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Over the past twenty years, in ultrasound contrast imaging, new physiological information are obtained by the

detection of non-linearities generated by the microbubbles. One of the most used techniques is the pulse inversion

imaging. The usual command of this system is a fixed-frequency sinus wave. An optimal choice of this command

requires the knowledge of the transducer and of the medium to obtain the best contrast-to-tissue ratio. However,

these information are experimentally inaccessible. Our goal is to seek the command which maximizes the contrast-

to-tissue ratio. Among several noises, we identified the one which maximized the contrast-to-tissue ratio. A new

suboptimal control was made from the parameters of a nonlinear autoregressive filter and from suboptimal noise.

The contrast-to-tissue ratio was then iteratively optimized by the method of Nelder-Mead which adjusted the filter

parameters. The gain compared to the case in which we used at the optimal frequency can reach about 1 dB and

5 dB in comparison to the center frequency of the transducer. By adding a closed loop, the system automatically

proposes the optimal command without any a priori knowledge of the system or of the medium explored and

without any hypothesis about the shape of the command.

1 Introduction

Over the past twenty years, improvements in sensitiv-

ity of medical ultrasound imaging systems have provided

more accurate medical diagnoses through intravenous injec-

tion of ultrasound contrast agents containing microbubbles.

The perfusion imaging thus obtained has provided physio-

logical and pathological information [1]. The use of ultra-

sound contrast imaging was revolutionized in clinical prac-

tice when the nonlinear interaction was taken into account.

The nonlinearity of contrast agent responses has become a

major focus of research to obtain the best contrast. However,

obtaining an ideal method has been limited by two factors.

First, good separation of the harmonic components requires

a limited pulse bandwidth [2], which reduces the axial reso-

lution as in second harmonic imaging [3], and secondly the

effects of the ultrasound wave propagation limit the contrast-

to-tissue ratio (CTR) because of the presence of nonlinear

components generated in tissue [1].

Several imaging methods have been proposed to improve

contrast and/or resolution. Some techniques have been only

based on post-processings, such as second harmonic imag-

ing [3], subharmonic imaging [4], super harmonic imaging [5]

or attenuation correction [6]. Other imaging methods are

based on post-processings with encoding which can enable

to increase the contrast while ensuring a good axial resolu-

tion: the pulse inversion imaging [7], power modulation [8],

contrast pulse sequencing [9], pulse subtraction [10] and har-

monic chirp imaging [11]. The one of the most commonly

used is the pulse inversion imaging, that is reason why this

study focused on this technique.

For optimally using the pulse inversion imaging, the trans-

mitted pulse must be correctly chosen. The problem is to find

the optimal command x⋆(t) of the pulse inversion imaging

system which provides the best CTR:

x⋆(t) = arg max
x(t)

(CTR (x(t))) , (1)

Nowadays, any method can solve satisfactorily and opti-

mally this problem [12]. The first solution is an analytic solu-

tion developped by Reddy and Szeri [13]. Unfortunately, the

problem solution requires (i) inaccessible knowledges a pri-

ori of the medium and the transducer and (ii) hard solver im-

plementation. The second solution carried on regardless the

previous difficulties to transform the shape optimization in

a suboptimal parametric optimization; for example the trans-

mit frequency [14]. Nevertheless, these techniques have been

shown that it was important to find the optimal command to

maximize the CTR.

The aim of this study was to find the shape of the op-

timal command. However, since the problem of the optimal

command was difficult to solve directly, we proposed another

way to improve the existing optimization method by using

randomness and which we applied in simulation. The ad-

vantage of the method was the optimization without a priori

knowledge in order to find the optimal shape.

2 Optimal Command Principle

The principle of the optimal command research for pulse

inversion imaging was based on randomness and the Monte-

Carlo method (switches on position 1 in Fig 1). For a case k,

a random pulse x1,k(t) and the same signal in opposite phase

x2,k(t) were transmitted. The sum zk(t) of the two respective

echoes y1,k(t) and y2,k(t) formed a radiofrequency line of the

image. This test was repeated many times until find random

pulse which maximize the CTR.

However, this research was time consuming. After a lim-

ited random research, the CTR optimization became a para-

metric optimization using the best previous random excita-

tion (switches on position 2 in Fig 1).
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Figure 1: Block diagram of the optimization process. If the

switches were on position 1, the optimization was lead by

the Monte-Carlo method, and if the switches were on

position 2, the optimization was lead by the parametric

optimization. The plant included the imaging method, the

transducers and the explored medium.

2.1 Random Excitation

The random pulse signal x1,k(t) was computed digitally

with Matlab (Mathworks, Natick, MA, USA):

x1,k(t) = A · w1,k(t). (2)

The white noise modulated by a Gaussian function [11]

w1,k(t) was constructed such as:

w1,k(t) = exp

[

−
(t − t0)2

σ

]

nk(t), (3)

where t is the time, t0 the time for which the Gaussian func-

tion is maximum, σ the Gaussian width set so that the signal

bandwidth was equals to the transducer bandwidth, and nk(t)

was the k-th white noise computed from normally distributed

pseudorandom numbers.

The amplitude of the driving pressure A was then adjusted

so that the energy of the pulse x1,k(t) was constant for each

case k:

A =

√

√

A2
0
· Exref

Ew

, (4)

where A0 is the driving pressure amplitude of the reference

signal xref. This signal xref was modulated sinus signal at

the centre frequency of the transducer. Its energy Exref
con-

stituted the reference energy, while Ew was the energy of

the signal w1,k. The energy of the transmitted wave thus re-

mained constant by adjusting the amplitude signal A.

The random pulse signal in opposite phase x2,k(t) was

then computed such as:

x2,k(t) = −x1,k(t). (5)

These signals x1,k(t) and x2,k(t) were filtered by the trans-

ducer and were then transmitted to the medium.

2.2 Cost-function

In the receiver, CTRk was computed from a line zk(t) of

pulse inversion image:

zk(t) = y1,k(t) + y2,k(t), (6)

where yp,k(t) is the echo of the transmitted pulse xp,k(t) with

p = {1, 2}. It is defined as the ratio of the energy Eb,k backscat-

tered by the area of the perfused medium and the energy Et,k

backscattered by the area of the non-perfused medium [15]

as follows:

CTRk = 10 · log10

(

Eb,k

Et,k

)

, (7)

These energies were measured from the lines zk(t) at iteration

k of the pulse inversion image.

2.3 Parametric Optimization

Since the random process was time-consuming, we trans-

formed the problem in a parametric optimization. From the

best random excitation x1,k⋆(t) obtained previously, the op-

timization algorithm set the parameters θ of a nonlinear au-

toregressive filter and the problem became:

θ⋆ = arg max
θ

[CTR (x̂ (t, θ))] , (8)

where θ⋆ were the optimal parameters. The signal x̂(t, θ) was

modelized by the nonlinear autoregressive filter such as:

x̂(t) = xT
t θ (9)

where T is the transpose symbol and

xt = [x1,k⋆(t), x1,k⋆(t − 1), . . . , x1,k⋆(t − M + 1),

x2
1,k⋆

(t), x1,k⋆(t)x1(t − 1), . . . , x2
1,k⋆

(t − M + 1),

x3
1,k⋆

(t), x2
1,k⋆

(t)x1(t − 1), . . . , x3
1,k⋆

(t − M + 1)],

(10)

θt = [θ1(0), θ1(0), . . . , θ1(M + 1),

θ2(0, 0), θ2(0, 1), . . . , θ2(M − 1,M − 1),

θ3(0, 0, 0), θ3(0, 0, 1), . . . , θ3(M − 1,M − 1,M − 1)].
(11)

Note that the parameter θ was tune by the Nelder-Mead

method [16]. This algorithm was based on the concept of the

simplex. It sought the maximum of the CTR by surrounding

in the simpex.

3 Simulation Model

The method was applied for a simulation model which

followed the same process as an in-vivo setup. A pulse sig-

nal was generated digitally and filtered by the transfer func-

tion of the ultrasound transducer; centred at 3 MHz with a

fractional bandwidth of 90% at −3 dB. It was then sent si-

multaneously in a microbubble model. Finally, the backscat-

tered signal was filtered by the transfer function of the same

ultrasound probe. To take into account imperfections in our

simulation, a white noise ε(t) was added to xp,k(t). The signal

to noise ratio (SNR) was chosen at 50 dB.

Note that this model was firstly used linearly. The driving

pressure A0 was set to 1 kPa. This pressure level ensured a

linear behavior of the microbubble. Then the model was used

nonlinearly where the driving pressure A0 was set to 400 kPa.

3.1 Microbubbles

The ultrasound contrast agent simulated had properties

of encapsulated microbubbles of SonoVue (Bracco Research

SpA, Geneva, Switzerland). A phospholipid monolayer with

a shear modulus of 46 MPa [17] imprisons sulfur hexaflu-

oride gas (SF6) [18]. The microbubbles had the following

properties:



• mean diameter: 2.5 µm [18];

• shell thickness: 1 nm [19];

• resonance frequency: 3.1 MHz [20].

To carry out the simulations, the free simulation program

Bubblesim by Hoff [21] was used to calculate the oscillation

and scattered echo for a specified contrast agent microbubble

and excitation pulse. A modified version of the Rayleigh-

Plesset model was chosen. The properties of the surrounding

medium were those of blood, since the microbubble is as-

sumed to be in the vascular system. In order to simulate the

mean behavior of the microbubble cloud, we hypothesized

that the response of a cloud of N microbubbles was N times

the response of a single microbubble with the mean proper-

ties.

3.2 Tissue

The tissue response was simulated by fat globules with a

density of 928 kg/m3 [22]. The computation of their response

was based on the Rayleigh backscattering [23] for a small fat

ball of 10 µm; this size was chosen to approximate the small

size of fat cells. We hypothesized that the response of N

particles was N times the response of a single particle.

4 Optimization for a Linear System

In this section, we wanted to prove that the random pro-

cess could find the optimal command. The system studied

was thus simplified for a linear system: without pulse inver-

sion technique and where the cost-function was the output

energy E′
b

backscattered by the microbubble:

x⋆1 (t) = arg max
x1(t)

(

E′b(x1(t))
)

. (12)

In this case, as for a matched filter, the solution of the op-

timal command x⋆
1

(t) must be the time-reversed output sig-

nal y1(−t). Note that this property was used in time reversal

imaging [24].

Fig. 2a represents the best random excitation x1,k⋆(t) and

the respective time-reversed output signal of the linear sys-

tem, among more two hundred and fifty thousand random

excitations x1,k(t). The best random excitation was close to

the time-reversed response of the linear system. This results

confirmed the validity of our approach.

Fig. 2b represents the optimal excitation x⋆
1

(t) and the

respective time-reversed output signal of the linear system

after the parametric optimization. The same comments could

be done.

However, the table 1 show the backscattered energy and

the mean squared error (MSE) between the transmitted exci-

tation and the time-reversed response in each case. After the

parametric optimization, the backscattered energy increased

and the MSE decreased. The optimal command could be

improved by the parametric optimization. Even if the im-

provement of the parametric optimization was not important,

the parametric optimization enabled to be closer to the opti-

mal command. Note that the performances of the parametric

optimization depend on the chosen random excitation.

Finally, as an illustration, Fig. 3 represents the backscat-

tered energy for each optimization iteration. The optimiza-

tion converged in eighty iterations.
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Figure 2: Optimal command for the linear system: (a)

obtained by Monte-Carlo method, (b) obtained by

Monte-Carlo method and parametric optimization.

Table 1: Maximum of backscattered energies and the mean

squared errors between the transmitted excitation and the

time-reversed response in two cases : optimal random

excitation (Rand.) and optimal random excitation after

random process with parametric optimization (Rand. Opt.)

Rand. Rand. Opt.

Backscattered

Energy (dB)

77 77.1

Mean Squared

Error (dB)

14.7 13.7

To sum up, the optimal command can be find by using

random excitations. The research of the optimal command

can be improved by adding a parametric optimization. These

results confirmed the validity of our approach.

5 Optimization for a Nonlinear Imag-

ing System

In this section, we wanted to find the optimal command

to a pulse inversion imaging system in ultrasound contrast

imaging. However, when the system behavior was nonlinear,

the optimal command was not easy to solve. The command

optimal was thus solved by randomness.

Fig. 4a represents the best random excitation x1,k⋆(t) and

the respective output signal of the pulse inversion imaging

system, among more one million random excitations x1,k(t).

The input and the output signals were very different with this

nonlinear system. It was difficult to predict this result. Nev-

ertheless note that the best transmitted excitation was amaz-

ingly close to the result found by Reddy and Szery [13] in an

analytic resolution.

Fig. 4b represents the optimal excitation x⋆(t) and the

respective output signal of the pulse inversion imaging sys-

tem after the parametric optimization. The optimal command

was very close to this one obtained randomly.
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Figure 3: Backscattered energy during the parametric

optimization.
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Figure 4: Optimal command for the pulse inversion imaging

system: (a) obtained by Monte-Carlo method, (b) obtained

by Monte-Carlo method and parametric optimization.

However, the table 2 shows the CTR in four cases : opti-

mal random excitation, optimal random excitation after ran-

dom process with parametric optimization, sinus wave at the

optimal transmit frequency and sinus wave at the centre fre-

quency of the transducer ( fc). It is interesting to note that the

excitation usually was a sinus wave modulated by a Gaus-

sian. If the transmit frequency of this sinus wave was the

centre frequency of the transducer fc, the gain between the

cases with random excitation and this sinus wave could reach

5 dB and the gain between the cases with random excitation

and the optimal sinus wave (i.e. f0,opt = 2.5 MHz) could

reach 1 dB. Note that the optimization of the transmit fre-

quency was stemed from a previous work [14] extended to

the pulse inversion imaging.

As an illustration, Fig. 5 represents the backscattered en-

ergy for each optimization iteration. The optimization con-

verged in eighty iterations.

Finally, the table 3 shows the number of tests to reach dif-

ferent CTR with the random process and the random process

with parametric optimization. From the command which en-

abled to obtain CTR of 30.54 dB, the random process with

optimization enable to decreased around 1, 900 tests to reach

a CTR of 31.27 dB in comparison with the single random

Table 2: Maximum of the CTR in four cases : optimal

random excitation (Rand.), optimal random excitation after

random process with parametric optimization (Rand. Opt.),

sinus wave at the optimal transmit frequency ( f0,opt) and

sinus wave at the centre frequency of the transducer ( fc).

Rand. Rand. Opt. f0,opt fc

CTR 31.4 dB 31.5 dB 30.4 dB 26.4 dB
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Figure 5: CTR during the parametric optimization.

process. The parametric optimization was thus a technique

to reach more quickly the optimal command.

Table 3: Advantage of the parametric optimization for

time-consuming property. Ntest was the minimum number

of test to have statistically one excitation which enable to

reach CTR by the random process (Rand.). For the random

process with parametric optimization (Rand. Opt.), the

numbers of tests Ntest was the number of iterations which

enabled the CTR from the excitation of the example in the

first column.

Rand. Rand. Opt.

CTR 30.54 dB 31.27 dB 31.27 dB

Probability 6.6 · 10−2 4.6 · 10−4 -

Ntest 15 2,165 258

To sum up, the optimal command of a nonlinear imag-

ing system can be find by using random excitations. To help

the randomness, the parametric optimization can be added to

decrease the time of the convergence, when the randomness

found a solution close to the optimum.

6 Discussions and Conclusion

CTR optimization in pulse inversion imaging was per-

formed randomly, without taking into account a priori knowl-

edge of the medium or the transducer. This approach found

the optimal command by optimizing the shape directly. Ac-



tually, the optimal command enabled the best compromise

between the transducer bandwidth and the frequency response

of microbubbles and tissue, by maximizing the energy backscat-

tered by microbubbles while minimizing the energy backscat-

tered by the tissue within the transducer bandwidth. To date,

this trade-offwas usually made empirically for the frequency

of sinus waves and it did not enable the best performances.

The ability of our method at finding the optimal com-

mand was proved trough a linear system. Consequently, we

applied it to a nonlinear imaging system. The implementa-

tion method was easy, because the cost-function was exclu-

sively based on the input and the output measurements of

our system. Moreover the method was independent of the

medium explored. An interesting consequence is that our

method can be applied to any imaging system. Nevertheless,

the drawback of our method was the necessary big number

of tests to find the optimal command. To help us, we add a

parametric optimization to reach the optimal solution more

quickly.

Note that the relevant information is currently unknown.

Even if the transmit frequency was decisive, it does not ex-

plain what differentiates the best random excitations.

To conclude, the method described ensured optimal CTR

by selecting the optimal command. This work is the first step

to automatically find the optimal command. A such solution

may improve diagnosis by improving ultrasound image qual-

ity.
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