
HAL Id: hal-00703043
https://hal.science/hal-00703043v2

Preprint submitted on 6 Feb 2013 (v2), last revised 20 Sep 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing arithmetic Kleinian groups
Aurel Page

To cite this version:

Aurel Page. Computing arithmetic Kleinian groups. 2012. �hal-00703043v2�

https://hal.science/hal-00703043v2
https://hal.archives-ouvertes.fr

COMPUTING ARITHMETIC KLEINIAN GROUPS

AUREL PAGE

Abstract. Arithmetic Kleinian groups are arithmetic lattices in PSL2(C).
We present an algorithm which, given such a group Γ, returns a fundamental
domain and a finite presentation for Γ with a computable isomorphism.

Contents

Introduction 2
1. Arithmetic Kleinian groups 3
1.1. Hyperbolic geometry 3
1.2. The unit ball model 3
1.3. The Lobachevsky function and volumes of tetrahedra 4
1.4. Kleinian groups, Dirichlet domains and exterior domains 4
1.5. Quaternion algebras and arithmetic Kleinian groups 6
2. Algorithms 7
2.1. Algorithms for polyhedra in the hyperbolic 3-space 7
2.2. The reduction algorithm 10
2.3. Normalized basis algorithms 11
2.4. Instantiation of the blackboxes 16
2.5. Floating-point implementation 19
2.6. Master algorithm 22
3. Examples 22
3.1. Comparison between subalgorithms 22
3.2. Relation to previous work 23
3.3. A larger example 25
3.4. Efficiency of the algorithm 25
References 27

Aurel Page
Institut de Mathématiques de Bordeaux
Université Bordeaux 1
351, cours de la Libération
F 33405 Talence Cedex
FRANCE
aurel.page@math.u-bordeaux1.fr.

1

Introduction

Starting with a suitable quaternion algebra over a number field F with exactly
one complex place, one can construct discrete subgroups of PSL2(C). These groups,
called arithmetic Kleinian groups, act properly discontinuously with finite covolume
on the hyperbolic 3-space. Our main result is:

Theorem 1. There exists an explicit algorithm (Algorithm 12 with Algorithm 10
for enumeration) which, given an arithmetic Kleinian group Γ described by an order
in a quaternion algebra, returns a fundamental domain and a finite presentation
for Γ with a computable isomorphism.

It has applications both in hyperbolic geometry and number theory. On the
geometrical side, it provides explicit description of a large family of hyperbolic 3-
orbifolds, which are still not well understood. The algorithm described here can be
used to experimentally investigate conjectures about them. On the number theo-
retical side, the algorithm presented here prepares the ground for computing the
cohomology of these groups with the action of Hecke operators, which gives a con-
crete realization of certain automorphic forms [Fra98]. By the Jacquet-Langlands
correspondence [JL70], such forms are essentially the same as automorphic forms
for SL2 /F . They should have attached Galois representations, but the construction
of these representations in general is still an open problem. Our algorithm could
also allow for empirical study of these objects.

This problem has already received some attention. In the analogous Fuchsian
group case (a subgroup of PSL2(R)), an algorithm may have been known to Klein.
J. Voight [Voi09] has described and implemented an efficient algorithm exploiting
reduction theory. In the special case of Bianchi groups, that is when the base field
is imaginary quadratic and the algebra is split, R.G. Swan [Swa71] has described an
algorithm, that was implemented by Riley [Ril83] and A. Rahm [Rah10]; D. Yasaki
[Yas10] has described and implemented another algorithm based on Voronöı theory.

C. Corrales, E. Jespers, G. Leal and Á. del Rı́o [CJLdR04] have described an
algorithm for the general Kleinian group case. They implemented it for one division
algebra with imaginary quadratic base field. Our algorithm is more efficient and our
implementation more general. We have recently found an unpublished algorithm of
K. N. Jones and A. W. Reid, mentioned and briefly described in [CFJR01, section
3.1], which also solves the same problem.

The article is organized as follows. In the first section we recall some basic
definitions and properties of hyperbolic geometry, quaternion algebras and Kleinian
groups. In the second section we describe our algorithms: basic procedures to
work in the hyperbolic 3-space, algorithms for computing a Dirichlet domain and a
presentation with a computable isomorphism for a cocompact Kleinian group, and
how to apply these algorithms to arithmetic Kleinian groups. In the third section
we show some examples produced by our implementation of these algorithms and
comment on their running time.

I would like to thank John Voight for proposing me this project and supervising
my Master’s thesis, and Karim Belabas and Andreas Enge for their helpful com-
ments on earlier versions of this article. Experiments presented in this paper were
carried out using the PLAFRIM experimental testbed, being developed under the
Inria PlaFRIM development action with support from LABRI and IMB and other
entities: Conseil Régional d’Aquitaine, FeDER, Université de Bordeaux and CNRS
(see https://plafrim.bordeaux.inria.fr/).

2

https://plafrim.bordeaux.inria.fr/

1. Arithmetic Kleinian groups

Here we recall some basic definitions and properties of hyperbolic geometry,
quaternion algebras and Kleinian groups. The general reference for this section is
[MR03].

1.1. Hyperbolic geometry. The reader can find more about hyperbolic geometry
in [Rat06]. The upper half-space is the Riemannian manifold H3 = C × R>0 with
Riemannian metric given by

ds2 =
dx2 + dy2 + dt2

t2

where (z, t) ∈ H3, z = x + iy and t > 0. For w,w′ ∈ H3, d(w,w′) is the dis-
tance between w and w′. The set P1(C) is called the sphere at infinity. The upper
half-space is a model of the hyperbolic 3-space, i.e. the unique connected, sim-
ply connected Riemannian manifold with constant sectional curvature −1. In this
space, the volume of the ball of radius r is π(sinh(2r)− 2r).

The group PSL2(C) acts on H3 in the following way. Consider the ring of
Hamiltonians H = C + Cj with multiplication given by j2 = −1 and jz = z̄j
for z ∈ C, and identify H3 with the subset C+R>0j ⊂ H. Then for an element g =(
a b
c d

)
∈ SL2(C) and w ∈ H3, the formula

g · w = (aw + b)(cw + d)−1 = (wc+ d)−1(wa+ b)

defines an action of PSL2(C) on H3 by orientation-preserving isometries. This
action is transitive and the stabilizer of the point j ∈ H3 in PSL2(C) is the sub-
group PSU2(C).

The trace of an element of PSL2(C) is defined up to sign, and we have the
following classification of conjugacy classes in PSL2(C):

• If tr(g) ∈ C \ [−2, 2], then g has two distinct fixed points in P1C, no fixed
point in H3 and stabilizes the geodesic between its fixed points, called its
axis. The element g is conjugate to ±

(
λ 0
0 λ−1

)
with |λ| > 1; it is called

loxodromic.
• If tr(g) ∈ (−2, 2), then g has two distinct fixed points in P1C, and fixes
every point in the geodesic between these two fixed points. The element g

is conjugate to ±
(

eiθ 0
0 e−iθ

)
with θ ∈ R \ (π + 2πZ); it is called elliptic.

• If tr(g) = ±2, then g has one fixed point in P1C and no fixed point in H3.
It is conjugate to ± (1 1

0 1); it is called parabolic.

1.2. The unit ball model. In actual computations we are going to work with
another model of the hyperbolic 3-space. The unit ball B is the open ball of center 0
and radius 1 in R3 ∼= C+ Rj ⊂ H, equipped with the Riemannian metric

ds2 =
4(dx2 + dy2 + dt2)

(1− |w|2)2

where w = (z, t) ∈ B, z = x + iy and |w|2 = x2 + y2 + t2 < 1. The sphere at
infinity ∂B is the Euclidean sphere of center 0 and radius 1. The distance between
two points w,w′ ∈ B is given by the explicit formula

d(w,w′) = cosh−1

(
1 + 2

|w − w′|2
(1 − |w|2)(1− |w′|2)

)
.

The upper half-space and the unit ball are isometric, the isometry being given by

η :

{
H3 −→ B
w 7−→ (w − j)(1 − jw)−1 = (1− wj)−1(w − j),

3

and the corresponding action of an element g =
(
a b
c d

)
∈ PSL2(C) on a point w ∈ B

is given by

(1) g · w = (Aw +B)(Cw +D)−1

where

A = a+ d̄+ (b− c̄)j, B = b + c̄+ (a− d̄)j,
C = c+ b̄+ (d− ā)j, D = d+ ā+ (c− b̄)j.

In the unit ball model, the geodesic planes are the intersections with B of Eu-
clidean spheres and Euclidean planes orthogonal to the sphere at infinity, and the
geodesics are the intersections with B of Euclidean circles and Euclidean straight
lines orthogonal to the sphere at infinity. A half-space is an open connected subset
of B with boundary consisting of a geodesic plane. A convex polyhedron is the in-
tersection of a set of half-spaces, such that the corresponding set of geodesic planes
is locally finite.

1.3. The Lobachevsky function and volumes of tetrahedra. We are going
to compute hyperbolic volumes, and for this the main tool is going to be the
Lobachevsky function, which we define here. The integral

−
∫ θ

0

ln |2 sinu| du

converges for θ ∈ R \ πZ and admits a continuous extension to R, which is odd and
periodic with period π. This extension is called the Lobachevsky function L(θ). The
Lobachevsky function admits a power series expansion, converging for θ ∈ [−π, π]:

L(θ) = θ

(
1− ln(2|θ|) +

∞∑

n=1

ζ(2n)

n(2n+ 1)

(θ
π

)2n
)
.

With this function one can derive a formula for the volume of a certain standard
tetrahedron. We will use it to compute the volume of convex polyhedra.

Proposition 2. Let T be the tetrahedron in H3 with one vertex at ∞ and the
other vertices A,B,C on the unit hemisphere such that they project vertically onto
A′, B′, C′ in C with A′ = 0 to form a Euclidean triangle, with angles π

2 at B′ and
α at A′, and such that the angle along BC is γ. Then the volume of T is finite and
given by

Vol(T) =
1

4

[
L(α+ γ) + L(α − γ) + 2L

(π
2
− α

)]
.

Proof. This formula can be found in [MR03, paragraph 1.7]. �

1.4. Kleinian groups, Dirichlet domains and exterior domains. A sub-
group Γ of PSL2(C) is a Kleinian group if it acts discontinuously on H3, or equiv-
alently if it is a discrete subgroup of PSL2(C). A fundamental domain for Γ is an
open subset F of H3 such that

(i)
⋃

γ∈Γ γF = H3;

(ii) For all γ ∈ Γ \ {1}, F ∩ γF = ∅;
(iii) Vol(∂F) = 0

where Vol is the Riemannian volume on H3. To compute a fundamental domain
for a Kleinian group Γ, we are going to use the standard construction of Dirichlet
domains. Let p ∈ B be a point with trivial stabilizer in Γ. Then the Dirichlet
domain centered at p

Dp(Γ) = {x ∈ B | for all γ ∈ Γ \ {1}, d(x, p) < d(γx, p)}
4

is a convex fundamental polyhedron for Γ. If Γ has finite covolume, then Dp(Γ) fas
finitely many faces. A Kleinian group Γ is geometrically finite if one (equivalently,
every) Dirichlet domain for Γ has finitely many faces.

Note that since Γ acts properly discontinuously on B, almost every point in B
has a trivial stabilizer in Γ. In the unit ball model, the Dirichlet domain centered
at 0 has a simple description. Suppose g ∈ SL2(C) does not fix 0 in B. Let

• I(g) = {w ∈ B | d(w, 0) = d(gw, 0)};
• Ext(g) = {w ∈ B | d(w, 0) < d(gw, 0)};
• Int(g) = {w ∈ B | d(w, 0) > d(gw, 0)}.

We call I(g) the isometric sphere of g. For a subset S ⊂ SL2(C) such that no
element of S fixes 0, the exterior domain of S is Ext(S) =

⋂
g∈S Ext(g). The set S

is a boundary for Ext(S). A normalized boundary for Ext(S) is a subset S′ ⊂ S
such that Ext(S′) = Ext(S) and for all g ∈ S′, the geodesic plane I(g) contains a
face of Ext(S) (i.e. it is a minimal boundary).

With these definitions it is clear that D0(Γ) = Ext(Γ \ {1}). Note that for
all p ∈ B with trivial stabilizer in Γ, Dp(Γ) = uD0(u

−1Γu) where u ∈ PSL2(Γ)
is such that p = u · 0, so there is no harm in restricting to the Dirichlet domain
centered at 0. Consider an element g ∈ SL2(C) and A,B,C,D as in formula (1).
Then g ·0 = 0 if and only if C = 0 and, if g does not fix 0, then a simple but lengthy
computation reveals that I(g) is the intersection of B and the Euclidean sphere of
center w and radius r, where

(2) w = −C−1D and r = 2/|C|,

and that Int(g) is the interior of this sphere (the details are in [Pag10, proposition
3.1.6]).

Another property of Dirichlet domains is their rich structure: it gives a presen-
tation for the group, and also necessary and sufficient conditions for an exterior
domain to be a fundamental fomain. Suppose Γ is a Kleinian group in which 0 has
trivial stabilizer, and let g, h ∈ Γ. Then we have I(g) = I(h) if and only if g = h.
We also have g I(g) = I(g−1), and a point x ∈ I(g) is in the boundary of D0(Γ) if
and only if gx ∈ I(g−1) is too.

From this, we can group the faces of D0(Γ) in pairs, one contained in some I(g)
and the other contained in I(g−1), and g, g−1 send the faces to each other. This
is the face pairing structure, and the elements g such that I(g) contains a face
of D0(Γ) are called the face pairing transformations. They generate the group Γ.

Now we are going to look for relations. The first type comes from edge cycles:
consider an edge e1 of D0(Γ) contained in some I(g) ∩ I(h), and let g1 = g. We
define inductively a sequence of edges and elements in Γ in the following way. We
let en+1 = gnen. Then en+1 is contained in I(g−1

n) ∩ I(gn+1) for a unique I(gn+1)
(see Figure 1.1). If D0(Γ) has finitely many faces, then the sequence (en, gn)n is
periodic, let m be its period. The sequence of edges C = (e1, . . . , em) is a cycle of
egdes, and m is its length. The cycle transformation at e1 is h = gmgm−1 . . . g1,
and it fixes e1 pointwise (property (i)), so it satisfies the cycle relation hν = 1 for
some integer ν. If ν 6= 1, the cycle is called elliptic. At every edge ei, the geodesic
planes I(g−1

i) and I(gi+1) make an angle α(ei) inside D0(Γ). The cycle angle of C
is α(C) =

∑m
i=1 α(ei). Since the translates of D0(Γ) have to cover a neighborhood

of e1, we have α(C) = 2π
ν (property (ii)).

The second type of relations comes from elements of order 2: it may happen
that I(g) = I(g−1), then the element g satisfies the reflection relation g2 = 1.

5

+
+

+e1

e2

e3

g1

g2

g3

I(g1)

I(g−1
1)

I(g2)

I(g−1
2)

I(g3)

I(g−1
3)

Figure 1.1. A length three cycle in a planar cut

Theorem 3 (Poincaré). Let D = D0(Γ) be the Dirichlet domain of a geometrically
finite Kleinian group Γ. Then the face pairing transformation generate the group Γ,
and the reflection relations together with the cycle relations form a complete set of
relations for Γ.

Remark 4. In the presentation given by the theorem we consider only one element
for each pair of face-pairing transformation g, g−1. If we take both in the set of
generators, we have to add the “inverse” relation g g−1 = 1.

We are now looking for sufficient conditions for an exterior domain to be a
fundamental domain. There is another necessary condition, coming from cycles of
some special points at infinity. A point z ∈ ∂B is a tangency vertex if it is a point of
tangency z = f∩f ′ of two faces f ⊂ I(g), f ′ ⊂ I(g′) ofD0(Γ). If z1 = I(g0)∩I(g1) is a
tangency vertex, then we define a sequence by letting zi+1 = gi ·zi = I(g−1

i)∩I(gi+1)
while zi+1 is a tangency vertex (otherwise the sequence ends at zi). If such a
sequence (zi) is infinite and D0(Γ) has finitely many faces, then it is periodic.
Let m be its period; then (z1, . . . , zm) is a tangency vertex cycle and the tangency
vertex transformation is h = gmgm−1 . . . g1. The fact that B/Γ is complete implies
that h is parabolic (property (iii)).

Actually all these definitions can make sense for any exterior domain. Sup-
pose Ext(S) is an exterior domain with S ⊂ Γ a finite normalized boundary. We
say that it has a face pairing if S = S−1 and for every g ∈ S the image by g of
the face contained in I(g) is the face contained in I(g−1) (equivalently, the image of
every edge of Ext(S) by the pairing transformation of an adjacent face is an edge
of Ext(S)). This implies that every cycle is well-defined. We say that it satisfies
the cycle condition if every cycle satisfies the properties (i) and (ii), and that it
is complete if every tangency vertex cycle satisfies the property (iii).

Theorem 5 (Poincaré). Let D = Ext(S) be an exterior domain with S finite.
Suppose D has a face pairing, satisfies the cycle condition, and is complete. Let Γ′

be the group generated by the face pairing transformations. Then D is a fundamental
polyhedron for Γ′.

Proof. Both theorems are a special case of the second Theorem in [Mas71]. �

1.5. Quaternion algebras and arithmetic Kleinian groups. We can now de-
scribe the construction of arithmetic Kleinian groups, using orders in quaternion
algebras. The reader can find more about quaternion algebra in [Vig80]. A quater-
nion algebra B over a field F is a central simple algebra of dimension 4 over F .
Equivalently, if charF 6= 2, there exists a, b ∈ F× such that B = F +Fi+Fj+Fij

6

with multiplication given by i2 = a, j2 = b, ji = −ij; such an algebra is

written B =
(

a,b
F

)
. A quaternion algebra is either isomorphic to the matrix

ringM2(F), or a division algebra. Given an elementw = x+yi+zj+tij ∈
(

a,b
F

)
, we

define its conjugate w̄ = x−yi−zj−tij, its reduced trace trd(w) = w+w̄ = 2x ∈ F
and its reduced norm nrd(w) = ww̄ = x2 − ay2 − bz2 + abt2 ∈ F .

Let F be a number field, let ZF be its ring of integers and let B be a quaternion
algebra over F . An order O ⊂ B is a finitely generated ZF -submodule with FO =
B which is also a subring. We write O×

1 ⊂ O× the subgroup of elements of reduced
norm 1.

A place v of F is split or ramified depending on whether B ⊗F Fv is isomorphic
to the matrix ring or not. The set of ramified places is finite and the discriminant
of B is the product of the ramified finite places, viewed as an ideal in ZF . The
number field F is almost totally real (or ATR) if it has exactly one complex place.
A quaternion algebra over an ATR field is Kleinian if it is ramified at every real
place.

Theorem 6. Let F be an ATR number field of degree n, B a Kleinian quaternion
algebra over F and O be an order in B. Let ρ : B →֒ M2(C) be an algebra
homomorphism extending a complex embedding of F . Then the group Γ(O) =
ρ(O×

1)/{±1} ⊂ PSL2(C) is a Kleinian group. It has finite covolume, and it is
cocompact if and only if B is a division algebra. Furthermore, if O is maximal, we
have

(3) Covol(Γ(O)) = |∆F |3/2ζF (2)Φ(∆B)

(4π2)n−1

where ∆F is the discriminant of F , ζF is the Dedekind zeta function of F , ∆B is
the discriminant of B and Φ(N) = N(N) · ∏p|N

(
1−N(p)−1

)
for every ideal N

of F .

Proof. This theorem can be found in [MR03, Theorems 8.2.2, 8.2.3 and 11.1.3]. �

An arithmetic Kleinian group is a Kleinian group that is commensurable with a
group Γ(O) as in the previous theorem. The object of the next section is to describe
an algorithm which, given such a group, computes a fundamental domain for Γ(O),
and a presentation with a computable isomorphism.

2. Algorithms

We describe every algorithm in ideal arithmetic. In section 2.5, we explain how
to actually implement these algorithms using floating-point arithmetic.

2.1. Algorithms for polyhedra in the hyperbolic 3-space. We start with low-
level algorithms for dealing with hyperbolic polyhedra. A point in B is represented
by a vector in C + Rj; a geodesic plane not containing 0 is represented by the
Euclidean center and radius of the corresponding Euclidean sphere; a geodesic not
containing 0 is represented by the Euclidean center and radius of a Euclidean sphere
and a basis of a Euclidean plane containing the center of the sphere, such that the
geodesic is the intersection of B, this sphere and this plane.

Using these representations, it is an exercise in computational geometry to see
that we can compute the faces, edges and vertices of a convex polyhedron given by
a finite set of half-spaces containing 0 (the details can be found in [Pag10, section
II.3.3]). A harder task is to compute the volume of such a polyhedron. We describe
an algorithm here; it is essentially the same as the one described in [MR03, section
1.7] but for the sake of completeness we provide all the details here.

7

Algorithm 1 computes the volume of a convex polyhedron with finitely many
faces.

Algorithm 1 Volume of a convex polyhedron

Input: A convex polyhedron P with finitely many faces
Output: The hyperbolic volume of P
1: Split every face of P into triangles
2: Split P into tetrahedra
3: Using the map η−1, send every tetrahedron back to H3

4: Express every tetrahedron as a difference of two tetrahedra, each having a
vertex in the sphere at infinity

5: For every tetrahedron having a vertex in the sphere at infinity, apply an isom-
etry to map it to a tetrahedron with one vertex at ∞ and the other vertices on
the unit hemisphere

6: Express every such tetrahedron as a sum and difference of tetrahedra of the
same type having one vertex at j

7: Express every such tetrahedron as a sum and difference of tetrahedra of the
same type with projected Euclidean triangle having a right angle not at 0

8: For every such tetrahedron, compute the angles α and γ and use Proposition 2
to compute the volume

9: Vol(P)← sum of every contribution
10: return Vol(P)

Figure 2.1. Step 4 in Algorithm 1

Remarks 7.

• For step 1, choose a vertex of the face and link it to every other vertex;
• For step 2, choose a vertex of P and link it to every computed triangle;
• For step 4, choose an edge and consider a geodesic ray containing it, then

the tetrahedron appears as the difference between two tetrahedra, each
having the geodesic ray as an edge and a face of the initial tetrahedron as
a base (see Figure 2.1);

• In step 6, the signs that appear in the sum are the signs of certain deter-
minants;

8

• In step 8, the angle α is an angle in a Euclidean triangle and can be com-
puted by elementary trigonometry, and since the upper half-space model is
conformal, the angle γ is the Euclidean angle of intersection of the sphere
and plane representing the faces of the tetrahedron.

The values of the Lobachevsky function are computed with the following lemma.
It may be well-known, but we include it for the sake of completeness.

Lemma 8. For all θ ∈ (−π, π) we have the formula

L(θ) = π ln

(
π − θ
π + θ

)
+ θ

(
3− ln

[
2|θ|

(
1−

(θ
π

)2)]
+

∞∑

n=1

ζ(2n)− 1

n(2n+ 1)

(θ
π

)2n
)

and the bounds
∑

n>r

ζ(2n)

n(2n+ 1)

(θ
π

)2n
≤ 2

3

1

1−
(θ
π

)2
(θ
π

)2r+2

∑

n>r

ζ(2n)− 1

n(2n+ 1)

(θ
π

)2n
≤ 1

1−
(θ

2π

)2
(θ

2π

)2r+2

·

Proof. To derive the first expression we use the previous power series expansion and
extract the first term of the series expansion of the zeta function. For all θ ∈ (−π, π)
we have

∞∑

n=1

ζ(2n)

n(2n+ 1)

(θ
π

)2n
=

∞∑

n=1

1

n(2n+ 1)

(θ
π

)2n
+

∞∑

n=1

ζ(2n)− 1

n(2n+ 1)

(θ
π

)2n

since all these series converge. We only need to compute the power series that
appears. By derivating twice one finds that for all x ∈ (−1, 1) we have

∞∑

n=1

x2n+1

n(2n+ 1)
= 2x− x ln(1− x2) + ln

(1− x
1 + x

)
.

Letting x = θ
π in this expression gives the first formula.

To prove the inequalities we are going to bound the values ζ(2n) and ζ(2n)− 1
for n ≥ 1. By series-integral comparison we get

∞∑

k=r

k−2n ≤ (r − 1)1−2n

2n− 1

which gives

ζ(2n) = 1 +

∞∑

k=2

k−2n ≤ 1 +
1

2n− 1
≤ 2

for the first value, and

ζ(2n)− 1 = 2−2n +

∞∑

k=3

k−2n ≤
(
1 +

2

2n− 1

)
2−2n ≤ 3 · 2−2n

for the second one. Using these inequalities and the bound 1
n(2n+1) ≤ 1

3 , and

computing the geometric sum gives the result. �

Remarks 9.

• With the same method, for any k one can obtain a formula with remainder
term O

(
(θ
kπ)

2r
)
.

9

• In practise, we precompute the coefficients of the power series we are using.
By periodicity and oddness, we can always reduce to the case where θ ∈
[0, π2]: if the precision is fixed, we know a priori the maximal number of
terms needed to evaluate the Lobachevsky function.

2.2. The reduction algorithm. When we have a fundamental domain, it is nat-
ural to ask for an algorithm which, given any point in the hyperbolic 3-space,
computes an equivalent point in the fundamental domain and an element in the
group that sends one to the other.

Definition 10. Let S be a subset of a Kleinian group Γ. A point z ∈ B is S-reduced

if for all g ∈ S, we have d(z, 0) ≤ d(gz, 0), i.e. if z ∈ Ext(S).

Algorithm 2 Reduction algorithm

Input: A point w ∈ B, a finite ordered subset S ⊂ PSL2(C)
Output: A point w′ and an element δ ∈ 〈S〉 s.t. w′ is S-reduced and w′ = δw
1: w′ ← w, δ ← 1
2: g ← 1
3: repeat

4: w′ ← gw′, δ ← gδ
5: g ← the first g ∈ S such that d(gw′, 0) is minimal
6: until d(gw′, 0) ≥ d(w′, 0)
7: return w′, δ

Proposition 11. Given S a finite subset of a Kleinian group Γ and a point w ∈ B,
Algorithm 2 returns a point w′ and δ ∈ 〈S〉 such that w′ is S-reduced and w′ = δw.

Proof. After step 4, we have w′ = δw and δ ∈ 〈S〉. Because of the loop condition,
while the algorithm runs the distance d(w′, 0) decreases. But w′ stays in the Γ-orbit
of w′ and this orbit is discrete, so the algorithm terminates, and when this happens,
g is an element in S such that d(gw′, 0) is minimal and d(gw′, 0) ≥ d(w′, 0), so w′

is S-reduced. �

Remark 12. At step 5, the g achieving the minimal d(gw′, 0) may not be unique.
We can then pick any of these elements. Ordering S gives us a canonical choice.

Reducing points can give interesting information about the elements of the group,
because if w has a trivial stabilizer, then the orbit map γ 7→ γ · w is a bijection.
This is the reason for introducing the following definition:

Definition 13. Let S be a subset of a Kleinian group Γ and w ∈ B. An element γ ∈
PSL2(C) is (S,w)-reduced if γw is S-reduced, i.e. if γw ∈ Ext(S).

Given a finite S, w and γ, we can now compute an (S,w)-reduced element γ̄
such that γ̄ ≡ γ (mod S) as follows: we reduce γw with respect to S; if δ ∈ 〈S〉
is such that δ(γw) is S-reduced, then γ̄ = δγ is (S,w)-reduced. We also write the
reduced element γ̄ = RedS(γ;w) and simply RedS(γ) = RedS(γ; 0). A priori this
reduced element could depend on the chosen ordering in Algorithm 2.

Proposition 14. Suppose that Ext(S) is a fundamental domain for 〈S〉. Then
for w ∈ B outside of a zero measure, closed subset of B, the following holds: for
every γ ∈ Γ, there exists a unique (S,w)-reduced γ̄ ≡ γ (mod S). If w ∈ Ext(S)
then γ̄ = 1 if and only if γ ∈ 〈S〉.

10

Proof. Let w ∈ Γ ·Ext(S). The existence follows from Algorithm 2. For uniqueness,
suppose γ̄ and γ̄′ are (S,w)-reduced and γ̄ ≡ γ̄′ ≡ γ (mod S). Then γ̄w, γ̄′w ∈
Ext(S), and since w is in the orbit of Ext(S), they are in fact in Ext(S). But these
two points are in the same 〈S〉-orbit, so γ̄ = γ̄′. Now assume w ∈ Ext(S). If γ̄ = 1
then γ ≡ γ̄ ≡ 1 (mod S), i.e. γ ∈ 〈S〉. If γ ∈ 〈S〉 then γ ≡ 1 (mod S) and 1 is
(S,w)-reduced so by uniqueness γ̄ = 1. �

Since this provides an algorithm to write any element of the group as a word in
the generators and to compute modulo 〈S〉 (with explicit unique representatives),
this particular kind of generating set deserves a name.

Definition 15. A subset S of a Kleinian group Γ is a basis if Ext(S) is a funda-
mental domain for 〈S〉 = Γ. If S is also a normalized boundary for Ext(S), it is
called a normalized basis for Γ.

2.3. Normalized basis algorithms. Now we describe a general algorithm that
computes a normalized basis for a cocompact Kleinian group Γ, which we will
then apply to arithmetic groups. First note that, after conjugating the group by
a suitable element in PSL2(C), we may assume that 0 ∈ B has a trivial stabilizer
in Γ and that every elliptic cycle has length 1.

We will use two blackbox subalgorithms, Enumerate and IsFullGroup:

• Enumerate(Γ, n) takes as an input a positive integer n and returns a finite
set of elements in Γ (the integer n is a parameter for iteration, it does not
have any mathematical meaning);
• IsFullGroup(Γ, S) takes as an input a finite normalized basis S for a sub-
group 〈S〉 ⊂ Γ and returns true or false according to whether 〈S〉 = Γ or
not.

In every algorithm, an exterior domain Ext(S) with finite S is represented as a
polyhedron in B. We begin with a naive algorithm.

Algorithm 3 Naive normalized basis algorithm

Input: A Kleinian group Γ
Output: A normalized basis S for Γ
1: S ← ∅, n← 0
2: repeat

3: repeat

4: n← n+ 1
5: add Enumerate(Γ, n) to S
6: S ← normalized boundary of Ext(S)
7: until Ext(S) has a face-pairing and Ext(S) is complete and Ext(S) satisfies

the cycle condition
8: until IsFullGroup(Γ, S)
9: return S

We say that Enumerate is a complete enumeration of Γ if we have
⋃

n>0

Enumerate(Γ, n) = Γ.

Proposition 16. If Γ is geometrically finite and Enumerate is a complete enu-
meration of Γ, then Algorithm 3 terminates after a finite number of steps and the
output S is a normalized basis for Γ.

11

Proof. The Dirichlet domain centered at 0 for Γ has finitely many faces by geo-
metric finiteness. Since Enumerate is a complete enumeration, a boundary for this
Dirichlet domain will be enumerated after a finite number of steps. The algorithm
will then terminate as all the conditions are satisfied by Dirichlet domains. The
output will then be a normalized basis for Γ by Step 6 and Theorem 5. �

We will now use the reduction algorithm to improve upon Algorithm 3. The
main ideas are

• reducing the elements that we have to find smaller ones
• when the face-pairing condition, the cycle condition or the completeness
condition fails, using this fact to find elements that make the exterior do-
main smaller.

For clarity, we divide Algorithm 4 into four routines. Algorithm 4 uses these rou-
tines to compute a normalized basis for a geometrically finite Kleinian group Γ.

Algorithm 4 Normalized basis algorithm

Input: A Kleinian group Γ
Output: A normalized basis S for Γ
1: S ← ∅, n← 0
2: repeat

3: repeat

4: n← n+ 1
5: add Enumerate(Γ, n) to S
6: S ← KeepSameGroup(S)
7: S ← CheckPairing(S)
8: S ← CheckCycleCondition(S)
9: S ← CheckComplete(S)

10: until Ext(S) does not change
11: until IsFullGroup(Γ, S)
12: return S

The first routine, KeepSameGroup, reduces elements as much as possible to
eliminate redundant ones and find smaller ones.

Algorithm 5 KeepSameGroup

Input: A finite subset S ⊂ PSL2(C)
Output: A new S generating the same group with smaller elements
1: repeat

2: U ← normalized boundary of Ext(S)
3: for all g ∈ S do

4: ḡ ← RedU (g)
5: if ḡ 6= ±1 then

6: add ḡ to U
7: end if

8: end for

9: S ← U
10: until Ext(S) does not change
11: return S

Proposition 17. If S is a subset of a Kleinian group, then Algorithm 5 terminates
and does not change the group generated by S.

12

Proof. We first prove the second claim. Every element added to S belongs to the
group generated by S as it is a reduction by U ⊂ S of an element in S. Moreover,
every element that is discarded has RedU (g) = ±1 so at the end of the loop we
have g ∈ 〈S〉, and every other element g ∈ S\U is replaced by ḡ = RedU (g) ∈ 〈U〉g,
so the group generated by S does not change.

Now we prove that the algorithm terminates. First consider the initial S.
Let M = max{d(g · 0, 0) : g ∈ S} and X0 = {g ∈ 〈S〉 : d(g · 0, 0) ≤ M}. The
set X0 is finite since 〈S〉 is a Kleinian group, and we have S ⊂ X0. By definition of
reduction, every element added to U is in X0. Moreover, by Step 2 if an element g
is discarded then its isometric sphere I(g) does not intersect Ext(S), so g · 0 is in
the complement of Ext(S): g cannot be the reduction of any element, so it cannot
be added again. Similarly if g ∈ S \ U is replaced by ḡ 6= g, then g is not reduced
so it cannot be added again. Hence the algorithm terminates. �

The second routine, CheckPairing, checks whether Ext(S) has a face-pairing. If
it does not, it finds elements that make Ext(S) smaller.

Algorithm 6 CheckPairing

Input: A finite subset S ⊂ PSL2(C)
Output: A new S such that Ext(S) is smaller if it did not have a face-pairing
1: S ← S ∪ S−1

2: for all e edge in I(g) and g ∈ S, s.t. ge not an edge of Ext(S) do

3: x← x ∈ e such that gx /∈ Ext(S)
4: ḡ ← RedS(g;x)
5: add ḡ, ḡ−1 to S
6: end for

7: return S

Proposition 18. If Ext(S) does not have a face-pairing, then after applying Algo-
rithm 6, Ext(S) is strictly smaller.

Proof. If there is a nonpaired edge, at Step 5, since x ∈ I(g) we have d(gx, 0) =

d(x, 0) and since gx /∈ Ext(S) we have d(gx, 0) > d(ḡx, 0). Putting these two
together gives d(ḡx, 0) < d(x, 0), i.e. x ∈ Int(ḡ) so finally we have Ext(S ∪ {ḡ})
Ext(S). �

We give a second possible algorithm for CheckPairing, which is simpler but
less efficient in practice. It uses the fact that if a non-elliptic cycle has length
three (which is generically the case), then it is of the form e ⊂ I(g) ∩ I(h), ge ⊂
I(g−1) ∩ I(gh−1), he ⊂ I(hg−1) ∩ I(h−1).

Algorithm 7 CheckPairing’

Input: A finite subset S ⊂ PSL2(C)
Output: A new S such that Ext(S) is smaller if it did not have a face-pairing
1: S ← S ∪ S−1

2: for all g, h ∈ S s.t. I(g) ∩ I(h) 6= ∅ and h 6= g−1 do

3: add gh−1, hg−1 to S
4: end for

5: return S

Proposition 19. If Ext(S) does not have a face-pairing, then after applying Algo-
rithm 7, Ext(S) is strictly smaller.

13

Proof. If there is a nonpaired edge, then there exists elements g, h ∈ S in the
normalized boundary of Ext(S) and a point x ∈ I(g−1) ∩ Ext(S) such that g−1x ∈
Int(h) (so that h 6= g−1). Since we also have g−1x ∈ I(g) and I(g) is not contained
in Int(h), we get I(g) ∩ I(h) 6= ∅. But then d(x, 0) = d(g−1x, 0) > d(g−1hx, 0),
so x ∈ Int(g−1h): we have Ext(S ∪ {g−1h}) Ext(S). �

Remark 20. Although this algorithm is less efficient than Algorithm 6, it is in-
teresting as it gives a geometric understanding of the method described in [Lip02]:
“we consider words that are two-word combinations of those forming the sides of
the existing domain to modify the domain. (...) This procedure has proven to be
fast and effective in practice.” Proposition 19 explains why taking products of two
elements forming the sides of the domain is useful, and in Algorithm 7 we get a
geometric description of the the products that one should form. Actually, the com-
putation in the proof of Proposition 7 also shows that if I(g−1h) reduces Ext(S),
then I(g) ∩ I(h) 6= ∅.

The third routine, CheckCycleCondition, checks whether Ext(S) satisfies the
cycle condition. If it does not, it finds elements that make Ext(S) smaller.

Algorithm 8 CheckCycleCondition

Input: A finite subset S ⊂ PSL2(C)
Output: A new S s.t. Ext(S) is smaller if it did not satisfy the cycle condition
1: Compute every well-defined edge cycle
2: for all g cycle transformation for the edge e do

3: if g 6= ±1 fixes at most one point in e then

4: S ← S ∪ {g, g−1}
5: else if g 6= ±1 fixes every point in e then

6: S ← S ∪ 〈g〉
7: else

8: m← length of the cycle
9: for all 0 < i < m do

10: h← gi . . . g1
11: add h, h−1 to S
12: end for

13: end if

14: end for

15: return S

Remarks 21.

• If we assume that every non-elliptic cycle has length three, then the steps 8–
12 are unnecessary, as in this case the partial cycle transformations at an
edge contained in I(g) ∩ I(h) are g, h = (hg−1)g, 1 = h−1(hg−1)g.

• If we know in advance that the group Γ is torsion-free, then we can omit
the steps 3–6.

• Assuming both, we can omit CheckCycleCondition completely.

Lemma 22. Suppose S ⊂ Γ is a subset of a Kleinian group Γ such that 0 has
a trivial stabilizer in Γ, and suppose there is an element h ∈ Γ \ {±1} and a
point x ∈ Ext(S) such that hx ∈ Ext(S). Then Ext(S ∪ {h, h−1}) Ext(S).

Proof. First suppose that d(x, 0) < d(hx, 0). Then writing x = h−1(hx) = h−1y
we get d(h−1y, 0) < d(y, 0) i.e. y ∈ Int(h). But we also have y ∈ Ext(S) so Ext(S ∪
{h}) Ext(S).

Othewise we have d(hx, 0) ≤ d(x, 0). This means that x ∈ Int(h−1), but
since x ∈ Ext(S) we get Ext(S ∪ {h−1}) Ext(S). �

14

Proposition 23. If Ext(S) does not satisfy the cycle condition, then after applying
Algorithm 8, Ext(S) is strictly smaller.

Proof. Since the cycle transformation at an edge stabilizes it, if the edge is not equal
to a geodesic then the cycle transformation fixes it pointwise and condition (i) is
automatically satisfied. Suppose that there is a cycle for an edge e equal to a
geodesic and that does not satisfy condition (i), and let g be the corresponding
cycle transformation. Then the transformation g is either loxodromic, or elliptic of
order 2 with exactly one fixed point in e. In both cases, Step 4 is executed. In the
first case, since the interior of the isometric sphere of a loxodromic element contains
one of its fixed points and the interior of the isometric sphere of its inverse contains
the other, we have Ext({g, g−1}) ∩ e e so Ext(S ∪ {g, g−1}) Ext(S). In the
second case, the edge e contains exactly one fixed point of g in H3, so we again
have Ext({g}) ∩ e e and we get Ext(S ∪ {g, g−1}) Ext(S).

Now suppose some cycle angle for a non-elliptic cycle is larger than 2π. Then
considering the images P = Ext(S), g−1

1 P, . . . , (gi . . . g1)
−1P of P = Ext(S) that

glue one after another around e, there is an overlap: there exists a point x ∈ P
such that hx ∈ P for some h considered in Step 10. But then after Step 11 we
have Ext(S ∪ {h, h−1}) Ext(S) by Lemma 22. Since the cycle transformation is
the identity, the angle cannot be smaller than 2π.

Finally suppose some cycle angle for an elliptic cycle at an edge e with cycle
transformation g with order ν does not satisfy condition (ii). The cycle has length 1,
so e ⊂ I(g) ∩ I(g−1), and the angle at e is a multiple of 2π

ν . But after Step 6

Ext({g, g−1}) is replaced by the Dirichlet domain of the finite group 〈g〉, which
satisfies the cycle condition, so the new angle at e is equal to 2π

ν . �

The fourth routine, CheckComplete, checks whether Ext(S) is complete. If it is
not, it finds elements that make Ext(S) smaller.

Algorithm 9 CheckComplete

Input: A finite subset S ⊂ PSL2(C)
Output: A new S such that Ext(S) is smaller if it was not complete
1: Compute every tangency vertex cycle
2: for all h tangency vertex transformation do

3: if h 6= 1 is loxodromic then

4: add h, h−1 to S
5: end if

6: end for

7: return S

Remark 24. If we know in advance that the group Γ is cocompact, we can omit
CheckComplete in Algorithm 4 and simply test whether Ext(S) is bounded.

Proposition 25. If Ext(S) is not complete, then after applying Algorithm 8,
Ext(S) is strictly smaller.

Proof. If h is a tangency vertex transformation at z = I(g) ∩ I(g′) ∈ ∂B, then
it fixes z. By looking at the successive images of the polyhedron along the cycle
one sees that I(g′) separates I(g) from h I(g), so h has infinite order. If Ext(S)
is not complete, then h is loxodromic. But then z ∈ Int(h) ∪ Int(h−1) so we
get Ext(S ∪ {h, h−1}) Ext(S). �

Proposition 26. Let Γ be a Kleinian group. The following holds for Algorithm 4
applied to Γ:

15

(i) Suppose the algorithm terminates. Then the output is a normalized basis for Γ.
(ii) Suppose that Γ is geometrically finite and Enumerate is a complete enumera-

tion of Γ. Then the algorithm terminates.

Remark 27. In practise Algorithm 4 runs much faster that the naive Algorithm 3
(see section 3.1.1), but unfortunately we could not prove it. What we believe is that
in Algorithm 4 the blackbox Enumerate only needs to find a set of generators for
the group, and then the other routines find the elements of the normalized basis;
in Algorithm 3 the blackbox Enumerate needs to find directly the elements of the
normalized basis, which is harder. The natural idea would be to put the routines
in a loop that would not contain Enumerate in Algorithm 4, but then it is not clear
whether this internal loop would terminate; actually in general it is false, since Γ
may admit finitely generated subgroups that are not geometrically finite.

Proof.

(i) If the algorithm terminates, then by Theorem 5, since Ext(S) is complete, has
a face-pairing and satisfies the cycle condition, the set S is a normalized basis
for 〈S〉. It is then valid to use IsFullGroup to check that 〈S〉 = Γ.

(ii) The Dirichlet domain centered at 0 for Γ has finitely many faces by geometric
finiteness. Since Enumerate is a complete enumeration, a boundary for this
Dirichlet domain will be enumerated after a finite number of steps. The
algorithm will then terminate as all the conditions are satisfied by the Dirichlet
domain.

�

2.4. Instantiation of the blackboxes.

2.4.1. Enumerate and IsFullgroup for a group given by generators. If the group Γ is
given by a finite set of generators G. We can take for Enumerate the algorithm that
writes every word of length n in the generators, and we can take for IsFullGroup
the algorithm that reduces every element in G with respect to the given normalized
basis S and returns whether every generator reduces to ±1: by Proposition 14, this
is equivalent to Γ ⊂ 〈S〉.
2.4.2. Enumerate and IsFullgroup for an arithmetic group. We provide a possi-
ble instantiation of the blackboxes Enumerate and IsFullgroup for an arithmetic
group Γ(O) attached to a maximal order O in a Kleinian quaternion algebra B
with base field F of degree n.

We describe IsFullgroup first. A subgroup is proper if and only if it has a
(possibly infinite) covolume of at least twice the covolume of Γ (the quotient of the
covolumes is the index of the subgroup). Since Γ comes from a maximal order,
the covolume of Γ is given by (3), which we can compute, and the covolume of a
subgroup can be computed with Algorithm 1 once we have a normalized basis. We
take for IsFullgroup the algorithm that computes the covolume Covol(Γ) by the
formula and the volume V of Ext(S) for the given normalized basis S, and returns
whether V

Covol(Γ) < 2. Since S is a normalized basis for 〈S〉, the polyhedron Ext(S)

is a fundamental domain for 〈S〉 so the volume V equals the covolume of 〈S〉.
We now describe an instantiation of the blackbox Enumerate for the Kleinian

group associated with an order O in B. Under the natural embedding O ⊂ B →֒
B ⊗Q R, the order O is discrete. Now suppose that we have a positive definite
quadratic form Q : B⊗R→ R. Then O becomes a full lattice in a real vector space
of dimension 4n. We can use lattice enumeration algorithms such as the Kannan-
Fincke-Pohst algorithm [FP85, Kan83] to enumerate elements in O that are short
with respect to Q. We can then select the elements having reduced norm 1. As we

16

increase the bound on the values of Q, we will get every element in O×
1 . A priori

any such quadratic form would work, but here we describe one that has a geometric
meaning.

Recall we can embed B in M2(C) so that O×
1 becomes discrete in SL2(C). This

embedding is only defined up to conjugation by an element of PSL2(C). Let ρ be

such an embedding. If B =
(

a,b
F

)
we can take for example

ρ : x+ yi+ zj + tij 7→
(

x+ yα z + tα
(z − tα)β x− yα

)

where σ is a complex embedding of F , β = σ(b) and α is a square root of σ(a).

For m =
(
a b
c d

)
∈M2(C), we define invrad(m) =

∣∣(c+ b̄) + (d− ā)j
∣∣2.

Proposition 28. The quadratic form Q : B ⊗ R→ R defined for all x ∈ B by

Q(x) = invrad(ρ(x)) + trF/Q(nrd(x))

is positive definite and satisfies

Q(x) =
4

rad(ρ(x))2
+ n for all x ∈ O×

1

where rad(g) denotes the Euclidean radius of the isometric sphere of g ∈ SL2(C)
if g · 0 6= 0, and ∞ otherwise.

Proof. We show first that Q is positive definite. For a matrix m ∈ M2(C) we
have invrad(m) = |c + b̄|2 + |d − ā|2 = ‖m‖2 − 2ℜ(detm) where ‖ · ‖ is the usual
L2 norm onM2(C), so that ‖ · ‖2 is a positive definite quadratic form onM2(C).
Since nrd is a positive definite quadratic form on H and we have the decomposi-
tion B ⊗ R ∼=M2(C) ⊕ Hn−2, we can construct a positive definite quadratic form
on B ⊗ R by letting for all x ∈ B ⊗ R

Q(x) = ‖m‖2 + nrd(h1) + · · ·+ nrd(hn−2) = invrad(m) + trF⊗R/R(nrd(x))

where

x = m+ h1 + · · ·+ hn−2 ∈M2(C)⊕Hn−2,

since 2ℜ(detm) + nrd(h1) + · · · + nrd(hn−2) = trF⊗R/R(nrd(x)). This gives the
positive definiteness.

For the formula on O×
1 , note that according to (2), it is

invrad(g) =
∣∣(c+ b̄) + (d− ā)j

∣∣2 =
4

rad(g)2

for g ∈ SL2(C) not fixing 0 in B, and if g fixes 0 then invrad(g) = 0. �

We obtain the following enumeration algorithm, which is a complete enumeration
of Γ(O). It depends on a parameter: a sequence of bounds An →∞.

Algorithm 10 Enumerate

Input: A positive integer n
Output: A finite subset L ⊂ Γ(O)
1: L← ∅
2: for all x ∈ O such that Q(x) ≤ An do

3: if nrd(x) = 1 then

4: Add ρ(x) to L
5: end if

6: end for

7: return L

17

We are now going to present a non-deterministic enumeration algorithm. It is
not a complete enumeration, but performs better in pratice (see section 3.1.2). It
uses variants of the former quadratic form.

Definition 29. Let z1, z2 ∈ H3. Let h1, h2 ∈ SL2(C) be such that z1 = h1 · j
and z2 = h2 · j. We then define the quadratic form Qz1,z2 by

Qz1,z2(x) = invrad(h−1
2 ρ(x)h1) + trF/Q(nrd(x))

for all x ∈ B.

This family of quadratic forms has the following properties.

Proposition 30. Let z1, z2 ∈ H3. Then Qz1,z2 does not depend on the choice
of h1, h2 ∈ SL2(C) such that z1 = h1 · j and z2 = h2 · j. It is positive definite, and
for all g ∈ O×

1 we have

Qz1,z2(g) = 2 coshd(gz1, z2)− 2 + n.

Proof. The matrices h1 and h2 are defined up to right multiplication by SU2(C)
(the stabilizer of the point j). For all matrices m ∈ M2(C) we have invrad(m) =
‖m‖2 − 2ℜ(detm), which is not changed by left and right multiplication of m by
elements of SU2(C), so that Qz1,z2 does not depend on the choice of h1 and h2.

For z1 = z2 = j the formula reads ‖g‖2 = 2 coshd(gj, j) for all g ∈ SL2(C),
which is well-known (and is a direct consequence of the explicit formulas for the
hyperbolic distance). But then for arbitrary z1, z2 ∈ H3 we have

‖h−1
2 gh1‖2 = 2 coshd(h−1

2 gh1j, j) = 2 coshd(gh1j, h2j) = 2 coshd(gz1, z2).

�

This family of quadratic forms is very useful, as it enables us to determine the
elements g ∈ Γ(O) such that gz1 is close to z2. We propose the following non-
deterministic algorithm for enumerating elements in Γ(O). It depends on a choice
of some parameters: an increasing sequence of radii Rn → ∞ (the radius of the
search space), a sequence of positive integers Nn ∈ Z>0 (the number of enumeration
in small balls) and a bound A (bound on the quadratic form used). For w1, w2 ∈ B,
we write Qw1,w2 := Qη−1(w1),η−1(w2).

Algorithm 11 Enumerate’

Input: An positive integer n
Output: A finite subset L ⊂ Γ(O)
1: L← ∅
2: for i = 1 to Nn do

3: Draw a point w ∈ B such that d(0, w) ≤ Rn randomly, uniformly w.r.t. the
hyperbolic volume

4: for all x ∈ O such that Q0,w(x) ≤ A do

5: if nrd(x) = 1 then

6: Add ρ(x) to L
7: end if

8: end for

9: end for

10: return L

Remarks 31.

• We can also use these quadratic forms differently: if we miss an element of
the group to “close off” the exterior domain around a point at infinity ξ,
we can look for elements of small Qj,z where z → ξ. This is a similar idea

18

as in Remark 4.9 in [Voi09], but the quadratic form that was used there is
the analogue of Qz,z. If g is the element that we are looking for, d(gz, z)
is bounded by below by a positive constant if g is loxodromic (which is the
generic case), while d(gj, z)→ 0 as z → gj.

• The efficiency of this algorithm depends on the choice of the parametersNn,
Rn and A. Heuristics led us to the following choice, which works well in
practise:

– we use a small bound A = α · |∆FN(∆B)|
1

4[F :Q] so that the number
of x ∈ O such that Q0,w(x) ≤ A is approximately constant by Gaussian
heuristic;

– experimental evidence and [BGLS10, Theorem 1.5] suggest that a num-
ber of random elements of Γ proportional to Covol(Γ) has a good prob-
ability to generate Γ, and by Gaussian heuristic one needs O(Covol(Γ))
random centers to obtain one element of the group on average, so we
choose N0 = β ·Covol(Γ)2, and we increase it exponentially fast: Nn =
(1 + η)nN0;

– the radius Rn has to be large enough to ensure good randomness of the
elements of Γ, so we choose R0 such that Vol(B(w,R0)) = Covol(Γ)γ

and we increase it in arithmetic progression (so the volume increases
exponentially fast): Rn = R0 + ǫ · n. Because of our choice of Nn we
take γ > 2.

Now we explain how we draw points at random in the ball B(0, R) of radius R.
Since the hyperbolic volume is invariant by rotation around 0, it is equivalent to
draw a random point uniformly on the sphere, and then multiply it by an appro-
priate random scalar independent from the point on the sphere. Thus we only have
to determine the distribution of the distance from 0 of the points in the ball of
radius R. Let X be a random variable with uniform distribution in B(0, R). The
cumulative distribution function of the distance to 0 is

fR(r) := PX(d(X, 0) ≤ r) = Vol(B(0, r))

Vol(B(0, R))
.

Recall that we have v(r) := Vol(B(0, r)) = π(sinh(2r) − 2r). It is then clear that
the function fR : [0, R]→ [0, 1] is a continuous bijection. It implies that d(0, X) =
f−1
R (U) where U is a uniform random variable in [0, 1]. We rewrite that expression
as d(0, X) = v−1(U ′) where U ′ is a uniform variable in [0, v(R)]. It is well-known
how to draw a uniform variable in an interval and on a sphere, and v−1 can be
computed by Newton iteration.

2.5. Floating-point implementation. Here we describe a floating-point imple-
mentation of the above algorithms. We start with a lemma giving us control on the
error made when having an element of the group act on a point. We only study
the stability of the algorithm, so we do not take into account the error made by
rounding in elementary operations.

Lemma 32. Let g ∈ SL2(C), g̃ ∈ M2(C) and w, w̃ ∈ B. Let ǫ = |w−w̃|, η = ‖g−g̃‖
and δ = 1

1−|w|2 . Suppose that (‖g‖ǫ+2η)2 ≤ 1
3δ . Then the quantity g̃w obtained by

applying Formula (1) to g̃ and w̃ is well-defined, and we have

|g · w − g̃w| ≤ 68 δ
3
2 ‖g‖3ǫ+ 136 δ

3
2 ‖g‖2η.

Proof. By direct computation we have |A − Ã| ≤
√
2η and |A| ≤

√
2‖g‖, and the

same inequalities for B,C,D. We write

g · w = (Aw +B)(Cw +D)−1 =
1

|Cw +D|2 (Aw +B)(wC +D)

19

and similarly for g̃, w̃. Another direct computation gives

(4) |w|2 − |g · w|2 =

(
1− 4

|Cw +D|2
)
(|w|2 − 1)

which shows that
1

|Cw +D|2 ≤
1

4
(1 + 2δ) ≤ 3

4
δ and

4

3δ
≤ |Cw +D|2.

By the triangle inequality, adding and substracting Aw̃ gives

|Aw − Ãw̃| ≤
√
2‖g‖ǫ+

√
2η

and the same inequality for Cw. We get

|(Cw +D)− (C̃w̃ + D̃)|2 ≤ 2(‖g‖ǫ+ 2η)2 ≤ |Cw +D|2
2

since by hypothesis we have (‖g‖ǫ+ 2η)2 ≤ 1
3δ . In particular C̃w̃ + D̃ 6= 0 and g̃w

is well-defined. By the mean value theorem this gives

||Cw +D|−2 − |C̃w̃ + D̃|−2| ≤ (6δ)
3
2 (‖g‖ǫ+ 2η)

We also get

|(Aw +B)(wC +D)− (Ãw̃ + B̃)(w̃C̃ + D̃)|
≤ |Aw +B|(

√
2‖g‖ǫ+ 2

√
2η) + 2|Cw +D|(

√
2‖g‖ǫ+ 2

√
2η)

≤ (2
√
2‖g‖)(

√
2‖g‖ǫ+ 2

√
2η) + (2

√
2‖g‖)(2

√
2‖g‖ǫ+ 4

√
2η)

= 12‖g‖2ǫ+ 24‖g‖η.
Finally we have

|(Aw +B)(Cw +D)−1 − (Ãw̃ + B̃)(C̃w̃ + D̃)−1|
≤ |g · w||Cw +D|2(6δ) 3

2 (‖g‖ǫ+ 2η) + 2
|Cw+D|2 (12‖g‖2ǫ+ 24‖g‖η)

≤ (24
√
6 + 9)δ

3
2 ‖g‖3ǫ+ (48

√
6 + 18)δ

3
2 ‖g‖2η

≤ 68 δ
3
2 ‖g‖3ǫ+ 136 δ

3
2 ‖g‖2η

as claimed. �

In the following, we want to always have (‖g‖ǫ+ 2η)2 ≤ 1
3δ for every element g

and every point w considered, where ǫ is the imprecision on the points in B, η the
imprecision on the elements g considered, and η = 8

3ǫ.
We now describe the modification of the algorithms for the floating-point version.

In the reduction algorithm (Algorithm 2), we choose α > 0 and in Step 6 we replace
the inequality d(gw′, 0) ≥ d(w′, 0) by 4

|Cw′+D|2 ≤ 1 + α. Since we have w′ ∈ Int(g)

if and only if |Cw′ +D|2 < 4, the modified condition is indeed an approximation
of the exact condition.

Proposition 33. Let β = α− 68 δ
5
2M3ǫ− 136 δ

5
2M2η where δ = 1

1−|w|2 and M =

maxg∈S ‖g‖. If β > 0, then the floating-point version of the reduction algorithm
terminates.

Proof. Formula (4) may be rewritten

1− |g · w|2 =
4

|Cw +D|2 (1− |w|
2)

which gives, if the modified condition of Step 6 is not satisfied

1− |g · w′|2 ≥ (1 + α)(1 − |w′|2).
Lemma 32 gives

1− |g̃w′|2 ≥ (1 + β)(1 − |w′|2),
20

so that 1− |w′|2 is multiplied by 1+ β at each step of the algorithm. Since we also
have 1− |w′|2 ≤ 1, the algorithm terminates. �

We want to use a uniform α which tends to 0 as ǫ → 0. For this, we assume
that we only consider points w such that 1 − |w|2 ≥ 2ǫ

2
9 and elements g such

that ‖g‖ ≤ ǫ−
1
9 . Assuming that ǫ < 10−9 we can then take α = 18ǫ

1
9 . These

assumptions also ensure that (‖g‖ǫ + 2η)2 ≤ 1
3δ , and are compatible since the

points g · 0 that we have to consider satisfy 1− |g · 0|2 = 4
‖g‖2+2 ≥ 2

‖g‖2 ≥ 2ǫ
2
9 .

There is no change in KeepSameGroup (Algorithm 5) : the same argument shows
that the algorithm terminates, regardless of finite precision in the computations.

The routine CheckPairing (Algorithm 6) should only consider an edge e con-
tained in I(g) as not being paired if there is x ∈ e and we have the stronger
inequality |Cg̃x + D|2 < 4

1+α and C,D correspond to h for some h ∈ S. This
ensures that the floating-point reduction will yield a non-trivial element, since at
least one step of reduction will be performed.

The routines CheckCycleCondition (Algorithm 8) and CheckComplete (Algo-
rithm 9) contain only finite loops regardless of the use of finite precision, so there
is no change in them.

Proposition 34. The floating-point version of the Normalized basis algorithm (Al-
gorithm 4) terminates.

Proof. By the arguments above, each of the routines terminates. Moreover, because

of precision restriction we impose ‖g‖ ≤ ǫ−
1
9 for every element g of the group

considered in the algorithm, so that only finitely many g can be used. So the
algorithm terminates. �

Of course if the precision chosen is insufficient, the algorithm may terminate
with an error or a wrong answer, but with Riley’s methods [Ril83], we we can use
Poincaré’s theorem with the approximate fundamental domain to prove that the
computed presentation is correct. Alternatively, we could check the fundamental
domain algebraically, but this is likely to be time-consuming.

21

2.6. Master algorithm. As a summary, this is our master algorithm for comput-
ing an arithmetic Kleinian group associated with a maximal order.

Algorithm 12 Master algorithm

Input: A maximal order O in a Kleinian quaternion algebra B
Output: A finitely presented group G, and two computable group homomor-

phism φ : G→ Γ(O) and ψ : Γ(O)→ G, inverse of each other
1: Choose an embedding ρ : B →֒ M2(C) s.t. the point 0 has trivial stabilizer in

the group Γ(O) = ρ(O×
1)/{±1}

2: V ← Covol(Γ(O)) computed with Formula (3)
3: function IsFullGroup(S) do
4: compute V ′ = Vol(Ext(S)) with Algorithm 1
5: return V ′ < 2V
6: end function

7: Enumerate ← Algorithm 10 or Algorithm 11
8: S ← output of the Normalized Basis Algorithm 4
9: R← inverse, cycle and reflection relations from Theorem 3

10: G← 〈S|R〉
11: Let φ : G→ Γ(O) be the map that evaluates words in the generators
12: Let ψ : Γ(O)→ G be the map that writes elements as words in the generators

using Algorithm 2
13: return G,φ, ψ

Remarks 35.

• If we want to compute the group that is the image of a smaller order, or
more generally a finite index subgroup Γ′ of the group Γ given by a maximal
order, we can compute first a normalized basis for the larger group Γ, and
then compute the index by standard coset enumeration techniques. This
gives the covolume of the smaller group, and even a set of generators for it,
so we can then apply the same algorithm that is described here.

• We may also want to compute a maximal group Γ′′ in the commensurability
class of Γ as described in [Bor81]. Since it is the image in PSL2(C) of
the normalizer of O in B, we may use the same enumeration techniques.
The index is given in terms of a class group and a finite quotient of units
in ZF (see [Bor81] for details), which can be computed, so again we get the
covolume of this larger group, and can apply the same technique.

3. Examples

The author has implemented the algorithm described in the previous section in
the computer systemMagma [BCP97]. Our package KleinianGroups is available at
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html.
Here we show some examples of the output of this code. In sections 3.1 and 3.2, the
computations are performed on a 1.73 GHz Intel i7 processor with Magma v2.18-4.
The more extensive computations of sections 3.3 and 3.4 are run on a 2.5 GHz Intel
Xeon E5420 processor with Magma v2.17-12.

3.1. Comparison between subalgorithms.

3.1.1. Comparison between the normalized basis algorithms. Consider the ATR sex-
tic field F of discriminant −92779 generated by an element t such that t6 − t5 −
2t4+3t3−t2−2t+1 = 0, and let ZF be its ring of integers. Let B =

(−1,−1
F

)
be the

quaternion algebra ramified only at the real places of F . Let O be a maximal order
22

http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

in B (they are all conjugate). The Kleinian group Γ(O) has covolume 0.3007
We compare our algorithm with the naive Algorithm 3. Both need a precomputa-
tion of 3 seconds for the computation of the coefficients of the Lobachevsky power
series and 4 seconds for the evaluation of the Dedekind zeta function at 2. Our
algorithm then computes a Dirichlet domain in 2 seconds, and enumerates 37 ele-
ments of O, yielding 21 elements of Γ(O). The naive algorithm (actually we only
removed the routine CheckPairing) computes the same Dirichlet domain in 48 sec-
onds and has to enumerate 16 246 elements of O, yielding 1713 elements of Γ(O).
The fundamental domain (Figure 3.1) has 18 faces and 42 edges.

Figure 3.1. Dirichlet domain of a Kleinian group over a sextic field

3.1.2. Comparison between the enumeration algorithms. Consider the ATR number
field F of degree 8 and discriminant −407793664, generated by an element t such
that t8−4t7+4t6+2t5−8t4+4t3+5t2−2t−1 = 0, and let ZF be its ring of integers.
Let B =

(−1,−1
F

)
be the quaternion algebra ramified only at the real places of F .

Let O be a maximal order in B (they are all conjugate). The Kleinian group Γ(O)
has covolume 56.509 We compare the performance of our algorithm when
using the enumeration algorithms 10 or 11. With the deterministic enumeration
algorithm 10, our code computes a fundamental domain in 12 hours and 45 minutes
(45943 seconds, most of which is enumeration), and enumerates 84 159 799 vectors,
yielding 1600 group elements. With the probabilistic enumeration algorithm 11,
our code computes the same Dirichlet domain in 71 seconds, and only needs to
enumerate 3511 vectors, yielding 164 group elements. It spends 2 seconds for com-
puting the value of the zeta function, 16 seconds for enumeration, 3 seconds for the
routine KeepSameGroup, 40 for CheckPairing and 10 for computing the volume of
the polyhedron. The fundamental domain (Figure 3.2) has 202 faces and 582 edges.

3.2. Relation to previous work. In this section we show how to recover exam-
ples covered by earlier work with our algorithm. When available, we provide a
comparison of running times between public implementations and our code. One
should keep in mind that these are only comparisons of implementations since the
complexity of the algorithms is usually unknown.

23

Figure 3.2. Dirichlet domain of a Kleinian group over an octic field

3.2.1. Bianchi groups. Let F be an imaginary quadratic field with ring of inte-
gers ZF . Consider the quaternion algebra B = M2(F) and the maximal or-
der O = M2(ZF). Then the group Γ(O) = PSL2(ZF) is called a Bianchi group.
There exists already several programs computing fundamental domains for these
groups [Rah10, Yas10] but they only work for Bianchi groups while ours deals
with general arithmetic Kleinian groups. Table 3.1 gives the running time (in
seconds) of our Magma package and other public implementations. The first
three columns correspond to the discriminant of the field, its class number and
the covolume of PSL2(ZF). The last four columns display runnig times in sec-
onds : Bianchi.gp [Rah10] in GP [The11] which implements Swan’s algorithm
for PSL2(ZF), our code KleinianGroups computing PSL2(ZF), the code pro-
vided by Magma implementing the algorithm of [Yas10] using Voronöı theory
for PGL2(ZF), and our code for PGL2(ZF). Note that it is not surprising that
computing PGL2(ZF) is faster : the group is larger by an index 2, so the covolume
is twice smaller and our computation is 4 times shorter (see also section 3.4).

3.2.2. Arithmetic Fuchsian groups. Let F be a totally real field and B a quaternion
algebra ramified at every infinite place but one. Let O be an order in B. Then the
group Γ(O) = O×

1 /{±1} embeds into PSL2(R), in which it is discrete with finite
covolume: it is an arithmetic Fuchsian group. Using the action of PSL2(R) on
the upper half-plane J. Voight [Voi09] was able to compute fundamental domains
for these groups. Since we have PSL2(R) ⊂ PSL2(C), a Fuchsian group can be
seen as a Kleinian group leaving a geodesic plane stable. Using this we can also
compute arithmetic Fuchsian groups with our code. Our probabilistic enumeration
Algorithm 11 leads to an improvement in high degree. As an example, consider the
totally real field F with discriminant 9685993193, generated by an element t such

that t9 − 2t8 − 7t7 + 11t6 + 15t5 − 15t4 − 10t3 + 7t2 + 2t − 1 = 0. Let B =
(

a,b
F

)

with a = −3t8 + 2t7 + 30t6 − 8t5 − 93t4 + 90t2 + 2t − 26 and b = −1, which is
24

∆F hF volume Bianchi KG, PSL2 Magma KG, PGL2

−3 1 0.169 0.015 0.93 0.43 0.83
−15 2 3.139 0.152 0.92 0.8 2.32
−23 3 6.449 0.176 1.22 1.11 2.06
−39 4 13.80 2.37 9.44 3.05 4.36
−47 5 19.43 3.83 19.9 5.33 6.96
−71 7 37.53 21.6 36.6 17.8 13.2
−87 6 44.72 25.7 45.1 17.3 16.4
−95 8 57.06 41.4 43.8 33.9 19.3
−119 10 82.93 7080. 137. 99.5 25.6
−167 11 132.3 1545. 391. 188. 80.9
−199 9 148.5 3840. 393. 224. 92.7

Table 3.1. Running times for Bianchi groups

ramified at every real place but one. Let O be a maximal order in B. The Fuch-
sian group Γ(O) has coarea 103.67 . . . ; our code computes a fundamental domain
for this group in 13 minutes (735 seconds). The code provided by Magma and
implementing the algorithm of [Voi09] computes a fundamental domain for Γ(O)
in 1 hour and 10 minutes (4204 seconds).

3.2.3. The Hamiltonians over Z
[
1+

√
−7

2

]
. Consider the field F = Q(

√
−7) and the

quaternion division algebra
(−1,−1

F

)
. Then O = ZF + ZF i + ZF j + ZF ij is a

non-maximal order in B. A fundamental domain for this group was computed by
C. Corrales, E. Jespers, G. Leal and Á. del Rı́o in [CJLdR04]. Using the method
of Remark 35, our code can compute a fundamental domain for the group Γ(O).
It computes first a maximal order O′ ⊃ O, and a fundamental domain for Γ(O′)
(having covolume 0.8889 . . .). By coset enumeration, it finds that Γ(O) has index 9
in the larger group, and computes a fundamental domain for the initial group Γ(O).
The overall computation takes 15 seconds.

3.3. A larger example. Consider the ATR field F generated by an element t
such that t10 + 4t9 − 18t7 − 27t6 + 26t5 + 57t4 − 2t3 − 33t2 − 10t+ 1 = 0, having

discriminant −546829505431 ≃ −5.5 1011. Let B be the quaternion algebra
(

a,b
F

)

where a = 1
2 (−25t9 − 82t8 + 61t7 + 404t6 + 376t5 − 932t4 − 718t3 + 590t2 + 368t−

33) and b = −1, which is ramified exactly at the real places of F . Let O be a
maximal order in B. The group Γ(O) has covolume 1783.7 Our code computes
a fundamental domain for this group in 23 hours and 39 minutes (85150 seconds).
It spends 5.3% of the time for enumeration, 5.8% for the routine KeepSameGroup,
87.7% for CheckPairing and 1.3% for computing the volume of the polyhedron. The
fundamental domain has 5434 faces and 16252 edges.

3.4. Efficiency of the algorithm. According to geometers, the parameter encod-
ing the complexity of an arithmetic Kleinian group is the covolume. In practise it
is simpler to vary the discriminant of the base field (and hence the degree) and the
norm of the discriminant of the quaternion algebra. It seems hard to estimate the
running time of the algorithm in terms of these parameters. First, we do not know
any bound on the radii of the isometric spheres containing the faces of the Dirichlet
domain, or of generators of the group, so we do not know how many elements we
have to enumerate. Then, even if we have generators of the group, we do not know
how long the normalized basis algorithm could run before terminating (see also
Remark 27).

25

Figure 3.3. Running time of the algorithm

We present some numerical data obtained in a family. Since the running time
increases very quickly with the discriminant of the field, we fixed the base field and
varied the discriminant of the algebra. The field we chose is the ATR cubic field of
discriminant −23. We computed groups Γ(O) for every algebra with discriminant
less than 10 000, and one algebra every ten with discriminant less than 15 000.

Analysis of this data shows that the running time is approximately proportional
to the square of the covolume, with a few exceptionnally slow computations. We
explain this as follows: in almost all cases, the enumeration appears to take neg-
ligible time, and the longest part is the computation of the fundamental domain
itself; moreover the data (Figure 3.4) seem to indicate that the number of faces is
proportional to the covolume (we have such a lower bound since the volume of a
hyperbolic tetrahedron is bounded by 3L(π3)), and we know that our algorithm to
compute the domain given the faces is quadratic.

Figure 3.4. Number of faces of the Dirichlet domains

26

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[BGLS10] Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky, and Aner Shalev.
Counting arithmetic lattices and surfaces. Ann. of Math. (2), 172(3):2197–2221, 2010.

[Bor81] A. Borel. Commensurability classes and volumes of hyperbolic 3-manifolds. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(1):1–33, 1981.

[CFJR01] Ted Chinburg, Eduardo Friedman, Kerry N. Jones, and Alan W. Reid. The arithmetic
hyperbolic 3-manifold of smallest volume. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),
30(1):1–40, 2001.

[CJLdR04] Capi Corrales, Eric Jespers, Guilherme Leal, and Angel del Ŕıo. Presentations of the
unit group of an order in a non-split quaternion algebra. Adv. Math., 186(2):498–524,
2004.

[FP85] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comp., 44(170):463–471, 1985.

[Fra98] Jens Franke. Harmonic analysis in weighted L2-spaces. Ann. Sci. École Norm. Sup.
(4), 31(2):181–279, 1998.

[JL70] H. Jacquet and R. P. Langlands. Automorphic forms on GL(2). Lecture Notes in
Mathematics, Vol. 114. Springer-Verlag, Berlin, 1970.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the fifteenth annual ACM symposium on Theory of computing,
STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM.

[Lip02] M. Lipyanskiy. A computer-assisted application of Poincaré’s fundamental polyhedron
theorem. Preprint, 2002.

[Mas71] Bernard Maskit. On Poincaré’s theorem for fundamental polygons. Advances in Math.,
7:219–230, 1971.

[MR03] Colin Maclachlan and AlanW. Reid. The arithmetic of hyperbolic 3-manifolds, volume
219 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.

[Pag10] Aurel Page. Computing fundamental domains for arithmetic Kleinian groups. Master’s
thesis, Université Paris 7, August 2010.

[Rah10] Alexander Rahm. (Co)homologies et K-théorie de groupes de Bianchi par des modèles
géométriques calculatoires. Phd thesis, Université Joseph-Fourier - Grenoble I, Octo-
ber 2010.

[Rat06] John G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate Texts
in Mathematics. Springer, New York, second edition, 2006.

[Ril83] Robert Riley. Applications of a computer implementation of Poincaré’s theorem on
fundamental polyhedra. Math. Comp., 40(162):607–632, 1983.

[Swa71] Richard G. Swan. Generators and relations for certain special linear groups. Advances
in Math., 6:1–77 (1971), 1971.

[The11] The PARI Group, Bordeaux. PARI/GP, version 2.6.0, 2011. available from
http://pari.math.u-bordeaux.fr/.

[Vig80] Marie-France Vignéras. Arithmétique des algèbres de quaternions, volume 800 of Lec-
ture Notes in Mathematics. Springer, Berlin, 1980.

[Voi09] John Voight. Computing fundamental domains for Fuchsian groups. J. Théor. Nom-
bres Bordeaux, 21(2):469–491, 2009.

[Yas10] Dan Yasaki. Hyperbolic tessellations associated to Bianchi groups. In Algorithmic
number theory, volume 6197 of Lecture Notes in Comput. Sci., pages 385–396.
Springer, Berlin, 2010.

27

http://pari.math.u-bordeaux.fr/

	Introduction
	1. Arithmetic Kleinian groups
	1.1. Hyperbolic geometry
	1.2. The unit ball model
	1.3. The Lobachevsky function and volumes of tetrahedra
	1.4. Kleinian groups, Dirichlet domains and exterior domains
	1.5. Quaternion algebras and arithmetic Kleinian groups

	2. Algorithms
	2.1. Algorithms for polyhedra in the hyperbolic 3-space
	2.2. The reduction algorithm
	2.3. Normalized basis algorithms
	2.4. Instantiation of the blackboxes
	2.5. Floating-point implementation
	2.6. Master algorithm

	3. Examples
	3.1. Comparison between subalgorithms
	3.2. Relation to previous work
	3.3. A larger example
	3.4. Efficiency of the algorithm

	References

