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GENERALIZED RIESZ PRODUCTS ON THE BOHR

COMPACTIFICATION OF Rp˚q
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Abstract. We study a class of generalized Riesz products connected
to the spectral type of some class of rank one flows on R. Applying a
Central Limit Theorem of Kac, we exhibit a large class of singular gen-
eralized Riesz products on the Bohr compactification of R. Moreover,
we discuss the problem of the flat polynomials in this setting.
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1. Introduction

We stress that the main purpose of this paper is to extend and complete
the study of the notion of generalized Riesz product associated to the rank
one flows on R formulated in the same manner as Peyriére in [3]. The au-
thors in [3] mentioned that Peyriére extended the notion of Riesz product
to the real line using a class of kernel functions. Furthermore, it is noted
by Peyriére in his pioneer paper [40] that an alternative extension of the
classical Riesz products can be done using the Bohr compactification of R.

Indeed, it is usual that the extension of some notions from the periodic
setting to the almost periodic deals with the Bohr compactification bR of
R (or more generally, the Bohr compactification of Local Abelian Groups).
The Bohr compactification plays in the almost periodic case the same role

played by the torus T
def“ tt P C, |t| “ 1u in the periodic case as the domain

of the fast scale variables. As opposed to the torus, the Bohr compactifi-
cation is often a non-separable compact topological space and this lack of
separability is a source of difficulties in trying to adapt the arguments from
the periodic context to the almost periodic one. Peyriére [40] mentioned
this difficulty and introduced the Riesz products on R associated to some
class of kernels.

Notice that here we use the notion of separability used in Hirotada-
Kakutani paper [25], That is, the topological group (or space) is called
separable if it satisfies the second countability axiom of Hausdorff which
means that it has a countable basis. In that paper, Hirotada and Kaku-
tani established that the Bohr compactification of a given locally compact
Abelian group has a countable basis if and only if the union of the spectrum
of all almost periodic functions is countable.

Our analysis here is also motivated by the recent growing interest in the
problem of the flat polynomials suggested by A.A. Prikhod’ko [41] in the
context of R. It turns out that the main idea developed in [41] does not
seem well adapted to the context of our extension of generalized Riesz prod-
ucts to the Bohr compactification of R. This is due to the fact that the
sequence of trigonometric polynomials constructed by A.A. Prikhod’ko is
only locally L1-flats (see, for instance, Remark 6.8).

The paper is organized as follows. In section 2 we review some standard
facts on the almost periodic functions including the ergodicity of the action
of R by translations on its Bohr compactification. In section 3 we define the
notion of the generalized Riesz products on the Bohr compactification of R.
In section 4 we summarize and extend the relevant material on the Kakutani
criterion and the Bourgain criterion on the singularity of the generalized
Riesz products introduced in section 3. In section 5 we state and prove the
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Central Limit Theorem due to M. Kac. In section 6 we apply the Central
Limit Theorem of Kac to prove our main result concerning the singularity of
a large class of generalized Riesz products on bR. Finally, in the appendix,
we consider the problem of the flat polynomials on the Bohr compactification
of R and we add a short note based on Hirodata-Kakutani paper [25] on the
Bohr compactification compared with the Stone-Čech compactification.

2. The Bohr compactification of R

The Bohr compactification of R is based on the theory of almost peri-
odic functions initiated by H. Bohr [6] in connection with the celebrated
ζ-function of Riemann. In this section we are going to recall the basic in-
gredients of this theory. For the basic facts about almost periodic functions
and generalizations of this concept the reader is referred to the classical
presentation of Bohr [6] and Besicovitch [5].

We point out that the theory of almost periodic functions can be extended
to more general setting with applications in many context including the non-
linear differential equations [14].

Definition 2.1. Let f : R ÝÑ C be a bounded continuous function and
ε ą 0; we say that τ P R is an ε-almost period for f if

sup
xPR

|fpx ` τq ´ fpxq| def“ ||fp. ` τq ´ fp.q||8 ă ε.

The mapping f is said to be almost periodic if for any ε ą 0 the set of
ε-almost periods of f is relatively dense, i.e., there is l “ lpεq ą 0 such that
any interval with length l contains at least one ε-almost period.

The space of all almost periodic functions is denoted by AP pRq. From
the above definition we easily deduce that AP pRq is a subspace of the space
of bounded continuous functions on R. An important characterization of
almost periodic functions is due to Bochner and it can be stated as follows

Theorem 2.2 (Bochner’s characterization of AP pRq). A bounded function
f is almost periodic function if, and only if, the family of translates tfp. `
tqutPR is relatively compact in the space bounded continuous functions on R

endowed with the sup-norm topology.

The proof of Theorem 2.2 can be found in [6], [5] or [17]. Furthermore, we
have the following fundamental theorem (see for instance [6] or [5]).

Theorem 2.3 (Bohr). A bounded continuous function f is almost peri-
odic function if, and only if, f is uniformly approximated by finite linear
combinations of functions in the set tcosptxq, sinptxqutPR.

The space of all continuous functions on bR is denoted by CpbRq. CpbRq
is a commutative C‹-algebra under pointwise multiplication and addition.
Below, we give an important topological characterization of the Bohr com-
pactification of R due to Gelfand, Raikov and Chilov. They obtain this
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characterization as an application of their theory of commutative Banach
algebras.

Theorem 2.4 (Gelfand, Raikov and Chilov [20]). The group R, equipped
with the usual addition operation, may be embedded as a dense subgroup
of a compact Abelian group bR in such way as to make AP pRq the family
of all restrictions functions f|R to R of functions f P CpbRq. The operator
f ÞÝÑ f|R is an isometric ‹-isomorphism of CpbRq onto AP pRq. Moreover,
the addition operation ` : RˆR ÝÑ R extends uniquely to the continuous
group operation of bR, ` : bR ˆ bR ÝÑ bR. The group bR is called the
Bohr compactification of bR.

For simplicity of notation, for any f inAP pRq, we use the same letter f for
its canonical extension to bR. As a consequence of Theorem 2.4 combined
with the Riesz representation Theorem we have

Theorem 2.5 ([17]). The dual of the space AP pRq is isometrically isomor-
phic to the space MpbRq of all Radon measures on the Bohr compactifica-
tion of R. The isomorphism x˚ ÞÝÑ µx˚ is given by the formula

x˚pfq “

ż

bR

fptqdµx˚ptq.

We recall in the following the definition of the characters. The characters
play a important role in the Abelian group and, by Koopmann observation,
in the spectral analysis of dynamical systems.

Definition 2.6. Let G be an Abelian group and e its identity element, then
a character of G is a complex valued function χ defined on G such that
χpeq “ 1 and χpstq “ χpsqχptq for all s, t P G.

Let us recall the following basic fact on compact Abelian groups due to
Peter and Weyl.

Theorem 2.7 (Peter-Weyl). Let G be a compact Abelian group, with BpGq
its Borel field and h its Haar measure. Then the set of continuous characters
is fundamental both in CpGq and in L2pG,BpGq, hq.

The proof of Peter-Weyl Theorem can be found in [49] and for the thor-
ough treatment we refer the reader to [49].

It is obvious that the continuous characters of bR are the functions
eiω : bR ÝÑ T. In addition the orthogonality of two distinct charac-
ters can be checked directly. Indeed,
ż

bR

eiωt.eiω
1tdhptq “ lim

TÝÑ`8
1

2T

ż
T

´T

eipω´ω1qtdt “ 0, whenever ω ‰ ω1.
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For f P AP pRq we denote by

$

R

fptqdt the asymptotic mean value of f ,

given by
$

R

fptqdt “ lim
TÝÑ`8

1

2T

ż
T

´T

fptqdt.

As a consequence of the averaging properties of almost periodic functions
we have the following

Lemma 1. For any f P AP pRq we haveż

bR

fdhptq “

$

R

fptqdt,

where dhptq is the Haar measure in bR, normalized to be a probability
measure, and dt is the usual Lebesgue measure in R. Moreover we haveż

bR

fptqdhptq “ lim
TÝÑ`8

1

T |K|

ż

T.K

fptqdt,

where K is any bounded subset of R with |K| ‰ 0, |K| is the Lebesgue
measure of K.

Following [30], for any f P AP pRq, we introduce the notation

pf
`
tλu

˘
“

$

R

fptqe´iλtdt.

That is,
` pf
`
tλu

˘˘
λPR are the Fourier coefficients of f relative to orthonormal

family teiλtuλPR; the inner product is defined by

ă f, g ą“ă f, g ą“

ż

bR

fpκqrgpκqdhpκq.

2.1. On Besicovitch space. Since the functions f P AP pRq correspond to

restrictions, f “ rf|R, of continuous functions f on bR, a natural question is
whether it is possible to define a class of functions f which correspond to

“restrictions” f “ rf|R, of functions rf P L1pbRq. This motivates the following
definition.
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Definition 2.8. Given p P r1,`8q the space BAPppRq, of Besicovitch’s
generalized almost periodic functions on R, consists of those functions f P
L
p
loc

pRq for which there exists a sequence fn P AP pRq satisfying

lim
nÝÑ`8

lim sup
TÝÑ`8

1

2T

ż
T

´T

ˇ̌
ˇfnpxq ´ fpxq

ˇ̌
ˇ
p

dx “ 0p1q

We denote BAPppRq simply by BppRq.

The space of generalized almost periodic functions BppRq was introduced
by Besicovitch, who also gave them a structural characterization. We refer
to [5] for more details about functions in BppRq. We immediately have
AP pRq Ă BppRq Ă B1pRq for any p ě 1 and it is easy to see that any
f P B1pRq has the mean value property, that is, for any bounded measurable
B Ă R, with |B| ‰ 0, we have

Mpfq “ lim
LÝÑ`8

1

L|B|

ż

BL

fdx,

where BL “ tx P R : x
L

P Bu. The space corresponds to LppbRq in a way
similar to the one in which the space AP pRq corresponds to CpbRq. Indeed,
notice first that the definition of BppRq immediately gives that the asymp-

totic mean value

$

ˇ̌
f
ˇ̌p
dx of a function in BppRq is well defined; moreover,

any approximating sequence fn P AP pRq satisfying p1q can be viewed as a

Cauchy sequence in LppbRq and, hence, there exists rf P LppbRq such that
Ăfn converge to f in LppbRq. Since rf is easily seen to be independent of the
approximating sequence, in this way we may associate with each f P BppRq
a well determined function rf P LppbRq which we may view as an “exten-

sion” of f to bR. Notice that the map f ÞÑ rf is a linear map and that the
approximation procedure together with Lemma 1 show that

$

R

ˇ̌
ˇf
ˇ̌
ˇ
p

“

ż

bR

ˇ̌
ˇ rfpκq

ˇ̌
ˇ
p

dκ,@f P BppRq.p2q

As a consequence, the kernel of the map f ÞÝÑ rf is made by the functions f
such that the asymptotic mean value of

ˇ̌
f
ˇ̌p
is 0. The corresponding quotient

space is denoted by BppRq{ „. For f P BppRq we set

|f |p def“

¨
˚̊
˝

$

R

ˇ̌
ˇf
ˇ̌
ˇ
p

dx

˛
‹‹‚

1

p

,
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so that
ˇ̌ ˇ̌

p
is a semi-norm on BppRq. It is well known that BppRq is complete

with respect to the semi-norm
ˇ̌ ˇ̌

p
(see for instance [37]). The space B2pRq

is endowed with the scalar product

ă f, g ą“

$

R

fpxq Ągpxqdx “

ż

bR

rfpκqrgpκqdκ,p3q

The second equality follows by p2q with p “ 2, implying that the scalar

product is preserved under the map f ÞÑ rf . Finally, we define

B8pRq def“
#
f P

č

pě1

BppRq : sup
pě1

ˇ̌
f
ˇ̌
p

ă `8
+
,

Again,
ˇ̌ ˇ̌

8 is a semi-norm on B8pRq and the corresponding quotient space
is denoted by B8pRq{ „. We finish this paragraph by stating the following

important fact on the properties of the map f ÞÑ rf . The proof of it is left
to the reader.

Proposition 1. The map f ÞÑ rf is an isometric isomorphism between the
Banach spaces BppRq{ „ and LppbRq for any p P r1,`8s

Furthermore, we point out that a suitable extension of Lebesgue and Fa-
tou’s convergence results is obtained in [37].

Gelfand-Raikov-Chilov Theorem 2.4 allows us to define the Bohr com-
pactification of R. But, in the Harmonic Analysis, it is well known that the
Pontrygain Theorem gives an alternative definition. We briefly recall it here
and we refer the reader to the large literature on the subject [49] and for a
deeper discussion on the relation between the almost periodic functions and
the Bohr compactification of R to [31], [22].

Let G be locally compact Abelian group and let pG be its dual, i.e., pG is the

set of the characters endowed with the topology inherited from G. Let pGd be

pG with the discrete topology. Then
xxGd

def“ bG is the Bohr compactification
of G. bG is a compact group such that G is a dense subset of bG.

We end this section by stating and proving the classical result on the
ergodicity of the action of R by translation on bR. We recall that the action
of R by translation is defined by τxpκq “ κ` x where the extended addition
is given by Theorem 2.4. Clearly, the family pτxqxPR is a flow acting on
bR since τxpτx1pκqq “ τx`x1pκq and the Haar measure is invariant under
translation.

Theorem 2.9. The action of R on bR is ergodic, that is, for any Borel
set A Ă bR which is invariant under the translation action we have hpAq P
t0, 1u, where hpAq denotes the normalized Haar measure of A. Moreover
hpRq “ 0.
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Proof. Let A Ă bR be an invariant Borel set. We have

hpAq “ hpA X τxAq “

ż

bR

11Apβq 11Apβ ` xqdhpβq.

Now, translations are strongly continuous on L2pRq. Indeed, this is a stan-
dard consequence of the density of CpbRq in L2pbRq, which follows from
Theorem 2.4, and the invariance of the Haar measure. Therefore, the right-
hand side is a continuous function of x, and so the identity still holds with
x P bR. Hence we get, using Fubini theorem and the invariance of the Haar
measure,

hpAq “

ż

bR

ż

bR

11Apκq 11Apκ ` ξqdhpκqdhpξq

“

ż

bR

11Apκqdhpκq

ż

bR

11Apξqdhpξq “ hpAq2,

from which it follows that hpAq P t0, 1u, as asserted. It remains to show that
hpRq “ 0. First we observe that R is a Borel subset of bR, since it is the
union of a countable family of compact sets, e.g., the images of the intervals
r´k, ks, k P N. Since R is invariant under the translation action we have
hpRq P t0, 1u. But, for any κ P bRzR, κ`R is also an invariant Borel set and
R
Ştκ ` Ru “ H. By the invariance of the Haar measure hpκ ` Rq “ hpRq.

Hence, we conclude that hpRq “ 0 and the proof is achieved. �

3. Generalized Riesz Products on bR

Riesz products were discovered in 1918 by F. Riesz [45] to answer affir-
matively a special question in the theory of Fourier series, namely, whether
there exists a continuous measure whose Fourier coefficients do not vanish
at infinity. Roughly speaking, the Riesz products are a kind of measures on
the circle constructed inductively. The pioneer Riesz product construction
gives a concrete example. Since then, the Riesz construction proved to be
the source of powerful ideas that can be used to produce concrete contre-
example of measures with a number of desired properties (controllability
of the convergence of the Fourier coefficients being the goal of the original
construction).

Later, A. Zygmund extended Riesz construction and introduced what it
is nowadays called classical Riesz products [52, p.208].

In 1975, that Riesz products appear as a spectral type of some dynami-
cal systems was shown by F. Ledrappier [35]. Ten years later, M. Queffelec
[42], inspired by the work of Coquet-Kamae and Mandes-France [13], showed
that the specific generalized Riesz products are the right tool to describe the
spectrum of the class of dynamical systems arising from the substitution (see
[43] and the references therein). In 1991, B. Host, J.-F. Méla, F. Parreau in
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[26] realized a large class of Riesz products as the maximal spectral type of
the unitary operator associated with a non-singular dynamical system and
a cocycle. Finally, in the more general setting, J. Bourgain established the
connections between some class of generalized Riesz products on the circle
and the maximal spectral type of a class of maps called rank one maps [9].
One year later, an alternative proof is given by Choksi-Nadkarni using the
Host-Méla-Parreau argument [11],[38] and at the same time a simple proof
is obtained by Klemes-Reinhold [33] using the standard Fourier analysis ar-
gument.

In [3], el Abdalaoui-Lemańczyk-Lesigne and Ulcigrai proved that the gen-
eralized Riesz products analogous to Peyriére-Riesz products can be realized
as a spectral type of some class of rank one flows.

Here our aim is to extend the notion of generalized Riesz products to the
Bohr compactification of R. It turns out that such generalization can be
done directly. More precisely, in the study of the spectrum of some class of
rank one flows, the following trigonometric polynomials on R appears

Pkpθq “ 1?
pk

pk´1ÿ

j“0

eiθpjhk`sjq, where s0 “ 0 and sj “
j´1ÿ

l“0

sk,l, j ě 1,p4q

with ppkqkPN is a sequence of positive integers greater than 1 and psk,jqj“0,¨¨¨ ,pk
is a sequence of positive real numbers with sk,0 “ 0 for any k P N; the se-
quence phkq is defined inductively by

h0 “ 1 and hk`1 “ pkhk `
pkÿ

l“0

sk,l.p5q

For simplicity, for any p, q P t0, ¨ ¨ ¨ , pk ´ 1u we introduce the following
sequence of real numbers

sn,p,q “
maxpp,qq´1ÿ

j“minpp,qq
sn,j,p6q

and for any real number t, we put

eptq “ eit.

Theorem 3.1 (Generalized Riesz Products on bR). Let pPnqnPN be a fam-
ily of trigonometric polynomials given by p4q. Then the weak limit of the
sequence of probability measures on bR

nź
k“0

ˇ̌
ˇ̌Pkpθq

ˇ̌
ˇ̌
2

dhpθq,
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exists and is denoted by

8ź
k“0

ˇ̌
ˇ̌Pkpθq

ˇ̌
ˇ̌
2

dhpθq,

Proof. LetRnptq “ P0ptq ¨ ¨ ¨Pnptq, Qnptq “ |Rnptq|2 and σn “ |Rnpκq|2dhpκq.
By the definition of Pn we have

ˇ̌
Pnptq

ˇ̌
2 “ 1 ` ∆nptq with ∆nptq “ 1

pn

ÿ

p‰q

e

ˆ
i
`
pp ´ qqhn ` sn,p,q

˘
t

˙

and it is obvious that
$

R

Qndt “ 1.

Therefore, σn is a probability measure on bR. In addition, for any t P R,
we have

Qn`1ptq “ QnptqPnptq “ Qnptq ` Qnptq∆nptq
Hence

zσn`1

`
λ
˘

“ zQn`1

`
tλuq “ xQn

`
tλuq ` xQn ˚ x∆npλq ě xQn

`
tλuq “ xσn

`
λ
˘

Consequently the limit rλ of the sequence pxσn
`
λ
˘
q exists. Now, since bR is

compact and pσnq is a sequence of probability measure on bR we can extract
a subsequence pσnk

q which converge weakly to some probability measure on
bR. We deduce that the limit of pσnq exists in the weak topology and this
finishes the proof. �

The proof above is largely inspired by lemma 2.1 in [33]; it gives more,
namely, the polynomials Pn can be chosen with positive coefficients and
satisfying

$ ˇ̌
ˇ̌Pnptq

ˇ̌
ˇ̌
2

dt “ 1 and

$

nź
j“1

ˇ̌
ˇ̌Pjptq

ˇ̌
ˇ̌
2

dt “ 1.

We mention also that we have
$

kź
j“1

ˇ̌
ˇ̌Pnj

ptq
ˇ̌
ˇ̌
2

dt “ 1,p7q

for any given sequence of positive integers n1 ă n2 ă ¨ ¨ ¨ ă nk, k P N˚.

We can now formulate our main result whose proof occupies all Section
6.
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Theorem 3.2 (Main result). Let ppmqmPN be a sequence of positive integers

greater than 1 and ppsm,jqpm´1

j“0
qmPN be a sequence of positive real numbers.

Assume that there exists a sequence of positive integers m1 ă m2 ă ¨ ¨ ¨ ,
such that for any positive integer j, the numbers phmj

, smj ,0, ¨ ¨ ¨ , smj ,pmj
´1q

are rationally independent. Then the generalized Riesz product

µ “
nź

k“0

ˇ̌
Pkpθq

ˇ̌
2
dhpθq,

where

Pkpθq “ 1?
pk

pk´1ÿ

j“0

e
`
iθ
`
jhk ` sk,0,j

˘˘
.

is singular with respect to the Haar measure on bR.

4. On the Kakutani criterion and the Bourgain singularity
criterion of the Riesz products on the Bohr

compactification of R

The famous dichotomy theorem of Kakutani has a rather long history. In
his 1948 celebrated paper [29], Kakutani established a purity law for infinite

product measures. Precisely, if P “
`8â
i“1

Pi and Q “
`8â
i“1

Qi are a infinite

product measures, where Pi,Qi are probability measures such that Pi is
absolutely continuous with respect to Qi, for each positive integer i, then

P ! Q or P K Q according as
ź

i

ż ˆ
dPi

dQi

˙
dQi converges or diverges.

There are a several proofs of Kakutani criterion in literature (see [8] and
the references given there). For a proof based on the Hellinger integral we
refer the reader to [16, p.60].

Kakutani’s Theorem was specialized to the Gaussian measures on Hilbert
space with identical correlation operators in [21] and it was extended to
Gaussian measures with non-identical correlation operators by Segal [50],
Hajek [24], Feldman [19] and Rozanov [48]. Later, in 1979, Ritter in [46],
[47] generalized Kakutani’s Theorem to a certain non-products measures
with application to the classical Riesz products.

Here, applying the Bourgain methods, we obtain a new extension of Kaku-
tani’s Theorem to the class of generalized Riesz products on the Bohr com-
pactification of R. Indeed, we show that the independence along subsequence
suffices to prove the singularity.

Nevertheless, our strategy is similar to the strategy of [3] and it is based
on the extension of Bourgain methods to the generalized Riesz products
on the Bohr compactification of R combined with the Central Limit tools
introduced in [2].

Moreover, having in mind applications beyond the context of this paper,
we shall state and prove a Guenais sufficient condition on the L1 flatness of
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the polynomials which implies the existence of generalized Riesz products
on bR with Haar component. We recall that the generalized Riesz products
µ is given by

µ “
`8ź
k“0

ˇ̌
Pkpθq

ˇ̌
2
dhpθq

where

Pkptq “ 1?
pk

pk´1ÿ

j“0

e
`
iθpjhk ` sk,jq

˘
and sk,j “

j´1ÿ

l“0

sk,l

Theorem 4.1 (bR version of Bourgain criterion). The following are equiv-
alent

(i) µ is singular with respect to Haar measure.

(ii) inf

$
&
%

ż

bR

Lź

ℓ“1

ˇ̌
Pnℓ

ˇ̌
dh : L P N, n1 ă n2 ă . . . ă nL

,
.
- “ 0.

The proof of bR version of Bourgain criterion is based on the following
lemma.

Lemma 4.2. The following are equivalent

(1)

ż

bR

Nź

k“0

ˇ̌
Pk

ˇ̌
dh ´́ ´́ Ñ

NÑ`8
0.

(2) inf

$
&
%

ż

bR

Lź

ℓ“1

|Pnℓ
| dh : L P N, n1 ă n2 ă . . . ă nL

,
.
- “ 0.

Proof. The proof is a simple application of Cauchy-Schwarz inequality. Con-
sider n1 ă n2 ă . . . ă nL and N ě nL. Denote N “ tn1 ă n2 ă . . . ă nLu
and N c its complement in t1, ¨ ¨ ¨ , Nu. Let a ă b be two real numbers and
define a probability measure on R by

dλa,bptq “
11ra,bsptq
b ´ a

dt, where dt is the Lebesgue measure.
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Then we have

ż
Nź

k“0

|Pk| dλa,b “

ż
ź

kPN
|Pk| 12 ˆ

ź

kPN c

|Pk| 12
Nź

k“0

|Pk| 12 dλa,b

ď

¨
˝
ż

ź

kPN
|Pk| dλa,b

˛
‚

1

2
¨
˝
ż

ź

kPN c

|Pk| ˆ
Nź

k“0

|Pk| dλa,b

˛
‚

1

2

ď

¨
˝
ż

ź

kPN
|Pk| dλa,b

˛
‚

1

2
¨
˝
ż

ź

kPN c

|Pk|2 dλa,b

˛
‚

1

4
¨
˝
ż

Nź

k“0

|Pk|2 dλa,b

˛
‚

1

4

By letting b ´ a goes to infinity, we get

$

Nź

k“0

|Pk| dt ď

¨
˝

$

ź

kPN
|Pk| dt

˛
‚

1

2
¨
˝

$

ź

kPN c

|Pk|2 dt

˛
‚

1

4
¨
˝

$

Nź

k“0

|Pk|2 dt

˛
‚

1

4

“

¨
˝
$

ź

kPN
|Pk| dt

˛
‚

1

2

.

The last equality follows from p7q.
�

Proof of Theorem 4.1. Assume that (i) holds. To prove that µ is singular ,
it suffices to show that for any ǫ ą 0, there is a Borel set E with hpEq ă ǫ

and µpEcq ă ǫ. Let 0 ă ǫ ă 1.

Fix N0 such that for any N ą N0, we have

ż

bR

Nź

k“0

|Pk| dh ă ǫ2. The set

E “
!
ω P bR :

śN
k“0

|Pkpωq| ě ǫ
)
satisfies:

hpEq ď 1

ǫ

›››››
Nź

k“0

Pk

›››››
1

ď ǫ2{ǫ “ ǫ,
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and since Ec is open set, it follows from the Portmanteau Theorem that we
have

µpEcq ď lim inf
MÑ`8

ż

Ec

Mź

k“0

|Pk|2 dh

ď lim inf
MÑ`8

ż

Ec

Nź

k“0

|Pk|2
Mź

k“N`1

|Pk|2 dh

ď ǫ2 lim
MÑ`8

ż

bR

Mź

k“N`1

|Pk|2 dh “ ǫ2 ă ǫ.

For the converse, given 0 ă ǫ ă 1, there exists a continuous function ϕ on
bR such that:

0 ď ϕ ď 1, µptϕ ‰ 0uq ď ǫ and hptϕ ‰ 1uq ď ǫ.

Let fN “
Nź

k“1

|Pk|. By Cauchy-Schwarz inequality, we have

ż
fN dh “

ż

tϕ‰1u
fN dh `

ż

tϕ“1u
fN dh

ď hptϕ ‰ 1uq1{2
ˆż

R

f2
N dh

˙1{2
`
˜ż

tϕ“1u
f2
N dh

¸1{2

hptϕ “ 1uq1{2

ď
?
ǫ `

ˆż
f2
N ϕ dh

˙1{2
.

Since µ is the weak limit of f2
Ndh, we have

lim
NÑ8

ż

bR

f2
N ϕ dh “

ż

bR

ϕ dµ ď µptϕ ‰ 0uq ď ǫ.

Thus, lim sup

ż

bR

fN dh ď 2
?
ǫ. Since ǫ is arbitrary, we get lim

NÑ8

ż

bR

fN dh “
0, and this completes the proof. �

From now on, letM be a sequence of positive integers for which phm, psm,jqpm´1

j“0
q

are linearly independent over the rationals and let us fix some subsequence
N “ tn1 ă n2 ă . . . ă nku of M , k P N and m P M with m ą nk. Put

Q ptq “
kź

i“1

ˇ̌
ˇ̌Pni

ptq
ˇ̌
ˇ̌.
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We define the degree of any trigonometric polynomial f by

degpfq “ maxt|ξ| : pfptξuq ‰ 0u,p8q

and we denote dm
def“ degpPmq. From equations p5q and p6q, we have

dm “ hm`1 ´ hm ´ sm,pm ă hm`1,p9q
hm ď hm`1{pm ď hm`1{2.p10q

Since nj ` 1 ď nj`1, telescoping we get

qk
def“ degpQkq “ dn1

` dn2
` ¨ ¨ ¨ ` dnk

p11q
ď phn1`1 ´ hn1

q ` phn2`1 ´ hn2
q ` ¨ ¨ ¨ ` phnk`1 ´ hnk

q
ă hnk`1.

In the same spirit as above it is easy to see the following lemma. The
proof of it in the case of the torus is given in [9] and [2].

Lemma 2. With the above notations we haveż

bR

Q
ˇ̌
Pm

ˇ̌
dh ď

1

2

ˆż

bR

Qdh `

ż

bR

Q
ˇ̌
Pm

ˇ̌
2
dhpωq

˙
´ 1

8

ˆż

bR

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh

˙2

.

The following proposition is a simple extension of Proposition 2.4 in [2].

Proposition 2. We have

lim
mÑ8

ż

bR

Q
ˇ̌
Pm

ˇ̌
2
dh “

ż

bR

Qdh

Proof. The sequence of probability measures
ˇ̌
Pmpzq

ˇ̌
2
dh converges weakly

to the Haar measure. �

From the proposition 2 and Lemma 2 we deduce the following

Proposition 3. With the above notations we have

lim inf

ż

bR

Q
ˇ̌
Pm

ˇ̌
dh ď

ż

bR

Qdh ´ 1

8

ˆ
lim sup

ż

bR

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh

˙2

.

Now, in the following lemma, we state a sufficient condition for the ex-
istence of an absolutely continuous component with respect to the Haar
measure for the given generalized Riesz product . In the case of Z action,
the lemma is due to Mélanie Guenais [23], and the proof is similar.
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Lemma 4.3. If
`8ÿ

k“1

gfffe1 ´
ˆż

bR

|Pk| dh
˙2

ă 8, then µ admits an abso-

lutely continuous component.

Proof. We denote by } ¨ }p the norm in Lpphq. For all functions P and Q in
L2phq, by Cauchy-Schwarz inequality we have

p12q }P }1}Q}1 ´ }PQ}1 “ ´
ż

p|P | ´ }P }1q p|Q| ´ }Q}1q dh

ď }|P | ´ }P }1}2 }|Q| ´ }Q}1}2,

and by assumption,

p13q
`8ÿ

k“1

b
1 ´ }Pk}2

1
ă 8,

hence
`8ÿ

k“1

1 ´ }Pk}21 ă 8 and the infinite product
ź

k

}Pk}1 is convergent:

p14q
`8ź

k“0

}Pk}1 ą 0.

Let n0 ď n be a positive integers and take P “ Pn and Q “
n´1ź

k“n0

Pk,

then }|P | ´ }P }1}2 “
a

1 ´ }P }2
1
and }|Q| ´ }Q}1}2 ď 1 ; hence by p12q we

have

}PQ}1 ě }P }1}Q}1 ´
b

1 ´ }P }2
1
.

Using the fact that }Pk}1 ď 1, we obtain by induction
›››››

nź

k“n0

Pk

›››››
1

ě
nź

k“n0

}Pk}1 ´
nÿ

k“n0

b
1 ´ }Pk}2

1
ě

nź

k“n0

}Pk}1 ´
`8ÿ

k“n0

b
1 ´ }Pk}2

1
.

From p13q combined with p14q we deduce that for large enough n0

lim
nÑ`8

nź

k“n0

}Pk}1 ´
`8ÿ

k“n0

b
1 ´ }Pk}2

1
ą 0,

hence the sequence
`śn

k“n0
Pk

˘
does not go to zero in L1-norm. It follows

from Bourgain criterion that the generalized Riesz product
ś`8

k“n0
|Pk|2 is

not purely singular. As
śn0´1

k“0
|Pk|2 has only countably many zeros, we con-

clude that µ admits also an absolutely continuous component with respect
to the Haar measure. �
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5. On the Kac Central Limit Theorem

The Kac Central Limit Theorem in the context of the Bohr compactifi-
cation of R is stated and proved in [27]. For sake of completeness we prove
it here using the standard probability arguments.

Definition 5.1. The real numbers ω1, ω2, ¨ ¨ ¨ , ωr are called rationally inde-
pendent if they are linearly independent over Z , i.e. for all n1, ¨ ¨ ¨ , nr P Z,

n1ω1 ` ¨ ¨ ¨ ` nrωr “ 0 ùñ n1 “ ¨ ¨ ¨ “ nr “ 0.

Theorem 5.2 (M. Kac [27]). Let ω1, ω2, ¨ ¨ ¨ , ωn, ¨ ¨ ¨ be rationally indepen-
dent. Then, the functions cospω1tq, cospω2tq, ¨ ¨ ¨ , cospωntq, ¨ ¨ ¨ are stochasti-
cally independent with respect to the Haar measure of the Bohr compacti-
fication of R.

Proof. It is sufficient to show that for any positive integer k and for a given
positive integers l1, l2, ¨ ¨ ¨ , lk, we have
$

R

ˆ
cospω1tq

˙l1
ˆ
cospω2tq

˙l2

¨ ¨ ¨
ˆ
cospωktq

˙lk

dt

“

$

R

ˆ
cospω1tq

˙l1

dt

$

R

ˆ
cospω2tq

˙lk

dt ¨ ¨ ¨

$

R

ˆ
cospωktq

˙lk

dt

Write

cospωjtq “ 1

2

ˆ
eiωjt ` e´ωjt

˙
, j “ 1, 2, ¨ ¨ ¨ , t P R,

and recall that
$

R

eiαtdt “ lim
TÝÑ`8

1

2T

ż
T

´T

eiαtdt “
#
1, if α “ 0

0, if not .

Hence

ˆ
cospω1tq

˙l1

¨ ¨ ¨
ˆ
cospωktq

˙lk

“
kź

j“1

1

2lj

kź
j“1

ˆ
eiωjt ` e´iωjt

˙lj

“
kź

j“1

1

2lj

kź
j“1

ˆ ljÿ

rj“0

ˆ
lj

rj

˙
eip2rj´ljqωjt

˙
.

Whence
kź

j“1

ˆ
cospωjtq

˙lj

“
kź

j“1

1

2lj

ˆ l1,l2,¨¨¨ ,lkÿ

r1,r2,¨¨¨ ,rk“0

ˆ
l1

r1

˙ˆ
l2

r2

˙
¨ ¨ ¨

ˆ
lk

rk

˙
eip

řk
j“1

p2rj´ljqωjqt
˙
.
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Because of linear independence,

kÿ

j“1

p2rj ´ ljqωj

can be zero only if 2ri “ li, for any i “ 1, ¨ ¨ ¨ , k, and thus it follows that
$

R

kź

j“1

ˆ
cospωjtq

˙lj

dt “

$
’&
’%

kź

j“1

1

2lj

ˆ
lj
lj
2

˙
, if all li are even

0, otherwise.

We conclude that
$

R

kź
j“1

ˆ
cospωjtq

˙lj

dt “
kź

j“1

$

R

ˆ
cospωjtq

˙lj

dt

and this finish the proof of the theorem. �

In the following we recall the classical well known multidimensional Cen-
tral Limit Theorem in probability theory [15, p.81] stated in the following
forms

Theorem 5.3 (Multidimensional CLT Theorem). Let pZn,kq1ďkďkn, ně1 be

a triangle array of random variables vectors in Cd and put

Zn,k “ pZ1
n,k, Z

2
n,k, . . . , Z

d
n,kq.

Suppose that

(1) The random variables Zj
n,k are square integrable.

(2) For each n P N, the Zn,k, 1 ď k ď kn, are independents.

(3) For any ε ą 0, lim
nÑ8

knÿ

k“1

P

´
}Zn,k} ě ε

?
kn

¯
“ 0.

(4) lim
nÑ8

1?
kn

knÿ

k“1

EpZn,kq “ 0.

(5) For each j, l P t1, ¨ ¨ ¨ , du,

(a) lim
nÑ8

1

kn

knÿ

k“1

CovpZj
n,k, Z

l
n,kq “ γj,l.

(b) lim
nÑ8

1

kn

knÿ

k“1

EpZj
n,k.Z

l
n,kq “ 0.

Then Γ is a hermitian non-negative definite matrix and the sequence of
random vectors ˜

1?
kn

knÿ

k“1

Zn,k

¸

ně1

converges in distribution to the complex Gaussian measure NCp0,Γq on Cd.
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We also need the following important and classical fact from Probability
Theory connected to the notion of the uniform integrability.

Definition 5.4. The sequence tXn, n ě 1u of random variables is said to
be uniformly integrable if and only if

lim
cÝÑ`8

ż
 

|Xn|ąc
(
ˇ̌
Xn

ˇ̌
dP “ 0 uniformly in n.

It is well-known that if

sup
nPN

ˆ
E
`ˇ̌
Xn

ˇ̌
1`ε˘

˙
ă `8,p15q

for some ε positive, then tXnu are uniformly integrable.
Let us mention that the convergence in distribution or probability does
not in general imply that the moments converge (even if they exist). The
useful condition to ensure the convergence of the moments is the uniform
integrability. Indeed, we have

Theorem 5.5. If the sequence of random variables tXnu converges in dis-
tribution to some random variable X and for some p ą 0, sup

nPN

`
Ep|Xn|pq

˘
“

M ă `8, then for each r ă p,

lim
nÝÑ`8

E

ˆˇ̌
Xn

ˇ̌r
˙

“ E

ˆˇ̌
X
ˇ̌r
˙

For the proof of Theorem 5.5 we refer the reader to [4, p.32-33] or [12, p.100].

Now let us state and prove the Kac Central limit Theorem.

Theorem 5.6 (Kac CLT [27]). Let pλnqnPN be a sequence of rationally
independent real numbers. Then the functions cospλntq ` i sinpλntq, n “
1, ¨ ¨ ¨ , are stochastically independent under the Haar measure of the Bohr
compactification of R and converge in distribution to the complex Gaussian
measure NCp0, 1q on C.

Proof. By Theorem 5.2 the functions cospλntq ` i sinpλntq, n “ 1, ¨ ¨ ¨ , are
stochastically independent under the Haar measure of bR and it is straight-
forward to verify that the hypotheses of Central Limit Theorem 5.3 are
satisfied. We conclude that the sequence

˜
1?
n

nÿ

k“1

eiλkt

¸

ně1

converges in distribution to the complex Gaussian measure NCp0, 1q on C.
�
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6. Proof of the main result (Theorem 3.2)

Using the analogous lemma of Féjer’s Lemma [52, p.49] combined with the
CLT methods introduced in [2], we shall give a direct proof of the singularity
of a large class of generalized Riesz products on bR. Therefore, our strategy
is slightly different from the strategy of the proofs given by many authors
in the case of the torus [9], [32], [33], [2]. Indeed, the crucial argument in
their proofs is to estimate the following quantityż

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh.p16q

Precisely, they showed that the weak limit point of the sequence
`ˇ̌

|Pm|2 ´ 1
ˇ̌˘

is bounded below by a positive constant and it is well-known that this implies
the singularity of the generalized Riesz products (see for instance [2] or [32]).

Let us start our proof by proving the following lemma analogous to Féjer’s
Lemma [52, p.49]

Lemma 3. With the above notations we have

lim sup
mÝÑ`8

mPM

ż

bR

Q
ˇ̌
Pm

ˇ̌
dh “

ˆż

bR

Qdh

˙ˆ
lim sup
mÝÑ`8

mPM

ż

bR

|Pm|dh
˙
.

Proof. By our assumption the sequence
`
hm, psm,pm´1q

˘
mPM is rationally

independent. Hence, by Kac Theorem 5.2, for m ą hnk`1
, the function Q

and Pm are stochastically independent. This allows us to writeż

bR

Q
ˇ̌
Pm

ˇ̌
dh “

ż

bR

Qdh

ż

bR

|Pm|dh,

which proves the lemma. �

Proof of Theorem 3.2. Applying Lemma 3, we proceed to construct induc-
tively the sequence n1 ă n2 ă nk ă ¨ ¨ ¨ , such that, for any k ě 1, we
have ż

bR

k`1ź
j“1

ˇ̌
Pnj

ˇ̌
dh ď

?
51π

100

ż

bR

kź
j“1

ˇ̌
Pnj

ˇ̌
dh.p17q

Indeed, by our assumption combined with Kac CLT 5.2, it follows that pPmq
converges in distribution to the complex Gaussian measure NCp0, 1q on C.
But, according to p15q, pPmq is uniformly integrable. Hence, from Theorem
5.5, we get

lim
mÝÑ`8

ż

bR

|Pm|dh “

ż

C

ˇ̌
z
ˇ̌
dNCp0, 1qpzq “

?
π

2
.p18q
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We remind that the density of the standard complex normal distribution
NCp0, 1q is given by

fpzq “ 1

π
e´|z|2.

Now assume that we have already construct n1 ă n2 ă n3 ă ¨ ¨ ¨ ă nk and

apply p18q with ε “
?
π

100
combined with Lemma 3 to get m ą nk such that

ż

bR

Q|Pm|dh ď 51
?
π

100

ż

bR

Qdh.

Put nk`1 “ m. Therefore the inequality p17q holds and by letting k ÝÑ `8
we conclude that ż

bR

kź
j“1

ˇ̌
Pnj

ˇ̌
dh ´́ ´́ Ñ

kÑ`8
0.

which yields by Bourgain criterion that µ is singular with respect to Haar
measure and completes the proof. �

Remark 6.1. The fundamental argument in the proof above is based on
Lemma 3 and therefore strongly depended on the assumption that along
subsequence the positive real numbers

`
hm, psm,pm´1q

˘
are linearly indepen-

dent over the rationals. We argue that in the general case, one may use
the methods of Bourgain [9], Klemes-Reinhold [32], Klemes [32] and el Ab-
dalaoui [2] to establish the singularity of a large class of generalized Riesz
products on bR. In particular, the case when ppmq is bounded. In the
forthcoming paper, we will show how to extend a classical results from the
torus and real line setting to the generalized Riesz products on the Bohr
compactification of R.

Appendix.I. On The Flatness problem on bR.

We are concerned here with the flat polynomials issue in bR. First, we
recall briefly the relevant fact on the flatness problem in the torus T.

The problem of flatness go back to Littlewood in his 1968 famous paper
[36]. In that paper, Littlewood introduce two class of complex polynomials
Gn and Fn where n is a positive integer. The class Gn is a class of those
polynomials P pzq “ řn

k“0
akz

k that are unimodular, that is, |ak| “ 1, for
k “ t0, ¨ ¨ ¨ , nu. Fn is the subclass of Gn with real coefficients, i.e., ak “ ˘1,
for k “ t0, ¨ ¨ ¨ , nu. The polynomials P in Fn are nowadays called Littlewood
polynomials. By Parseval’s formula

1

2π

ż
2π

0

ˇ̌
ˇ̌P peitq

ˇ̌
ˇ̌
2

dt “ n ` 1, for all P P Gn.
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Therefore, for all P P Gn,

min
|z|“1

ˇ̌
P pzq

ˇ̌
ă

?
n ` 1 ă max

|z|“1

ˇ̌
P pzq

ˇ̌

In [36] Littlewood raised the problem of the existence of a sequence pPnq of
unimodular polynomials such that

max
tPR

ˇ̌
Pnpeitq

ˇ̌
?
n ` 1

´́ ´́ Ñ
nÑ8

1.

Such sequence of unimodular polynomials are called ultraflat. Precisely, the
usual definition of ultraflatness is given as follows

Definition 6.2. Let pnkq be a sequence of positive integers and pεnk
q a

sequence of positive real numbers tending to 0, we say that a sequence
pPnk

q of unimodular polynomials is pεnk
q-ultraflat if

max
tPR

ˇ̌
ˇ̌
ˇ̌
Pnk

peitq
ˇ̌

?
nk ` 1

´ 1

ˇ̌
ˇ̌ ď εnk

.

The problem of existence of the ultraflat polynomials was solved affirma-
tively by Kahane in his 1980 paper [28]. Precisely, Kahane proved that there
exists a sequence of pεnq-ultraflat with

εn “ O

ˆ
n´1{17alogpnq

˙
.

But as noted by Queffelec and Saffari [44] Kahane proof is some kind of
miracle. This is due to the fact that Kahane work is inspired by Körner
paper [34] and Körner paper is based on Byrnes paper [10]. But, in 1996
J. Benedetto and his student Hui-Chuan Wu discovered that Theorem 2 in
Byrnes paper [10] was erroneous and as a consequence invalidated Körner
main result. Fortunately Kahane proof was independent of Theorem 2 in
Byrnes paper.

The problem of the existence of the ultraflat Littlewood polynomials is
unsettled to this date and as pointed by Erdélyi [18] it is a common belief
that there is no ultraflat sequence of Littlewood polynomials. As a conse-
quence no long Barker sequences exist (see [7] and the references given there).

One more important class of polynomials is the class of polynomials with
coefficients ak P t0, 1u called a class of idempotent polynomials for obvious
reasons of being convolution idempotents and denoted by

In
def“ tP P CrXs : P pXq “

n´1ÿ

0

akX
k, ak P t0, 1uu, n P N˚.

A subclass of In with constant term 1 is called a class of Newman polyno-
mials and denoted by Nn.
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Another extremal open problem in the class of Littewood polynomials or
in the class of Newman polynomials is the problem of L1-flatness. In the
same way as the ultraflatness, the L1-flatness is defined as follows

Definition 6.3. Let pnkq be a sequence of positive integers and pεnk
q a

sequence of positive real numbers tending to 0, we say that a sequence
pPnk

q of polynomials is pεnk
q ´ L1-flat if
››Pnk

peitq
››
1››Pnk

peitq
››
2

ě 1 ´ εnk
.

The problem of the existence of L1-flat sequence of unimodular polyno-
mials was solved by Newman in [39]. Later, M. Guenais inspired by New-
man work constructed [23] a sequence of L1-flat Littlewood polynomials onś`8

n“0
Z{pnZ where ppnqně0 is an increasing sequence of prime numbers. As

a consequence she established a existence of countable group action with
simple spectrum and Haar component. Subsequently, el Abdalaoui and
Lemańczyk [1] proved that the sequence of Littlewood polynomials con-
structed by Guenais is ultraflat. Before, J. Bourgain in his 1993 paper [9]
conjectured that the supremum of the L1 norm by L2 norm over all idem-
potent polynomials on the circle must be strictly less than one. Precisely,
he make the following conjecture

Conjecture 6.4 (Bourgain). [9]

sup
ně1

"
sup
PPNn

ˆ››P peitq
››
1››P peitq
››
2

˙*
ă 1.

Using the Bourgain ideas, M. Guenais [23] connected the problem of the
existence of L1-flat sequence of Littlewood polynomials or Newman polyno-
mials and the Banach problem on whether there exist a dynamical system
with simple Lebesgue spectrum. Ulam in his book [51, p.76] stated the
Banach problem in the following form

Question 1 (Banach Problem). Does there exist a square integrable func-
tion fpxq and a measure preserving transformation T pxq, ´8 ă x ă 8, such
that the sequence of functions tfpT npxqq;n “ 1, 2, 3, ¨ ¨ ¨ u forms a complete
orthogonal set in Hilbert space?

Let us formulate the Bourgain conjecture in context of Bohr compactifi-
cation of R. For that, let PpRq be the subspace of trigonometric polynomials
on R and pωjqjPN be an increasing sequence of real numbers. Put

Jω,n “ tP P PpRq : P ptq “
nÿ

k“0

ake
iωkt, a0 “ 1, ak P t0, 1uu, n P N˚.

Then, we can state the Bourgain conjecture in context of Bohr compact-
ification of R in the following form



24 E. H. EL ABDALAOUI

Conjecture 6.5 (Bourgain in bR). for any increasing sequence pωjqjPN of
real numbers, we have

sup
ně1

"
sup

PPJω,n

ˆ››P peitq
››
1››P peitq
››
2

˙*
ă 1,

where
››P peitq

››2
2

“
$ ˇ̌

ˇ
řn´1

k“0
ake

iωkt
ˇ̌
ˇ
2

dt “ 1 `
řn´1

k“1
a2k.

For the sequence pωjqjPN of rationally independent numbers, we are able
to prove the following proposition.

Proposition 6.6. Let
`
ωpjq

˘qn´1

j“0

˘
nPN be a sequence of real numbers such

that for any n P N˚, the real numbers
`
ωpjq

˘qn´1

j“0
are rationally independent.

Then, we have
$

R

ˇ̌
ˇ̌ 1?

qn

qn´1ÿ

j“0

eiωpjqt
ˇ̌
ˇ̌dt ´́ ´́ Ñ

nÑ8

c
π

2
.

Since, for any n P N˚, the real numbers
`
ωpjq

˘qn´1

j“0
are rationally inde-

pendent, then we can apply the Kac CLT Theorem 5.2. But, the functionsˆ
1?
qn

řqn´1

j“0
eiωpjqt

˙
are in L2pbRq we deduce that they are uniformly inte-

grable. Hence, by Theorem 5.5, we conclude that

lim
nÝÑ`8

$

R

ˇ̌
ˇ̌ 1?

qn

qn´1ÿ

j“0

eiωpjqt
ˇ̌
ˇ̌dt “

c
π

2
.

This finish the proof of the proposition.

Remark 6.7. The discussion above allows us to formulate the following
questions

Question 2. Does there exist a sequence of L1-flat Littlewood polynomials
or of the L1-flat Newman polynomials on bR?

Subsequently

Question 3. Does there exist a the ultraflat Littlewood or Newman poly-
nomials on bR?

Remark 6.8. We remind here that in [41], A. A. Prikhod’ko constructed a
sequence of trigonometric polynomials pPnqnPN which is locally L1-flat, that
is, for any 0 ă a ă b and ε ą 0 there exists a positive integer n0 “ n0pa, b, εq
such that for any n ą n0, we have

1

b ´ a

ż
b

a

ˇ̌ˇ̌
Pnpxq

ˇ̌
2 ´ 1

ˇ̌
dx ă ε.
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The polynomials Pn, n P N are given by

Pnpxq “ 1?
pn

pn´1ÿ

p“0

eiωnppqx,

where, ωnppq “ mn.pn
ε2n

e
εn
pn

p
, pmn, pnqnPN is a sequence of positive integers

with pn ´́ ´́ Ñ
nÑ8

`8 and mn ´́ ´́ Ñ
nÑ8

`8, εn is a sequence of rational num-

bers which goes to 0 as n goes to 8.

But, this sequence is not L1-flat on the Bohr compactification of R. In-
deed, one may show that we have

$

ˇ̌
Pnpxq

ˇ̌
dx ´́ ´́ Ñ

nÑ`8

c
π

2
.

Appendix.II. On the Bohr compactification and Stone-Čech
compactification of locally Abelian group.

Let G be a Locally Abelian compact group and denoted by τ its topology.

Let pG be a group of the characters on G, that is, the continuous homomor-

phism from G to the torus T
def“ tt P C : |t| “ 1u. Put

K “ T
pG,

the space of all functions from pG to T equipped with the product topology
(i.e.; the pointwise convergence topology). Therefore, there is a canonical
injective homomorphism from G to K given by

e : G ÝÑ K

x ÞÝÑ epxq : h P K ÞÝÑ epxqphq “ hpxq.
e is called a dual homomorphism. By abuse of notation we denote by the
same letter G the image of G under e. Therefore, G is equipped with the
Bohr topology denoted by τb and the topology inherited from G. Hence
τb Ă τ . By taking the closure of G with respect to the Bohr topology we
get the Bohr compactification of G and we denoted it by bG. Thus, by
construction, bG is compact.
Let us state the following useful lemma.

Lemma 4. Let pgnq be a sequence of elements in G. Then pgnq converge to

g with respect to τb if and only if, for any character h P pG we have

hpgnq ´́ ´́ Ñ
nÑ8

hpgq.

Proof. By the definition of the product topology on K, a sequence of func-

tions pfnq converge to some function f if and only if, for any h P pG,

fnphq ´́ ´́ Ñ
nÑ8

fphq.
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By taking fn “ epgnq and f “ epgq we get

epgnqphq ´́ ´́ Ñ
nÑ8

epgqphq,

which means that for any h P pG,

hpgnq ´́ ´́ Ñ
nÑ8

hpgq,

and the proof of the lemma is complete. �

We deduce from the lemma the following crucial fact about the separabil-
ity of the Bohr compactification of G. We recall that the topological space
is separable if it is contains a countable, dense subset.

Proposition 4. If G is a separable with respect to τ topology then G is
separable with respect to Bohr topology.

Proof. It is straightforward since the Bohr topology is contained in the usual
topology. �

In the case of R, the lemma 4 say that the sequence of real numbers pxnq
converge in the sense of the Bohr topology to x if and only if, for any t P R,

eixnt ´́ ´́ Ñ
nÑ8

eixt.

But since the characters on R are Lipschitz we deduce easy that the Bohr
topology is contained in the usual topology and Q is dense in the usual
topology and Bohr topology.

Nevertheless, by the Hirodata-Kakutani Theorem, R equipped with the
Bohr topology doesn’t have a countable basis and it is often that the Bohr
topology doesn’t have a countable basis. Precisely, Hirodata-kakutani The-
orem asserts

Theorem 6.9 (Hirodata-kakutani). The Bohr compactification of a given
locally compact Abelian group has a countable basis if and only if the union
of the spectrum of all almost periodic functions is countable.

We recall that the Fourier coefficient of f on χ P pG is given by

pf
`
tχu

˘
“

ż

G

fpgqχpgqdhpgq,

where h is the Haar measure on G and χ P pG is in the spectrum of f if the
Fourier coefficients of f on χ is not zero
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6.1. The Stone-Čech compactification and Bohr compactification.

In the following the comparative board of the compactification of the com-
pactification of Stone-Čech and the Bohr compactification. For short we
write LC for Locally Compact and c.f. for continuous functions.

The Stone-Čech compactification The Bohr compactification
Let X a LC topological space Let G a LCA topological group

Consider C “ CpX, r0, 1sq the space of c. f. : X Ñ r0, 1s A “ pG

Embedding X in r0, 1sC embedding G in TA

The embedding function is the valuation expfq “ fpxq egpfq “ fpgq
Take the closure of epXq Take the closure of epGq

We denote the closure of epXq by βX and the closure of epGq by epGq “ bG
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