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ABSTRACT

In this paper, we present an automatic method to segment the
kidney in 3D contrast-enhanced ultrasound (CEUS) images.
This modality has lately benefited of an increasing interest
for diagnosis and intervention planning, as it allows to visu-
alize blood flow in real-time harmlessly for the patient. Our
method is composed of two steps: first, the kidney is auto-
matically localized by a novel robust ellipsoid detector; then,
segmentation is obtained through the deformation of this el-
lipsoid with a model-based approach. To cope with low image
quality and strong organ variability induced by pathologies,
the algorithm allows the user to refine the result by real-time
interactions. Our method has been validated on a representa-
tive clinical database.

Index Terms— Kidney, Detection, Segmentation, 3D Ul-
trasound, Contrast, CEUS

1. INTRODUCTION

Three-dimensional real-time visualization of vascularization
can be achieved with CEUS imaging, and provides very use-
ful information for lesions diagnosis or large vessels moni-
toring [1]. Gas-filled microbubbles, acting as amplifiers of
the blood backscattering signal, are used as a contrast agent.
Because the bubbles are naturally eliminated by metabolism
processes, this modality is considered as completely safe for
the patients even with renal or liver failure.

However the usually poor quality of CEUS images makes
any analysis challenging: in addition to having powerful
speckle noise, the image is very grainy and almost binary as
a result of ultrasound interactions with individual bubbles.
Unlike in conventional US [2], very few segmentation meth-
ods of 3D CEUS images have already been reported.Among
them, the authors of [3] propose an interactive method which
is specific to tumour segmentation. In [4], an automatic al-
gorithm is developed to segment the heart left ventricle. This
method, although applicable to other organs, does not provide
any natural way to refine or correct the result interactively.

Our work presents an automatic and fast solution to the
problem of kidney segmentation in CEUS images, which has

Fig. 1. Slices of two different abdominal 3D CEUS images.

not been tackled yet. While providing a fully automatic result,
the proposed solution also allows user interactions with real-
time response.

We first detect the kidney by finding a rough estimate of
its center, orientation and scale - which is done with a ro-
bust ellipsoid detector introduced in Section 2. The outcome
of this step is then used as the prior model of a template de-
formation algorithm described in Section 3.1. It consists in
maximizing the image gradient flux through the segmentation
border. It is important to use a model-based algorithm: the
kidney may not completely lie in the field of view, so the seg-
mentation should be extrapolated outside the ultrasound cone.
Furthermore, it may be necessary to guide the segmentation
process because of the inherent ambiguities in the images. In
Section 3.2, we provide the clinician with a built-in way to
correct the result in real-time. A validation of each step of
our method is shown in Section 4 while Section 5 concludes
this paper and provides material for future work.

2. KIDNEY DETECTION BY ROBUST ELLIPSOID
ESTIMATION

Dynamic CEUS images of a kidney show a cortical enhance-
ment shortly followed by a medullary enhancement. Our
working images (see Figure 1) are acquired a few seconds af-
ter the contrast agent injection. Better visualization of kidney
tissue is then available as it is highly hyperechoic whereas
its fatty surrounding produces no signal. Since kidney shape
can be roughly approximated by an ellipsoid, the kidney de-
tection problem in CEUS images can be initially reduced



to finding the smallest ellipsoid encompassing most of the
hyperechoic voxels. Methods such as Hough transforms (e.g.
[5]) have already been proposed to detect ellipses in images.
However their extension to 3D, though possible, are usually
computationally expensive mainly because of the number of
parameters to estimate (9 for a 3D ellipsoid). On the other
hand, statistical approaches like robust Minimum Volume
Ellipsoid (MVE) estimators [6] are better suited but require
prior knowledge on the proportion of outliers (here the noise
and artifacts), which may vary from one image to another and
is thus not available.

We propose a novel algorithm to robustly estimate the el-
lipsoid’s center c ∈ R3 and size/orientation encoded by a
3×3 positive-definite matrixM. Robustly excluding outliers
is done by estimating a weighting functionw (defined over the
image domain Ω into [0, 1]) that provides a confidence score
for any point x to be an inlier. Let I : Ω ⊂ R3 → R+ be
the grayscale volume, we search c, M and w as minimizers
of the following detection energy:

Ed(c,M, w) =−
∫

Ω

φ(x) I(x) w(x) dx (1)

+ µ. log

(
Vol(M)

|Ω|

)
.

(∫
Ω

I(x) w(x) dx

)
with φ(x) = 1− (x− c)TM (x− c)

and Vol(M) =
4π

3

√
detM−1 the ellipsoid volume.

The ellipsoid is implicitly represented by φ (which is posi-
tive inside), thus the first term of Ed induces the ellipsoid to
include as many bright voxels as possible. The role of w is
to neglect the influence of outliers. The second term penal-
izes the volume of the ellipsoid Vol(M) with respect to the
domain volume |Ω|. It is weighted by a trade-off parameter
µ > 0 and normalized by

∫
Iw.

Ed has a statistical meaning: whenw is fixed, its minimiz-
ers (c∗,M∗) are respectively the centroid and proportional to
the inverse of the covariance matrix of all voxels, weighted
by Iw. Besides, Ed is linear with respect to w which is by
definition restricted to [0; 1]. Therefore, at every voxel x the
minimizer w∗(x) is equal to 0 or 1, depending only on the
sign of φ − µ log

(
Vol(M)
|Ω|

)
. w∗ is then the indicator of the

current ellipsoid estimation which has been dilated propor-
tionately to µ.

The choice of µ is paramount. For an ideal case (white
ellipsoid on a black background), the algorithm provides the
exact solution if µ = 1

4 (in 2D) or µ = 1
5 (in 3D). In practice,

values close to these ones should be chosen.
The minimization of Ed is performed with an alternate it-

erative scheme that successively updates the variables c, M
and w, as summarized in Algorithm 1. As the energy Ed
decreases at each step, the algorithm usually converges. In
practice, few iterations are required for convergence and com-
putation time is less than a second on a standard computer.

Examples are shown for a synthetic image (Figure 2) and real
3D data (Figure 3).

Algorithm 1: Robust ellipsoid detection algorithm

initialization ∀ x ∈ Ω, w(x)← 1
repeat

// Estimation of center c and matrixM
c← 1∫

Ω
Iw

∫
Ω
I(x) w(x) x dx

M−1 ← 2
µ
∫
Ω
Iw

∫
Ω
I(x) w(x) (x− c) (x− c)

T
dx

// Update of the weighting function w for each x ∈ Ω

if (x− c)
TM (x− c) ≤ 1− µ log

(
Vol(M)
|Ω|

)
then

w(x)← 1

else
w(x)← 0

until convergence;

(a) (b) (c)

Fig. 2. (a) Original 2D synthetic image, corrupted by salt-and-
pepper noise. (b) Evolution of the ellipse. (c) Ellipse contour and
center superimposed on the weighting function wI at convergence.

Fig. 3. Results of the ellipsoid detection (red) compared to the
ground truth (green), on a slice of the volumes shown in Figure 1.

3. KIDNEY SEGMENTATION

3.1. Segmentation via template deformation

The previously detected ellipsoid will now be deformed to
segment the kidney more precisely. We followed the frame-
work described in [7], which is particularly suited to this task
as it provides a segmentation algorithm with the possibility to
easily interact with the result in real-time. Our goal is to find
a transformation ψ : Ω→ Ω such that the gradient flux across



Fig. 4. Result of the automatic segmentation (blue) compared to the
ground truth (green) for the two volumes introduced in Figure 1, on
a particular slice (top) and in 3D (bottom).

the surface of the deformed ellipsoid E(ψ) = (φ ◦ψ)−1(0) is
maximum. The segmentation energy is then

Es(ψ) =

∫
E(ψ)

−
〈
~∇I(x) , ~n(x)

〉
dx + λR(ψ) , (2)

whereR(ψ) is a regularization term which prevents large de-
viations from the original ellipsoid. We model the transfor-
mation as ψ = L ◦ G where

• G is a global transformation, which may correct or ad-
just the global pose and scale of the ellipsoid (typically
a similarity);

• L is a non-rigid local deformation, expressed using a
displacement field u such thatL(x) = x+(u∗Kσ)(x).
Kσ is a Gaussian kernel that provides built-in smooth-
ness.

This decomposition allows R to be pose-invariant and
constrains only the non-rigid deformation : R(ψ) = R(L) =∫

Ω
‖L−Id‖2 =

∫
Ω
‖u∗Kσ‖2. Finally, using Stokes formula,

Es can be rewritten as

Es(ψ) = −
∫

Ω

H(φ ◦ L ◦ G) ∆I + λ

∫
Ω

‖u ∗Kσ‖2 , (3)

whereH is the Heaviside function and ∆ is the Laplacian op-
erator. This energy is minimized, with respect to the parame-
ters of G and each component of the vector field u, through a
steepest gradient descent.

Some results of this automatic segmentation method are
provided in Figure 4 and compared to a ground truth. In
more difficult cases, image information is ambiguous due to
pathologies and user interactions may be required to correct
the segmentation.

3.2. User interactions

The user should be able to indicate that some points (xk)k
lie inside or outside the kidney. The implicit representation of
the surface allows to formulate these interactions as inequality
constraints :

∀ k ∈ {1 .. n} , γk . φ ◦ ψ(xk) ≥ 0 , (4)

where γk = 1 (resp. −1) for inside (resp. outside) points.
Note that it is also possible to make the kidney surface pass
exactly through a specific point by setting it both inside and
outside.

To take these constraints into account, we add Lagrangian
multipliers (αk)k and the energy to minimize is now

Ẽs(ψ) = max
α≥0

{
Es(ψ)−

n∑
k=1

αk . γk . φ ◦ ψ(xk)

}
. (5)

This energy is however not continuous, therefore an aug-
mented Lagrangian optimization scheme is used to solve a
smooth approximation of this problem (details are ommitted
here but available in [7]). Our current C++ implementa-
tion supports up to 100 iterations per second on a standard
computer and allows a visualization of the evolution of the
segmentation with no latency.

Figure 5 shows an example of a difficult case (presence of
cysts, partial visibility of the kidney), for which our method
requires some user interactions. With just a few clicks, the
user can greatly improve the segmentation result.

(a) (b)

(c) (d)

Fig. 5. Example of a segmentation with user interactions. (a) Slice
of the original CEUS volume. (b) Comparison of the ground truth
(green) and automatic segmentation (red). (c) Corrected segmenta-
tion (blue) with 3 clicks. (d) 3D visualization of the ground truth
(green), the automatic (red) and corrected (blue) segmentation, with
constraint points.



Fig. 6. Boxplot (minimum, lower quartile, median, upper quartile,
and maximum over the whole database) of the Dice coefficient be-
tween the ground truth and the segmentation at different steps of the
proposed algorithm.

4. EXPERIMENTS AND RESULTS

The validation of our method has been performed on a repre-
sentative clinical dataset of 21 CEUS volumes acquired on a
iU22 ultrasound system (Philips, The Netherlands) with dif-
ferent 3D probes (V6-2 and X6-1), spatial resolutions and
fields of view. The volumes are composed in average of 512×
320× 256 pixels. The 21 patients have been injected with 2.4
mL of Sonovue (Bracco, Italy) contrast agent. For each case,
the kidney has been segmented by a radiologist with a semi-
automatic tool and is considered as the ground truth.

We compared the results of every step of our method (el-
lipsoid detection, automatic segmentation, segmentation with
interactions) to this ground truth using the Dice coefficient
defined as D(A,B) = 2.|A∩B|

|A|+|B| . Figure 6 shows the score for
the different results as a function of the number of clicks.

The ellipsoid detection produces a median Dice coeffi-
cient of 0.696, which is satisfying for an initialization. This
score goes up to 0.840 after the automatic segmentation
phase. Then, the similarity gradually increases as the user
interacts with the algorithm but rapidly converges: most of
the time, less than 3 clicks are needed for a fairly precise
result. Note that even if the ellipsoid detection provides a bad
initialization of the kidney (the minimum score is 0.364), the
segmentation may still be successful automatically (≈ 0.644)
and with user refinements (> 0.875). The ground truth is not
exactly matched because of the high intra-operator variability.

5. CONCLUSION

We proposed in this paper a robust method to segment the kid-
ney in 3D CEUS images. This task is particularly challenging

because of the noise, the artifacts and the partial occultation
of the organ (due to the limited field of view).

A robust ellipsoid detector has been introduced to coarsely
locate the kidney. The ellipsoid is then deformed to segment
the kidney more precisely, by maximizing the image gradient
flux through the segmentation boundary. We showed that an
automatic segmentation may be possible, even if for some dif-
ficult and ambiguous images, user interactions are necessary
to guide the algorithm. In any case, the kidney segmentation
evolves in real-time and only a few seconds are required to
obtain an accurate result.

The kidney detection can still be improved by including
more anatomical prior knowledge. A possible solution would
be to constrain the ellipsoid’s axis lengths or volume to be
close to clinically meaningful values. Another way is the si-
multaneous use of CT images of the same patient to extract a
tailored model of the kidney and help both the CEUS detec-
tion and segmentation. Eventually, we plan to use the kidney
segmentation presented here to guide the registration of 3D
CEUS with other modalities.
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