Introduction	Implementation	Materials	Results	Conclusions

Optimal Control by Transmit Frequency in Tissue Harmonic Imaging

Sébastien Ménigot and Jean-Marc Girault

Université François Rabelais de Tours Inserm U930 - *Imaging and Brain* Team 5 - *Imaging and Ultrasound* Tours, France

April 26th, 2012

Introduction	Implementation	Materials	Results 00000	Conclusions
Outline				

Introduction

- Ultrasound Imaging System
- Ultrasound Second Harmonic Imaging
- Problematic

(2) Implementation of the Closed Loop System

- Cost Function
- Algorithm

Materials

Results

- Simulation
- Experiment
- 6 Conclusions & Prospects

Introduction	Implementation	Materials	Results	Conclusions

Introduction

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012 @000

3

Introduction	Implementation	Materials	Results	Conclusions
	00		00000	
Ultrasound Imaging Syster	1			
and the second				

Ultrasound Imaging System

Introduction ●○○○	Implementation	Materials	Results	Conclusions
Ultrasound Imaging System	1			
	_			

Ultrasound Imaging System

Introduction	Implementation	Materials	Results	Conclusions
000				
Ultrasound Imaging System				

Ultrasound Imaging System

Introduction	Implementation	Materials	Results	Conclusions
0000				
Problematic				
\ <u>\</u> / <u> </u>	le est for a second			

What is the best frequency ?

How to choose the transmit frequency f_0 ?

- Advice : 2/3*f_c* with *f_c* = central frequency of the transducer
- Is it optimal ?

Ménigot & Girault (Tours, France)

э

6 / 21

イロト イポト イヨト イヨト

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

Introduction	Implementation	Materials	Results	Conclusions

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012 @000

Introduction	Implementation	Materials	Results	Conclusions

Setting of Iterative Optimization

- Choice of the Cost Function $J(\theta)$
- ② Choice of the parameters heta
- Choice of the optimization algorithm

_ ∢ ≣ →

Introduction	Implementation	Materials	Results	Conclusions

Setting of Iterative Optimization

- Choice of the Cost Function $J(\theta)$
- 2 Choice of the parameters θ

Choice of the optimization algorithm

Introduction	Implementation	Materials	Results	Conclusions

Setting of Iterative Optimization

- Choice of the Cost Function $J(\theta)$
- 2 Choice of the parameters θ
- S Choice of the optimization algorithm

Introduction	Implementation	Materials	Results	Conclusions

Setting of Iterative Optimization

- Choice of the Cost Function $J(\theta)$
- **2** Choice of the parameters $\theta \rightarrow \text{Transmit frequency } f_0$
- Ochoice of the optimization algorithm

Introduction	Implementation	Materials	Results	Conclusions
	•0			
Cost Function				
Find the Cost	Function f	or the Goal		

Goal

Maximize the mean contrast in the whole image

① Choice of the Cost Function

- Maximize nonlinear behavior
- Minimize linear behavior
- Cost Function "Contrast Harmonic to Fundamental Ratio" :

 $CHFR(f_0) = \frac{\text{Second Harmonic Power}}{\text{Fundamental Power}}$

Constraint : constant transmitted power

0000

Introduction	Implementation ●○	Materials	Results 00000	Conclusions
Cost Function				
Find the Cost	Function for t	the Goal		

Goal

Maximize the mean contrast in the whole image

1 Choice of the Cost Function

- Maximize nonlinear behavior
- Minimize linear behavior
- Cost Function "Contrast Harmonic to Fundamental Ratio" :

 $CHFR(f_0) = rac{\text{Second Harmonic Power}}{\text{Fundamental Power}}$

Constraint : constant transmitted power

@ • • • •

Introduction	Implementation ●○	Materials	Results	Conclusions
Cost Function				
Find the Cost	Function	for the Goal		
Goal				

Maximize the mean contrast in the whole image

1 Choice of the Cost Function

- Maximize nonlinear behavior
- Minimize linear behavior

• Cost Function "Contrast Harmonic to Fundamental Ratio" :

 $CHFR(f_0) = rac{\text{Second Harmonic Power}}{\text{Fundamental Power}}$

Constraint : constant transmitted power

@ • • • •

Introduction	Implementation ●○	Materials	Results	Conclusions
Cost Function				
Find the Co	ost Eurotion for	the Cool		

Goal

Maximize the mean contrast in the whole image

1 Choice of the Cost Function

- Maximize nonlinear behavior
- Minimize linear behavior
- Cost Function "Contrast Harmonic to Fundamental Ratio" :

 $CHFR(f_0) = \frac{\text{Second Harmonic Power}}{\text{Fundamental Power}}$

• Constraint : constant transmitted power

@080

Introduction	Implementation	Materials	Results	Conclusions
	0			
Cost Function				
Find the C	ost Function for	r the Goal		

Goal

Maximize the mean contrast in the whole image

1 Choice of the Cost Function

- Maximize nonlinear behavior
- Minimize linear behavior
- Cost Function "Contrast Harmonic to Fundamental Ratio" :

 $CHFR(f_0) = \frac{\text{Second Harmonic Power}}{\text{Fundamental Power}}$

• Constraint : constant transmitted power

@ • • • •

Introduction	Implementation ○●	Materials	Results 00000	Conclusions
Algorithm				
Algorithm				

(日) (문) (문) (문) (문)

0000

Introduction	Implementation ○●	Materials	Results	Conclusions
Algorithm				
Algorithm				

æ

Introduction	Implementation	Materials	Results	Conclusions
	00			
Algorithm				
Algorithm				

Introduction	Implementation	Materials	Results	Conclusions
	00			
Algorithm				
Algorithm				

3 Algorithm and Principle

- Method of Gradient
- Seek the maximum by "going up the descent"

$$f_{k+1} = f_k + \alpha_k \cdot \nabla CHFR(f_k)$$

Introduction	Implementation	Materials	Results	Conclusions

Materials

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

0000

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4$ MHz (Vermon SA, Tours, France)
- Phantom with hyperechoic target

(CIRS, Norfolk, VA, USA)

Simulation

- Transducer centred at $f_c = 3.5$ MHz
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
- Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

0000

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4 \text{ MHz}$

(Vermon SA, Tours, France)

 Phantom with hyperechoic target
(CIRS_Norfalk_VA_USA)

Simulation

- Transducer centred at $f_c = 3.5$ MHz
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
- Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012 @000

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4$ MHz

(Vermon SA, Tours, France)

• Phantom with hyperechoic target

(CIRS, Norfolk, VA, USA)

Simulation

- Transducer centred at $f_c = 3.5$ MHz
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
- Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

0000

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4$ MHz

(Vermon SA, Tours, France)

• Phantom with hyperechoic target

(CIRS, Norfolk, VA, USA)

Simulation

- Transducer centred at $f_c = 3.5$ MHz
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
- Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012 @000

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4$ MHz

(Vermon SA, Tours, France)

• Phantom with hyperechoic target

(CIRS, Norfolk, VA, USA)

April 26th, 2012

@ØØ@

13 / 21

Simulation

- Transducer centred at $f_c = 3.5 \text{ MHz}$
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
 - Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

Introduction	Implementation	Materials	Results 00000	Conclusions

Experiment

- "Open" Ultrasound Scanner (MultiX WM, M2M, Les Ulis, France)
- Probe centred at $f_c = 4$ MHz

(Vermon SA, Tours, France)

• Phantom with hyperechoic target

(CIRS, Norfolk, VA, USA)

April 26th, 2012

0000

13 / 21

Simulation

- Transducer centred at $f_c = 3.5$ MHz
- Nonlinear propagation: pseudo-spectral method [Anderson, 2000]
- Tissue with a blood vessel

Ménigot & Girault (Tours, France)

Optimal Control in THI

Introduction	Implementation	Materials	Results	Conclusions

Results

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

→ Ξ →

0000

14 / 21

Introduction	Implementation	Materials	Results ●0000	Conclusions
Simulation				

Simulation: Empirical Optimization

Introduction	Implementation	Materials	Results	Conclusions
			● 00 00	
Simulation				

Simulation: Empirical Optimization

Introduction	Implementation	Materials	Results	Conclusions
			0000	
Simulation				

Simulation: Automatic Optimization

Introduction	Implementation	Materials	Results 00●00	Conclusions
Simulation				
Circulation C	·	ata tanàna amin		

Simulation: Synthetic Harmonic Images

Introduction	Implementation	Materials	Results ○○●○○	Conclusions
Simulation				
<u><u> </u></u>	C 1 1 1			

Simulation: Synthetic Harmonic Images

April 26th, 2012 ©000

Introduction	Implementation	Materials	Results ○○○●○	Conclusions
Experiment				
Experiment:	Automatic Opti	nization		

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012 @080

Introduction	Implementation	Materials	Results ○○○○●	Conclusions
Experiment				
Experiment:	Harmonic Ima	iges		

э

Introduction	Implementation	Materials	Results ○○○○●	Conclusions
Experiment				
- · · · ·				

Experiment: Harmonic Images

Introduction	Implementation	Materials	Results	Conclusions

Conclusion & Prospects

Ménigot & Girault (Tours, France)

Optimal Control in THI

April 26th, 2012

0000

Introduction	Implementation	Materials	Results	Conclusions
Conclusion &	Prospects			

• Automatic optimization of the contrast (CHFR)

- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

@ • • • •

Introduction	Implementation	Materials	Results	Conclusions
Conclusion &	Prospects			

• Automatic optimization of the contrast (CHFR)

- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

@ • • • •

Introduction	Implementation	Materials	Results	Conclusions
Conclusion &	Prospects			

- Automatic optimization of the contrast (CHFR)
- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

Introduction	Implementation	Materials	Results	Conclusions
Conclusion &	Prospects			

- Automatic optimization of the contrast (CHFR)
- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

Introduction	Implementation	Materials	Results 00000	Conclusions
Conclusion &	Prospects			

- Automatic optimization of the contrast (CHFR)
- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

Introduction	Implementation	Materials	Results 00000	Conclusions
Conclusion &	Prospects			

- Automatic optimization of the contrast (CHFR)
- Adapt itself to optimize the contrast
- Setting without knowlegde of medium or transducer
- Gain of around 5 dB with our closed-loop system
- Prospects: application to another harmonic imaging methods

Introduction 0000	Implementation	Materials	Results 00000	Conclusions
Conclusion &	Prospects			

Thank you for your attention

sebastien.menigot@univ-tours.fr jean-marc.girault@univ-tours.fr

April 26th, 2012

Institut national de la santé et de la recherche médicale

@080

21 / 21

Optimal Control in THI