b '1 2 ¨ż ź kPN c |P k | ˆN ź k"0 |P k | dλ a,b '1 2 ď ¨ż ź kPN |P k | dλ a,b '1 2 ¨ż ź kPN c |P k | 2 dλ a,b '1 4 ¨ż N ź k"0 |P k | 2 dλ a,b

'1

By letting b ´a goes to infinity, we get

$ N ź k"0 |P k | dt ď ¨$ ź kPN |P k | dt '1 2 ¨$ ź kPN c |P k | 2 dt '1 4 ¨$ N ź k"0 |P k | 2 dt '1 4 " ¨$ ź kPN |P k | dt '1 2 .
The last equality follows from p7q.

Proof of Theorem 4.1. Assume that (i) holds. To prove that µ is singular , it suffices to show that for any ǫ ą 0, there is a Borel set E with hpEq ă ǫ and µpE c q ă ǫ. Let 0 ă ǫ ă 1.

Fix N 0 such that for any N ą N 0 , we have

ż bR N ź k"0 |P k | dh ă ǫ 2 . The set E " ! ω P bR : ś N k"0 |P k pωq| ě ǫ ) satisfies: hpEq ď 1 ǫ › › › › › N ź k"0 P k › › › › › 1 ď ǫ 2 {ǫ " ǫ,
and since E c is open set, it follows from the Portmanteau Theorem that we have

µpE c q ď lim inf M Ñ`8 ż E c M ź k"0 |P k | 2 dh ď lim inf M Ñ`8 ż E c N ź k"0 |P k | 2 M ź k"N `1 |P k | 2 dh ď ǫ 2 lim M Ñ`8 ż bR M ź k"N `1 |P k | 2 dh " ǫ 2 ă ǫ.
For the converse, given 0 ă ǫ ă 1, there exists a continuous function ϕ on bR such that:

0 ď ϕ ď 1, µptϕ ‰ 0uq ď ǫ and hptϕ ‰ 1uq ď ǫ. Let f N " N ź k"1 |P k |.
By Cauchy-Schwarz inequality, we have

ż f N dh " ż tϕ‰1u f N dh `żtϕ"1u f N dh ď hptϕ ‰ 1uq 1{2 ˆżbR f 2 N dh ˙1{2 `˜ż tϕ"1u f 2 N dh ¸1{2 hptϕ " 1uq 1{2 ď ? ǫ `ˆż bR f 2 N ϕ dh ˙1{2 .
Since µ is the weak limit of f 2 N dh, we have lim

N Ñ8 ż bR f 2 N ϕ dh " ż bR ϕ dµ ď µptϕ ‰ 0uq ď ǫ.
Thus, lim sup

ż bR f N dh ď 2 ? ǫ.
Since ǫ is arbitrary, we get lim

N Ñ8 ż bR f N dh "
0, and this completes the proof.

From now on, let M be a sequence of positive integers for which ph m , ps m,j q pm´1 j"0 q are linearly independent over the rationals and let us fix some subsequence N " tn 1 ă n 2 ă . . . ă n k u of M , k P N and m P M with m ą n k . Put

Q ptq " k ź i"1 ˇˇˇP n i ptq ˇˇˇ.
We define the degree of any trigonometric polynomial f by degpf q " maxt|ξ| : p f ptξuq ‰ 0u, p8q and we denote d m def " degpP m q. From equations p5q and p6q, we have

d m " h m`1 ´hm ´sm,pm ă h m`1 , p9q h m ď h m`1 {p m ď h m`1 {2. p10q
Since n j `1 ď n j`1 , telescoping we get

q k def " degpQ k q " d n 1 `dn 2 `¨¨¨`d n k ď ph n 1 `1 ´hn 1 q `ph n 2 `1 ´hn 2 q `¨¨¨`ph n k `1 ´hn k q p11q ă h n k `1.
In the same spirit as above it is easy to see the following lemma. The proof of it in the case of the torus is given in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] and [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. Lemma 2. With the above notations we have

ż bR Q ˇˇP m ˇˇdh ď 1 2 ˆżbR Qdh `żbR Q ˇˇP m ˇˇ2 dhpωq ˙´1 8 ˆżbR Q ˇˇˇˇP m ˇˇ2 ´1ˇˇd h ˙2.
The following proposition is a simple extension of Proposition 2.4 in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. 

ż bR Q ˇˇˇˇP m ˇˇ2 ´1ˇˇd h ˙2.
Now, in the following lemma, we state a sufficient condition for the existence of an absolutely continuous component with respect to the Haar measure for the given generalized Riesz product . In the case of Z action, the lemma is due to Mélanie Guenais [START_REF] Guenais | Étude spectrale de certains produits gauches en théorie ergodique[END_REF], and the proof is similar. Proof. We denote by } ¨}p the norm in L p phq. For all functions P and Q in L 2 phq, by Cauchy-Schwarz inequality we have

p12q }P } 1 }Q} 1 ´}P Q} 1 " ´ż p|P | ´}P } 1 q p|Q| ´}Q} 1 q dh ď }|P | ´}P } 1 } 2 }|Q| ´}Q} 1 } 2 ,
and by assumption,

p13q `8 ÿ k"1 b 1 ´}P k } 2 1 ă 8, hence `8 ÿ k"1
1 ´}P k } 2 1 ă 8 and the infinite product

ź k }P k } 1 is convergent: p14q `8 ź k"1 }P k } 1 ą 0.
Let n 0 ď n be a positive integers and take P "

P n and Q " n´1 ź k"n 0 P k , then }|P | ´}P } 1 } 2 " a 1 ´}P } 2 1 and }|Q| ´}Q} 1 } 2 ď 1 ;
hence by p12q we have

}P Q} 1 ě }P } 1 }Q} 1 ´b1 ´}P } 2 1 .
Using the fact that }P k } 1 ď 1, we obtain by induction

› › › › › n ź k"n 0 P k › › › › › 1 ě n ź k"n 0 }P k } 1 ´n ÿ k"n 0 b 1 ´}P k } 2 1 ě n ź k"n 0 }P k } 1 ´`8 ÿ k"n 0 b 1 ´}P k } 2 1 .
From p13q combined with p14q we deduce that for large enough n 0

lim nÑ`8 n ź k"n 0 }P k } 1 ´`8 ÿ k"n 0 b 1 ´}P k } 2 1 ą 0,
hence the sequence `śn 

´1

k"1 |P k | 2 has only countably many zeros, we conclude that µ admits also an absolutely continuous component with respect to the Haar measure.

On the Kac Central Limit Theorem

The Kac Central Limit Theorem in the context of the Bohr compactification of R is stated and proved in [START_REF] Kac | Statistical independence in probability, analysis and number theory[END_REF]. For sake of completeness we prove it here using the standard probability arguments.

Definition 5.1. The real numbers ω 1 , ω 2 , ¨¨¨, ω r are called rationally independent if they are linearly independent over Z , i.e. for all n 1 , ¨¨¨, n r P Z, n 1 ω 1 `¨¨¨`n r ω r " 0 ùñ n 1 " ¨¨¨" n r " 0. Theorem 5.2 (M. Kac [START_REF] Kac | Statistical independence in probability, analysis and number theory[END_REF]). Let ω 1 , ω 2 , ¨¨¨, ω n , ¨¨¨be rationally independent. Then, the functions cospω 1 tq, cospω 2 tq, ¨¨¨, cospω n tq, ¨¨¨are stochastically independent with respect to the Haar measure of the Bohr compactification of R.

Proof. It is sufficient to show that for any positive integer k and for a given positive integers l 1 , l 2 , ¨¨¨, l k , we have

$ R ˆcospω 1 tq ˙l1 ˆcospω 2 tq ˙l2 ¨¨¨ˆcospω k tq ˙lk dt " $ R ˆcospω 1 tq ˙l1 dt $ R ˆcospω 2 tq ˙lk dt ¨¨¨$ R ˆcospω k tq ˙lk dt Write cospω j tq " 1 2 ˆeiω j t `e´ω j t ˙, j " 1, 2, ¨¨¨, t P R,
and recall that $ R e iαt dt " lim

T ÝÑ`8 1 2T ż T ´T e iαt dt " # 1, if α " 0 0, if not .
Hence

ˆcospω 1 tq ˙l1 ¨¨¨ˆcospω k tq ˙lk " k ź j"1 1 2 l j k ź j"1 ˆeiω j t `e´iω j t ˙lj " k ź j"1 1 2 l j k ź j"1 ˆÿl j r j "0 ˆlj r j ˙eip2r j ´lj qω j t ˙. Whence k ź j"1 ˆcospω j tq ˙lj " k ź j"1 1 2 l j ˆÿl 1 ,l 2 ,¨¨¨,l k r 1 ,r 2 ,¨¨¨,r k "0 ˆl1 r 1 ˙ˆl 2 r 2 ˙¨¨¨ˆl k r k ˙eip ř k j"1 p2r j ´lj qω j qt ˙.
Because of linear independence, ÿ k j"1 p2r j ´lj qω j can be zero only if 2r i " l i , for any i " 1, ¨¨¨, k, and thus it follows that

$ R k ź j"1 ˆcospω j tq ˙lj dt " $ ' & ' % k ź j"1 1 2 l j ˆlj l j 2
˙, if all l i are even 0, otherwise.

It is well-known that if

sup nPN ˆE`ˇˇX n ˇˇ1`ε ˘˙ă `8, p15q
for some ε positive, then tX n u are uniformly integrable. Let us mention that the convergence in distribution or probability does not in general imply that the moments converge (even if they exist). The useful condition to ensure the convergence of the moments is the uniform integrability. Indeed, we have Now let us state and prove the Kac Central limit Theorem.

Theorem 5.6 (Kac CLT [START_REF] Kac | Statistical independence in probability, analysis and number theory[END_REF]). Let pλ n q nPN be a sequence of rationally independent real numbers. Then the functions cospλ n tq `i sinpλ n tq, n " 1, ¨¨¨, are stochastically independent under the Haar measure of the Bohr compactification of R and converge in distribution to the complex Gaussian measure N C p0, 1q on C.

Proof. By Theorem 5.2 the functions cospλ n tq `i sinpλ n tq, n " 1, ¨¨¨, are stochastically independent under the Haar measure of bR and it is straightforward to verify that the hypotheses of Central Limit Theorem 5.3 are satisfied. We conclude that the sequence ˜1 ?

n n ÿ k"1 e iλ k t
¸ně1 converges in distribution to the complex Gaussian measure N C p0, 1q on C.

Proof of the main result (Theorem 3.2)

Using the analogous lemma of Féjer's Lemma [53, p.49] combined with the CLT methods introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF], we shall give a direct proof of the singularity of a large class of generalized Riesz products on bR. Therefore, our strategy is slightly different from the strategy of the proofs given by many authors in the case of the torus [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF], [START_REF] Klemes | The spectral type of staircase transformations[END_REF], [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF], [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. Indeed, the crucial argument in their proofs is to estimate the following quantity

ż Q ˇˇˇˇP m ˇˇ2 ´1ˇˇd h. p16q 
Precisely, they showed that the weak limit point of the sequence `ˇ| P m | 2 ´1ˇˇȋ s bounded below by a positive constant and it is well-known that this implies the singularity of the generalized Riesz products (see for instance [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] or [START_REF] Klemes | The spectral type of staircase transformations[END_REF]).

Let us start our proof by proving the following lemma analogous to Féjer's Lemma [53, p. Proof. By our assumption the sequence `hm , ps m,pm´1 q ˘mPM is rationally independent. Hence, by Kac Theorem 5.2, for m ą h n k`1 , the function Q and P m are stochastically independent. This allows us to write

ż bR Q ˇˇP m ˇˇdh " ż bR Qdh ż bR |P m |dh,
which proves the lemma.

Proof of Theorem 3.2. Applying Lemma 3, we proceed to construct inductively the sequence n 1 ă n 2 ă n k ă ¨¨¨, such that, for any k ě 1, we have

ż bR k`1 ź j"1 ˇˇP n j ˇˇdh ď ? 51π 100 ż bR k ź j"1
ˇˇP n j ˇˇdh. p17q Indeed, by our assumption combined with Kac CLT 5.2, it follows that pP m q converges in distribution to the complex Gaussian measure N C p0, 1q on C. But, according to p15q, pP m q is uniformly integrable. Hence, from Theorem 5.5, we get lim mÝÑ`8

ż bR |P m |dh " ż C ˇˇz ˇˇdN C p0, 1qpzq " ? π 2 . p18q
We remind that the density of the standard complex normal distribution N C p0, 1q is given by

f pzq " 1 π e ´|z| 2 .
Now assume that we have already construct which yields by Bourgain criterion that µ is singular with respect to Haar measure and completes the proof. Remark 6.1. The fundamental argument in the proof above is based on Lemma 3 and therefore strongly depended on the assumption that along subsequence the positive real numbers `hm , ps m,pm´1 q ˘are linearly independent over the rationals. We argue that in the general case, one may use the methods of Bourgain [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF], Klemes-Reinhold [START_REF] Klemes | The spectral type of staircase transformations[END_REF], Klemes [START_REF] Klemes | The spectral type of staircase transformations[END_REF] and el Abdalaoui [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] to establish the singularity of a large class of generalized Riesz products on bR. In particular, the case when pp m q is bounded. In the forthcoming paper, we will show how to extend a classical results from the torus and real line setting to the generalized Riesz products on the Bohr compactification of R.

Appendix.I. On The Flatness problem on bR.

We are concerned here with the flat polynomials issue in bR. First, we recall briefly the relevant fact on the flatness problem in the torus T.

The problem of flatness go back to Littlewood in his 1968 famous paper [START_REF] Littlewood | On polynomials n ÿ ˘zm , n ÿ e αmi z m , z " e θi[END_REF]. In that paper, Littlewood introduce two class of complex polynomials G n and F n where n is a positive integer. The class G n is a class of those polynomials P pzq " ř n k"0 a k z k that are unimodular, that is, |a k | " 1, for k " t0, ¨¨¨, nu. F n is the subclass of G n with real coefficients, i.e., a k " ˘1, for k " t0, ¨¨¨, nu. The polynomials P in F n are nowadays called Littlewood polynomials. By Parseval's formula 1 2π ż 2π 0 ˇˇˇP pe it q ˇˇˇ2 dt " n `1, for all P P G n .

Therefore, for all P P G n , min |z|"1 ˇˇP pzq ˇˇă ?

n `1 ă max |z|"1

ˇˇP pzq ˇǏn

[37] Littlewood raised the problem of the existence of a sequence pP n q of unimodular polynomials such that

max tPR ˇˇP n pe it q ˇ? n `1 ´´´´Ñ nÑ8 1.
Such sequence of unimodular polynomials are called ultraflat. Precisely, the usual definition of ultraflatness is given as follows Definition 6.2. Let pn k q be a sequence of positive integers and pε n k q a sequence of positive real numbers tending to 0, we say that a sequence pP n k q of unimodular polynomials is

pε n k q-ultraflat if max tPR ˇˇˇˇˇP n k pe it q ˇ? n k `1 ´1ˇˇˇˇď ε n k .
The problem of existence of the ultraflat polynomials was solved affirmatively by Kahane in his 1980 paper [START_REF] Kahane | Sur les polynômes à coefficients unimodulaires[END_REF]. Precisely, Kahane proved that there exists a sequence of pε n q-ultraflat with

ε n " O ˆn´1{17 a logpnq ˙.
But as noted by Queffelec and Saffari [START_REF] Queffelec | On Bernstein's inequality and Kahane's ultraflat polynomials[END_REF] Kahane proof is some kind of miracle. This is due to the fact that Kahane work is inspired by Körner paper [START_REF] Körner | On a polynomial of Byrnes[END_REF] and Körner paper is based on Byrnes paper [START_REF] Byrnes | On polynomials with coefficients of modulus one[END_REF]. But, in 1996 J. Benedetto and his student Hui-Chuan Wu discovered that Theorem 2 in Byrnes paper [START_REF] Byrnes | On polynomials with coefficients of modulus one[END_REF] was erroneous and as a consequence invalidated Körner main result. Fortunately Kahane proof was independent of Theorem 2 in Byrnes paper.

The problem of the existence of the ultraflat Littlewood polynomials is unsettled to this date and as pointed by Erdélyi [START_REF] Erdélyi | How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?[END_REF] it is a common belief that there is no ultraflat sequence of Littlewood polynomials. As a consequence no long Barker sequences exist (see [START_REF] Borwein | Barker sequences and flat polynomials[END_REF] and the references given there).

One more important class of polynomials is the class of polynomials with coefficients a k P t0, 1u called a class of idempotent polynomials for obvious reasons of being convolution idempotents and denoted by

I n def " tP P CrXs : P pXq " n´1 ÿ 0 a k X k , a k P t0, 1uu, n P N ˚.
A subclass of I n with constant term 1 is called a class of Newman polynomials and denoted by N n .

Another extremal open problem in the class of Littewood polynomials or in the class of Newman polynomials is the problem of L 1 -flatness. In the same way as the ultraflatness, the L 1 -flatness is defined as follows Definition 6.3. Let pn k q be a sequence of positive integers and pε n k q a sequence of positive real numbers tending to 0, we say that a sequence pP n k q of polynomials is pε n k q ´L1 -flat if

› › P n k pe it q › › 1 › › P n k pe it q › › 2 ě 1 ´εn k .
The problem of the existence of L 1 -flat sequence of unimodular polynomials was solved by Newman in [START_REF] Newman | An L 1 extremal problem for polynomials[END_REF]. Later, M. Guenais inspired by Newman work constructed [START_REF] Guenais | Étude spectrale de certains produits gauches en théorie ergodique[END_REF] a sequence of L 1 -flat Littlewood polynomials on ś `8 n"0 Z{p n Z where pp n q ně0 is an increasing sequence of prime numbers. As a consequence she established a existence of countable group action with simple spectrum and Haar component. Subsequently, el Abdalaoui and Lemańczyk [START_REF] El Abdalaoui | Approximately transitive dynamical systems and simple spectrum[END_REF] proved that the sequence of Littlewood polynomials constructed by Guenais is ultraflat. Before, J. Bourgain in his 1993 paper [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] conjectured that the supremum of the L 1 norm by L 2 norm over all idempotent polynomials on the circle must be strictly less than one. Precisely, he make the following conjecture Conjecture 6.4 (Bourgain). [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] sup ně1 " sup

P PNn ˆ› › P pe it q › › 1 › › P pe it q › › 2 ˙* ă 1.
Using the Bourgain ideas, M. Guenais [START_REF] Guenais | Étude spectrale de certains produits gauches en théorie ergodique[END_REF] connected the problem of the existence of L 1 -flat sequence of Littlewood polynomials or Newman polynomials and the Banach problem on whether there exist a dynamical system with simple Lebesgue spectrum. Ulam in his book [52, p.76] stated the Banach problem in the following form Question 6.5 (Banach Problem). Does there exist a square integrable function f pxq and a measure preserving transformation T pxq, ´8 ă x ă 8, such that the sequence of functions tf pT n pxqq; n " 1, 2, 3, ¨¨¨u forms a complete orthogonal set in Hilbert space? Let us formulate the Bourgain conjecture in context of Bohr compactification of R. For that, let PpRq be the subspace of trigonometric polynomials on R and pω j q jPN be an increasing sequence of real numbers. Put J ω,n " tP P PpRq : P ptq " n ÿ k"0 a k e iω k t , a 0 " 1, a k P t0, 1uu Then, we can state the Bourgain conjecture in context of Bohr compactification of R in the following form Conjecture 6.6 (Bourgain in bR). for any increasing sequence pω j q jPN of real numbers, we have

sup ně1 " sup P PJω,n ˆ› › P pe it q › › 1 › › P pe it q › › 2 ˙* ă 1, where › › P pe it q › › 2 2 " $ ˇˇř n´1 k"0 a k e iω k t ˇˇ2dt " 1 `řn´1 k"1 a 2 k .
For the sequence pω j q jPN of rationally independent numbers, we are able to prove the following proposition. Proposition 6.7. Let `ωpjq ˘qn´1 j"0 ˘nPN be a sequence of real numbers such that for any n P N ˚, the real numbers `ωpjq ˘qn´1 j"0 are rationally independent.

Then, we have

$ R ˇˇˇ1 ? q n qn´1 ÿ j"0 e iωpjqt ˇˇˇd t ´´´´Ñ nÑ8 c π 2 .
Since, for any n P N ˚, the real numbers `ωpjq ˘qn´1 j"0 are rationally independent, then we can apply the Kac CLT Theorem 5.2. But, the functions ˆ1 ? qn ř qn´1 j"0 e iωpjqt ˙are in L 2 pbRq we deduce that they are uniformly integrable. Hence, by Theorem 5.5, we conclude that

lim nÝÑ`8 $ R ˇˇˇ1 ? q n qn´1 ÿ j"0 e iωpjqt ˇˇˇd t " c π 2 .
This finish the proof of the proposition.

Remark 6.8. The discussion above allows us to formulate the following questions Question 6.9. Does there exist a sequence of L 1 -flat Littlewood polynomials or of the L 1 -flat Newman polynomials on bR? Subsequently Question 6.10. Does there exist a the ultraflat Littlewood or Newman polynomials on bR? Remark 6.11. We remind here that in [START_REF] Prikhod'ko | On flat trigonometric sums and ergodic flow with simple Lebesgue spectrum[END_REF], A. A. Prikhod'ko constructed a sequence of trigonometric polynomials pP n q nPN which is locally L 1 -flat, that is, for any 0 ă a ă b and ε ą 0 there exists a positive integer n 0 " n 0 pa, b, εq such that for any n ą n 0 , we have In addition, it is proved in [START_REF] El Abdalaoui | On the spectral type of some class of rank one flows[END_REF] that this sequence is not L 1 -flat on R.

Appendix.II. On the Bohr compactification and Stone-Čech compactification of locally Abelian group.

Let G be a Locally Abelian compact group and denoted by τ its topology. Let p G be a group of the characters on G, that is, the continuous homomorphism from G to the torus T def " tt P C : |t| " 1u. Put

K " T p G ,
the space of all functions from p G to T equipped with the product topology (i.e.; the pointwise convergence topology). Therefore, there is a canonical injective homomorphism from G to K given by e : G ÝÑ K

x Þ ÝÑ epxq : h P K Þ ÝÑ epxqphq " hpxq. e is called a dual homomorphism. By abuse of notation we denote by the same letter G the image of G under e. Therefore, G is equipped with the Bohr topology denoted by τ b and the topology inherited from G. Hence τ b Ă τ . By taking the closure of G with respect to the Bohr topology we get the Bohr compactification of G and we denoted it by bG. Thus, by construction, bG is compact. Let us state the following useful lemma. Lemma 4. Let pg n q be a sequence of elements in G. Then pg n q converge to g with respect to τ b if and only if, for any character h P p G we have hpg n q ´´´´Ñ nÑ8 hpgq.

Proof. By the definition of the product topology on K, a sequence of functions pf n q converge to some function f if and only if, for any h P p G, f n phq ´´´´Ñ nÑ8 f phq.

By taking f n " epg n q and f " epgq we get epg n qphq ´´´´Ñ nÑ8 epgqphq, which means that for any h P p G, hpg n q ´´´´Ñ nÑ8 hpgq, and the proof of the lemma is complete.

We deduce from the lemma the following crucial fact about the separability of the Bohr compactification of G. We recall that the topological space is separable if it is contains a countable, dense subset. Proposition 6.12. If G is a separable with respect to τ topology then G is separable with respect to Bohr topology.

Proof. It is straightforward since the Bohr topology is contained in the usual topology.

In the case of R, the lemma 4 say that the sequence of real numbers px n q converge in the sense of the Bohr topology to x if and only if, for any t P R,

e ixnt ´´´´Ñ nÑ8 e ixt .
But since the characters on R are Lipschitz we deduce easy that the Bohr topology is contained in the usual topology and Q is dense in the usual topology and Bohr topology.

Nevertheless, by the Hirodata-Kakutani Theorem, R equipped with the Bohr topology doesn't have a countable basis and it is often that the Bohr topology doesn't have a countable basis. Precisely, Hirodata-kakutani Theorem asserts Theorem 6.13 (Hirodata-kakutani). The Bohr compactification of a given locally compact Abelian group has a countable basis if and only if the union of the spectrum of all almost periodic functions is countable.

We recall that the Fourier coefficient of f on χ P p G is given by

p f `tχu ˘" ż G f pgqχpgqdhpgq,
where h is the Haar measure on G and χ P p G is in the spectrum of f if the Fourier coefficients of f on χ is not zero 6.1. The Stone-Čech compactification and Bohr compactification. In the following the comparative board of the compactification of Stone-Čech and the Bohr compactification. For short we write LC for Locally Compact and c.f. for continuous functions.

The Stone-Čech compactification

The Bohr compactification Let X a LC topological space Let G a LCA topological group Consider C " CpX, r0, 1sq the space of c. f. : X Ñ r0, 1s A " p G Embedding X in r0, 1s C embedding G in T A The embedding function is the valuation e x pf q " f pxq e g pf q " f pgq Take the closure of epXq Take the closure of epGq We denote the closure of epXq by βX and the closure of epGq by epGq " bG

4 . 4 .

 44 The sequence of probability measures ˇˇP m pzq ˇˇ2 dh converges weakly to the Haar measure.From the proposition 4.3 and Lemma 2 we deduce the following Proposition With the above notations we have

  bR|P k | dh ˙2 ă 8, then µ admits an absolutely continuous component.

Theorem 5 . 5 . 8 E

 558 If the sequence of random variables tX n u converges in distribution to some random variable X and for some p ą 0, supnPN `Ep|X n | p q ˘"M ă `8, then for each r ă p, lim nÝÑ`ˆˇX n ˇˇr ˙" E ˆˇX ˇˇr Ḟor the proof of Theorem 5.5 we refer the reader to[5, p.32-33] or[13, p.100].

49 ] 3 .

 493 Lemma With the above notations we have lim sup

n 1 ă n 2 ă n 3 ă ¨¨¨ă n k and apply p18q with ε " ? π 100 combined with Lemma 3 to get m ą n k such that ż bR Q|P m |dh ď 51

 51 Put n k`1 " m. Therefore the inequality p17q holds and by letting k ÝÑ `

  Proof. Let R n ptq " P 0 ptq ¨¨¨P n ptq, Q n ptq " |R n ptq| 2 and σ n " |R n pκq| 2 dhpκq.

	exists and is denoted by			
	8 ź k"0	ˇˇˇP k pθq ˇˇˇ2 dhpθq,
	By the definition of P n we have ˇˇP n ptq ˇˇ2 " 1 `∆n ptq with ∆ n ptq "	1 p n	ÿ p‰q e ˆi`p p ´qqh n `q s n,p,q	˘tȧ
	nd it is obvious that			
				dhpθq,

  is a sequence of rational numbers which goes to 0 as n goes to 8.But, this sequence is not L 1 -flat on the Bohr compactification of R. Indeed, one may show that we have

			$	ˇˇP n pxq ˇˇdx ´´´´Ñ nÑ`8	c	π 2	.
		b	1 ´a ż b a	ˇˇˇˇP n pxq ˇˇ2 ´1ˇˇd x ă ε.
	The polynomials P n , n P N are given by
			P n pxq "	1 ? p n	p"0 pn´1 ÿ	e iωnppqx ,
	where, ω n ppq " mn.pn ε 2 n with p n ´´´´Ñ	e	εn pn p , pm n , p n q nPN is a sequence of positive integers

nÑ8 `8 and m n ´´´´Ñ nÑ8 `8, ε n
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We conclude that

and this finish the proof of the theorem.

In the following we recall the classical well known multidimensional Central Limit Theorem in probability theory [16, p.81] stated in the following forms Theorem 5.3 (Multidimensional CLT Theorem). Let pZ n,k q 1ďkďkn, ně1 be a triangle array of random variables vectors in C d and put

(3) For any ε ą 0, lim

EpZ n,k q " 0.

(5) For each j, l P t1, ¨¨¨, du,

Then Γ is a hermitian non-negative definite matrix and the sequence of random vectors ˜1 ?

converges in distribution to the complex Gaussian measure N C p0, Γq on C d .

We also need the following important and classical fact from Probability Theory connected to the notion of the uniform integrability.