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GENERALIZED RIESZ PRODUCTS ON THE BOHR

COMPACTIFICATION OF Rp˚q

E. H. EL ABDALAOUI

Abstract. We study a class of generalized Riesz products connected to the spec-
tral type of some class of rank one flows on R. Applying a Central Limit Theorem
of Kac, we exhibit a large class of singular generalized Riesz products on the Bohr
compactification of R. Moreover, we discuss the problem of the flat polynomials
in this setting.
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1. Introduction

We stress that the main purpose of this paper is to extend and complete the
study of the notion of generalized Riesz product associated to the rank one flows on
R formulated in the same manner as Peyriére in [3]. The authors in [3] mentioned
that Peyriére extended the notion of Riesz product to the real line using a class of
kernel functions. Furthermore, it is noted by Peyriére in his pioneer paper [40] that
an alternative extension of the classical Riesz products can be done using the Bohr
compactification of R.

Indeed, it is usual that the extension of some notions from the periodic set-
ting to the almost periodic deals with the Bohr compactification bR of R (or more
generally, the Bohr compactification of Local Abelian Groups). The Bohr com-
pactification plays in the almost periodic case the same role played by the torus

T
def“ tt P C, |t| “ 1u in the periodic case as the domain of the fast scale variables.

As opposed to the torus, the Bohr compactification is often a non-separable compact
topological space and this lack of separability is a source of difficulties in trying to
adapt the arguments from the periodic context to the almost periodic one. Peyriére
[40] mentioned this difficulty and introduced the Riesz products on R associated to
some class of kernels.

Notice that here we use the notion of separability used in Hirotada-Kakutani pa-
per [25], That is, the topological group (or space) is called separable if it satisfies the
second countability axiom of Hausdorff which means that it has a countable basis.
In that paper, Hirotada and Kakutani established that the Bohr compactification of
a given locally compact Abelian group has a countable basis if and only if the union
of the spectrum of all almost periodic functions is countable.

Our analysis here is also motivated by the recent growing interest in the problem
of the flat polynomials suggested by A.A. Prikhod’ko [41] in the context of R. It
turns out that the main idea developed in [41] does not seem well adapted to the
context of our extension of generalized Riesz products to the Bohr compactification
of R. This is due to the fact that the sequence of trigonometric polynomials con-
structed by A.A. Prikhod’ko is only locally L1-flats (see, for instance, Remark 6.8).

The paper is organized as follows. In section 2 we review some standard facts
on the almost periodic functions including the ergodicity of the action of R by
translations on its Bohr compactification. In section 3 we define the notion of
the generalized Riesz products on the Bohr compactification of R. In section 4
we summarize and extend the relevant material on the Kakutani criterion and the
Bourgain criterion on the singularity of the generalized Riesz products introduced
in section 3. In section 5 we state and prove the Central Limit Theorem due to M.
Kac. In section 6 we apply the Central Limit Theorem of Kac to prove our main
result concerning the singularity of a large class of generalized Riesz products on bR.
Finally, in the appendix, we consider the problem of the flat polynomials on the Bohr



GENERALIZED RIESZ PRODUCTS ON THE BOHR COMPACTIFICATION OF R 3

compactification of R and we add a short note based on Hirodata-Kakutani paper
[25] on the Bohr compactification compared with the Stone-Čech compactification.

2. The Bohr compactification of R

The Bohr compactification of R is based on the theory of almost periodic functions
initiated by H. Bohr [6] in connection with the celebrated ζ-function of Riemann. In
this section we are going to recall the basic ingredients of this theory. For the basic
facts about almost periodic functions and generalizations of this concept the reader
is referred to the classical presentation of Bohr [6] and Besicovitch [5].

We point out that the theory of almost periodic functions can be extended to
more general setting with applications in many context including the non-linear
differential equations [14].

Definition 2.1. Let f : R ÝÑ C be a bounded continuous function and ε ą 0; we
say that τ P R is an ε-almost period for f if

sup
xPR

|fpx ` τq ´ fpxq| def“ ||fp. ` τq ´ fp.q||8 ă ε.

The mapping f is said to be almost periodic if for any ε ą 0 the set of ε-almost
periods of f is relatively dense, i.e., there is l “ lpεq ą 0 such that any interval with
length l contains at least one ε-almost period.

The space of all almost periodic functions is denoted by AP pRq. From the above
definition we easily deduce that AP pRq is a subspace of the space of bounded con-
tinuous functions on R. An important characterization of almost periodic functions
is due to Bochner and it can be stated as follows

Theorem 2.2 (Bochner’s characterization of AP pRq). A bounded function f is
almost periodic function if, and only if, the family of translates tfp. ` tqutPR is
relatively compact in the space bounded continuous functions on R endowed with
the sup-norm topology.

The proof of Theorem 2.2 can be found in [6], [5] or [17]. Furthermore, we have the
following fundamental theorem (see for instance [6] or [5]).

Theorem 2.3 (Bohr). A bounded continuous function f is almost periodic function
if, and only if, f is uniformly approximated by finite linear combinations of functions
in the set tcosptxq, sinptxqutPR.

The space of all continuous functions on bR is denoted by CpbRq. CpbRq is
a commutative C‹-algebra under pointwise multiplication and addition. Below, we
give an important topological characterization of the Bohr compactification of R due
to Gelfand, Raikov and Chilov. They obtain this characterization as an application
of their theory of commutative Banach algebras.

Theorem 2.4 (Gelfand, Raikov and Chilov [20]). The group R, equipped with
the usual addition operation, may be embedded as a dense subgroup of a compact
Abelian group bR in such way as to make AP pRq the family of all restrictions
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functions f|R to R of functions f P CpbRq. The operator f ÞÝÑ f|R is an isometric ‹-
isomorphism of CpbRq ontoAP pRq. Moreover, the addition operation ` : RˆR ÝÑ
R extends uniquely to the continuous group operation of bR, ` : bRˆbR ÝÑ bR.

The group bR is called the Bohr compactification of bR.

For simplicity of notation, for any f in AP pRq, we use the same letter f for its
canonical extension to bR. As a consequence of Theorem 2.4 combined with the
Riesz representation Theorem we have

Theorem 2.5 ([17]). The dual of the space AP pRq is isometrically isomorphic to
the space MpbRq of all Radon measures on the Bohr compactification of R. The
isomorphism x˚ ÞÝÑ µx˚ is given by the formula

x˚pfq “

ż

bR

fptqdµx˚ptq.

We recall in the following the definition of the characters. The characters play a
important role in the Abelian group and, by Koopmann observation, in the spectral
analysis of dynamical systems.

Definition 2.6. Let G be an Abelian group and e its identity element, then a
character of G is a complex valued function χ defined on G such that χpeq “ 1 and
χpstq “ χpsqχptq for all s, t P G.

Let us recall the following basic fact on compact Abelian groups due to Peter and
Weyl.

Theorem 2.7 (Peter-Weyl). Let G be a compact Abelian group, with BpGq its Borel
field and h its Haar measure. Then the set of continuous characters is fundamental
both in CpGq and in L2pG,BpGq, hq.

The proof of Peter-Weyl Theorem can be found in [49] and for the thorough
treatment we refer the reader to [49].

It is obvious that the continuous characters of bR are the functions eiω : bR ÝÑ
T. In addition the orthogonality of two distinct characters can be checked directly.
Indeed,ż

bR

eiωt.eiω
1tdhptq “ lim

TÝÑ`8
1

2T

ż
T

´T

eipω´ω1qtdt “ 0, whenever ω ‰ ω1.

For f P AP pRq we denote by

$

R

fptqdt the asymptotic mean value of f , given by

$

R

fptqdt “ lim
TÝÑ`8

1

2T

ż
T

´T

fptqdt.

As a consequence of the averaging properties of almost periodic functions we have
the following
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Lemma 1. For any f P AP pRq we haveż

bR

fdhptq “

$

R

fptqdt,

where dhptq is the Haar measure in bR, normalized to be a probability measure, and
dt is the usual Lebesgue measure in R. Moreover we haveż

bR

fptqdhptq “ lim
TÝÑ`8

1

T |K|

ż

T.K

fptqdt,

where K is any bounded subset of R with |K| ‰ 0, |K| is the Lebesgue measure of
K.

Following [30], for any f P AP pRq, we introduce the notation

pf
`
tλu

˘
“

$

R

fptqe´iλtdt.

That is,
` pf
`
tλu

˘˘
λPR are the Fourier coefficients of f relative to orthonormal family

teiλtuλPR; the inner product is defined by

ă f, g ą“ă f, g ą“

ż

bR

fpκqrgpκqdhpκq.

2.1. On Besicovitch space. Since the functions f P AP pRq correspond to restric-

tions, f “ rf|R, of continuous functions f on bR, a natural question is whether it is

possible to define a class of functions f which correspond to “restrictions” f “ rf|R,

of functions rf P L1pbRq. This motivates the following definition.

Definition 2.8. Given p P r1,`8q the space BAPppRq, of Besicovitch’s generalized
almost periodic functions on R, consists of those functions f P L

p
loc

pRq for which
there exists a sequence fn P AP pRq satisfying

lim
nÝÑ`8

lim sup
TÝÑ`8

1

2T

ż
T

´T

ˇ̌
ˇfnpxq ´ fpxq

ˇ̌
ˇ
p

dx “ 0p1q

We denote BAPppRq simply by BppRq.

The space of generalized almost periodic functions BppRq was introduced by Besi-
covitch, who also gave them a structural characterization. We refer to [5] for more
details about functions in BppRq. We immediately have AP pRq Ă BppRq Ă B1pRq
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for any p ě 1 and it is easy to see that any f P B1pRq has the mean value property,
that is, for any bounded measurable B Ă R, with |B| ‰ 0, we have

Mpfq “ lim
LÝÑ`8

1

L|B|

ż

BL

fdx,

where BL “ tx P R : x
L

P Bu. The space corresponds to LppbRq in a way similar to
the one in which the space AP pRq corresponds to CpbRq. Indeed, notice first that

the definition of BppRq immediately gives that the asymptotic mean value

$

ˇ̌
f
ˇ̌p
dx

of a function in BppRq is well defined; moreover, any approximating sequence fn P
AP pRq satisfying p1q can be viewed as a Cauchy sequence in LppbRq and, hence,

there exists rf P LppbRq such that Ăfn converge to f in LppbRq. Since rf is easily seen
to be independent of the approximating sequence, in this way we may associate with

each f P BppRq a well determined function rf P LppbRq which we may view as an

“extension” of f to bR. Notice that the map f ÞÑ rf is a linear map and that the
approximation procedure together with Lemma 1 show that

$

R

ˇ̌
ˇf
ˇ̌
ˇ
p

“

ż

bR

ˇ̌
ˇ rfpκq

ˇ̌
ˇ
p

dκ,@f P BppRq.p2q

As a consequence, the kernel of the map f ÞÝÑ rf is made by the functions f such
that the asymptotic mean value of

ˇ̌
f
ˇ̌p

is 0. The corresponding quotient space is
denoted by BppRq{ „. For f P BppRq we set

|f |p def“

¨
˚̊
˝

$

R

ˇ̌
ˇf
ˇ̌
ˇ
p

dx

˛
‹‹‚

1

p

,

so that
ˇ̌ ˇ̌

p
is a semi-norm on BppRq. It is well known that BppRq is complete with

respect to the semi-norm
ˇ̌ ˇ̌

p
(see for instance [37]). The space B2pRq is endowed

with the scalar product

ă f, g ą“

$

R

fpxq Ągpxqdx “

ż

bR

rfpκqrgpκqdκ,p3q

The second equality follows by p2q with p “ 2, implying that the scalar product

is preserved under the map f ÞÑ rf . Finally, we define

B8pRq def“
#
f P

č

pě1

BppRq : sup
pě1

ˇ̌
f
ˇ̌
p

ă `8
+
,
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Again,
ˇ̌ ˇ̌

8 is a semi-norm on B8pRq and the corresponding quotient space is denoted
by B8pRq{ „. We finish this paragraph by stating the following important fact on

the properties of the map f ÞÑ rf . The proof of it is left to the reader.

Proposition 1. The map f ÞÑ rf is an isometric isomorphism between the Banach
spaces BppRq{ „ and LppbRq for any p P r1,`8s

Furthermore, we point out that a suitable extension of Lebesgue and Fatou’s con-
vergence results is obtained in [37].

Gelfand-Raikov-Chilov Theorem 2.4 allows us to define the Bohr compactification
of R. But, in the Harmonic Analysis, it is well known that the Pontrygain Theorem
gives an alternative definition. We briefly recall it here and we refer the reader to
the large literature on the subject [49] and for a deeper discussion on the relation
between the almost periodic functions and the Bohr compactification of R to [31],
[22].

Let G be locally compact Abelian group and let pG be its dual, i.e., pG is the set

of the characters endowed with the topology inherited from G. Let pGd be pG with

the discrete topology. Then
xxGd

def“ bG is the Bohr compactification of G. bG is a
compact group such that G is a dense subset of bG.

We end this section by stating and proving the classical result on the ergodicity of
the action of R by translation on bR. We recall that the action of R by translation
is defined by τxpκq “ κ ` x where the extended addition is given by Theorem 2.4.
Clearly, the family pτxqxPR is a flow acting on bR since τxpτx1pκqq “ τx`x1pκq and
the Haar measure is invariant under translation.

Theorem 2.9. The action of R on bR is ergodic, that is, for any Borel set A Ă bR

which is invariant under the translation action we have hpAq P t0, 1u, where hpAq
denotes the normalized Haar measure of A. Moreover hpRq “ 0.

Proof. Let A Ă bR be an invariant Borel set. We have

hpAq “ hpA X τxAq “

ż

bR

11Apβq 11Apβ ` xqdhpβq.

Now, translations are strongly continuous on L2pRq. Indeed, this is a standard
consequence of the density of CpbRq in L2pbRq, which follows from Theorem 2.4, and
the invariance of the Haar measure. Therefore, the right-hand side is a continuous
function of x, and so the identity still holds with x P bR. Hence we get, using Fubini
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theorem and the invariance of the Haar measure,

hpAq “

ż

bR

ż

bR

11Apκq 11Apκ ` ξqdhpκqdhpξq

“

ż

bR

11Apκqdhpκq

ż

bR

11Apξqdhpξq “ hpAq2,

from which it follows that hpAq P t0, 1u, as asserted. It remains to show that
hpRq “ 0. First we observe that R is a Borel subset of bR, since it is the union of
a countable family of compact sets, e.g., the images of the intervals r´k, ks, k P N.
Since R is invariant under the translation action we have hpRq P t0, 1u. But, for
any κ P bRzR, κ ` R is also an invariant Borel set and R

Ştκ ` Ru “ H. By the
invariance of the Haar measure hpκ`Rq “ hpRq. Hence, we conclude that hpRq “ 0
and the proof is achieved. �

3. Generalized Riesz Products on bR

Riesz products were discovered in 1918 by F. Riesz [45] to answer affirmatively
a special question in the theory of Fourier series, namely, whether there exists a
continuous measure whose Fourier coefficients do not vanish at infinity. Roughly
speaking, the Riesz products are a kind of measures on the circle constructed induc-
tively. The pioneer Riesz product construction gives a concrete example. Since then,
the Riesz construction proved to be the source of powerful ideas that can be used to
produce concrete contre-example of measures with a number of desired properties
(controllability of the convergence of the Fourier coefficients being the goal of the
original construction).

Later, A. Zygmund extended Riesz construction and introduced what it is nowa-
days called classical Riesz products [52, p.208].

In 1975, that Riesz products appear as a spectral type of some dynamical systems
was shown by F. Ledrappier [35]. Ten years later, M. Queffelec [42], inspired by the
work of Coquet-Kamae and Mandes-France [13], showed that the specific generalized
Riesz products are the right tool to describe the spectrum of the class of dynamical
systems arising from the substitution (see [43] and the references therein). In 1991,
B. Host, J.-F. Méla, F. Parreau in [26] realized a large class of Riesz products as
the maximal spectral type of the unitary operator associated with a non-singular
dynamical system and a cocycle. Finally, in the more general setting, J. Bourgain
established the connections between some class of generalized Riesz products on the
circle and the maximal spectral type of a class of maps called rank one maps [9].
One year later, an alternative proof is given by Choksi-Nadkarni using the Host-
Méla-Parreau argument [11],[38] and at the same time a simple proof is obtained by
Klemes-Reinhold [33] using the standard Fourier analysis argument.

In [3], el Abdalaoui-Lemańczyk-Lesigne and Ulcigrai proved that the generalized
Riesz products analogous to Peyriére-Riesz products can be realized as a spectral
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type of some class of rank one flows.

Here our aim is to extend the notion of generalized Riesz products to the Bohr
compactification of R. It turns out that such generalization can be done directly.
More precisely, in the study of the spectrum of some class of rank one flows, the
following trigonometric polynomials on R appears

Pkpθq “ 1?
pk

pk´1ÿ

j“0

eiθpjhk`sjq, where s0 “ 0 and sj “
j´1ÿ

l“0

sk,l, j ě 1,p4q

with ppkqkPN is a sequence of positive integers greater than 1 and psk,jqj“0,¨¨¨ ,pk is a
sequence of positive real numbers with sk,0 “ 0 for any k P N; the sequence phkq is
defined inductively by

h0 “ 1 and hk`1 “ pkhk `
pkÿ

l“0

sk,l.p5q

For simplicity, for any p, q P t0, ¨ ¨ ¨ , pk ´ 1u we introduce the following sequence of
real numbers

sn,p,q “
maxpp,qq´1ÿ

j“minpp,qq
sn,j,p6q

and for any real number t, we put

eptq “ eit.

Theorem 3.1 (Generalized Riesz Products on bR). Let pPnqnPN be a family of
trigonometric polynomials given by p4q. Then the weak limit of the sequence of
probability measures on bR

nź
k“0

ˇ̌
ˇ̌Pkpθq

ˇ̌
ˇ̌
2

dhpθq,

exists and is denoted by
8ź
k“0

ˇ̌
ˇ̌Pkpθq

ˇ̌
ˇ̌
2

dhpθq,

Proof. Let Rnptq “ P0ptq ¨ ¨ ¨Pnptq, Qnptq “ |Rnptq|2 and σn “ |Rnpκq|2dhpκq. By
the definition of Pn we have

ˇ̌
Pnptq

ˇ̌
2 “ 1 ` ∆nptq with ∆nptq “ 1

pn

ÿ

p‰q

e

ˆ
i
`
pp ´ qqhn ` sn,p,q

˘
t

˙

and it is obvious that
$

R

Qndt “ 1.
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Therefore, σn is a probability measure on bR. In addition, for any t P R, we have

Qn`1ptq “ QnptqPnptq “ Qnptq ` Qnptq∆nptq
Hence

zσn`1

`
λ
˘

“ zQn`1

`
tλuq “ xQn

`
tλuq ` xQn ˚ x∆npλq ě xQn

`
tλuq “ xσn

`
λ
˘

Consequently the limit rλ of the sequence pxσn
`
λ
˘
q exists. Now, since bR is compact

and pσnq is a sequence of probability measure on bR we can extract a subsequence
pσnk

q which converge weakly to some probability measure on bR. We deduce that
the limit of pσnq exists in the weak topology and this finishes the proof. �

The proof above is largely inspired by lemma 2.1 in [33]; it gives more, namely, the
polynomials Pn can be chosen with positive coefficients and satisfying

$ ˇ̌
ˇ̌Pnptq

ˇ̌
ˇ̌
2

dt “ 1 and

$

nź
j“1

ˇ̌
ˇ̌Pjptq

ˇ̌
ˇ̌
2

dt “ 1.

We mention also that we have
$

kź
j“1

ˇ̌
ˇ̌Pnj

ptq
ˇ̌
ˇ̌
2

dt “ 1,p7q

for any given sequence of positive integers n1 ă n2 ă ¨ ¨ ¨ ă nk, k P N˚.

We can now formulate our main result whose proof occupies all Section 6.

Theorem 3.2 (Main result). Let ppmqmPN be a sequence of positive integers greater

than 1 and ppsm,jqpm´1

j“0
qmPN be a sequence of positive real numbers. Assume that

there exists a sequence of positive integers m1 ă m2 ă ¨ ¨ ¨ , such that for any positive
integer j, the numbers phmj

, smj ,0, ¨ ¨ ¨ , smj ,pmj
´1q are rationally independent. Then

the generalized Riesz product

µ “
nź

k“0

ˇ̌
Pkpθq

ˇ̌
2
dhpθq,

where

Pkpθq “ 1?
pk

pk´1ÿ

j“0

e
`
iθ
`
jhk ` sk,0,j

˘˘
.

is singular with respect to the Haar measure on bR.

4. On the Kakutani criterion and the Bourgain singularity criterion
of the Riesz products on the Bohr compactification of R

The famous dichotomy theorem of Kakutani has a rather long history. In his
1948 celebrated paper [29], Kakutani established a purity law for infinite product

measures. Precisely, if P “
`8â
i“1

Pi and Q “
`8â
i“1

Qi are a infinite product measures,
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where Pi,Qi are probability measures such that Pi is absolutely continuous with
respect to Qi, for each positive integer i, then

P ! Q or P K Q according as
ź

i

ż ˆ
dPi

dQi

˙
dQi converges or diverges.

There are a several proofs of Kakutani criterion in literature (see [8] and the
references given there). For a proof based on the Hellinger integral we refer the
reader to [16, p.60].

Kakutani’s Theorem was specialized to the Gaussian measures on Hilbert space
with identical correlation operators in [21] and it was extended to Gaussian measures
with non-identical correlation operators by Segal [50], Hajek [24], Feldman [19] and
Rozanov [48]. Later, in 1979, Ritter in [46], [47] generalized Kakutani’s Theorem to
a certain non-products measures with application to the classical Riesz products.

Here, applying the Bourgain methods, we obtain a new extension of Kakutani’s
Theorem to the class of generalized Riesz products on the Bohr compactification of
R. Indeed, we show that the independence along subsequence suffices to prove the
singularity.

Nevertheless, our strategy is similar to the strategy of [3] and it is based on
the extension of Bourgain methods to the generalized Riesz products on the Bohr
compactification of R combined with the Central Limit tools introduced in [2].

Moreover, having in mind applications beyond the context of this paper, we shall
state and prove a Guenais sufficient condition on the L1 flatness of the polyno-
mials which implies the existence of generalized Riesz products on bR with Haar
component. We recall that the generalized Riesz products µ is given by

µ “
`8ź
k“0

ˇ̌
Pkpθq

ˇ̌
2
dhpθq

where

Pkptq “ 1?
pk

pk´1ÿ

j“0

e
`
iθpjhk ` sk,jq

˘
and sk,j “

j´1ÿ

l“0

sk,l

Theorem 4.1 (bR version of Bourgain criterion). The following are equivalent

(i) µ is singular with respect to Haar measure.

(ii) inf

$
&
%

ż

bR

Lź

ℓ“1

ˇ̌
Pnℓ

ˇ̌
dh : L P N, n1 ă n2 ă . . . ă nL

,
.
- “ 0.

The proof of bR version of Bourgain criterion is based on the following lemma.

Lemma 4.2. The following are equivalent

(1)

ż

bR

Nź

k“0

ˇ̌
Pk

ˇ̌
dh ´́ ´́ Ñ

NÑ`8
0.
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(2) inf

$
&
%

ż

bR

Lź

ℓ“1

|Pnℓ
| dh : L P N, n1 ă n2 ă . . . ă nL

,
.
- “ 0.

Proof. The proof is a simple application of Cauchy-Schwarz inequality. Consider
n1 ă n2 ă . . . ă nL and N ě nL. Denote N “ tn1 ă n2 ă . . . ă nLu and N c its
complement in t1, ¨ ¨ ¨ , Nu. Let a ă b be two real numbers and define a probability
measure on R by

dλa,bptq “
11ra,bsptq
b ´ a

dt, where dt is the Lebesgue measure.

Then we haveż
Nź

k“0

|Pk| dλa,b “

ż
ź

kPN
|Pk| 12 ˆ

ź

kPN c

|Pk| 12
Nź

k“0

|Pk| 12 dλa,b

ď

¨
˝
ż

ź

kPN
|Pk| dλa,b

˛
‚

1

2
¨
˝
ż

ź

kPN c

|Pk| ˆ
Nź

k“0

|Pk| dλa,b

˛
‚

1

2

ď

¨
˝
ż

ź

kPN
|Pk| dλa,b

˛
‚

1

2
¨
˝
ż

ź

kPN c

|Pk|2 dλa,b

˛
‚

1

4
¨
˝
ż

Nź

k“0

|Pk|2 dλa,b

˛
‚

1

4

By letting b ´ a goes to infinity, we get

$

Nź

k“0

|Pk| dt ď

¨
˝
$

ź

kPN
|Pk| dt

˛
‚

1

2
¨
˝
$

ź

kPN c

|Pk|2 dt

˛
‚

1

4
¨
˝
$

Nź

k“0

|Pk|2 dt

˛
‚

1

4

“

¨
˝

$

ź

kPN
|Pk| dt

˛
‚

1

2

.

The last equality follows from p7q.
�

Proof of Theorem 4.1. Assume that (i) holds. To prove that µ is singular , it suffices
to show that for any ǫ ą 0, there is a Borel set E with hpEq ă ǫ and µpEcq ă ǫ. Let
0 ă ǫ ă 1.

Fix N0 such that for any N ą N0, we have

ż

bR

Nź

k“0

|Pk| dh ă ǫ2. The set E “
!
ω P bR :

śN
k“0

|Pkpωq| ě ǫ
)
satisfies:

hpEq ď 1

ǫ

›››››
Nź

k“0

Pk

›››››
1

ď ǫ2{ǫ “ ǫ,
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and since Ec is open set, it follows from the Portmanteau Theorem that we have

µpEcq ď lim inf
MÑ`8

ż

Ec

Mź

k“0

|Pk|2 dh

ď lim inf
MÑ`8

ż

Ec

Nź

k“0

|Pk|2
Mź

k“N`1

|Pk|2 dh

ď ǫ2 lim
MÑ`8

ż

bR

Mź

k“N`1

|Pk|2 dh “ ǫ2 ă ǫ.

For the converse, given 0 ă ǫ ă 1, there exists a continuous function ϕ on bR

such that:

0 ď ϕ ď 1, µptϕ ‰ 0uq ď ǫ and hptϕ ‰ 1uq ď ǫ.

Let fN “
Nź

k“1

|Pk|. By Cauchy-Schwarz inequality, we have

ż
fN dh “

ż

tϕ‰1u
fN dh `

ż

tϕ“1u
fN dh

ď hptϕ ‰ 1uq1{2
ˆż

R

f2
N dh

˙1{2
`
˜ż

tϕ“1u
f2
N dh

¸1{2

hptϕ “ 1uq1{2

ď
?
ǫ `

ˆż
f2
N ϕ dh

˙1{2
.

Since µ is the weak limit of f2
Ndh, we have

lim
NÑ8

ż

bR

f2
N ϕ dh “

ż

bR

ϕ dµ ď µptϕ ‰ 0uq ď ǫ.

Thus, lim sup

ż

bR

fN dh ď 2
?
ǫ. Since ǫ is arbitrary, we get lim

NÑ8

ż

bR

fN dh “ 0,

and this completes the proof. �

From now on, let M be a sequence of positive integers for which phm, psm,jqpm´1

j“0
q

are linearly independent over the rationals and let us fix some subsequence N “
tn1 ă n2 ă . . . ă nku of M , k P N and m P M with m ą nk. Put

Q ptq “
kź

i“1

ˇ̌
ˇ̌Pni

ptq
ˇ̌
ˇ̌.

We define the degree of any trigonometric polynomial f by

degpfq “ maxt|ξ| : pfptξuq ‰ 0u,p8q
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and we denote dm
def“ degpPmq. From equations p5q and p6q, we have

dm “ hm`1 ´ hm ´ sm,pm ă hm`1,p9q
hm ď hm`1{pm ď hm`1{2.p10q

Since nj ` 1 ď nj`1, telescoping we get

qk
def“ degpQkq “ dn1

` dn2
` ¨ ¨ ¨ ` dnk

p11q
ď phn1`1 ´ hn1

q ` phn2`1 ´ hn2
q ` ¨ ¨ ¨ ` phnk`1 ´ hnk

q
ă hnk`1.

In the same spirit as above it is easy to see the following lemma. The proof of it
in the case of the torus is given in [9] and [2].

Lemma 2. With the above notations we haveż

bR

Q
ˇ̌
Pm

ˇ̌
dh ď

1

2

ˆż

bR

Qdh `

ż

bR

Q
ˇ̌
Pm

ˇ̌
2
dhpωq

˙
´ 1

8

ˆż

bR

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh

˙2

.

The following proposition is a simple extension of Proposition 2.4 in [2].

Proposition 2. We have

lim
mÑ8

ż

bR

Q
ˇ̌
Pm

ˇ̌
2
dh “

ż

bR

Qdh

Proof. The sequence of probability measures
ˇ̌
Pmpzq

ˇ̌
2
dh converges weakly to the

Haar measure. �

From the proposition 2 and Lemma 2 we deduce the following

Proposition 3. With the above notations we have

lim inf

ż

bR

Q
ˇ̌
Pm

ˇ̌
dh ď

ż

bR

Qdh ´ 1

8

ˆ
lim sup

ż

bR

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh

˙2

.

Now, in the following lemma, we state a sufficient condition for the existence of
an absolutely continuous component with respect to the Haar measure for the given
generalized Riesz product . In the case of Z action, the lemma is due to Mélanie
Guenais [23], and the proof is similar.

Lemma 4.3. If
`8ÿ

k“1

gfffe1 ´
ˆż

bR

|Pk| dh
˙2

ă 8, then µ admits an absolutely con-

tinuous component.
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Proof. We denote by } ¨ }p the norm in Lpphq. For all functions P and Q in L2phq,
by Cauchy-Schwarz inequality we have

p12q }P }1}Q}1 ´ }PQ}1 “ ´
ż

p|P | ´ }P }1q p|Q| ´ }Q}1q dh

ď }|P | ´ }P }1}2 }|Q| ´ }Q}1}2,
and by assumption,

p13q
`8ÿ

k“1

b
1 ´ }Pk}2

1
ă 8,

hence
`8ÿ

k“1

1 ´ }Pk}21 ă 8 and the infinite product
ź

k

}Pk}1 is convergent:

p14q
`8ź

k“0

}Pk}1 ą 0.

Let n0 ď n be a positive integers and take P “ Pn and Q “
n´1ź

k“n0

Pk,

then }|P | ´ }P }1}2 “
a

1 ´ }P }2
1
and }|Q| ´ }Q}1}2 ď 1 ; hence by p12q we have

}PQ}1 ě }P }1}Q}1 ´
b

1 ´ }P }2
1
.

Using the fact that }Pk}1 ď 1, we obtain by induction
›››››

nź

k“n0

Pk

›››››
1

ě
nź

k“n0

}Pk}1 ´
nÿ

k“n0

b
1 ´ }Pk}2

1
ě

nź

k“n0

}Pk}1 ´
`8ÿ

k“n0

b
1 ´ }Pk}2

1
.

From p13q combined with p14q we deduce that for large enough n0

lim
nÑ`8

nź

k“n0

}Pk}1 ´
`8ÿ

k“n0

b
1 ´ }Pk}2

1
ą 0,

hence the sequence
`śn

k“n0
Pk

˘
does not go to zero in L1-norm. It follows from

Bourgain criterion that the generalized Riesz product
ś`8

k“n0
|Pk|2 is not purely

singular. As
śn0´1

k“0
|Pk|2 has only countably many zeros, we conclude that µ admits

also an absolutely continuous component with respect to the Haar measure. �

5. On the Kac Central Limit Theorem

The Kac Central Limit Theorem in the context of the Bohr compactification of
R is stated and proved in [27]. For sake of completeness we prove it here using the
standard probability arguments.

Definition 5.1. The real numbers ω1, ω2, ¨ ¨ ¨ , ωr are called rationally independent
if they are linearly independent over Z , i.e. for all n1, ¨ ¨ ¨ , nr P Z,

n1ω1 ` ¨ ¨ ¨ ` nrωr “ 0 ùñ n1 “ ¨ ¨ ¨ “ nr “ 0.
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Theorem 5.2 (M. Kac [27]). Let ω1, ω2, ¨ ¨ ¨ , ωn, ¨ ¨ ¨ be rationally independent.
Then, the functions cospω1tq, cospω2tq, ¨ ¨ ¨ , cospωntq, ¨ ¨ ¨ are stochastically indepen-
dent with respect to the Haar measure of the Bohr compactification of R.

Proof. It is sufficient to show that for any positive integer k and for a given positive
integers l1, l2, ¨ ¨ ¨ , lk, we have

$

R

ˆ
cospω1tq

˙l1
ˆ
cospω2tq

˙l2

¨ ¨ ¨
ˆ
cospωktq

˙lk

dt

“

$

R

ˆ
cospω1tq

˙l1

dt

$

R

ˆ
cospω2tq

˙lk

dt ¨ ¨ ¨

$

R

ˆ
cospωktq

˙lk

dt

Write

cospωjtq “ 1

2

ˆ
eiωjt ` e´ωjt

˙
, j “ 1, 2, ¨ ¨ ¨ , t P R,

and recall that
$

R

eiαtdt “ lim
TÝÑ`8

1

2T

ż
T

´T

eiαtdt “
#
1, if α “ 0

0, if not .

Hence

ˆ
cospω1tq

˙l1

¨ ¨ ¨
ˆ
cospωktq

˙lk

“
kź

j“1

1

2lj

kź
j“1

ˆ
eiωjt ` e´iωjt

˙lj

“
kź

j“1

1

2lj

kź
j“1

ˆ ljÿ

rj“0

ˆ
lj

rj

˙
eip2rj´ljqωjt

˙
.

Whence
kź

j“1

ˆ
cospωjtq

˙lj

“
kź

j“1

1

2lj

ˆ l1,l2,¨¨¨ ,lkÿ

r1,r2,¨¨¨ ,rk“0

ˆ
l1

r1

˙ˆ
l2

r2

˙
¨ ¨ ¨

ˆ
lk

rk

˙
eip

řk
j“1

p2rj´ljqωjqt
˙
.

Because of linear independence,

kÿ

j“1

p2rj ´ ljqωj

can be zero only if 2ri “ li, for any i “ 1, ¨ ¨ ¨ , k, and thus it follows that
$

R

kź

j“1

ˆ
cospωjtq

˙lj

dt “

$
’&
’%

kź

j“1

1

2lj

ˆ
lj
lj
2

˙
, if all li are even

0, otherwise.
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We conclude that
$

R

kź
j“1

ˆ
cospωjtq

˙lj

dt “
kź

j“1

$

R

ˆ
cospωjtq

˙lj

dt

and this finish the proof of the theorem. �

In the following we recall the classical well known multidimensional Central Limit
Theorem in probability theory [15, p.81] stated in the following forms

Theorem 5.3 (Multidimensional CLT Theorem). Let pZn,kq1ďkďkn, ně1 be a trian-

gle array of random variables vectors in Cd and put

Zn,k “ pZ1
n,k, Z

2
n,k, . . . , Z

d
n,kq.

Suppose that

(1) The random variables Zj
n,k are square integrable.

(2) For each n P N, the Zn,k, 1 ď k ď kn, are independents.

(3) For any ε ą 0, lim
nÑ8

knÿ

k“1

P

´
}Zn,k} ě ε

?
kn

¯
“ 0.

(4) lim
nÑ8

1?
kn

knÿ

k“1

EpZn,kq “ 0.

(5) For each j, l P t1, ¨ ¨ ¨ , du,

(a) lim
nÑ8

1

kn

knÿ

k“1

CovpZj
n,k, Z

l
n,kq “ γj,l.

(b) lim
nÑ8

1

kn

knÿ

k“1

EpZj
n,k.Z

l
n,kq “ 0.

Then Γ is a hermitian non-negative definite matrix and the sequence of random
vectors ˜

1?
kn

knÿ

k“1

Zn,k

¸

ně1

converges in distribution to the complex Gaussian measure NCp0,Γq on Cd.

We also need the following important and classical fact from Probability Theory
connected to the notion of the uniform integrability.

Definition 5.4. The sequence tXn, n ě 1u of random variables is said to be uni-
formly integrable if and only if

lim
cÝÑ`8

ż
 

|Xn|ąc
(
ˇ̌
Xn

ˇ̌
dP “ 0 uniformly in n.
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It is well-known that if

sup
nPN

ˆ
E
`ˇ̌
Xn

ˇ̌
1`ε˘

˙
ă `8,p15q

for some ε positive, then tXnu are uniformly integrable.
Let us mention that the convergence in distribution or probability does not in general
imply that the moments converge (even if they exist). The useful condition to ensure
the convergence of the moments is the uniform integrability. Indeed, we have

Theorem 5.5. If the sequence of random variables tXnu converges in distribution
to some random variable X and for some p ą 0, sup

nPN

`
Ep|Xn|pq

˘
“ M ă `8, then

for each r ă p,

lim
nÝÑ`8

E

ˆˇ̌
Xn

ˇ̌r
˙

“ E

ˆˇ̌
X
ˇ̌r
˙

For the proof of Theorem 5.5 we refer the reader to [4, p.32-33] or [12, p.100].

Now let us state and prove the Kac Central limit Theorem.

Theorem 5.6 (Kac CLT [27]). Let pλnqnPN be a sequence of rationally independent
real numbers. Then the functions cospλntq ` i sinpλntq, n “ 1, ¨ ¨ ¨ , are stochastically
independent under the Haar measure of the Bohr compactification of R and converge
in distribution to the complex Gaussian measure NCp0, 1q on C.

Proof. By Theorem 5.2 the functions cospλntq ` i sinpλntq, n “ 1, ¨ ¨ ¨ , are stochasti-
cally independent under the Haar measure of bR and it is straightforward to verify
that the hypotheses of Central Limit Theorem 5.3 are satisfied. We conclude that
the sequence ˜

1?
n

nÿ

k“1

eiλkt

¸

ně1

converges in distribution to the complex Gaussian measure NCp0, 1q on C. �

6. Proof of the main result (Theorem 3.2)

Using the analogous lemma of Féjer’s Lemma [52, p.49] combined with the CLT
methods introduced in [2], we shall give a direct proof of the singularity of a large
class of generalized Riesz products on bR. Therefore, our strategy is slightly different
from the strategy of the proofs given by many authors in the case of the torus [9],
[32], [33], [2]. Indeed, the crucial argument in their proofs is to estimate the following
quantity ż

Q
ˇ̌ˇ̌
Pm

ˇ̌
2 ´ 1

ˇ̌
dh.p16q

Precisely, they showed that the weak limit point of the sequence
`ˇ̌

|Pm|2 ´ 1
ˇ̌˘

is
bounded below by a positive constant and it is well-known that this implies the
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singularity of the generalized Riesz products (see for instance [2] or [32]).

Let us start our proof by proving the following lemma analogous to Féjer’s Lemma
[52, p.49]

Lemma 3. With the above notations we have

lim sup
mÝÑ`8

mPM

ż

bR

Q
ˇ̌
Pm

ˇ̌
dh “

ˆż

bR

Qdh

˙ˆ
lim sup
mÝÑ`8

mPM

ż

bR

|Pm|dh
˙
.

Proof. By our assumption the sequence
`
hm, psm,pm´1q

˘
mPM is rationally indepen-

dent. Hence, by Kac Theorem 5.2, for m ą hnk`1
, the function Q and Pm are

stochastically independent. This allows us to writeż

bR

Q
ˇ̌
Pm

ˇ̌
dh “

ż

bR

Qdh

ż

bR

|Pm|dh,

which proves the lemma. �

Proof of Theorem 3.2. Applying Lemma 3, we proceed to construct inductively the
sequence n1 ă n2 ă nk ă ¨ ¨ ¨ , such that, for any k ě 1, we have

ż

bR

k`1ź
j“1

ˇ̌
Pnj

ˇ̌
dh ď

?
51π

100

ż

bR

kź
j“1

ˇ̌
Pnj

ˇ̌
dh.p17q

Indeed, by our assumption combined with Kac CLT 5.2, it follows that pPmq con-
verges in distribution to the complex Gaussian measure NCp0, 1q on C. But, accord-
ing to p15q, pPmq is uniformly integrable. Hence, from Theorem 5.5, we get

lim
mÝÑ`8

ż

bR

|Pm|dh “

ż

C

ˇ̌
z
ˇ̌
dNCp0, 1qpzq “

?
π

2
.p18q

We remind that the density of the standard complex normal distribution NCp0, 1q
is given by

fpzq “ 1

π
e´|z|2 .

Now assume that we have already construct n1 ă n2 ă n3 ă ¨ ¨ ¨ ă nk and apply

p18q with ε “
?
π

100
combined with Lemma 3 to get m ą nk such that

ż

bR

Q|Pm|dh ď 51
?
π

100

ż

bR

Qdh.
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Put nk`1 “ m. Therefore the inequality p17q holds and by letting k ÝÑ `8 we
conclude that ż

bR

kź
j“1

ˇ̌
Pnj

ˇ̌
dh ´́ ´́ Ñ

kÑ`8
0.

which yields by Bourgain criterion that µ is singular with respect to Haar measure
and completes the proof. �

Remark 6.1. The fundamental argument in the proof above is based on Lemma
3 and therefore strongly depended on the assumption that along subsequence the
positive real numbers

`
hm, psm,pm´1q

˘
are linearly independent over the rationals.

We argue that in the general case, one may use the methods of Bourgain [9], Klemes-
Reinhold [32], Klemes [32] and el Abdalaoui [2] to establish the singularity of a large
class of generalized Riesz products on bR. In particular, the case when ppmq is
bounded. In the forthcoming paper, we will show how to extend a classical results
from the torus and real line setting to the generalized Riesz products on the Bohr
compactification of R.

Appendix.I. On The Flatness problem on bR.

We are concerned here with the flat polynomials issue in bR. First, we recall
briefly the relevant fact on the flatness problem in the torus T.

The problem of flatness go back to Littlewood in his 1968 famous paper [36]. In
that paper, Littlewood introduce two class of complex polynomials Gn and Fn where
n is a positive integer. The class Gn is a class of those polynomials P pzq “ řn

k“0
akz

k

that are unimodular, that is, |ak| “ 1, for k “ t0, ¨ ¨ ¨ , nu. Fn is the subclass of Gn

with real coefficients, i.e., ak “ ˘1, for k “ t0, ¨ ¨ ¨ , nu. The polynomials P in Fn

are nowadays called Littlewood polynomials. By Parseval’s formula

1

2π

ż
2π

0

ˇ̌
ˇ̌P peitq

ˇ̌
ˇ̌
2

dt “ n ` 1, for all P P Gn.

Therefore, for all P P Gn,

min
|z|“1

ˇ̌
P pzq

ˇ̌
ă

?
n ` 1 ă max

|z|“1

ˇ̌
P pzq

ˇ̌

In [36] Littlewood raised the problem of the existence of a sequence pPnq of unimod-
ular polynomials such that

max
tPR

ˇ̌
Pnpeitq

ˇ̌
?
n ` 1

´́ ´́ Ñ
nÑ8

1.

Such sequence of unimodular polynomials are called ultraflat. Precisely, the usual
definition of ultraflatness is given as follows
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Definition 6.2. Let pnkq be a sequence of positive integers and pεnk
q a sequence

of positive real numbers tending to 0, we say that a sequence pPnk
q of unimodular

polynomials is pεnk
q-ultraflat if

max
tPR

ˇ̌
ˇ̌
ˇ̌
Pnk

peitq
ˇ̌

?
nk ` 1

´ 1

ˇ̌
ˇ̌ ď εnk

.

The problem of existence of the ultraflat polynomials was solved affirmatively by
Kahane in his 1980 paper [28]. Precisely, Kahane proved that there exists a sequence
of pεnq-ultraflat with

εn “ O

ˆ
n´1{17alogpnq

˙
.

But as noted by Queffelec and Saffari [44] Kahane proof is some kind of miracle. This
is due to the fact that Kahane work is inspired by Körner paper [34] and Körner
paper is based on Byrnes paper [10]. But, in 1996 J. Benedetto and his student
Hui-Chuan Wu discovered that Theorem 2 in Byrnes paper [10] was erroneous and
as a consequence invalidated Körner main result. Fortunately Kahane proof was
independent of Theorem 2 in Byrnes paper.

The problem of the existence of the ultraflat Littlewood polynomials is unsettled
to this date and as pointed by Erdélyi [18] it is a common belief that there is no
ultraflat sequence of Littlewood polynomials. As a consequence no long Barker se-
quences exist (see [7] and the references given there).

One more important class of polynomials is the class of polynomials with coef-
ficients ak P t0, 1u called a class of idempotent polynomials for obvious reasons of
being convolution idempotents and denoted by

In
def“ tP P CrXs : P pXq “

n´1ÿ

0

akX
k, ak P t0, 1uu, n P N˚.

A subclass of In with constant term 1 is called a class of Newman polynomials and
denoted by Nn.

Another extremal open problem in the class of Littewood polynomials or in the
class of Newman polynomials is the problem of L1-flatness. In the same way as the
ultraflatness, the L1-flatness is defined as follows

Definition 6.3. Let pnkq be a sequence of positive integers and pεnk
q a sequence of

positive real numbers tending to 0, we say that a sequence pPnk
q of polynomials is

pεnk
q ´ L1-flat if ››Pnk

peitq
››
1››Pnk

peitq
››
2

ě 1 ´ εnk
.

The problem of the existence of L1-flat sequence of unimodular polynomials was
solved by Newman in [39]. Later, M. Guenais inspired by Newman work constructed
[23] a sequence of L1-flat Littlewood polynomials on

ś`8
n“0

Z{pnZ where ppnqně0 is an
increasing sequence of prime numbers. As a consequence she established a existence
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of countable group action with simple spectrum and Haar component. Subsequently,
el Abdalaoui and Lemańczyk [1] proved that the sequence of Littlewood polynomi-
als constructed by Guenais is ultraflat. Before, J. Bourgain in his 1993 paper [9]
conjectured that the supremum of the L1 norm by L2 norm over all idempotent
polynomials on the circle must be strictly less than one. Precisely, he make the
following conjecture

Conjecture 6.4 (Bourgain). [9]
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Using the Bourgain ideas, M. Guenais [23] connected the problem of the existence
of L1-flat sequence of Littlewood polynomials or Newman polynomials and the Ba-
nach problem on whether there exist a dynamical system with simple Lebesgue
spectrum. Ulam in his book [51, p.76] stated the Banach problem in the following
form

Question 1 (Banach Problem). Does there exist a square integrable function fpxq
and a measure preserving transformation T pxq, ´8 ă x ă 8, such that the sequence
of functions tfpT npxqq;n “ 1, 2, 3, ¨ ¨ ¨ u forms a complete orthogonal set in Hilbert
space?

Let us formulate the Bourgain conjecture in context of Bohr compactification of
R. For that, let PpRq be the subspace of trigonometric polynomials on R and pωjqjPN
be an increasing sequence of real numbers. Put

Jω,n “ tP P P : P ptq “
nÿ

k“0

ake
iωkt, a0 “ 1, ak P t0, 1uu

Then, we can state the Bourgain conjecture in context of Bohr compactification
of R in the following form

Conjecture 6.5 (Bourgain in bR). for any increasing sequence pωjqjPN of real
numbers, we have

sup
ně1

"
sup

PPJω,n

ˆ››P peitq
››
1››P peitq
››
2

˙*
ă 1,

where
››P peitq

››2
2

“
$ ˇ̌

ˇ 1?
n

řn´1

j“0
ake

iωkt
ˇ̌
ˇ
2

dt “ 1 ` řn´1

k“1
a2k.

For the sequence pωjqjPN of rationally independent numbers, we are able to prove
the following proposition.

Proposition 6.6. Let
`
ωpjq

˘qn´1

j“0

˘
nPN be a sequence of real numbers such that for
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Since, for any n P N˚, the real numbers
`
ωpjq

˘qn´1

j“0
are rationally independent,

then we can apply the Kac CLT Theorem 5.2. But, the functions

ˆ
1?
qn

řqn´1

j“0
eiωpjqt

˙

are in L2pbRq we deduce that they are uniformly integrable. Hence, by Theorem
5.5, we conclude that

lim
nÝÑ`8
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This finish the proof of the proposition.

Remark 6.7. The discussion above allows us to formulate the following questions

Question 2. Does there exist a sequence of L1-flat Littlewood polynomials or of
the L1-flat Newman polynomials on bR?

Subsequently

Question 3. Does there exist a the ultraflat Littlewood or Newman polynomials
on bR?

Remark 6.8. We remind here that in [41], A. A. Prikhod’ko constructed a sequence
of trigonometric polynomials pPnqnPN which is locally L1-flat, that is, for any 0 ă
a ă b and ε ą 0 there exists a positive integer n0 “ n0pa, b, εq such that for any
n ą n0, we have

1

b ´ a

ż
b

a

ˇ̌ˇ̌
Pnpxq

ˇ̌
2 ´ 1

ˇ̌
dx ă ε.

The polynomials Pn, n P N are given by

Pnpxq “ 1?
pn

pn´1ÿ

p“0

eiωnppqx,

where, ωnppq “ mn.pn
ε2n

e
εn
pn

p
, pmn, pnqnPN is a sequence of positive integers with

pn ´́ ´́ Ñ
nÑ8

`8 and mn ´́ ´́ Ñ
nÑ8

`8, εn is a sequence of rational numbers which

goes to 0 as n goes to 8.

But, this sequence is not L1-flat on the Bohr compactification of R. Indeed, one
may show that we have
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Appendix.II. On the Bohr compactification and Stone-Čech
compactification of locally Abelian group.

Let G be a Locally Abelian compact group and denoted by τ its topology. Let pG
be a group of the characters on G, that is, the continuous homomorphism from G

to the torus T
def“ tt P C : |t| “ 1u. Put

K “ T
pG,

the space of all functions from pG to T equipped with the product topology (i.e.; the
pointwise convergence topology). Therefore, there is a canonical injective homomor-
phism from G to K given by

e : G ÝÑ K

x ÞÝÑ epxq : h P K ÞÝÑ epxqphq “ hpxq.
e is called a dual homomorphism. By abuse of notation we denote by the same letter
G the image of G under e. Therefore, G is equipped with the Bohr topology denoted
by τb and the topology inherited from G. Hence τb Ă τ . By taking the closure of
G with respect to the Bohr topology we get the Bohr compactification of G and we
denoted it by bG. Thus, by construction, bG is compact.
Let us state the following useful lemma.

Lemma 4. Let pgnq be a sequence of elements in G. Then pgnq converge to g with

respect to τb if and only if, for any character h P pG we have

hpgnq ´́ ´́ Ñ
nÑ8

hpgq.

Proof. By the definition of the product topology on K, a sequence of functions pfnq
converge to some function f if and only if, for any h P pG,

fnphq ´́ ´́ Ñ
nÑ8

fphq.

By taking fn “ epgnq and f “ epgq we get

epgnqphq ´́ ´́ Ñ
nÑ8

epgqphq,

which means that for any h P pG,

hpgnq ´́ ´́ Ñ
nÑ8

hpgq,

and the proof of the lemma is complete. �

We deduce from the lemma the following crucial fact about the separability of
the Bohr compactification of G. We recall that the topological space is separable if
it is contains a countable, dense subset.

Proposition 4. If G is a separable with respect to τ topology then G is separable
with respect to Bohr topology.

Proof. It is straightforward since the Bohr topology is contained in the usual topol-
ogy. �
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In the case of R, the lemma 4 say that the sequence of real numbers pxnq converge
in the sense of the Bohr topology to x if and only if, for any t P R,

eixnt ´́ ´́ Ñ
nÑ8

eixt.

But since the characters on R are Lipschitz we deduce easy that the Bohr topology
is contained in the usual topology and Q is dense in the usual topology and Bohr
topology.

Nevertheless, by the Hirodata-Kakutani Theorem, R equipped with the Bohr
topology doesn’t have a countable basis and it is often that the Bohr topology
doesn’t have a countable basis. Precisely, Hirodata-kakutani Theorem asserts

Theorem 6.9 (Hirodata-kakutani). The Bohr compactification of a given locally
compact Abelian group has a countable basis if and only if the union of the spectrum
of all almost periodic functions is countable.

We recall that the Fourier coefficient of f on χ P pG is given by

pf
`
tχu

˘
“

ż

G

fpgqχpgqdhpgq,

where h is the Haar measure on G and χ P pG is in the spectrum of f if the Fourier
coefficients of f on χ is not zero

6.1. The Stone-Čech compactification and Bohr compactification. In the
following the comparative board of the compactification of Stone-Čech and Bohr
and for short we write LC for Locally Compact and c.f. for continuous functions.

The Stone-Čech compactification The Bohr compactification
Let X a LC topological space Let G a LCA topological group

Consider C “ CpX, r0, 1sq the space of c. f. : X Ñ r0, 1s A “ pG

Embedding X in r0, 1sC embedding G in TA

The embedding function is the valuation expfq “ fpxq egpfq “ fpgq
Take the closure of epXq Take the closure of epGq

We denote the closure of epXq by βX and the closure of epGq by epGq “ bG
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