Introduction	Random Excitation	Parametric Optimization	Conclusion

Random Excitation by Optimized Pulse Inversion in Contrast Harmonic Imaging

Sébastien Ménigot and Jean-Marc Girault

Université François Rabelais de Tours Inserm U930 - *Imaging and Brain* Team 5 - *Imaging and Ultrasound* Tours, France

April 26th, 2012

Introduction	Random Excitation	Parametric Optimization	Conclusions
Outline			

- Ultrasound Contrast Imaging
- Pulse Inversion Imaging
- Problematic

Random Excitation

- Principle
- Simulation Model
- Results for linear system
- Results for nonlinear pulse inversion imaging system

3 Parametric Optimization

- Implementation
- Results

4 Conclusions & Prospects

Introduction	Random Excitation	Parametric Optimization	Conclusions

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012 @000

Random Excitation

Parametric Optimization

Conclusions

Ultrasound Contrast Imaging

Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents ⇒ perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μ m
- High nonlinear behavior

Ménigot & Girault (Tours, France)

April 26th, 2012 €000

Random Excitation

Parametric Optimization

Conclusions

Ultrasound Contrast Imaging

Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents ⇒ perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μ m

• High nonlinear behavior

Ménigot & Girault (Tours, France)

April 26th, 2012 @000

Random Excitation

Parametric Optimization

Conclusions

Ultrasound Contrast Imaging

Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents ⇒ perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μ m
- High nonlinear behavior

Ménigot & Girault (Tours, France)

April 26th, 2012 @000

Random Excitation

Parametric Optimization

Conclusions

Ultrasound Contrast Imaging

Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents ⇒ perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μm
- High nonlinear behavior

Contrast to Tissue Ratio

$$CTR = \frac{E_{microbubbles}}{E_{tissue}}$$

Ménigot & Girault (Tours, France)

April 26th, 2012

Introduction	Random Excitation	Parametric Optimization	Conclusions
● 00			
Ultrasound Contrast Imaging			

Ultrasound Contrast Imaging

$$CTR = \frac{E_{microbubbles}}{E_{tissue}}$$

CPS

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012 @080

Introduction	Random Excitation	Parametric Optimization	Conclusions
•00			
Ultrasound Contrast Imaging			

Ultrasound Contrast Imaging

 Introduction
 Random Excitation
 Parametric Optimization
 Conclusions

 ooo
 oooo
 oooo
 oooo
 oooo
 oooo

 Pulse Inversion Imaging
 Pulse Inversion Method
 Pulse Inversion Method
 Pulse Inversion Method

Random Excitation

Parametric Optimization

Conclusions

Problematic

What is the best command to optimize the CTR?

Introd	uction

Random Excitation

Parametric Optimization

Conclusions

Random Excitation

- Automatic
- Without hypothesis on the shape wave

Random Excitation

Parametric Optimization

Conclusions

Principle

Principle of Random Excitation

Principle of Implementation

• Find the input signal x(t) of the pulse inversion imaging system

Optimize the CTR

3 Random search by Monte-Carlo method

Ménigot & Girault (Tours, France)

8 / 19

(日) (同) (三) (三)

Random Excitation

Parametric Optimization

Conclusions

Principle

Principle of Random Excitation

Principle of Implementation

• Find the input signal x(t) of the pulse inversion imaging system

Optimize the CTR

Random search by Monte-Carlo method

Ménigot & Girault (Tours, France)

Random Excitation 0000

Parametric Optimization

Conclusions

Principle

Principle of Random Excitation

Principle of Implementation

- Find the input signal x(t) of the pulse inversion imaging system
- 2 Optimize the CTR
- Random search by Monte-Carlo method 3

-∢ ⊒ →

Random Excitation 0000

Parametric Optimization

Conclusions

Principle

Principle of Random Excitation

Principle of Implementation

- Find the input signal x(t) of the pulse inversion imaging system
- 2 Optimize the CTR
- Random search by Monte-Carlo method 3

_ ∢ ≣ →

Introduction	Random Excitation ○●○○○	Parametric Optimization	Conclusions
Simulation Model			
Simulation M	lodel		

Simulation Properties

• Transducer centred at $f_c = 3 \text{ MHz}$

Microbubble

- Free simulation software Bubblesim [Hoff, 2001]
- Modified Rayleigh-Plesset Equation
- Diameter: 2.5 μ m
- Shell thickness: 1 nm
- Resonance Frequency: 3.1 MHz
- Tissue : Rayleigh diffusion

Introduction	Random Excitation ○●○○○	Parametric Optimization	Conclusions
Simulation Model			
Simulation	Model		

Simulation Properties

- Transducer centred at $f_c = 3 \text{ MHz}$
- Microbubble
 - Free simulation software Bubblesim [Hoff, 2001]
 - Modified Rayleigh-Plesset Equation
 - Diameter: 2.5 μ m
 - Shell thickness: 1 nm
 - Resonance Frequency: 3.1 MHz

• Tissue : Rayleigh diffusion

Introduction	Random Excitation ○●○○○	Parametric Optimization	Conclusions
Simulation Model			
Simulation	Model		

Simulation Properties

- Transducer centred at $f_c = 3 \text{ MHz}$
- Microbubble
 - Free simulation software Bubblesim [Hoff, 2001]
 - Modified Rayleigh-Plesset Equation
 - Diameter: 2.5 μ m
 - Shell thickness: 1 nm
 - Resonance Frequency: 3.1 MHz
- Tissue : Rayleigh diffusion

Introduction	Random Excitation	Parametric Optimization	Conclusions
	00000		
Results for linear system			

Results for linear system

Random Excitation ○○○●○ Parametric Optimization

Conclusions

Results for nonlinear pulse inversion imaging system

Results for nonlinear pulse inversion imaging system

Random Excitation ○○○○● Parametric Optimization

Conclusions

12 / 19

Results for nonlinear pulse inversion imaging system

Results for nonlinear pulse inversion imaging system

$$f_{opt} = 2.5 \text{ MHz}$$

CTR = 30.4 dB

(Ménigot, 2009)

Random Excitation ○○○○● Parametric Optimization

Conclusions

Results for nonlinear pulse inversion imaging system

Results for nonlinear pulse inversion imaging system

Ménigot & Girault (Tours, France)

April 26th, 2012

0000

Random Excitation

Parametric Optimization

Conclusions

Parametric Optimization

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012 @000

< ∃ >

13 / 19

< 一型

Random Excitation

Parametric Optimization

Conclusions

14 / 19

Implementation

Implementation of the Parametric Optimization

Setting of Iterative Optimization

- ① Choice of the Cost Function $J(\theta)$
- 2 Choice of the parameters heta
- 3 Choice of the optimization algorithm

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012 @000

Random Excitation

Parametric Optimization

Conclusions

Implementation

Implementation of the Parametric Optimization

Setting of Iterative Optimization

- **O** Choice of the Cost Function $J(\theta)$
- 2 Choice of the parameters heta
- Choice of the optimization algorithm

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012

@ØØ@

Random Excitation

Parametric Optimization

Conclusions

Implementation

Implementation of the Parametric Optimization

Setting of Iterative Optimization

- **O** Choice of the Cost Function $J(\theta)$
- **2** Choice of the parameters θ

Choice of the optimization algorithm

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012

@ØØ@

Random Excitation

Parametric Optimization

Conclusions

Implementation

Implementation of the Parametric Optimization

Setting of Iterative Optimization

- **O** Choice of the Cost Function $J(\theta)$
- 2 Choice of the parameters θ
- S Choice of the optimization algorithm

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012

@ØØ@

Random Excitation

Parametric Optimization

Conclusions

Implementation

Implementation of the Parametric Optimization

Setting of Iterative Optimization

- **Q** Choice of the Cost Function $J(\theta) \rightarrow CTR$
- 2 Choice of the parameters θ
- S Choice of the optimization algorithm

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012

@ØØ@

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by autoregressive model

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i)$$

In the second state of the second state of

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by autoregressive model

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i)$$

In the second state of the second state of

Random Excitation

Parametric Optimization

Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i) + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j) x(t-i) x(t-j) + \cdots$$

3 Nelder-Mead's Algorithm based on simplex

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i) \\ + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j) x(t-i) x(t-j) + \cdots$$

Order K = 3 and memory $M = 3 \Rightarrow 19$ parameters

3 Nelder-Mead's Algorithm based on simplex

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i) + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j) x(t-i) x(t-j) + \cdots$$

Order K = 3 and memory $M = 3 \Rightarrow 19$ parameters Drawback: what is the signal x(t) ?

Nelder-Mead's Algorithm based on simplex

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i) + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j) x(t-i) x(t-j) + \cdots$$

Order K = 3 and memory $M = 3 \Rightarrow 19$ parameters Drawback: what is the signal x(t)? \Rightarrow Optimal Input Signal obtained randomly

Random Excitation

Parametric Optimization ○●○○ Conclusions

15 / 19

Implementation

Implementation of the Parametric Optimization

Optimization Setting

Maximization of the CTR

2 Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i) x(t-i) + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j) x(t-i) x(t-j) + \cdots$$

Order K = 3 and memory $M = 3 \Rightarrow 19$ parameters Drawback: what is the signal x(t)? \Rightarrow Optimal Input Signal obtained randomly

Solution Neighbor State Sta

Introduction	Random Excitation	Parametric Op ○○●○	timization	Conclusion
Results				
Results wi [.]	th Parametric Op	otimization		
	Pulse	Random	Random	with
	$f_{opt} = 2.5 \text{ MHz}$	<u>r</u>	Parametri	ic

			Optimization
CTR	30.4 dB	31.4 dB	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Random Excitation
Results	

Parametric Optimization ○○●○ Conclusions

Results with Parametric Optimization

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Random	Random with Parametric Optimization
CTR	30.4 dB	31.4 dB	31.5 dB

3

0000

Introduction	Random Excitation	Param
		0000
Results		

netric Optimization

Conclusions

Results with Parametric Optimization

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Random	Random with Parametric Optimization
CTR	30.4 dB	31.4 dB	31.5 dB

Ménigot & Girault (Tours, France)

Random Excitation

< ∃ > April 26th, 2012 0000

Introduction	Random Excitation	Parametric Optimization	Conclusions
		0000	
Results			
Comparison			

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Random	Random with Parametric Optimization
CTR	30.4 dB	30.5 dB	
N _{test}	-	15	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Random Excitation	Parametric Optimization ○○○●	Conclusions
Results			
Comparison			

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Rar	ndom	Random with Parametric Optimization
CTR	30.4 dB	30.5 dB	31.3 dB	
N _{test}	-	15	2165	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Random Excitation	Parametric Optimization	Conclusions
000	00000	0000	
Results			
Comparison			

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Random	Random with Parametric Optimization
CTR	30.4 dB	30.5 dB	31.3 dB
N _{test}	-	15	258

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

Introduction	Random Excitation	Parametric Optimization ○○○●	Conclusions
Results			
Comparison			

	Pulse $f_{opt} = 2.5 \text{ MHz}$	Rar	ndom	Random with Parametric Optimization
CTR	30.4 dB	30.5 dB	31.3 dB	31.3 dB
N _{test}	-	15	2165	258

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

Introduction	Random Excitation	Parametric Optimization	Conclusions

Conclusion & Prospects

Ménigot & Girault (Tours, France)

Random Excitation

April 26th, 2012 ©000

Introd	luction

Random Excitation

Parametric Optimization

Conclusions

19 / 19

Conclusion & Prospects

• Random process without a priori knowledge of the medium

• Decrease test number by combination between random process and parametric optimization

• Prospects:

- Analysis the optimal excitation
- Find the optimal command by metaheuristic
- In NDE, test number is not a problem

Introduction 000	Random Excitation	Parametric Optimization	Conclusions

Conclusion & Prospects

- Random process without a priori knowledge of the medium
- Decrease test number by combination between random process and parametric optimization
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
 - In NDE, test number is not a problem

Introduction	Random Excitation	Parametric Optimization	Conclusions

Conclusion & Prospects

- Random process without *a priori* knowledge of the medium
- Decrease test number by combination between random process and parametric optimization
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
 - In NDE, test number is not a problem

Random Excitation

Parametric Optimization

Conclusions

Conclusion & Prospects

Thank you for your attention

sebastien.menigot@univ-tours.fr jean-marc.girault@univ-tours.fr

April 26th, 2012

Institut national de la santé et de la recherche médicale

@080

19 / 19

Ménigot & Girault (Tours, France)

Random Excitation