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COMPUTING ARITHMETIC KLEINIAN GROUPS

Arithmetic Kleinian groups are arithmetic lattices in PSL 2 (C). We present an algorithm that, given such a group Γ, returns a fundamental domain and a finite presentation for Γ with a computable isomorphism.
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Introduction

An arithmetic Kleinian group Γ is a discrete subgroup of PGL 2 (C) with finite covolume that is commensurable with the image of the integral points of a form of GL 2 defined over a number field under the natural surjection GL 2 (C) → PGL 2 (C). Our main results are new deterministic and probabilistic algorithms for constructing fundamental domains for the action of arithmetic Kleinian groups Γ on hyperbolic three-space that produce a finite presentation for Γ. There is a substantial literature concerning such algorithms, some of which we review below. We compare our algorithms to recent ones and discuss numerical evidence suggesting that ours are more efficient. The algorithm presented here prepares the ground for computing the cohomology of these groups with the action of Hecke operators, which gives a concrete realization of certain automorphic forms by the Matsushima-Murakami formula [START_REF] Borel | Continuous cohomology, discrete subgroups, and representations of reductive groups[END_REF]. By the Jacquet-Langlands correspondence [START_REF] Jacquet | Automorphic forms on GL(2)[END_REF], such forms are essentially the same as automorphic forms for GL 2 over some number field. They should have attached Galois representations, but the construction of these representations in general is still an open problem. More generally, the integral (co)homology of such groups has recently received a lot of attention: for example the size of their torsion [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] and arithmetic functoriality [START_REF] Calegary | A torsion Jacquet-Langlands correspondence[END_REF] are being actively studied. Our algorithm allows for empirical study of these objects.

The problem of computing fundamental domains for such groups is well studied. In the analogous Fuchsian group case, i.e. a subgroup of PSL 2 (R), an algorithm may have been known to Klein and J. Voight [START_REF] Voight | Computing fundamental domains for Fuchsian groups[END_REF] has described and implemented an efficient algorithm exploiting reduction theory. In the special case of Bianchi groups, i.e. when the base field is imaginary quadratic and the group is split, R.G. Swan [START_REF] Swan | Generators and relations for certain special linear groups[END_REF] has described an algorithm, which was implemented by Riley [START_REF] Riley | Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra[END_REF] and A. Rahm [START_REF] Rahm | Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires[END_REF]; D. Yasaki [START_REF] Yasaki | Hyperbolic tessellations associated to Bianchi groups[END_REF] has described and implemented another algorithm based on Voronoï theory. C. Corrales, E. Jespers, G. Leal and Á. del Río [START_REF] Corrales | Presentations of the unit group of an order in a non-split quaternion algebra[END_REF] have described an algorithm for the general Kleinian group case. They implemented it for one nonsplit group with imaginary quadratic base field. Our algorithm and implementation are more general, and experimentally more efficient in practice. We have recently found an unpublished algorithm of K. N. Jones and A. W. Reid, mentioned and briefly described in [CFJR01, section 3.1] that solves the same problem.

The article is organized as follows. In the first section we recall basic definitions and properties of hyperbolic geometry, quaternion algebras and Kleinian groups. In the second section we describe our algorithms: basic procedures to work in the hyperbolic 3-space, algorithms for computing a Dirichlet domain and a presentation with a computable isomorphism for a cocompact Kleinian group, and how to apply these algorithms to arithmetic Kleinian groups. In the third section we show examples produced by our implementation of these algorithms and comment on their running time.

I would like to thank John Voight for proposing me this project and supervising my master thesis, and Karim Belabas and Andreas Enge for their helpful comments on earlier versions of this article. Experiments presented in this paper were carried out using the PLAFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from LABRI and IMB and other entities: Conseil Régional d'Aquitaine, FeDER, Université de Bordeaux and CNRS (see https://plafrim.bordeaux.inria.fr/). This research was partially funded by ERC Starting Grant ANTICS 278537.

Arithmetic Kleinian groups

Here we recall basic definitions and properties of hyperbolic geometry, quaternion algebras and Kleinian groups. The general reference for this section is [START_REF] Maclachlan | The arithmetic of hyperbolic 3-manifolds[END_REF].

1.1. Hyperbolic geometry. The reader can find more about hyperbolic geometry in [START_REF] Ratcliffe | Foundations of hyperbolic manifolds[END_REF]. The upper half-space is the Riemannian manifold H 3 = C × R >0 with Riemannian metric given by ds 2 = dx 2 + dy 2 + dt 2 t 2

where (z, t) ∈ H 3 , z = x + iy and t > 0. For w, w ′ ∈ H 3 , d(w, w ′ ) is the distance between w and w ′ . The set P 1 (C) is called the sphere at infinity. The upper half-space is a model of the hyperbolic 3-space, i.e. the unique connected, simply connected Riemannian manifold with constant sectional curvature -1. In this space, the volume of the ball of radius r is π(sinh(2r) -2r).

The group PSL 2 (C) acts on H 3 in the following way. Consider the ring of Hamiltonians H = C + Cj with multiplication given by j 2 = -1 and jz = zj for z ∈ C, and identify H 3 with the subset C + R >0 j ⊂ H. Then for an element g =

a b c d ∈ SL 2 (C) and w ∈ H 3 , the formula g • w = (aw + b)(cw + d) -1 = (wc + d) -1 (wa + b)
defines an action of PSL 2 (C) on H 3 by orientation-preserving isometries. This action is transitive and the stabilizer of the point

j ∈ H 3 in PSL 2 (C) is the sub- group PSU 2 (C).
The trace of an element of PSL 2 (C) is defined up to sign, and we have the following classification of conjugacy classes in PSL 2 (C):

• If tr(g) ∈ C \ [-2, 2], then g has two distinct fixed points in P 1 (C), no fixed point in H 3 and stabilizes the geodesic between its fixed points, called its axis. The element g is conjugate to ± λ 0 0 λ -1 with |λ| > 1; it is called loxodromic.

• If tr(g) ∈ (-2, 2), then g has two distinct fixed points in P 1 (C), and fixes every point in the geodesic between these two fixed points. The element g is conjugate to ± e iθ 0 0 e -iθ with θ ∈ R \ (π + 2πZ); it is called elliptic.

• If tr(g) = ±2, then g has one fixed point in P 1 (C) and no fixed point in H 3 . It is conjugate to ± ( 1 1 0 1 ); it is called parabolic. 

ds 2 = 4(dx 2 + dy 2 + dt 2 ) (1 -|w| 2 ) 2
where w = (z, t) ∈ B, z = x + iy and |w| 2 = x 2 + y 2 + t 2 < 1. The sphere at infinity ∂B is the Euclidean sphere of center 0 and radius 1. The distance between two points w, w ′ ∈ B is given by the explicit formula

d(w, w ′ ) = cosh -1 1 + 2 |w -w ′ | 2 (1 -|w| 2 )(1 -|w ′ | 2 ) .
The upper half-space and the unit ball are isometric, the isometry being given by η :

H 3 -→ B w -→ (w -j)(1 -jw) -1 = (1 -wj) -1 (w -j),
and the corresponding action of an element g = a b c d ∈ PSL 2 (C) on a point w ∈ B is given by (1)

g • w = (Aw + B)(Cw + D) -1
where

A = a + d + (b -c)j, B = b + c + (a -d)j, C = c + b + (d -ā)j, D = d + ā + (c -b)j.
In the unit ball model, the geodesic planes are the intersections with B of Euclidean spheres and Euclidean planes orthogonal to the sphere at infinity, and the geodesics are the intersections with B of Euclidean circles and Euclidean straight lines orthogonal to the sphere at infinity. A half-space is an open connected subset of B with boundary consisting of a geodesic plane. A convex polyhedron is the intersection of a set of half-spaces, such that the corresponding set of geodesic planes is locally finite.

1.3. The Lobachevsky function and volumes of tetrahedra. We are going to compute hyperbolic volumes, and for this the main tool is going to be the Lobachevsky function, which we define here. The integral θ 0 ln |2 sin u| du converges for θ ∈ R \ πZ and admits a continuous extension to R that is odd and periodic with period π. This extension is called the Lobachevsky function L(θ). The Lobachevsky function admits a power series expansion, converging for θ ∈ [-π, π]:

L(θ) = θ 1 -ln(2|θ|) + ∞ n=1 ζ(2n) n(2n + 1) θ π 2n .
With this function we can derive a formula for the volume of a certain standard tetrahedron. We will use it to compute the volume of convex polyhedra.

Proposition 1. Let T be the tetrahedron in H 3 with one vertex at ∞ and the other vertices A, B, C on the unit hemisphere projecting vertically onto A ′ , B ′ , C ′ in C with A ′ = 0 to form a Euclidean triangle, with angles π 2 at B ′ and α at A ′ , and such that the angle along BC is γ. Then the volume of T is finite and given by

Vol(T ) = 1 4 L(α + γ) + L(α -γ) + 2L π 2 -α .
Proof. This formula can be found in [ Note that since Γ acts properly discontinuously on B, every point outside a zero measure, closed subset of B has a trivial stabilizer in Γ. In the unit ball model, the Dirichlet domain centered at 0 has a simple description. Consider an element g ∈ SL 2 (C) not fixing 0 ∈ B. Let

• I(g) = {w ∈ B | d(w, 0) = d(gw, 0)}; • Ext(g) = {w ∈ B | d(w, 0) < d(gw, 0)}; • Int(g) = {w ∈ B | d(w, 0) > d(gw, 0)}.
We call I(g) the isometric sphere of g. For a subset S ⊂ SL 2 (C) such that no element of S fixes 0, the exterior domain of S is Ext(S) = g∈S Ext(g). The set S is a defining set for Ext(S). A minimal defining set for Ext(S) is a subset S ′ ⊂ S such that Ext(S ′ ) = Ext(S) and for all g ∈ S ′ , the geodesic plane I(g) contains a face of Ext(S).

With these definitions it is clear that D 0 (Γ) = Ext(Γ \ {1}). Note that for all p ∈ B with trivial stabilizer in Γ, D p (Γ) = uD 0 (u -1 Γu) where u ∈ PSL 2 (C) is such that p = u • 0, so there is no harm in restricting to the Dirichlet domain centered at 0. Consider an element g ∈ SL 2 (C) and A, B, C, D as in formula (1). Then g • 0 = 0 if and only if C = 0 and, if g does not fix 0, then a simple but lengthy computation reveals that I(g) is the intersection of B and the Euclidean sphere of center w and radius r, where Another property of Dirichlet domains is their rich structure: it gives a presentation for the group, and also necessary and sufficient conditions for an exterior domain to be a fundamental fomain. Suppose Γ is a Kleinian group in which 0 has trivial stabilizer, and let g, h ∈ Γ. Then we have I(g) = I(h) if and only if g = h. We also have g I(g) = I(g -1 ), and a point x ∈ I(g) is in the defining set of D 0 (Γ) if and only if gx ∈ I(g -1 ) is too.

From this, we can group the faces of D 0 (Γ) in pairs, one contained in some I(g) and the other contained in I(g -1 ), and g, g -1 send the faces to each other. This is the face pairing structure, and the elements g such that I(g) contains a face of D 0 (Γ) are called the face pairing transformations. They generate the group Γ. Now we are going to look for relations. The first type comes from edge cycles: consider an edge e 1 of D 0 (Γ) contained in some I(g) ∩ I(h), and let g 1 = g. We define inductively a sequence of edges and elements in Γ in the following way. We let e n+1 = g n e n . Then e n+1 is contained in I(g -1 n ) ∩ I(g n+1 ) for a unique I(g n+1 ) (see Figure 1.1). If D 0 (Γ) has finitely many faces, then the sequence (e n , g n ) n is periodic, let m be its period. The sequence of edges C = (e 1 , . . . , e m ) is a cycle of edges, and m is its length. The cycle transformation at e 1 is h = g m g m-1 . . . g 1 , and has the property: (i) The cycle transformation at e 1 fixes e 1 pointwise. This implies that h satisfies the cycle relation h ν = 1 for some integer ν. If ν = 1, the cycle is called elliptic. At every edge e i , the geodesic planes I(g -1 i ) and I(g i+1 ) make an angle α(e i ) inside D 0 (Γ). The cycle angle of C is α(C) = m i=1 α(e i ). Since the translates of D 0 (Γ) cover a neighborhood of e 1 , we have the property:

(ii) The cycle angle is 2π ν where ν is the order of the cycle transformation.

The second type of relations comes from elements of order 2: it may happen that I(g) = I(g -1 ), then the element g satisfies the reflection relation g 2 = 1.

+ + + e 1 e 2 e 3 g 1 g 2 g 3 I(g 1 ) I(g -1 1 ) I(g 2 ) I(g -1 2 ) I(g 3 ) I(g -1 3 ) Figure 1.1. A length three cycle in a planar cut
Theorem 2 (Poincaré). Let D = D 0 (Γ) be the Dirichlet domain of a geometrically finite Kleinian group Γ. Then the face pairing transformation generate the group Γ, and the reflection relations together with the cycle relations form a complete set of relations for Γ.

Remark 3. In the presentation given by the theorem we consider only one element for each pair of face-pairing transformation g, g -1 . If we take both in the set of generators, we have to add the "inverse" relation g g -1 = 1.

We are now looking for sufficient conditions for an exterior domain to be a fundamental domain. There is another necessary condition, coming from cycles of some special points at infinity. A point z ∈ ∂B is a tangency vertex if it is a point of tangency z = f ∩f ′ of two faces f ⊂ I(g), f ′ ⊂ I(g ′ ) of D 0 (Γ). If z 1 = I(g 0 )∩I(g 1 ) is a tangency vertex, then we define a sequence by letting z i+1 = g i •z i = I(g -1 i )∩I(g i+1 ) while z i+1 is a tangency vertex (otherwise the sequence ends at z i ). If such a sequence (z i ) is infinite and D 0 (Γ) has finitely many faces, then it is periodic. Let m be its period; then (z 1 , . . . , z m ) is a tangency vertex cycle and the tangency vertex transformation is h = g m g m-1 . . . g 1 . The fact that B/Γ is complete implies the property: (iii) The tangency vertex transformation is parabolic.

Actually all these definitions can make sense for any exterior domain. Suppose Ext(S) is an exterior domain with S ⊂ Γ a finite minimal defining set. We say that it has a face pairing if S = S -1 and for every g ∈ S the image by g of the face contained in I(g) is the face contained in I(g -1 ) -equivalently, the image of every edge of Ext(S) by the pairing transformation of an adjacent face is an edge of Ext(S). This implies that every cycle is well-defined. We say that it satisfies the cycle condition if every cycle satisfies the properties (i) and (ii), and that it is complete if every tangency vertex cycle satisfies the property (iii).

Theorem 4 (Poincaré). Let D = Ext(S) be an exterior domain with S finite. Suppose D has a face pairing, satisfies the cycle condition, and is complete. Let Γ ′ be the group generated by the face pairing transformations. Then D is a fundamental polyhedron for Γ ′ .

Proof. Both theorems are a special case of the second Theorem in [START_REF] Maskit | On Poincaré's theorem for fundamental polygons[END_REF].

1.5. Quaternion algebras and arithmetic Kleinian groups. We can now describe the construction of arithmetic Kleinian groups using orders in quaternion algebras. The reader can find more about quaternion algebra in [START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF]. A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F . Equivalently, if char F = 2, there exists a, b ∈ F × such that B = F + F i + F j + F ij with multiplication table given by i 2 = a, j 2 = b, ji = -ij. Such an algebra is written B = a,b F . A quaternion algebra either is isomorphic to the matrix ring M 2 (F ), or is a division algebra. Given an element

w = x+yi+zj +tij ∈ a,b F , we define its conjugate w = x -yi -zj -tij, its reduced trace trd(w) = w + w = 2x ∈ F and its reduced norm nrd(w) = w w = x 2 -ay 2 -bz 2 + abt 2 ∈ F .
Let F be a number field, let Z F be its ring of integers and let B be a quaternion algebra over F . An order O ⊂ B is a finitely generated Z F -submodule with F O = B that is also a subring. We write O 1 ⊂ O × the subgroup of elements of reduced norm 1.

A place v of F is split or ramified depending on whether B ⊗ F F v is isomorphic to the matrix ring or not. The set of ramified places is finite and the discriminant of B is the product of the ramified finite places, viewed as an ideal in Z F . The number field F is almost totally real (or ATR) if it has exactly one complex place. A quaternion algebra over an ATR field is Kleinian if it is ramified at every real place.

Theorem 5. Let F be an ATR number field of degree n, B a Kleinian quaternion algebra over F and O be an order in B. Let ρ : B ֒→ M 2 (C) be an algebra homomorphism extending a complex embedding of F . Then the group Γ(O) = ρ(O 1 )/{±1} ⊂ PSL 2 (C) is a Kleinian group. It has finite covolume, and it is cocompact if and only if B is a division algebra. Furthermore, if O is maximal, we have

(3) Covol(Γ(O)) = |∆ F | 3/2 ζ F (2)Φ(∆ B ) (4π 2 ) n-1 where ∆ F is the discriminant of F , ζ F is the Dedekind zeta function of F , ∆ B is the discriminant of B and Φ(N) = N (N) • p|N 1 -N (p) -1 for every ideal N of F .
Proof. This theorem can be found in [MR03, Theorems 8.2.2, 8.2.3 and 11.1.3].

An arithmetic Kleinian group is a Kleinian group that is commensurable with a group Γ(O) as in the previous theorem. This is equivalent to the definition given in the introduction. The object of the next section is to describe an algorithm that, given such a group, computes a fundamental domain for Γ(O), and a presentation with a computable isomorphism.

Algorithms

We describe every algorithm in ideal arithmetic. In section 2.5, we explain how to implement these algorithms using floating-point arithmetic.

2.1. Algorithms for polyhedra in the hyperbolic 3-space. We start with lowlevel algorithms for dealing with hyperbolic polyhedra. A point in B is represented by a vector in C + Rj; a geodesic plane not containing 0 is represented by the Euclidean center and radius of the corresponding Euclidean sphere; a geodesic not containing 0 is represented by the Euclidean center and radius of a Euclidean sphere and a basis of a Euclidean plane containing the center of the sphere, such that the geodesic is the intersection of B, this sphere and this plane.

Using these representations, it is an exercise in computational geometry to see that we can compute the faces, edges and vertices of a convex polyhedron given by a finite set of half-spaces containing 0. The details can be found in [Pag10, section II.3.3]. A harder task is to compute the volume of such a polyhedron. We describe an algorithm here; it is essentially the same as the one described in [MR03, section 1.7] but for the sake of completeness we provide all the details here.

Algorithm 1 computes the volume of a convex polyhedron with finitely many faces.

Algorithm 1 Volume of a convex polyhedron

Input: A convex polyhedron P with finitely many faces Output: The hyperbolic volume of P 1: Split every face of P into triangles 2: Split P into tetrahedra 3: Using the map η -1 , send every tetrahedron back to H 3 4: Express every tetrahedron as a difference of two tetrahedra, each having a vertex in the sphere at infinity 5: For every tetrahedron having a vertex in the sphere at infinity, apply an isometry to map it to a tetrahedron with one vertex at ∞ and the other vertices on the unit hemisphere 6: Express every such tetrahedron as a sum and difference of tetrahedra of the same type having one vertex at j 7: Express every such tetrahedron as a sum and difference of tetrahedra of the same type with projected Euclidean triangle having a right angle not at 0 8: For every such tetrahedron, compute the angles α and γ and use Proposition 1 to compute the volume 9: Vol(P ) ← sum of every contribution 10: return Vol(P ) • For step 1, choose a vertex of the face and link it to every other vertex; • For step 2, choose a vertex of P and link it to every computed triangle;

• For step 4, choose an edge and consider a geodesic ray containing it, then the tetrahedron appears as the difference between two tetrahedra, each having the geodesic ray as an edge and a face of the initial tetrahedron as a base (see Figure 2.1); • In step 6, the signs that appear in the sum are the signs of certain determinants; • In step 8, the angle α is an angle in a Euclidean triangle and can be computed by elementary trigonometry, and since the upper half-space model is conformal, the angle γ is the Euclidean angle of intersection of the sphere and plane representing the faces of the tetrahedron.

The values of the Lobachevsky function are computed with the following lemma. It may be well-known, but we include it for the sake of completeness.

Lemma 7. For all θ ∈ (-π, π) we have the formula

L(θ) = π ln π -θ π + θ + θ 3 -ln 2|θ| 1 - θ π 2 + ∞ n=1 ζ(2n) -1 n(2n + 1) θ π 2n and the bounds n>r ζ(2n) n(2n + 1) θ π 2n ≤ 2 3 1 1 - θ π 2 θ π 2r+2 n>r ζ(2n) -1 n(2n + 1) θ π 2n ≤ 1 1 - θ 2π 2 θ 2π 2r+2 • Proof.
To derive the first expression we use the previous power series expansion and extract the first term of the series expansion of the zeta function. For all θ ∈ (-π, π) we have

∞ n=1 ζ(2n) n(2n + 1) θ π 2n = ∞ n=1 1 n(2n + 1) θ π 2n + ∞ n=1 ζ(2n) -1 n(2n + 1) θ π 2n
since all these series converge. We only need to compute the power series that appears. By taking derivatives twice we find that for all x ∈ (-1, 1) we have

∞ n=1 x 2n+1 n(2n + 1) = 2x -x ln(1 -x 2 ) + ln 1 -x 1 + x .
Letting x = θ π in this expression gives the first formula. To prove the inequalities we are going to bound the values ζ(2n) and ζ(2n) -1 for n ≥ 1. By series-integral comparison we get

∞ k=r k -2n ≤ (r -1) 1-2n 2n -1 , giving ζ(2n) = 1 + ∞ k=2 k -2n ≤ 1 + 1 2n -1 ≤ 2
for the first value, and

ζ(2n) -1 = 2 -2n + ∞ k=3 k -2n ≤ 1 + 2 2n -1 2 -2n ≤ 3 • 2 -2n
for the second one. Using these inequalities and the bound 1 n(2n+1) ≤ 1 3 , and computing the geometric sum gives the result.

Remarks 8.

• With the same method, for any k we can obtain a formula with remainder term O ( θ kπ ) 2r . • In practise, we precompute the coefficients of the power series we are using.

By periodicity and oddness, we can always reduce to the case where θ ∈ [0, π 2 ]: if the precision is fixed, we know a priori the maximal number of terms needed to evaluate the Lobachevsky function.

2.2. The reduction algorithm. When we have a fundamental domain, it is natural to ask for an algorithm that, given a point in the hyperbolic 3-space, computes an equivalent point in the fundamental domain and an element in the group that sends one point to the other. Definition 9. Let S be a subset of a Kleinian group Γ. A point z ∈ B is S-reduced if for all g ∈ S, we have d(z, 0) ≤ d(gz, 0), i.e. if z ∈ Ext(S).

Algorithm 2 Reduction algorithm

Input: A point w ∈ B, a finite ordered subset S ⊂ PSL 2 (C) Output: A point w ′ and an element δ ∈ S s.t. w ′ is S-reduced and w ′ = δw 1: w ′ ← w, δ ← 1 2: g ← 1 3: repeat 4: w ′ ← gw ′ , δ ← gδ 5: g ← the first g ∈ S such that d(gw ′ , 0) is minimal 6: until d(gw ′ , 0) ≥ d(w ′ , 0) 7: return w ′ , δ
Proposition 10. Given S a finite subset of a Kleinian group Γ and a point w ∈ B, Algorithm 2 returns a point w ′ and δ ∈ S such that w ′ is S-reduced and w ′ = δw.

Proof. After step 4, we have w ′ = δw and δ ∈ S . Because of the loop condition, while the algorithm runs the distance d(w ′ , 0) decreases. Since w ′ stays in the orbit of w ′ under Γ and this orbit is discrete, the algorithm terminates. When it happens, g is an element in S such that d(gw ′ , 0) is minimal and d(gw ′ , 0) ≥ d(w ′ , 0), so w ′ is S-reduced.

Remark 11. At step 5, the g achieving the minimal d(gw ′ , 0) may not be unique. We can pick any of these elements. Ordering S gives us a canonical choice.

Reducing points can give interesting information about the elements of the group, because if w has a trivial stabilizer, then the orbit map γ → γ • w is a bijection. This is the reason for introducing the following definition: Definition 12. Let S be a subset of a Kleinian group Γ and

w ∈ B. An element γ ∈ PSL 2 (C) is (S, w)-reduced if γw is S-reduced, i.e. if γw ∈ Ext(S).
Given a finite S, w and γ, we can now compute an (S, w)-reduced element γ such that γ ≡ γ (mod S) as follows: we reduce γw with respect to S; if δ ∈ S is such that δ(γw) is S-reduced, then γ = δγ is (S, w)-reduced. We also write the reduced element γ = Red S (γ; w) and simply Red S (γ) = Red S (γ; 0). A priori this reduced element could depend on the chosen ordering in Algorithm 2.

Proposition 13. Suppose that Ext(S) is a fundamental domain for S . Then for w ∈ B outside of a zero measure, closed subset of B, the following holds: for every γ ∈ Γ, there exists a unique (S, w)-reduced γ ≡ γ (mod S). If w ∈ Ext(S) then γ = 1 if and only if γ ∈ S .

Proof. Let w ∈ Γ•Ext(S). The existence follows from Algorithm 2. For uniqueness, suppose γ and γ′ are (S, w)-reduced and γ ≡ γ′ ≡ γ (mod S). Then γw, γ′ w ∈ Ext(S), and since w is in the orbit of Ext(S), they are in fact in Ext(S). Since these two points are in the same S -orbit, we have γ = γ′ . Now assume w ∈ Ext(S). If γ = 1 then γ ≡ γ ≡ 1 (mod S), i.e. γ ∈ S . If γ ∈ S then γ ≡ 1 (mod S) and 1 is (S, w)-reduced so by uniqueness γ = 1. Moreover the complement of Γ • Ext(S) in B is a locally finite union of faces of Ext(S), so it is closed with zero measure.

Since this provides an algorithm to write an element of the group as a word in the generators and to compute modulo S with explicit unique representatives, that particular kind of generating set deserves a name. Definition 14. A subset S of a Kleinian group Γ is a basis if Ext(S) is a fundamental domain for S = Γ. If S is also a minimal defining set for Ext(S), it is called a normalized basis for Γ.

2.3. Normalized basis algorithms. Now we describe a general algorithm that computes a normalized basis for a cocompact Kleinian group Γ. We will then apply it to arithmetic groups. First note that, after conjugating the group by a suitable element in PSL 2 (C), we may assume that 0 ∈ B has a trivial stabilizer in Γ and that every elliptic cycle has length 1.

We will use two blackbox subalgorithms, Enumerate and IsFullGroup:

• Enumerate(Γ, n) takes as an input a positive integer n and returns a finite set of elements in Γ (the integer n is a parameter for iteration, it does not have any mathematical meaning); • IsFullGroup(Γ, S) takes as an input a finite normalized basis S for a subgroup S ⊂ Γ and returns true or false according to whether S = Γ or not. In every algorithm, an exterior domain Ext(S) with finite S is represented as a polyhedron in B. We begin with a naive algorithm. Proposition 15. If Γ is geometrically finite and Enumerate is a complete enumeration of Γ, then Algorithm 3 terminates after a finite number of steps and the output S is a normalized basis for Γ.

Algorithm 3 Naive normalized basis algorithm

Proof. The Dirichlet domain centered at 0 for Γ has finitely many faces by geometric finiteness. Since Enumerate is a complete enumeration, a defining set for this Dirichlet domain will be enumerated after a finite number of steps. The algorithm will then terminate as all the conditions are satisfied by Dirichlet domains. The output will then be a normalized basis for Γ by Step 6 and Theorem 4.

We will now use the reduction algorithm to improve upon Algorithm 3. The main ideas are

• reducing the elements that we have to find smaller ones • when the face-pairing condition, the cycle condition or the completeness condition fails, using this fact to find elements that make the exterior domain smaller. For clarity, we divide Algorithm 4 into four routines. Algorithm 4 uses these routines to compute a normalized basis for a geometrically finite Kleinian group Γ. Proof. We first prove the second claim. Every element added to S belongs to the group generated by S as it is a reduction by U ⊂ S of an element in S. Moreover, every element that is discarded has Red U (g) = ±1 so at the end of the loop we have g ∈ S , and every other element g ∈ S \U is replaced by ḡ = Red U (g) ∈ U g, so the group generated by S does not change. Now we prove that the algorithm terminates. First consider the initial S. Let M = max{d(g • 0, 0) : g ∈ S} and X 0 = {g ∈ S : d(g • 0, 0) ≤ M }. The set X 0 is finite since S is a Kleinian group, and we have S ⊂ X 0 . By definition of reduction, every element added to U is in X 0 . Moreover, by Step 2 if an element g is discarded then its isometric sphere I(g) does not intersect Ext(S), so g • 0 is in the complement of Ext(S): g cannot be the reduction of any element, so it cannot be added again. Similarly if g ∈ S \ U is replaced by ḡ = g, then g is not reduced so it cannot be added again. Hence the algorithm terminates.

The second routine, CheckPairing, checks whether Ext(S) has a face-pairing. If it does not, it finds elements that make Ext(S) smaller.

Algorithm 6 CheckPairing

Input: A finite subset S ⊂ PSL 2 (C) Output: A new S such that Ext(S) is smaller if it did not have a face-pairing 1: S ← S ∪ S -1 2: for all e edge in I(g) and g ∈ S, s.t. ge not an edge of Ext(S) do 3:

x ← x ∈ e such that gx / ∈ Ext(S)

4:
ḡ ← Red S (g; x)

5:

add ḡ, ḡ-1 to S 6: end for 7: return S Proposition 17. If Ext(S) does not have a face-pairing, then after applying Algorithm 6, Ext(S) is strictly smaller.

Proof. If there is a nonpaired edge, at Step 5, since x ∈ I(g) we have d(gx, 0) = d(x, 0) and since gx / ∈ Ext(S) we have d(gx, 0) > d(ḡx, 0). Putting these two together gives d(ḡx, 0) < d(x, 0), i.e. x ∈ Int(ḡ) so finally we have Ext(S ∪ {ḡ}) Ext(S).

We give a second possible algorithm for CheckPairing. It is simpler but less efficient in practice. It uses the fact that if a non-elliptic cycle has length three (which is generically the case), then it is of the form e ⊂ I(g) ∩ I(h), ge ⊂ I(g -1 ) ∩ I(gh -1 ), he ⊂ I(hg -1 ) ∩ I(h -1 ).

Algorithm 7 CheckPairing'

Input: A finite subset S ⊂ PSL 2 (C) Output: A new S such that Ext(S) is smaller if it did not have a face-pairing 1: S ← S ∪ S -1 2: for all g, h ∈ S s.t. I(g) ∩ I(h) = ∅ and h = g -1 do 3:

add gh -1 , hg -1 to S 4: end for 5: return S Proposition 18. If Ext(S) does not have a face-pairing, then after applying Algorithm 7, Ext(S) is strictly smaller.

Proof. If there is a nonpaired edge, then there exists elements g, h ∈ S in the minimal defining set of Ext(S) and a point x ∈ I(g -1 ) ∩ Ext(S) such that g -1 x ∈ Int(h) (so that h = g -1 ). Since we also have g -1 x ∈ I(g) and I(g) is not contained in Int(h), we get I(g) ∩ I(h) = ∅, so these elements will be considered in the loop. On the other hand we have d(x, 0) = d(g -1 x, 0) > d(g -1 hx, 0), so x ∈ Int(g -1 h): we have Ext(S ∪ {g -1 h}) Ext(S).

Remark 19. Although this algorithm is less efficient than Algorithm 6, it is interesting as it gives a geometric understanding of the method described in [START_REF] Lipyanskiy | A computer-assisted application of Poincaré's fundamental polyhedron theorem[END_REF]: "we consider words that are two-word combinations of those forming the sides of the existing domain to modify the domain. (...) This procedure has proven to be fast and effective in practice." Proposition 18 explains why taking products of two elements forming the sides of the domain is useful, and in Algorithm 7 we get a geometric description of the the products that we should form. Actually, the computation in the proof of Proposition 7 also shows that if I(g -1 h) reduces Ext(S), then I(g) ∩ I(h) = ∅.

The third routine, CheckCycleCondition, checks whether Ext(S) satisfies the cycle condition. If it does not, it finds elements that make Ext(S) smaller.

Algorithm 8 CheckCycleCondition

Input: A finite subset S ⊂ PSL 2 (C) Output: A new S s.t.

Ext(S) is smaller if it did not satisfy the cycle condition

1: Compute every well-defined edge cycle 2: for all g cycle transformation for the edge e do for all 0 < i < m do 10:

h ← g i . . . g 1 11:

add h, h -1 to S 12:

end for 13:

end if 14: end for 15: return S Remarks 20.

• If we assume that every non-elliptic cycle has length three, then the steps 8-12 are unnecessary, as in this case the partial cycle transformations at an edge contained in I(g) ∩ I(h) are g, h = (hg -1 )g, 1 = h -1 (hg -1 )g. • If we know in advance that the group Γ is torsion-free, then we can omit the steps 3-6. • Assuming both, we can omit CheckCycleCondition completely.

Lemma 21. Suppose S ⊂ Γ is a subset of a Kleinian group Γ such that 0 has a trivial stabilizer in Γ, and suppose there is an element h ∈ Γ \ {±1} and a point x ∈ Ext(S) such that hx ∈ Ext(S). Then Ext(S ∪ {h, h -1 }) Ext(S).

Proof. First suppose that d(x, 0) < d(hx, 0). Then writing x = h -1 (hx) = h -1 y we get d(h -1 y, 0) < d(y, 0) i.e. y ∈ Int(h). Since we also have y ∈ Ext(S), we obtain Ext(S ∪ {h}) Ext(S).

Othewise we have d(hx, 0) ≤ d(x, 0). This means that x ∈ Int(h -1 ), but since x ∈ Ext(S) we get Ext(S ∪ {h -1 }) Ext(S).

Proposition 22. If Ext(S) does not satisfy the cycle condition, then after applying Algorithm 8, Ext(S) is strictly smaller.

Proof. Since the cycle transformation at an edge stabilizes it, if the edge is not equal to a geodesic then the cycle transformation fixes it pointwise and condition (i) is automatically satisfied. Suppose that there is a cycle for an edge e equal to a geodesic and that does not satisfy condition (i), and let g be the corresponding cycle transformation. Then the transformation g is either loxodromic, or elliptic of order 2 with exactly one fixed point in e. In both cases, Step 4 is executed. In the first case, since the interior of the isometric sphere of a loxodromic element contains one of its fixed points and the interior of the isometric sphere of its inverse contains the other, we have Ext({g, g -1 }) ∩ e e so Ext(S ∪ {g, g -1 }) Ext(S). In the second case, the edge e contains exactly one fixed point of g in H 3 , so we again have Ext({g}) ∩ e e and we get Ext(S ∪ {g, g -1 }) Ext(S). Now suppose some cycle angle for a non-elliptic cycle is larger than 2π. Then considering the images P = Ext(S), g -1 1 P, . . . , (g i . . . g 1 ) -1 P of P = Ext(S) that glue one after another around e, we see that there is an overlap: there exists a point x ∈ P such that hx ∈ P for some h considered in Step 10. In this case after Step 11 we have Ext(S ∪ {h, h -1 }) Ext(S) by Lemma 21. Since the cycle transformation is the identity, the angle cannot be smaller than 2π.

Finally suppose some cycle angle for an elliptic cycle at an edge e with cycle transformation g with order ν does not satisfy condition (ii). The cycle has length 1, so e ⊂ I(g) ∩ I(g -1 ), and the angle at e is a multiple of 2π ν . After running Step 6 the domain Ext({g, g -1 }) is replaced by the Dirichlet domain of the finite group g , which satisfies the cycle condition, so the new angle at e is equal to 2π ν . The fourth routine, CheckComplete, checks whether Ext(S) is complete. If it is not, it finds elements that make Ext(S) smaller.

Algorithm 9 CheckComplete

Input: A finite subset S ⊂ PSL 2 (C) Output: A new S such that Ext(S) is smaller if it was not complete 1: Compute every tangency vertex cycle 2: for all h tangency vertex transformation do

3: if h = 1 is loxodromic then 4: add h, h -1 to S 5:
end if 6: end for 7: return S Remark 23. If we know in advance that the group Γ is cocompact, we can omit CheckComplete in Algorithm 4 and simply test whether Ext(S) is bounded.

Proposition 24. If Ext(S) is not complete, then after applying Algorithm 8, Ext(S) is strictly smaller.

Proof. If h is a tangency vertex transformation at z = I(g) ∩ I(g ′ ) ∈ ∂B, then it fixes z. By looking at the successive images of the polyhedron along the cycle we see that I(g ′ ) separates I(g) from h I(g), so h has infinite order. If Ext(S) is not complete, then h is loxodromic. Being a fixed point of h, the point z is contained in Int(h) ∪ Int(h -1 ), so we get Ext(S ∪ {h, h -1 }) Ext(S).

Proposition 25. Let Γ be a Kleinian group. The following holds for Algorithm 4 applied to Γ:

(i) Suppose the algorithm terminates. Then the output is a normalized basis for Γ.

(ii) Suppose that Γ is geometrically finite and Enumerate is a complete enumeration of Γ. Then the algorithm terminates.

Remark 26. In practise Algorithm 4 runs much faster that the naive Algorithm 3 (see section 3.1.1), but unfortunately we could not prove it. What we believe is that in Algorithm 4 the blackbox Enumerate only needs to find a set of generators for the group, and then the other routines find the elements of the normalized basis; in Algorithm 3 the blackbox Enumerate needs to find directly the elements of the normalized basis, which is harder. The natural idea would be to put the routines in a loop that would not contain Enumerate in Algorithm 4, but then it is not clear whether this internal loop would terminate; actually in general it is false, since Γ may admit finitely generated subgroups that are not geometrically finite.

Proof.

(i) If the algorithm terminates, then by Theorem 4, since Ext(S) is complete, has a face-pairing and satisfies the cycle condition, the set S is a normalized basis for S . It is then valid to use IsFullGroup to check that S = Γ. (ii) The closure of the Dirichlet domain centered at 0 for Γ has finitely many faces by geometric finiteness. Since Enumerate is a complete enumeration, a defining set for this Dirichlet domain will be enumerated after a finite number of steps. The algorithm will then terminate as all the conditions are satisfied by the Dirichlet domain.

2.4. Instantiation of the blackboxes.

2.4.1.

Enumerate and IsFullGroup for a group given by generators. Suppose the group Γ is given by a finite set of generators G. We can take for Enumerate the algorithm that writes every word of length n in the generators, and we can take for IsFullGroup the algorithm that reduces every element in G with respect to the given normalized basis S and returns whether every generator reduces to ±1: by Proposition 13, this is equivalent to Γ ⊂ S .

2.4.2. Enumerate and IsFullGroup for an arithmetic group. We provide a possible instantiation of the blackboxes Enumerate and IsFullGroup for an arithmetic group Γ(O) attached to a maximal order O in a Kleinian quaternion algebra B with base field F of degree n.

We describe IsFullGroup first. A subgroup is proper if and only if its covolume is infinite or at least twice the covolume of Γ, the quotient of the covolumes being the index of the subgroup. Since Γ comes from a maximal order, the covolume of Γ is given by (3), which we can compute, and the covolume of a subgroup can be computed with Algorithm 1 once we have a normalized basis. We take for IsFullGroup the algorithm that computes the covolume Covol(Γ) by the formula and the volume V of Ext(S) for the given normalized basis S, and returns whether V Covol(Γ) < 2. Since S is a normalized basis for S , the polyhedron Ext(S) is a fundamental domain for S so the volume V equals the covolume of S .

We now describe an instantiation of the blackbox Enumerate for the Kleinian group associated with an order O in B. Under the natural embedding O ⊂ B ֒→ B ⊗ Q R, the order O is discrete. Now suppose that we have a positive definite quadratic form Q : B ⊗ Q R → R. Then O becomes a full lattice in a real vector space of dimension 4n. We can use lattice enumeration algorithms such as the Kannan-Fincke-Pohst algorithm [START_REF] Fincke | Improved methods for calculating vectors of short length in a lattice, including a complexity analysis[END_REF][START_REF] Kannan | Improved algorithms for integer programming and related lattice problems[END_REF] to enumerate elements in O that are short with respect to Q. We can then select the elements having reduced norm 1. As we increase the bound on the values of Q, we will get every element in O 1 . A priori any such quadratic form would work, but here we describe one that has a geometric meaning.

Recall we can embed B in M 2 (C) in such a way that O 1 becomes discrete in SL 2 (C). This embedding is only defined up to conjugation by an element of PSL 2 (C). Let ρ be such an embedding. If B = a,b F we can take for example

ρ : x + yi + zj + tij → x + yα z + tα (z -tα)β x -yα
where σ is a complex embedding of F , β = σ(b) and α is a square root of σ(a).

For

m = a b c d ∈ M 2 (C), we define invrad(m) = (c + b) + (d -ā)j 2 .
Proposition 27. The quadratic form Q : B ⊗ R → R defined by

Q(x) = invrad(ρ(x)) + tr F/Q (nrd(x)) for all x ∈ B
is positive definite and satisfies

Q(x) = 4 rad(ρ(x)) 2 + n for all x ∈ O 1
where rad(g) denotes the Euclidean radius of the isometric sphere of g ∈ SL 2 (C) if g • 0 = 0, and ∞ otherwise.

Proof. We show first that Q is positive definite. For a matrix m ∈ M 2 (C) we have invrad(m) = |c + b| 2 + |d -ā| 2 = m 2 -2 ℜ(det m) where • is the usual L 2 norm on M 2 (C), so that • 2 is a positive definite quadratic form on M 2 (C). Since nrd is a positive definite quadratic form on H and we have the decomposition

B ⊗ R ∼ = M 2 (C) ⊕ H n-2 , we can construct a positive definite quadratic form on B ⊗ R by letting for all x ∈ B ⊗ R Q(x) = m 2 + nrd(h 1 ) + • • • + nrd(h n-2 ) = invrad(m) + tr F ⊗R/R (nrd(x))
where

x = m + h 1 + • • • + h n-2 ∈ M 2 (C) ⊕ H n-2 , since 2 ℜ(det m) + nrd(h 1 ) + • • • + nrd(h n-2 ) = tr F ⊗R/R (nrd(x)
). This gives the positive definiteness.

For the formula on O 1 , note that according to (2), it is

invrad(g) = (c + b) + (d -ā)j 2 = 4 rad(g) 2
for g ∈ SL 2 (C) not fixing 0 in B, and if g fixes 0 then invrad(g) = 0.

We obtain the following enumeration algorithm. It is a complete enumeration of Γ(O), and depends on a parameter: a sequence of bounds A n → ∞.

Algorithm 10 Enumerate

Input: A positive integer n Output: A finite subset L ⊂ Γ(O) 1: L ← ∅ 2: for all x ∈ O such that Q(x) ≤ A n do 3: if nrd(x) = 1 then 4:
Add ρ(x) to L 5:

end if 6: end for 7: return L

We are now going to present a probabilistic enumeration algorithm. It is not a complete enumeration, but performs better in pratice (see section 3.1.2). It uses variants of the former quadratic form.

Definition 28. Let z 1 , z 2 ∈ H 3 . Let h 1 , h 2 ∈ SL 2 (C) be such that z 1 = h 1 • j and z 2 = h 2 • j. We then define the quadratic form Q z1,z2 by Q z1,z2 (x) = invrad(h -1 2 ρ(x)h 1 ) + tr F/Q (nrd(x)) for all x ∈ B.
This family of quadratic forms has the following properties.

Proposition 29. Let z 1 , z 2 ∈ H 3 . Then Q z1,z2 does not depend on the choice of h 1 , h 2 ∈ SL 2 (C) such that z 1 = h 1 • j and z 2 = h 2 • j. It is positive definite, and for all g ∈ O 1 we have

Q z1,z2 (g) = 2 cosh d(gz 1 , z 2 ) -2 + n.
Proof. The matrices h 1 and h 2 are defined up to right multiplication by SU 2 (C), the stabilizer of the point j. For all matrices m ∈ M 2 (C) we have invrad(m) = m 2 -2 ℜ(det m), which is not changed by left and right multiplication of m by elements of SU 2 (C), so that Q z1,z2 does not depend on the choice of h 1 and h 2 .

For z 1 = z 2 = j the formula reads g 2 = 2 cosh d(gj, j) for all g ∈ SL 2 (C), which is well-known (and is a direct consequence of the explicit formulas for the hyperbolic distance). Then for arbitrary z 1 , z 2 ∈ H 3 we have

h -1 2 gh 1 2 = 2 cosh d(h -1 2 gh 1 j, j) = 2 cosh d(gh 1 j, h 2 j) = 2 cosh d(gz 1 , z 2 ).
This family of quadratic forms is very useful, as it enables us to determine the elements g ∈ Γ(O) such that gz 1 is close to z 2 . We propose the following probabilistic algorithm for enumerating elements in Γ(O). It depends on a choice of some parameters: an increasing sequence of positive numbers R n → ∞ representing the radius of the search space, a sequence of positive integers N n ∈ Z >0 representing the number of enumerations in small balls, and a positive number A being a bound on the quadratic form. For w 1 , w 2 ∈ B, we write Q w1,w2 = Q η -1 (w1),η -1 (w2) .

Algorithm 11 Enumerate'

Input: An positive integer n Output: A finite subset L ⊂ Γ(O) 1: L ← ∅ 2: for i = 1 to N n do 3:
Draw a point w ∈ B such that d(0, w) ≤ R n randomly, uniformly w.r.t. the hyperbolic volume 4:

for all x ∈ O such that Q 0,w (x) ≤ A do 5: if nrd(x) = 1 then 6: Add ρ(x) to L 7: end if 8:
end for 9: end for 10: return L Remarks 30.

• We can also use these quadratic forms differently: if we miss an element of the group to "close off" the exterior domain around a point at infinity ξ, we can look for elements of small Q j,z where z → ξ. This is a similar idea as in Remark 4.9 in [START_REF] Voight | Computing fundamental domains for Fuchsian groups[END_REF], but the quadratic form that was used there is the analogue of Q z,z . If g is the element that we are looking for, d(gz, z) is bounded by below by a positive constant if g is loxodromic, which is the generic case. On the contrary we have d(gj, z) → 0 as z → gj. • The efficiency of this algorithm depends on the choice of the parameters N n , R n and A. Heuristics led us to the following choice, which works well in practise:

we use a small bound

A = α • |∆ F N (∆ B )| 1 4[F :Q] so that the number of x ∈ O such that Q 0,w (x) ≤ A
is approximately constant by Gaussian heuristic; -experimental evidence and [BGLS10, Theorem 1.5] suggest that a number of random elements of Γ proportional to Covol(Γ) has a good probability to generate Γ, and by Gaussian heuristic we need O(Covol(Γ)) random centers to obtain one element of the group on average, so we choose N 0 = β • Covol(Γ) 2 , and we increase it exponentially fast: N n = (1 + η) n N 0 ; -the radius R n has to be large enough to ensure good randomness of the elements of Γ, so we choose R 0 such that Vol(B(w, R 0 )) = Covol(Γ) γ and we increase it in arithmetic progression (so the volume increases exponentially fast): R n = R 0 + ǫ • n. Because of our choice of N n we take γ > 2.

Now we explain how we draw points at random in the ball B(0, R) of radius R. Since the hyperbolic volume is invariant by rotation around 0, it is equivalent to draw a random point uniformly on the sphere, and then multiply it by an appropriate random scalar independent from the point on the sphere. Thus we only have to determine the distribution of the distance from 0 of the points in the ball of radius R. Let X be a random variable with uniform distribution in B(0, R). The cumulative distribution function of the distance to 0 is

f R (r) = P X (d(X, 0) ≤ r) = Vol(B(0, r)) Vol(B(0, R)) .
Recall that the volume v(r) of the ball of radius r is v(r) = π(sinh(2r) -2r). It is clear that the function f

R : [0, R] → [0, 1] is a continuous bijection. It implies that d(0, X) = f -1 R (U )
where U is a uniform random variable in [0, 1]. We rewrite that expression as d(0,

X) = v -1 (U ′ ) where U ′ is a uniform variable in [0, v(R)].
It is well-known how to draw a uniform variable in an interval and on a sphere, and v -1 can be computed by Newton iteration.

2.5. Floating-point implementation. Here we describe a floating-point implementation of the above algorithms. We start with a lemma giving us control on the error made when having an element of the group act on a point. We only study the stability of the algorithm, so we do not take into account the error made by rounding in elementary operations.

Lemma 31. Let g ∈ SL 2 (C), g ∈ M 2 (C) and w, w ∈ B. Let ǫ = |w-w|, η = g-g and δ = 1 1-|w| 2 . Suppose that ( g ǫ + 2η) 2 ≤ 1 3δ . Then the quantity gw obtained by applying Formula (1) to g and w is well-defined, and we have

|g • w -gw| ≤ 68 δ 3 2 g 3 ǫ + 136 δ 3 2 g 2 η.
Proof. By direct computation we have |A -Ã| ≤ √ 2η and |A| ≤ √ 2 g , and the same inequalities for B, C, D. We write

g • w = (Aw + B)(Cw + D) -1 = 1 |Cw + D| 2 (Aw + B)(wC + D)
and similarly for g, w. Another direct computation gives

(4) |w| 2 -|g • w| 2 = 1 - 4 |Cw + D| 2 (|w| 2 -1), showing that 1 |Cw + D| 2 ≤ 1 4 (1 + 2δ) ≤ 3 4 δ and 4 3δ ≤ |Cw + D| 2 .
By the triangle inequality, adding and substracting A w gives

|Aw -Ã w| ≤ √ 2 g ǫ + √ 2η
and the same inequality for Cw. We get

|(Cw + D) -( C w + D)| 2 ≤ 2( g ǫ + 2η) 2 ≤ |Cw + D| 2 2
since by hypothesis we have ( g ǫ + 2η) 2 ≤ 1 3δ . In particular C w + D = 0 and gw is well-defined. By the mean value theorem this gives

||Cw + D| -2 -| C w + D| -2 | ≤ (6δ) 3 2 ( g ǫ + 2η)
We also get

|(Aw + B)(wC + D) -( Ã w + B)( w C + D)| ≤ |Aw + B|( √ 2 g ǫ + 2 √ 2η) + 2|Cw + D|( √ 2 g ǫ + 2 √ 2η) ≤ (2 √ 2 g )( √ 2 g ǫ + 2 √ 2η) + (2 √ 2 g )(2 √ 2 g ǫ + 4 √ 2η) =
12 g 2 ǫ + 24 g η.

Finally we have

|(Aw + B)(Cw + D) -1 -( Ã w + B)( C w + D) -1 | ≤ |g • w||Cw + D| 2 (6δ) 3 2 ( g ǫ + 2η) + 2 |Cw+D| 2 (12 g 2 ǫ + 24 g η) ≤ (24 √ 6 + 9)δ 3 2 g 3 ǫ + (48 √ 6 + 18)δ 3 2 g 2 η ≤ 68 δ 3 2 g 3 ǫ + 136 δ 3 2 g 2 η as claimed.
2.6. Master algorithm. As a summary, this is our master algorithm for computing an arithmetic Kleinian group associated with a maximal order. • If we want to compute the group that is the image of a smaller order, or more generally a finite index subgroup Γ ′ of the group Γ(O) given by a maximal order O, we can compute first a normalized basis for the larger group Γ(O), and then compute the index by standard coset enumeration techniques. This gives the covolume of the smaller group, and even a set of generators for it, so we can then apply the same algorithm we described. • We may also want to compute a maximal group in the commensurability class of Γ(O). There are infinitely many conjugacy classes of such maximal groups, and they can be obtained as follow. Let O ′ be a maximal order in B, and S a finite set of primes of F that split in B. Let O ′′ ⊂ O ′ be an Eichler order of level N where N is the product of the primes in S, and define Γ S,O ′ to be the normalizer of O ′′ in B × . Then every maximal group in the commensurability class of Γ(O) is conjugate to a group Γ S,O ′ for some set S and some maximal order O ′ , which can be taken from a set of representatives of the conjugacy classes of maximal orders in B. Note however that some of the groups Γ S,O ′ may not be maximal. Since each of these groups is the image in PSL 2 (C) of the normalizer of an order in B, we may use the same enumeration techniques. The index is given in terms of a class group and a finite quotient of units in Z F , which can be computed, so again we get the covolume of this larger group, and can apply the same technique. The reader can refer to [START_REF] Borel | Commensurability classes and volumes of hyperbolic 3-manifolds[END_REF] or [MR03, Section 11.4] for details on maximal groups.

Algorithm 12 Master algorithm

Examples

The author has implemented the algorithm described in the previous section in the computer system Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]. Our package KleinianGroups is available at http://www.normalesup.org/ ~page/software.html. Here we show some examples of the output of this code. In sections 3.1 and 3.2, the computations are performed on a 1.73 GHz Intel i7 processor with Magma v2.18-4. The more extensive computations of sections 3.3 and 3.4 are run on a 2.5 GHz Intel Xeon E5420 processor from the PLAFRIM experimental testbed with Magma v2.17-12.

Comparison between subalgorithms.

3.1.1. Comparison between the normalized basis algorithms. Consider the ATR sextic field F of discriminant -92779 generated by an element t such that t 6t 5 -2t 4 + 3t 3t 2 -2t + 1 = 0, and let Z F be its ring of integers. Let B = -1,-1 F be the quaternion algebra ramified only at the real places of F . Let O be a maximal order in B; the choice does not matter as they are all conjugate. The Kleinian group Γ(O) has covolume 0.3007 . . . . We compare our algorithm with the naive Algorithm 3. Both need a precomputation of 3 seconds for the computation of the coefficients of the Lobachevsky power series and 4 seconds for the evaluation of the Dedekind zeta function at 2. Our algorithm then computes a Dirichlet domain in 2 seconds, and enumerates 37 elements of O, yielding 21 elements of Γ(O). The naive algorithm (actually we only removed the routine CheckPairing) computes the same Dirichlet domain in 48 seconds and has to enumerate 16 246 elements of O, yielding 1713 elements of Γ(O). The fundamental domain (Figure 3.1) has 18 faces and 42 edges. Comparison between the enumeration algorithms. Consider the ATR number field F of degree 8 and discriminant -407793664, generated by an element t such that t 8 -4t 7 + 4t 6 + 2t 5 -8t 4 + 4t 3 + 5t 2 -2t -1 = 0, and let Z F be its ring of integers. Let B = -1,-1 F be the quaternion algebra ramified only at the real places of F . Let O be a maximal order in B; the choice does not matter as they are all conjugate. The Kleinian group Γ(O) has covolume 56.509 . . . . We compare the performance of our algorithm when using the enumeration algorithms 10 or 11. With the deterministic enumeration algorithm 10, our code computes a fundamental domain in 12 hours and 45 minutes (45943 seconds, most of which is enumeration), and enumerates 84 159 799 vectors, yielding 1600 group elements. With the probabilistic enumeration algorithm 11, our code computes the same Dirichlet domain in 71 seconds, and only needs to enumerate 3511 vectors, yielding 164 group elements. It spends 2 seconds for computing the value of the zeta function, 16 seconds for enumeration, 3 seconds for the routine KeepSameGroup, 40 for CheckPairing and 10 for computing the volume of the polyhedron. The fundamental domain (Figure 3.2) has 202 faces and 582 edges. In this section we show how to recover examples covered by earlier work with our algorithm. When available, we provide a comparison of running times between public implementations and our code. The reader should keep in mind that these are only comparisons between implementations since the complexity of the algorithms is usually unknown.

3.2.1. Bianchi groups. Let F be an imaginary quadratic field with ring of integers Z F . Consider the quaternion algebra B = M 2 (F ) and the maximal order O = M 2 (Z F ). Then the group Γ(O) = PSL 2 (Z F ) is called a Bianchi group. There exists already several programs computing fundamental domains for these groups [START_REF] Rahm | Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires[END_REF][START_REF] Yasaki | Hyperbolic tessellations associated to Bianchi groups[END_REF] but they only work for Bianchi groups while ours deals with general arithmetic Kleinian groups. Table 3.1 gives the running time (in seconds) of our Magma package and other public implementations. The first three columns correspond to the discriminant of the field, its class number and the covolume of PSL 2 (Z F ). The last four columns display running times in seconds: Bianchi.gp [START_REF] Rahm | Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires[END_REF] written in GP [The11] implementing Swan's algorithm for PSL 2 (Z F ), our code KleinianGroups computing PSL 2 (Z F ), the code provided by Magma implementing the algorithm of [START_REF] Yasaki | Hyperbolic tessellations associated to Bianchi groups[END_REF] for PGL 2 (Z F ), and our code for PGL 2 (Z F ). Note that it is not surprising that computing PGL 2 (Z F ) is faster: the group is larger by an index 2, so the covolume is twice smaller and our computation is 4 times shorter (see also section 3.4).

3.2.2. Arithmetic Fuchsian groups. Let F be a totally real field and B a quaternion algebra ramified at every infinite place but one. Let O be an order in B. Then the group Γ(O) = O 1 /{±1} embeds into PSL 2 (R), in which it is discrete with finite covolume: it is an arithmetic Fuchsian group. Using the action of PSL 2 (R) on the upper half-plane J. Voight [START_REF] Voight | Computing fundamental domains for Fuchsian groups[END_REF] was able to compute fundamental domains for these groups. Since we have PSL 2 (R) ⊂ PSL 2 (C), a Fuchsian group can be seen as a Kleinian group leaving a geodesic plane stable. Using this we can also compute arithmetic Fuchsian groups with our code. Our probabilistic enumeration Algorithm 11 leads to an improvement in high degree. As an example, consider the totally real field F with discriminant 9685993193, generated by an element t such that t 9 -2t 8 -7t 7 + 11t 6 + 15t 5 -15t 4 -10t 3 + 7t 2 + 2t -1 = 0. Let B = a,b F with a = -3t 8 + 2t 7 + 30t 6 -8t 5 -93t 4 + 90t 2 + 2t -26 and b = -1. It is ramified at every real place but one. Let O be a maximal order in B. The Fuchsian group Γ(O) has coarea 103.67 . . . ; our code computes a fundamental domain for this group in 13 minutes (735 seconds). The code provided by Magma and implementing the algorithm of [START_REF] Voight | Computing fundamental domains for Fuchsian groups[END_REF] computes a fundamental domain for Γ(O) in 1 hour and 10 minutes (4204 seconds). 
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A larger example. Consider the ATR field F generated by an element t such that t 10 + 4t 9 -18t 7 -27t 6 + 26t 5 + 57t 4 -2t 3 -33t 2 -10t + 1 = 0, having discriminant -546829505431 ≃ -5.5 10 11 . Let B be the quaternion algebra a,b F where a = 1 2 (-25t 9 -82t 8 + 61t 7 + 404t 6 + 376t 5 -932t 4 -718t 3 + 590t 2 + 368t -33) and b = -1. It is ramified exactly at the real places of F . Let O be a maximal order in B. The group Γ(O) has covolume 1783.7 . . . . Our code computes a fundamental domain for this group in 23 hours and 39 minutes (85150 seconds). It spends 5.3% of the time for enumeration, 5.8% for the routine KeepSameGroup, 87.7% for CheckPairing and 1.3% for computing the volume of the polyhedron. The fundamental domain has 5434 faces and 16252 edges. According to geometers, the parameter encoding the complexity of an arithmetic Kleinian group is the covolume. In practise it is simpler to vary the discriminant of the base field (and hence the degree) and the norm of the discriminant of the quaternion algebra. It seems hard to estimate the running time of the algorithm in terms of these parameters. First, we do not know any bound on the radii of the isometric spheres containing the faces of the closure of the Dirichlet domain, or of generators of the group, so we do not know how many elements we have to enumerate. Then, even if we have generators of the group, we do not know how long the normalized basis algorithm could run before terminating (see also Remark 26).

We present numerical data obtained in a family. Since the running time increases very quickly with the discriminant of the field, we fixed the base field and varied the discriminant of the algebra. The field we chose is the ATR cubic field of discriminant -23. We computed groups Γ(O) for every algebra with discriminant less than 10 000, and one algebra every ten with discriminant less than 15 000.

Analysis of this data shows that the running time is approximately proportional to the square of the covolume, with a few exceptionnally slow computations. We explain this as follows: in almost all cases, the enumeration appears to take negligible time, and the longest part is the computation of the fundamental domain itself; moreover the data (Figure 3.4) seem to indicate that the number of faces is proportional to the covolume (we have such a lower bound since the volume of a hyperbolic tetrahedron is bounded by 3L( π 3 )), and we know that our algorithm to compute the domain given the faces is quadratic. 

1. 2 .

 2 The unit ball model. In actual computations we are going to work with another model of the hyperbolic 3-space. The unit ball B is the open ball of center 0 and radius 1 in R 3 ∼ = C + Rj ⊂ H, equipped with the Riemannian metric

  (2) w = -C -1 D and r = 2/|C|, and that Int(g) is the interior of this sphere. The details are in [Pag10, Proposition 3.1.6].

Figure 2 . 1 .

 21 Figure 2.1. Step 4 in Algorithm 1

S

  Input: A Kleinian group Γ Output: A normalized basis S for Γ 1: S ← ∅, n ← 0 ← minimal defining set of Ext(S) 7: until Ext(S) has a face-pairing and Ext(S) is complete and Ext(S) satisfies the cycle condition 8: until IsFullGroup(Γ, S) 9: return S We say that Enumerate is a complete enumeration of Γ if we have n>0 Enumerate(Γ, n) = Γ.

Algorithm 4 until

 4 Normalized basis algorithmInput: A Kleinian group Γ Output: A normalized basis S for Γ 1: S ← ∅, n ← 0 Ext(S) does not change 11: until IsFullGroup(Γ, S) 12: return S The first routine, KeepSameGroup, reduces elements as much as possible to eliminate redundant ones and find smaller ones. Algorithm 5 KeepSameGroup Input: A finite subset S ⊂ PSL 2 (C) Output: A new S generating the same group with smaller elements 1: repeat 2: U ← minimal defining set of Ext(S) 10: until Ext(S) does not change 11: return S Proposition 16. If S is a subset of a Kleinian group, then Algorithm 5 terminates and does not change the group generated by S.

3 :

 3 if g = ±1 fixes at most one point in e then 4: S ← S ∪ {g, g -1 } 5:else if g = ±1 fixes every point in e then

  Input: A maximal order O in a Kleinian quaternion algebra B Output: A finitely presented group G, and two computable group homomorphism φ : G → Γ(O) and ψ : Γ(O) → G, inverse of each other 1: Choose an embedding ρ : B ֒→ M 2 (C) s.t. the point 0 has trivial stabilizer in the group Γ(O) = ρ(O 1 )/{±1} 2: V ← Covol(Γ(O)) computed with Formula (3) 3: function IsFullGroup(S) do 4: compute V ′ = Vol(Ext(S)) with Algorithm 1 5: return V ′ < 2V 6: end function 7: Enumerate ← Algorithm 10 or Algorithm 11 8: S ← output of the Normalized Basis Algorithm 4 9: R ← inverse, cycle and reflection relations from Theorem 2 10: G ← S|R 11: Let φ : G → Γ(O) be the map that evaluates words in the generators 12: Let ψ : Γ(O) → G be the map that writes elements as words in the generators using Algorithm 2 13: return G, φ, ψ Remarks 34.
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 31 Figure 3.1. Dirichlet domain of a Kleinian group over a sextic field
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 32 Figure 3.2. Dirichlet domain of a Kleinian group over an octic field

.F.

  Consider the field F = Q( √ -7) and the quaternion division algebra-1,-1 Then O = Z F + Z F i + Z F j + Z F ij is a non-maximal order in B.A fundamental domain for this group was computed by C. Corrales, E. Jespers, G. Leal and Á. del Río in[START_REF] Corrales | Presentations of the unit group of an order in a non-split quaternion algebra[END_REF]. Using the method of Remark 34, our code can compute a fundamental domain for the group Γ(O). It computes first a maximal order O ′ ⊃ O, and a fundamental domain for Γ(O ′ ) (having covolume 0.8889 . . . ). By coset enumeration, it finds that Γ(O) has index 9 in the larger group, and computes a fundamental domain for the initial group Γ(O). The overall computation takes 15 seconds.
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 33 Figure 3.3. Running time of the algorithm
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 34 Figure 3.4. Number of faces of the closure of the Dirichlet domains

  using Voronoï theory ∆ F h F volume Bianchi KG, PSL 2 Magma KG, PGL 2 Table 3.1. Running times for Bianchi groups

	1 2 3 4 5 7 6 8 -119 10 -3 -15 -23 -39 -47 -71 -87 -95 -167 11 -199 9	0.169 3.139 6.449 13.80 19.43 37.53 44.72 57.06 82.93 132.3 148.5	0.015 0.152 0.176 2.37 3.83 21.6 25.7 41.4 7080. 1545. 3840.	0.93 0.92 1.22 9.44 19.9 36.6 45.1 43.8 137. 391. 393.	0.43 0.8 1.11 3.05 5.33 17.8 17.3 33.9 99.5 188. 224.	0.83 2.32 2.06 4.36 6.96 13.2 16.4 19.3 25.6 80.9 92.7

In the following, we want to maintain the property ( g ǫ + 2η) 2 ≤ 1 3δ for every element g and every point w considered, where ǫ is the imprecision on the points in B, η the imprecision on the elements g considered, and η = 8 3 ǫ. We now describe the modification of the algorithms for the floating-point version. In the reduction algorithm (Algorithm 2), we choose α > 0 and in Step 6 we replace the inequality d(gw ′ , 0) ≥ d(w ′ , 0) by Proof. Formula (4) may be rewritten

We want to use a uniform α that tends to 0 as ǫ → 0. For this, we assume that we only consider points w such that 1-|w| 2 ≥ 2ǫ 2 9 and elements g such that g ≤ ǫ -1 9 . Assuming that ǫ < 10 -9 we can then take α = 18ǫ 1 9 . These assumptions also ensure that ( g ǫ + 2η) 2 ≤ 1 3δ , and are compatible since the points g • 0 that we have to consider satisfy 1

. There is no change in KeepSameGroup (Algorithm 5): the same argument shows that the algorithm terminates, regardless of finite precision in the computations.

The routine CheckPairing (Algorithm 6) should only consider an edge e contained in I(g) as not being paired if there is x ∈ e and we have the stronger inequality |C gx + D| 2 < 4 1+α and C, D correspond to h for some h ∈ S. This ensures that the floating-point reduction will yield a non-trivial element, since at least one step of reduction will be performed.

The routines CheckCycleCondition (Algorithm 8) and CheckComplete (Algorithm 9) contain only finite loops regardless of the use of finite precision, so there is no change in them.

Proposition 33. The floating-point version of the Normalized basis algorithm (Algorithm 4) terminates.

Proof. By the arguments above, each of the routines terminates. Moreover, because of precision restriction we impose g ≤ ǫ -1 9 for every element g of the group considered in the algorithm, so that only finitely many g can be used, so the algorithm terminates.

Of course if the precision chosen is insufficient, the algorithm may terminate with an error or a wrong answer, but with Riley's methods [START_REF] Riley | Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra[END_REF], we can use Poincaré's theorem with the approximate fundamental domain to prove that the computed presentation is correct. Alternatively, we could check the fundamental domain algebraically, but this is likely to be time-consuming.