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Optimal Control by Transmit Frequency in Tissue Harmonic Imaging

Sébastien Ménigot and Jean-Marc Girault

April 26, 2012

Ultrasound imaging systems usually work in open loop. The system control is thus a sine wave whose frequency is

often fixed around two-thirds of the center frequency of the transducer in tissue harmonic imaging. However, this

choice requires a knowledge of the transducer and does not take into account the medium properties. Our aim is to

seek the command which maximizes the tissue harmonic contrast. We proposed an iterative optimization algorithm

that automatically saught for the optimal frequency of the command. Both experimentally and in simulation, its

value did not correspond to the usual value. The contrast can be improved by 5 dB. By providing a closed loop

system, the system automatically proposes the optimal control without any a priori knowledge of the system or of

the medium explored.

1 Introduction

Over the past twenty years, improvements in sensitivity

of medical ultrasound imaging systems have provided more

accurate medical diagnoses. Microbubble contrast agents has

been introduced in the early 90’s. Initially, the linear inter-

actions between the microbubbles and the ultrasound waves

were only operated in B-mode, to increase the contrast be-

tween the tissue and the microbubbles. However, the use

of ultrasound contrast imaging was revolutionized in clini-

cal practice when the nonlinear interaction was taken into

account [1]. This revolution was so important that the tis-

sue imaging used this principle [2] and actual commercial

ultrasound scanner propose the tissue harmonic imaging by

default.

However, obtaining an ideal method has been limited by

a good separation of the harmonic components. This good

seperation requires a limited pulse bandwidth, which reduces

the axial resolution as in second harmonic imaging [3]. Sev-

eral imaging methods have been proposed to improve con-

trast and/or resolution. Some best-known techniques have

been only based on post-processings, such as second har-

monic imaging [3], third harmonic imaging [4]. Some tech-

niques have been based on post-processings with discrete

or continuous encoding. This encoding can be applied to

the amplitude, phase or frequency of the ultrasound wave

transmitted, such as pulse inversion [5, 6], power modula-

tion [7, 3] and chirp imaging [8, 9].

For optimally using these methods, the setting parame-

ters must be correctly adjusted. Unfortunately, up to now,

no optimization process, which can provides the best con-

trast, the best resolution or the best compromise between

contrast and resolution, exists. Indeed, the problem solu-

tion often requires inaccessible knowledges a priori of the

medium and the transducer. Consequently, the transmit fre-

quency was only set to the two-thirds of the transducer centre

frequency [10] from empirical inference.

In this study, we propose to solve the transmit frequency

choice through the concept of the optimal command [11].

We replaced thus the existing system by a closed loop system

whose the transmit frequency was selected by feedback [12].

The optimization implementation required to specify the cost-

function. The latter must be chosen by taking into account

the user’s needs and the medical application. Here, in tissue

harmonic imaging, the cost-function was the contrast har-

monic to fundamental ratio (CHFR) in order to maximize the

harmonic components and simultaneously minimize the fun-

damental component. Moreover, to complete our approach,

the harmonic response detection was ensuring by the second

harmonic imaging [3], since it is one of the most commonly

used methods.

Finally, the optimization problem can be written from a

formal point of view as follows:

f ⋆ = arg max
f

(CHFR( f )) , (1)

where f ⋆ is the optimal transmit frequency which provides

the best CHFR. We propose an iterative approach to find the

optimal transmit frequency f ⋆.

2 Closed-loop Imaging System

The principle of tissue harmoning imaging including feed-

back is described in Fig. 1. At the iteration k, a pulse xk(t)

with a frequency fk was transmitted. Its echo yk(t) was fil-

tered around 2 fk to form a radiofrequency line of the har-

monic image Ik. From the CHFR measured on this image

Ik, a new transmit frequency fk+1 was computed by the algo-

rithm to optimize the CHFR on the next image Ik+1.

2.1 Transmitted Signal

The pulse signal xk(t) at transmit frequency fk was com-

puted digitally with Matlab (Mathworks, Natick, MA, USA):

xk(t) = A · wk(t). (2)

The sinus modulated by a Gaussian function [3] wk,p(t)

was constructed such as:

wk(t) = exp
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sin(2π fkt), (3)

where t is the time, t0 the time for which the Gaussian func-

tion is maximum, Nc the cycle number. Note that to limit
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Figure 1: Block diagram of adaptive tissue harmonic

imaging.

direct transmission around harmonic frequencies, the trans-

ducer bandwidth must be shared between the transmit and

receive bandwidths [3]. The cycle number Nc was set so that

the transmit bandwidth was equal to the half-bandwidth of

the transducer.

The amplitude of the driving pressure A was then adjusted

so that the power of the pulse xk(t) was constant:

A =

√

√

A2
0
· Pxref

Pw

, (4)

where A0 is the driving pressure amplitude of the reference

signal xref. This signal xref was calculated at the transducer

centre frequency. Its power Pxref
constituted the reference

power, while Pw was the power of the signal wk. The power

of the transmitted wave thus remained constant by adjusting

the amplitude signal A.

2.2 Cost-function

In the receiver, the CHFRk was computed as the ratio of

the harmonic power Ph,k backscattered and the fundamental

power P f ,k:

CHFRk = 10 · log10

(

Ph,k

P f ,k

)

, (5)

The harmonic power was measured from the filtered echo

zk(t) and the fundamental power was measured from the fun-

damental echo which was equals to the difference between

yk(t) and zk(t). The harmonic echo zk(t) formed the harmonic

image by filtering yk(t) at 2 fk and with a bandwidth equal to

the half-bandwidth of the transducer.

The gain GdB was also defined between the optimized

system and the non-optimized system. The CHFR obtained

with the non-optimized system was determined at the two-

thirds of the transducer centre frequency 2/3 fc [10]. The

contrast gain GdB is obtained by the next equation:

GdB =
CHFR( f ⋆)

CHFR(2/3 fc)
. (6)

2.3 Iterative Optimization Algorithm

The algorithm was based on the principle of the gradient

descent [13]. It determined a new transmit frequency fk+1

for the next pulse to optimize the CHFRk+1 by the following

recurrence relation:

fk+1 = fk + µk · dk, (7)

The first coefficient µk set the speed convergence such as:

µk =


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0 if k 6 3;

∆ f if k = 4;

µk−1 if sgn(∇CHFR( fk)) = sgn(∇CHFR( fk−1));
µk−1

2
if sgn(∇CHFR( fk)) , sgn(∇CHFR( fk−1)).

(8)

where ∆ f fixed at 100 kHz provided the best compromise

between convergence speed and robustness, sgn(t) the sign

function that is equal to 1 if t > 0, 0 if t = 0 and −1 if t < 0,

and the CHFR gradient defined by:

∇CHFR( fk) =
CHFRk − CHFRk−1

fk − fk−1

. (9)

The second coefficient dk set the direction such as:

dk =



















1 if k 6 3;

1 if sgn(∇CHFR( fk)) = sgn(∇CHFR( fk−1));

−1 if sgn(∇CHFR( fk)) , sgn(∇CHFR( fk−1)).
(10)

In order to compute µk and dk, the system operated in

open-loop for the first three iterations (k = {1, 2, 3}). The

first three frequencies f1, f2 and f3 were chosen initially.

Their good choice could increase the convergence speed, but

it was not decisive to reach the optimal CHFR, when the cost-

function was concave.

3 Evaluation of the Method in Simu-

lations

3.1 Simulation Model

The simulation model followed the same process as the

experimental setup (Fig. 1).

A pulse signal was generated digitally at iteration k by the

equation 2. Note that the pressure levels A0 was 400 kPa and

the number cycle Nc was 4 to restrict the pulse bandwidth at

the half-bandwidth of the transducer. However before send-

ing this signal to the ultrasound probe, a beamforming step

was added. The linear sweeping [14] enabled to focalized

at 15 mm-depth with eight elements of the ultrasound probe.

The pulse signal were then filtered by the transfer function

of the ultrasound probe; centred at 3.5 MHz with a fractional

bandwidth of 63% to −3 dB.

This wave nonlinearly propagated in a liver-mimicking

medium where the properties was described in table 1. In



Table 1: Mecanical Properties of the Medium Explored [14].

Liver
ρ1 N(1050 kg/m3, 30 kg2/m6)

c1 N(1578 m/s, 30 : m2/s2)

Blood
ρ2 N(1060 kg/m3, 2.5 kg2/m6)

c2 N(1584 : m/s, 2.5 : m2/s2)

this medium, a 10 mm-diameter artery was at 15 mm of the

surface. Moreover, the wave propagation was solved by the

model developped by Anderson [15].
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Figure 2: Grid of Medium Properties: c is the wave celerity

and ρ is the density. The ultrasound probe was at the depth

of 0 mm.

Finally, the echoes were measured and filtered by the

transfer function of the same ultrasound probe to form a ra-

diofrequency line.

3.2 Simulation Results

The empirical optimization was the first simulation pre-

sented in Fig. 3 by a dashed line. The results represent the

CHFR as a function of the transmit frequency. The trans-

mit frequency was swept by step of 0.125 MHz between

1 and 4 MHz. Firstly, the CHFR had a global maximum.

This result showed that the CHFR can be improved by prop-

erly choosing the transmit frequency. This property was also

interesting, because an automatic search could be achieved

more easily by a gradient algorithm. Secondly, the maxi-

mum value of the CHFR was −29 dB at 1.625 MHz and the

gain GdB was 8.3 dB. This result showed that the best trans-

mit frequency was not the two-thirds of the transducer centre

frequency. This point confirms again the necessity of opti-

mizing the imaging process.

The maximum CHFR was then automatically sought us-

ing the gradient algorithm. The Fig. 3 shows the CHFR

measured at each iteration k by a solid line. The transmit

frequency converged to a stable value after height iterations

at 1.6 MHz. Note that the CHFR and the gain GdB obtained

automatically were the same than those obtained empirically

in the first simulation.

To sum up, the results in Fig. 3 confirm the necessity

of optimizing the imaging system. It was possible to find
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Figure 3: Simulation of the CHFR optimization. The dashed

line represents an empirical optimization and the solid line

represents an automatic optimization by iterative searching

of the optimal transmit frequency.

automatically the transmit frequency which maximized the

CHFR. No a priori knowledge was required, except for the

choice of the first three transmit frequencies which impacted

the speed of convergence.

As an illustration, the Fig. 4 represents the image for the

two-thirds of the transducer centre frequency and the image

for the optimal frequency f ⋆ with logarithm compression.

At the top of the images, the liver harmonic response was

stronger with the optimal frequency. The contrast between

the top (liver) and the middle (blood) was thus increased if

the optimal transmit frequency was used.
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Figure 4: Synthetic Image where the transmit frequency was

the two-thirds of the transducer centre frequency and the

optimal frequency f ⋆.

4 Experimental Validation

The aim of this experiment was to confirm experimentally

the results obtained in the simulation.

4.1 Experimental Setup

The experimental setup is presented in Fig. 1. The trans-

mitted signal xk(t) was first generated digitally using equa-

tion 2 by a personal computer. It was sent from an ultra-

sound scanner to the medium via an ultrasound probe. This

wave insonified the medium. The reception system collected

the echoes yk(t) and filtered around 2 fk to form a line of the

harmonic image.



4.1.1 Ultrasound Scanner and Transducers

The transmitted signal xk(t) was sent to an “open” ultra-

sound scanner (MultiX WM, M2M, Les Ulis, France) via

USB. This ultrasound scanner automatically duplicated the

signal xk(t) for each element of the ultrasound probe. It ap-

plied the delays necessary to obtain phased-array beamform-

ing [14]. The signals were then transmitted to a linear ar-

ray of 128 elements (Vermon SA, Tours, France), centred at

4 MHz with a fractional bandwidth of 53% to −3 dB. The

wave focused on 28 mm from the surface. Note that the

pulse was chosen with a cycle number corresponding to 55%

of the relative bandwidth at the transducer centre frequency

(i.e. Nc = 4) and with a pressure level A0 of 400 kPa at the

focal point.

4.1.2 Medium Explored

The wave propagated through a tissue-mimicking phan-

tom (model 054GS, General Purpose Ultrasound Phantom,

CIRS, Norfolk, VA, USA), including an hyperechoic target

at a 4 cm-depth and with a 6 dB-contrast.

4.2 Experimental Results

The experimental results presented in Fig. 5 show the

transmit frequency and the CHFR during the iterations. The

error bars show the standard deviation of the CHFR in the

image at the iteration k. The CHFR converged to its optimal

value after six iterations for a transmit frequency of 2.1 MHz.

The mean CHFR after convergence was around −32.8 dB,

i.e. a mean gain of 5.2 dB.
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Figure 5: Automatic optimization experiment of CHFR

These results confirmed the experimental feasibility of

the method. Note that there was a difference between the

gain value in our simulation and that in our experiment. This

difference may be explained by the different transducer prop-

erties. In simulation, the transducer centre frequency was

lower than in experiment to decrease the simulation time.

As an illustration, the Fig. 6 represents the image for

the two-thirds of the transducer centre frequency and the im-

age for the optimal frequency f ⋆ with logarithm compres-

sion. At the middle of the images, the hyperechoic target

energy backscattered was increased to 12% with the optimal

frequency. Moreover, the power ratio between the hypere-

choic target and the surrounding medium was increased to

8%. The contrast was thus increased when the optimal trans-

mit frequency was used.
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Figure 6: Experimental Image where the transmit frequency

was the two-thirds of the transducer centre frequency and

the optimal frequency f ⋆.

5 Discussions and Conclusion

CHFR optimization in tissue harmonic imaging was per-

formed automatically, without taking into account a priori

knowledge of the medium or the transducer, except for the

first three values of the transmit frequency knowing that their

selection had only impact on the convergence speed. The al-

gorithm automatically determined an appropriate value for

the transmit frequency within only a few iterations. To date,

the recommended transmit frequency was the two-thirds of

the transducer centre frequency, but this empirical setting

cannot enable the optimum performances. The proposed al-

gorithm itself adjusted the transmit frequency to maximize

the harmonic power backscattered while minimizing the fun-

damental power backscattered within the transducer band-

width.

Our method was easy to use for two reasons. Optimiza-

tion was iteratively achieved by using first an easily imple-

mented algorithm and by using second a single parameter. A

major advantage of our approach is that it was independent of

the medium explored since the cost-function was exclusively

based on the input and the output measurements of our sys-

tem. An interesting consequence is that our method can be

applied to any imaging system.

Note that a real-time implementation was possible, since

the computation time was insignificant. However, the method

required a programmable analogue transmitter. Moreover,

although our technique could offer an optimal frequency for

each line of the image, it was preferable to perform optimiza-

tion on the whole image. The image can be consistent with a

single resolution.

To conclude, the method described ensured optimal CHFR

by adaptively selecting the transmit frequency. Through our

new approach, manufacturers and clinicians do not need to

set themselves the transmit frequency.

Our closed-loop method can be adapted using a larger

number of techniques for tissue harmonic imaging. The only

difficulty remaining is in the instrumentation. However the

development of new imaging methods based on chirp or time

reversal are also needed for such instrumentation.
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