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ABSTRACT 

 

This paper presents a comprehensive conceptual framework and notation for learner 

modelling in intelligent tutoring systems.  The framework is based upon the 

computational distinction between behaviour, behavioural knowledge, and conceptual 

knowledge (in a 'vertical' dimension) and between the system, the learner, and the 

system's representation of the learner (in a 'horizontal' dimension).  All existing 

techniques for learner modelling are placed within this framework.  Methods for 

establishing the search space for learner models and for carrying out the search process 

are reviewed.  The framework makes clear where particular learner modelling techniques 

are focussed and shows that they are often complementary since they address different 

parts of the framework. 
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A FRAMEWORK FOR LEARNER MODELLING 

Pierre Dillenbourg and John Self 

 
1.   THE FRAMEWORK 

 

Learner models are important within computer-based systems intended to promote 

learning because they provide the means to support individually-adapted instruction.  The 

task of ‘learner modelling’ or 'cognitive diagnosis' (that is, the task of building a learner 

model) is defined later, but, in short, it is the process of inferring the learner’s knowledge 

by analysing his or her behaviour. 

Although a number of learner modelling techniques have been developed, learner 

modelling remains a serious problem for the implementation of computer-based 

educational systems.  Simply enumerating these techniques does not really help us: we 

need a framework describing precisely the role of these techniques in order to discuss 

their adequacy.  As we will see, it turns out that many of the techniques are not 

alternatives but address different aspects of the learner modelling problem. 

The aim of this report is to provide a comprehensive conceptual framework for 

learner modelling.   The framework we propose includes a formalism, a terminology and 

a graphical representation of the learner modelling process. 

The purposes of this framework are : 

1.  to define a consistent terminology for use in research on learner modelling, 

2. to describe several approaches to learner modelling and to make precise their 

particular focus,  

3.  to describe especially the contributions of machine learning techniques, 

4. to emphasize the importance of conceptual aspects in learner modelling, 

5.  to identify (implicit) underlying assumptions. 

 

1.1 The vertical dimension 

 

Vertically (see Figure 1), the framework discriminates three related entities. The 

relationship between these entities is that they all concern the same problem domain . If 

we adapt the definition proposed by Van de Velde (1988), a problem domain is a triple  Ω 

= (P,B,Solution) where: 

P is the set of problems in Ω 

B is the set of possible behaviours in Ω 

Solution is a relation between P and B, i.e. Solution is a subset of P X B. 
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A behaviour  (B) is defined as a sequence of actions performed by an agent (A) as a 

potential solution for some problem (P) belonging to P. A behaviour will be described by 

the following syntax:  behaviour(agent,problem) = BAP.  The agent may be the 

learner or the computer system. B, the set of possible behaviours, is generally very large, 

since it includes any correct, incorrect, or even inconsistent behaviour. 

The behavioural knowledge (bk) of the domain corresponds to Van de Velde's 

concept of problem solver. A problem solver contains an inference structure and a logical 

theory. The inference structure is a set of inferential primitives  and inference relations  

to be used to infer some behaviour B (from B)  for a given problem P (from P).  

The conceptual knowledge  (ck) contains the definition of the concepts underlying 

the behavioural knowledge. The discrimination between the behavioural and conceptual 

knowledge corresponds to the "shallow" vs "deep" knowledge issue raised in expert 

system design (as will be discussed below). The deep knowledge consists of domain 

theories and problem solving knowledge; the shallow knowledge is a procedural 

description of the problem solutions. 

As shown in Figure 1, the conceptual knowledge may exceed the problem domain 

Ω, i.e. it may enclose concepts which are usable for problems not present in P.  In the 

following example, ck's concepts such as "disease" or "symptoms" are not restricted to 

the bk's context of heart disease diagnosis.  For example : 

Ω the problem of heart disease diagnosis 

BDP the diagnosis produced by a doctor for a particular patient 

bk set of Mycin-like rules for diagnosis and the inference engine 

ck  representation of the heart, concepts for diseases, etc. 

 

< about here: Figure 1.  The vertical dimension of the framework > 

 

Globally, the vertical relation is one of consistency. The relation between the 

behavioural knowledge and the behaviour has a level of consistency dependent on the 

logical theory inscribed in the behavioural knowledge. This relationship may be viewed 

top-down as a "running " process:  the behaviour is the result of running the behavioural 

knowledge on a particular problem of P. The relationship between the conceptual and 

behavioural knowledge may be viewed top-down as some knowledge compilation  

process. 

The consistency between two entities will be denoted in our framework formalism 

by the symbol ¢ (0<¢<1), where ¢=1 denotes complete consistency (thus ¢ denotes a 

measure of the agreement between two entities, not strict logical consistency, which 

would of course be just true or false): 
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¢(bk,BAP) indicates the consistency between the behavioural knowledge 

and A's behaviour for problem P. 

¢(ck,bk) indicates the consistency between the conceptual and 

behavioural knowledge sets. 

¢(BAP,ck) indicates the consistency between A's behaviour for problem P 

and his conceptual knowledge. 

As we will see, most work on learner modelling postulates high values for the 

various ¢.  In general, the quality of the diagnosis built will be a function of the values of 

the ¢.  By definition, a behaviour results directly from bk and indirectly from ck, and 

hence we can state that normally ¢(ck,BAP) < ¢(bk,BAP). 

When we want to refer indifferently to bk or ck, we will use *k.   

 

1.2  The horizontal dimension 

 

By contrast to the vertical dimension, the horizontal one (see Figure 2) emphasizes 

discrepancies between the same entities possessed by different agents.  The learner 

modelling context involves two agents, namely the learner and the system. The object of 

learner modelling is to build the best representation of the learner (we will indicate below 

what might be meant by ‘best’ in this context). Our model emphasizes the fact that this is 

only a computerised representation of the learner's knowledge, an approximation, and 

that the system has no direct access to his or her knowledge. 

This horizontal dimension clearly indicates that our framework adopts a differential 

perspective. The term "differential modelling" is often used when the learner's behaviour 

and knowledge is represented with respect to the system's behaviour and knowledge.  In 

the formalism used in this framework, we use the expression RAx to denote the 

representation that an agent A has of some object x. 

So the model horizontally discriminates three entities :  

S  the system,  

L the learner,  

RSL the system's representation of the learner. 

 

< about here: Figure 2.  The horizontal dimension of the model > 

 

A discrepancy will be represented by ∆. Three kinds of discrepancy may appear 

between these entities : 

∆(L,S) the difference between the learner and the system.  (This is often 

considered to describe learner errors, since the system is usually 

supposed to be "correct”) 
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∆(S,RSL) the difference between the system and the system’s 

representation of the learner. (This may be regarded as the  

representation of ∆(L,S), built by the system, or in other words 

∆(S,RSL) = RS∆(L,S).) 

∆(L,RSL) the difference between the learner and the system’s 

representation of the learner.  (This represents the error in 

learner modelling, i.e. the difference between  the actual learner 

and the diagnosis built by the system.) 

There is a clear difference between ‘discrepancies’ and ‘consistencies’: 

discrepancies indicate differences between two similar entities (e.g. two behaviours), 

while consistencies emphasize the logical link between very different things (e.g. an 

agent's knowledge and his behaviour).  

 

1.3 The model 

 

The two described dimensions are crossed for forming the model : each entity of the 

vertical dimension exists for each entity of the horizontal dimension (see Figure 3).  The 

model contains the following components: 

RSck the system's (representation of) conceptual knowledge. 

RSbk the system's (representation of) behavioural knowledge. 

BSP the system's behaviour on problem P. 

RLck the learner's (representation of) conceptual knowledge. 

RLbk the learner's (representation of) behavioural knowledge. 

BLP the learner's behaviour on problem P. 

RSRLck the system's representation of the learner's (representation of) 

conceptual knowledge. 

RSRLbk the system's representation of the learner's (representation of) 

behavioural knowledge. 

RSBLP the system's representation of the learner's behaviour on problem P. 

 

< about here: Figure 3.  The model > 

 

This set might be extended with representations such as : 

RLRLck the learner’s representation of his own representation of the 

conceptual knowledge (metacognition). 

RLRSck the learner’s representation of the system's conceptual knowledge (a 

crucial issue in interface design). 

... 
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The word "system" might be replaced by "ITS", or more precisely by one of the 

ITS components. The standard ITS components are the expert (or domain model), the 

tutor (or pedagogical model), the diagnoser + learner model and the interface. When we 

are speaking about the knowledge required for solving a class of problems (i.e. RSbk) or 

about the system's behaviour (i.e. BSP), the "S" refers to the expert component.  Similarly, 

the "S" in RSRLbk is the diagnoser component. Such a discrimination among the system's 

components is however not pertinent in our formalisms because the diagnostic 

component highly depends on the expert knowledge for building the diagnosis. 

The main input to the learner modelling process is RSBLP. The system's behaviour 

BSP and its representations of knowledge RSbk and RSck constitute other inputs. If the 

learner model is not built ex nihilo but is incrementally adapted from a previous model, 

then RSRLbk and RSRLck are also to be considered as items of input. 

A major advance of ITS over traditional Computer Assisted Instruction is to take 

into account what the learner has and has not understood. This means that the main 

output of the learner modelling process is a description of RLbk and/or RLck. Globally, 

traditional CAI may be located at the first level of the model (behaviour), most ITSs 

reach the second level (behavioural knowledge) and some of them reach the third level 

(conceptual knowledge). The flavour of this model is to put the emphasis on the 

conceptual level. 

To indicate that the representations of learner knowledge are diagnoses built from 

some behaviour, we write  

RSRL*k = ƒ(BLP) 

where ƒ is some diagnostic function. 

The learner model  is, according to this model, RSRLbk and/or RSRLck, i.e. the 

output described above. The word "model" may have various significations, from a 

simple enumeration of characteristics or numeric parameters (as in traditional CAI) to an 

integrated set of knowledge, close to the idea of mental model proposed by cognitive 

scientists.  

The learner modelling process (or diagnosis process) is the process of inferring a 

learner model (or diagnosis) from a learner's behaviour. A possible goal of the learner 

modelling process is to obtain the best image of RLck and RLbk, i.e. to minimize 

∆(RLck,RSRLck) and ∆(RLbk,RSRLbk). 

The system needs to be informed about the quality of its output, i.e. to receive some 

appraisal of the value of ∆(RL*k,RSRL*k). We call this information diagnosis feedback.  

It is clearly different from the didactic feedback used in tutorial interactions: diagnosis 

feedback confirms to the system that its representation of the learner fits with the 

learner's representation, while didactic feedback, on the other hand, tells the learner how 
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his representation fits with the system's representation. We will later on describe several 

ways for obtaining this feedback : 

- behavioural prediction  : the learner's behaviours are used to confirm the diagnosis 

or to choose among current hypotheses, 

- explicit interaction : the learner is asked to confirm the system's diagnosis, 

- behavioural simulation  :  RSRLbk is run to produce a predicted BLP' which is 

compared to BLP - if they match the diagnosis is confirmed (under the postulate that the 

running process is isomorphic to human reasoning). 

- didactic prediction :  if the learner model is valid, it can be used to select a didactic 

action, i.e. to predict the efficiency of this action or to anticipate the learner's knowledge 

after the action. If the predicted changes happen, the diagnosis is confirmed (this raises 

two problems which are described in section 4.4.2). 

At this stage, we are of course glossing over a great many details and subtleties - 

most of these issues will, we hope, be addressed. 

 

1.4  The model’s context 

 

Here we list some implicit assumptions which are generally present in learner 

modelling work : 

Assumption 1 :  Learner modelling is related to some idea of what tutoring is: ITSs 

need diagnostics for taking decisions, which means that it is the system which takes at 

least some of the didactic decisions, and not the learner. (A possible alternative 

justification for learner modelling is that it enables the ITS to show the learner his own 

knowledge, misconceptions, etc.) 

Assumption 2 :  The learner model is seldom exhaustively described (which is 

theoretically impossible given the infinite amount of common sense knowledge 

involved).  More often, it is by default assumed to be closely related to the system’s 

(conceptual or behavioural) model. This means that only the discrepancies between these 

two sets of knowledge need to be represented (hence the "diagnosis" term, defined in 

section 2.2.2). This is the basic assumption of any differential approach, but it is also a 

major point of criticism of work in learner modelling since many systems represent 

'expert knowledge', which is known to be very different to that of learners. 

Assumption 3 :  Learners are often viewed as correctly applying an incorrect algorithm 

(i.e. in our formalism, RLbk is wrong but ¢(BLP,RLbk) is high), while instead most work 

in education considers the learners as incorrectly applying a correct algorithm. 

Assumption 4 :  Differential modelling proceeds as if there were representations of 

knowledge in the learner's head which can be compared, piece by piece, with the system's 

representations and that reasoning occurs by manipulating such representations.  This 
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may be a computational convenience or it may reflect a profound philosophical view of 

the nature of knowledge.  In the latter case, it has been challenged by recent work on 

situated cognition (e.g. Clancey, 1990).  But this is a debate about the content (if any) of 

RL*k - even the advocates of situated cognition emphasise that an agent (such as the 

system) must have representations of another agent's knowledge (RSRL*k) in order to 

communicate with that agent. 

Our model integrates the discrimination of Wenger (1987) between 'behavioural 

diagnosis' (related to RSRLbk in our model) and 'epistemic diagnosis' (related to RSRLck in 

our model).  However, the framework does not address what Wenger calls 'individual 

diagnosis'.  The emphasis is on the dynamic modelling of learner knowledge states, not 

on modelling longer-term, knowledge-independent, individual attributes.  The 

justification for this is not that such attributes are necessarily unimportant (although the 

designers of ITSs have not yet found great need for them) but that ITS research has yet to 

consider them in any detail.  In particular, there are no significant techniques for inferring 

such attributes from learner's behaviour.  If such attributes were to be added to the 

framework, then they would not be expressed in a differential fashion but as an extra 

dimension to the learner column. 

Our distinction between bk and ck is related to that of Clancey (1986) between a 

'situation-specific model' and a 'general model'.  The general model "describes what is 

known about the world - for example, knowledge about stereotypic patients, diseases, and 

treatment plans"; the situation-specific model "includes the specific problem information, 

transformed or reorganized in some way, depending on the nature of the task" (Clancey, 

1986, p395).  Thus, the situation-specific model adopts (using some inference procedure) 

part of the general model to generate specific behaviour to solve a problem.  Clancey 

considers in detail how the qualitative structure of these models and inference procedures 

differ in different domains.  In comparison, our model is rather domain-independent in 

that we are not concerned directly with the contents of the various components of the 

framework for different domains but more with the general relationships between the 

components and how the various learner modelling techniques relate to these 

components. 

Our model has to be simpler than the reality, as manifested in existing ITSs, since 

these are rather undisciplined agglomerations of miscellaneous techniques.  Our model is 

only useful if it erases non-pertinent details in order to give a clear view of the modelling 

process. This means we will have to abandon irrelevant details or to "cut the corners" in 

our descriptions of some systems in order to integrate them neatly within the framework.  

Nonetheless, we feel that the framework captures the essential distinguishing features of 

the various techniques (as described in sections 3 and 4). 

 



 

 

 

 

 9 

   

 

2.   TERMINOLOGY 

 

The terminology we outlined in the previous section has now to be elaborated.  

Much of the terminology of learner modelling has been introduced for a specific 

application or approach. This specificity reduces the ability to generalize across approach 

descriptors : if one approach X is described by characteristics A and B, it does not mean 

that A and B are dependent on each other, or specific to X, but that X results from a 

combination of A and B. We believe our discipline will progress if some general 

descriptors are available. Obviously, since these generalised descriptors lose the 

specificity that their authors introduced,  there is a risk in proposing less specific 

descriptions. This will be corrected later, where approaches and systems are described 

individually. In the mean time, this common terminology will favour comparisons 

between approaches and ease the identification of the focus of various approaches. We 

aim for instance to show that some approaches are not incompatible but complementary, 

because the points on which they differ constitute different parts of the diagnosis process.  

 

2.1  The meanings of "behaviour" and “solution” 

 

Until now, we have used "behaviour" to describe the solution  proposed to a 

problem P by the learner or by the system. For an equation 3x+5=20, the solution is x=5 ; 

for a medical diagnosis problem, the solution is the diagnosed disease, etc. The main 

characteristic of the learner's behaviour is that it is observable by the system : if the 

learner's behaviour  BLP is defined as a sequence of actions the learner performs on the 

system interface then BLP = RSBLP.  

This definition is less clear when we consider the "product versus process" issue. 

Some ambiguity arises because some intermediate steps of the inference process also 

produce behaviour : for instance, the sequence of transformations written when solving 

an equation or the sequence of questions asked by the doctor.  In AI literature, the word 

‘solution’ is used for describing not only the final solution but also the solution process. 

Hence we prefer to call the sequence of actions which relate P to B (or in other words, 

some trace of the inference process) the solution path.  The solution is usually the last 

step of the solution path. This definition does not eliminate the ambiguity completely, for 

instance in theorem proving, where the solution process (the sequence of logical 

transformations) is indeed the expected solution.  

When some steps of the solution path are made observable to the system, they will 

be considered to be a part of the behaviour. Hence, the learner's behaviour  may be 

defined as the observable subset of the solution path, generally including the last step. 
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Our definition of a learner's behaviour emphasizes the mental/observable 

characteristics of inference steps. This distinction does not hold for systems since all of 

the system's inference steps from P to B may be hidden or made observable by the 

designer. Subsequently, we will focus on the subset of the system's behaviour  BSP which 

corresponds (in a sense to be discussed) to the learner's behaviour.  

We will also see that, in many cases, learner modelling will not be performed from 

a single behaviour but from a set of behaviours {BLP} produced for a set of problems 

{P}. We will see later on the rationale for enlarging the behaviour to a larger subset of the 

inference process or to several behaviours. 

 

2.2  Classes of discrepancies 

 

The ITS literature has given different names to the various ∆ relationships 

(discrepancies between the model’s columns), as shown in Figure 4:  

 

2.2.1 System - (represented) learner discrepancies 

 

The first kinds of discrepancy are between the system's knowledge and the 

(represented) learner knowledge. These discrepancies have been (inconsistently) called 

misconceptions, bugs, mal-rules, etc. We try here to propose some stricter definitions. 

These discrepancies are the key objects in the learner modelling process which has 

mainly been approached in a differential way, i.e. by characterizing the learner's 

knowledge by its differences with respect to the system's knowledge.  

 

< about here: Figure 4.  Misconceptions, bugs and errors > 

 

A misconception refers to a discrepancy at the conceptual level. The real 

misconception is the discrepancy between the system's and the learner's representation of 

ck. Since the system has no direct access to the learner's representation of ck, 

misconceptions are approximated by the discrepancy between the system's ck and the 

system's representation of the learner's ck : 

∆(RSck,RLck) ≈ ∆(RSck,RSRLck) 

A bug  refers to a discrepancy at the behavioural level. By contrast to the 

psychological connotation of the word "misconception", the term "bug" comes from the 

language of computing: in the early work of Brown and Burton (1978), discrepancies 

were represented by buggy procedures.  Since the system has no direct access to the 

learner's representation of bk, bugs approximate the relation between the learner's and the 

system's representations of bk: 
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∆(RSbk,RLbk) ≈ ∆(RSbk,RSRLbk) 

Since the behavioural model has generally been represented as a production system, 

bugs have also been called mal-rules.  The terms "bug catalogue  " or "bug library" 

simply refer to a set of bugs, generally predefined by the system designers. 

An error refers to a discrepancy between the learner's behaviour and the system's 

behaviour. Here, most systems are based on the postulate that the system has a perfect 

representation of the learner's behaviour. This postulate holds if, as above, we define the 

learner's behaviour as the set of actions he or she performs on the system's interface (and 

exclude any mental or off-system activity).  In this case: 

BLP=RSBLP <=> ∆(BSP,BLP) = ∆(BSP,RSBLP) 

 This definition assumes that there is only a single system's behaviour which is 

deemed to be correct.  In general, this is not the case.  The RSbk may not be fully 

deterministic; for example, it may represent a procedure for manipulating algebraic 

equations in which transformations may be carried out in different orders and yet 

eventually lead to an acceptable solution.  In this case, we might define a learner to be in 

error if RSBLP differs from all such BSPs, and the error to refer to the discrepancy between 

the learner's behaviour and the 'best matching' system's behaviour (although this clearly 

gives rise to difficult diagnostic problems). 

The term diagnosis (sometimes "cognitive diagnosis") refers to the interpretation of 

an error, as performed by the system. According to the designer's focus on the conceptual 

or behavioural level, the outcome of a diagnosis should be the identification of one or 

more bugs or misconceptions. The slightly different nuances associated with the terms 

"diagnosis" and "learner model" might derive from the fact that the latter implies that one 

aims to represent the learner's mental model while the former would represent a more 

narrow and faulty piece of knowledge. We do not retain these nuances and use the term 

"(cognitive) diagnosis process" synonymously with "learner modelling process".  

An "overlay model" (Carr and Goldstein, 1977) is one in which the only possible 

diagnosed discrepancies are missing pieces of knowledge: RS*k ⊃  RSRL*k. The use of 

the term "overlay" is not ideal because of its ambiguity: "partial model" would definitely 

be better, but “overlay” has already a long history in ITS. 

The term "perturbation model" specifies that RSRLbk may include elements which 

are not part of RSbk and hence ‘perturb’ its functioning.This term emphasizes the 

atomicity of these discrepancies. This atomicity presents computational advantages (it 

eases the search problem, discussed later) but appears to be poorly plausible at the 

psychological level as soon as one leaves highly-constrained domains. 

We do not like the negative connotations of terms such as bugs or mal-rules. Rather 

than speak about "buggy" learners, we prefer to search for a rational account of why 

learners develop cognitive processes which are ill-adapted to Ω.  In many cases, the 
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"buggy" process may be the result of an intelligent adaptation to previous situations, 

successful when acquired but now inadequate in Ω.  Repair theory (see section 3.2.2) 

opens the way in this direction. However, we will continue to use the term "bug" because 

it is now standard in the ITS community. 

The same nuance applies with conceptual discrepancies: the term "misconception" 

is negatively connotated.  In particular, it neglects the fact that a learner may adopt a 

viewpoint which, although different to that of the system, is still reasonable. The 

difference between a misconception and a viewpoint is double.  Firstly, a viewpoint 

emphasizes the fact that various approaches to the same domain may be pertinent, and 

that there is not necessarily one approach which is more valid than the others.  Secondly, 

the term "viewpoint" indicates some conceptualisation of Ω which is larger than a 

misconception and is, in some way, closer to the idea of mental model (see section 3.1.2).  

 

2.2.2 Learner - represented learner discrepancies 

 

∆(BLP,RSBLP) represents a source of noise at the input of the learner modelling 

process. As said in the previous section, this discrepancy is usually considered to be non-

existent.  In general, this discrepancy denotes any misrepresentation of the learner’s 

actual behaviour. 

∆(RL*k,RSRL*k) represents the discrepancy at the output of the learner modelling 

process.  We call it the diagnosis error.  The diagnosis error indicates how precisely the 

represented knowledge approximates the actual knowledge possessed by the learner.  

Since the 'sum' of the discrepancies around the RL*k,RSRL*k,RS*k triangle must be zero: 

diagnosis error = ∆(RL*k,RSRL*k) 

  = ∆(∆(RS*k,RL*k),∆(RS*k,RSRL*k)) 

A misdiagnosis is defined to be a diagnosis error which is considered to be 

significant or important (as discussed in section 2.5.1). 

 

2.3  Classes of consistencies 

 

Several kinds of consistency relationship may be located in the model : 

¢(RSbk,BSP) expresses the consistency between the system's behavioural 

model and its behaviour. It is determined by the logical theory  included in the 

behavioural model.  If RSbk is a production system, ¢(RSbk,BSP) is determined by the 

logic of the associated inference engine. The same comment is valid for the consistency 

of the eventual direct relationship between the conceptual knowledge and the behaviour: 

¢(RSck,BSP). 
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¢(RSck,RSbk) expresses the consistency between the system’s conceptual and 

behavioural models of the same domain. When these both exist (which is seldom), these 

models are usually implemented separately. This means that this kind of consistency 

results from the competence of the knowledge engineer who performed the knowledge 

acquisition  process. 

¢(RLbk,BLP) is affected by the main source of noise in learner modelling: 

many behaviours may not be related to characteristics of the behavioural knowledge but 

to factors such as distraction, tiredness, and involuntary mistakes. These are called non-

systematic mistakes  or slips.  (Slips are specific to human agents, not computer systems.)  

A slip is defined to be a piece of behaviour which does not correspond to the agent’s 

intention.  A slip, as opposed to a mistake, will generally be recognised as such if it is 

pointed out to the agent.  Assuming that a slip occurs only intermittently,  it may 

sometimes be detected by a difference between two behaviours produced by the same 

agent as a solution for the same problem. One generally does not ask a learner to solve 

the identical problem twice but instead to solve problems considered to be equivalent. 

Two problems Pi and Pj are considered to be equivalent (Pi ≈ Pj) if their solutions 

require the activation of the same pieces of behavioural or conceptual knowledge: 

slip = ∆(BLPi,BLPj) |  Pi ≈ Pj ; Pi,Pj ∈ P 

This definition shows the complexity of identifying slips. Since Pi is always 

slightly different from Pj,  the behavioural difference may be related to a very context-

specific element instead of due to some slip. The fact that some errors may be related to 

only a very small subset of P is not a kind of noise, it is a characteristic of the learner 

knowledge. Accepting that the learner's representation of the task includes some very 

task-specific elements is necessary if we want to describe the complexity of human 

behaviour with the seductive image of mental models.  Moreover, Pi and Pj are 

presented at different times. Hence, variations between the respective behaviours may be 

the result of real knowledge changes, e.g. the result of learning or forgetting. 

¢(RSRLbk,RSBLP) is a crucial parameter of the quality of the diagnosis process. In 

general the logical theory used by RSbk is also used by RSRLbk since the latter is often 

viewed as a variation of the former. However, the postulate that the learner uses a 

reasoning process isomorphic to the system's logical theory is difficult to hold.  

Isomorphic does not mean that the processes are themselves similar but that they produce 

similar effects.  It is here that the issue of psychological validity takes its main 

importance.  

The relations ¢(RLck,RLbk) and ¢(RSRLck,RSBLP) are still  more complex. They 

refer to the process of knowledge compilation, discussed by Anderson (1983).  The 

relation between conceptual knowledge and behavioural knowledge is a matter of great 

controversy, particularly at the psychological level (i.e. concerning ¢(RLck,RLbk)).  
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Strictly, the controversy concerns mainly the left most column of our framework (Figure 

4), since in computational knowledge representations (the middle and right most 

columns) the distinction is more or less standard, although still of course a matter of 

debate.  For the moment, the distinction is adopted as a heuristic device for analysing 

existing learner modelling techniques. 

 

2.4  Diagnosis space 

 

The learner modelling process may be viewed as a search process. The search space 

is the set of RSRL*k that the system is able to build.  Usually RSRL*k is built by analysing 

RS*k and RSBLP. Since the discrepancy between RS*k and RSRL*k is defined as a bug or 

misconception, the size of the search space may be defined by all the products of 

applying some combination of the bugs and misconceptions to the system's knowledge 

(which does not mean that this is the way this space is searched).  We will call the search 

space the diagnosis space and denote it Ψ.  

At the behavioural level, the diagnosis space  will be defined as : 

Ψbk  = { RSRLbk |  RSRLbk = RSbk ** {bug1... bugn}} 

The meaning of the ** operator will be defined later when discriminating between 

several approaches. Similarly, for the diagnosis space at the conceptual level we define: 

Ψck  = { RSRLck |  RSRLck = RSck *** {mis1... misn}} 

 

< about here: Figure 5.   Diagnosis spaces (Ψ) > 

 

Obviously, the search in the diagnosis space may be pruned by the fact that the 

system's representation of the learner should be consistent with the learner's behaviour. 

Generally, a perfect consistency (¢(RSRLbk,RSBLP) = 1) may not be expected, as we 

have to take some noise into account. If we denote the noise by N, which lies between 0 

and 1, we may write: 

 Ψbk  = { RSRLbk |  RSRLbk = RSbk ** {bug1... bugn}}  

   and ¢(RSRLbk,RSBLP) = (1 - N) } 

As we will see, information about the learner's behaviour may be used in various ways 

(e.g. as an heuristic, as feedback). 

 

2.5 Uses of cognitive diagnosis 

 

A diagnosis process is a learning process, since it involves repeatedly proposing 

hypotheses and modifying them in the light of experience.  The goal of learning, i.e. the 

usefulness of the acquired knowledge, is (as emphasised in work on explanation-based 
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learning) an important source of background and heuristic knowledge for a learning 

process.  Therefore it is important to consider the reasons why cognitive diagnosis is to 

be carried out.  The goal of the diagnosis process is to provide information for choosing 

among didactic alternatives, with the underlying assumption that the didactic choices are 

best made by the system.  This has two consequences - a consideration of the pragmatics 

of learner modelling and of the time scale over which the results of learner modelling are 

to be used. 

 

2.5.1 Pragmatic approach 

 

We have assumed that the goal of learner modelling is to minimise the difference 

between the learner's knowledge and its representation by the system : ∆(RL*k,RSRL*k). 

One may - rightly - object that the goal of learner modelling is that it provide information 

to be used by the tutoring component and that fine perceptions of the learner's knowledge 

are not useful if they are not required to make a choice between didactic alternatives. In 

other words, a pragmatic approach  may be expressed by the following rule: if the 

diagnosis error is smaller than the difference between two didactic choices leading to the 

same goal, then ignore the diagnosis error (since it cannot produce the 'wrong' choice), 

otherwise try to refine the diagnosis. 

Or, more formally: define a didactic action DA by a triple (*kx,DA,*ky), where 

∆(*kx,*ky) describes the expected knowledge changes associated with DA.  This 

assumes a means-ends view of teaching where DAs are selected according to the state-

goal differences.  Assume that the system believes the learner to be in state X = RSRL*k.  

Then the pragmatic approach is: 

if   ∃ (X,DA1,Z) such that X = RSRL*k 

   and ∀ (Y,DA2,Z), ∆(RL*k,RSRL*k) < ∆(X,Y)  

then select DA1 

else Goal = Reduce (∆(RL*k,RSRL*k)) 

But the obvious problem is that the value of ∆(RL*k,RSRL*k) (the diagnosis error) 

is not known by the system. Such a rule is therefore not a rule the system may apply but 

rather a rule for system design, given that the designer has some idea of the potential 

amplitude of diagnosis errors in his system. 

 

2.5.2 Adaptive / evolutive discrimination 

 

We can discriminate between two kinds of system on the basis of the time-scale 

over which the results of learner modelling are applied: 
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- adaptive systems : the diagnosis is only made for adapting the didactic choices to a 

particular learner, and it is abandoned for the next learner. 

- evolutive systems : the diagnosis output (or some intermediate steps of the diagnosis 

process) are recorded and integrated within the system's knowledge in order to improve 

the diagnosis process for following learners. 

This discrimination is pursued further in sections 3 and 4. 

 

3.  DIAGNOSIS APPROACHES  

 

In this section we present a survey of the various approaches to learner modelling, 

expressed in terms of the framework presented above.  We will illustrate the approaches 

by referring to ITSs described in the literature. We will not describe the systems 

completely but only their diagnosis processes and the things necessary to know to 

understand them. 

 

3.1  The search space 

 

The diagnosis space, as defined in section 2.4, is  

Ψbk  = { RSRLbk |  RSRLbk = RSbk ** {bug1... bugn}} 

and similarly for the conceptual level.  It is thus composed by combining bugs and 

misconceptions with the system's representations of conceptual and behavioural 

knowledge.  We now compare the various ways in which the diagnosis space is described 

and searched.  Variations concerning the creation of the diagnosis space result from: 

- The system's knowledge : the diagnosis space is created by variations of the system's 

knowledge RS*k. It is obviously domain dependent, which makes comparisons difficult. 

However, we are interested in studying how the knowledge representation affects the 

definition of the search space.  

- The bug and misconception catalogues : they define (some of) the variations of the 

system's knowledge . We are especially interested in studying how the bug catalogue 

{bug1... bugn} is determined: is it predefined by the system's designer, is it acquired in 

some way through interaction with a learner or with an expert, or is it built dynamically 

by the system itself, or what? 

- The generic operators : these define how RS*k and the bug and misconception 

catalogues interact to create Ψ. These operators are represented by **  and *** in our 

formalism. 

This discrimination is not as clear as it (maybe) appears here. For instance, some 

systems do not generate the diagnosis space from the system's knowledge but directly 

from the learner behaviour.  We will be more precise further on.  If the diagnosis space is 
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created from the system's knowledge then, since this "expert" model is domain 

dependent, we are not concerned with its content but rather with its structure and its 

knowledge representation scheme. More precisely, our interest concerns the relationship 

between the system's knowledge and the diagnosis space. 

 

3.1.1 Generic model 

 

When the diagnosis space is created from variations of a single model RS*k - which 

is the most frequent case - we call the model a generic model.   System models 

(behavioural or conceptual) gain generative power from their modularity. A set of 

relatively independent pieces of knowledge enables the generation of alternative sets by 

suppressing or substituting individual pieces.   Modularity enables the system to access 

specific parts of knowledge, i.e. to build a finer diagnosis. This is at the same time an 

advantage and a disadvantage : quite often, the difference between the learner and the 

expert may not be represented by a difference in a small ‘piece of knowledge’.  

This modularity enables the calculation of the search space size (#(Ψ)) as a function 

of the number of pieces of knowledge in RS*k. In an overlay model for instance, the 

search space is the set of all models obtained by suppressing some number of pieces from 

RS*k : 

if #(RS*k) = n  then #(Ψ) = 2
n 

The size of the diagnosis space is increased if external pieces of knowledge (bugs, 

misconceptions) may be combined with missing pieces. This size is then also function of 

the size of the bug or misconception catalogue (see section 3.2). 

Three formalisms which have been used to give RS*k this modularity are production 

systems, procedural networks and declarative theories: 

 EXAMPLE : WUSOR (Carr and Goldstein, 1977) 

The paper which introduced the term 'overlay model' did so with respect to a set of 20 production 

rules to play the game of WUMPUS, e.g.: 

 L1: A warning in a cave implies that a danger exists in a neighbour. 

 L3: If a cave has a warning and all but one of its neighbours are known to be safe, then 

the danger is in the remaining neighbour. 

The learner's knowledge is represented by associating a value (known, indeterminate, unknown) 

with each of these rules (in this case, then, #(Ψ) = 320). 

 EXAMPLE : BUGGY (Brown and Burton, 1978) 

The BUGGY system represents domain knowledge (about subtraction) by a network of procedures, 

sub-procedures, etc., down to a set of primitive actions.  The aim is to achieve a level of description 

which enables bugs to be associated with individual components of the procedural network.  In this 

case the components are not independent, that is, one cannot simply delete any component (as 
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assumed in deriving the #(Ψ) = 2n equation above), although Young and O'Shea (1981) in a 

production system representation of subtraction emphasise the ability to build learner models by 

deleting rules. 

 EXAMPLE : SCHOLAR (Carbonell, 1970) 

SCHOLAR adopts a domain representation, a semantic network, which we can regard as 

'declarative'.  Carbonell points out that a learner model might be built by annotating nodes and 

links in the network. 

 

3.1.2 Multiple models 

 

Another approach is to put a set of models (indicated by the layers in Figure 6) at 

the disposal of the system and to make the diagnosis space equal this set  : 

Ψ = {R1S*k, R
2
S*k, ... R

n
S*k} 

Obviously the size of the diagnosis space corresponds to the number of models: 

#(Ψ) = #{R1S*k, R
2
S*k, ... R

n
S*k}. 

 

< about here: Figure 6.  Multiple models > 

 

This corresponds to an interesting - but seldom-used - approach which accords with 

empirical evidence that a novice's knowledge may be a conceptualisation fundamentally 

different from the expert's one. Hence the former cannot be represented by small 

perturbations of the latter.  Moreover, the learner may have a number of 

conceptualisations (viewpoints) which may be brought to bear on the problem. 

 

3.1.2.1 Ordered (or genetic) multiple models.  The set of models the system has at its 

disposal may represent some progression with respect to the correctness or the 

completeness of a learner's knowledge. This means that the last model is considered to be 

the goal state for the tutoring system.  This for instance is the case with the qualitative / 

semi-quantitative / quantitative progression à la QUEST, or with the predefined ordered 

sets à la LISP TUTOR or INTEGRATION KID. 

 EXAMPLE : QUEST (Frederiksen and White, 1988) 

QUEST provides a progression of models that starts with simple qualitative models of electricity 

and gradually introduces quantitative circuit theory.  The approach is motivated by cognitive 

science research which shows that students often cannot apply basic (quantitative) laws to solve 

simple qualitative problems, and indeed their qualitative reasoning often shows fundamental 

misconceptions.  As the student learns, so the learner model moves through the progression.  

However, Frederiksen and White recognise that expertise derives also from the ability to integrate 

models of different types, although QUEST does not address this issue. 
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 EXAMPLE : LISP TUTOR (Reiser, Anderson and Farrell, 1985) 

The Rsbk of the LISP TUTOR is a production system modelling an 'ideal student' rather than an 

expert.  This rule set is actually a subset of the complete production system available to the LISP 

TUTOR, tailored to suit the learner's level of knowledge - as the student progresses, so another rule 

set is switched in.  The rule sets are specified in advance of the learner using the system. 

 EXAMPLE : INTEGRATION KID (Chan and Baskin, 1990) 

The INTEGRATION KID is an environment involving three agents: the learner, the tutor, and a 

computer-based learning companion, which is supposed to collaborate with the learner in 

mastering the domain.  The companion's skill should advance at roughly the same rate as the 

learner's.  To achieve this, the companion is represented by a pre-defined succession of discrete 

simulation programs which are subsets of the complete domain knowledge available to the tutor. 

 

3.1.2.2 Unordered multiple models.  In this case the system has at its disposal a set of 

models but there is no implied progression between the elements of the set. The elements 

provide alternative ‘viewpoints’ on the domain.  The elements may be equally incorrect 

or equally correct. 

Current research in cognitive psychology shows that individuals have distributed 

models, i.e. a collection of partial models (DiSessa,1986), which are activated according 

to the context. These context-related partial models correspond to the concept of a 

viewpoint. Their situatedness fits with the conception of expertise as the ability to adopt 

multiple viewpoints on the same class of problems (again, according to the context). The 

need for integrating multiple viewpoints within ITSs has recently received increasing 

support from the ITS research community. 

 EXAMPLE : KANT (Baker, 1990) 

In some domains (e.g. music analysis), the assumption that Rsck and Rsbk represent definitively 

correct representations is unsustainable.  Instead, we might provide a set of 'viewpoints' 

representing possible (incomplete, uncertain) beliefs about the domain.  In KANT, the emphasis is 

on the negotiative process between the learner, who may have adopted one such (or another) 

viewpoint, and the tutor.  KANT's learner model is an overlay on the system's belief set, which is 

dynamically derived from a musical parser. 

 

3.1.3 Multiple generic models 

 

Obviously, the generic model approach and the multiple models approach are not 

incompatible. Diagnosis is likely to be better if the diagnosis is based on several generic 

models : each generic model typically defines a global approach to the domain and 

perturbations bring minor changes in order to come closer to the learner's knowledge. 

 EXAMPLE : Ruth’s system (Ruth, 1976) 
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To analyse student's programs, Ruth provides a set of (actually, only two) templates describing 

possible strategies (e.g. the binary search and Newton's methods for finding zeroes of a function).  

After determining the best fit, the program then proceeded to analyse any errors in the student's 

program with respect to the selected strategy on the basis of known bugs and misconceptions. 

In general terms, this approach is the same as 'case-based reasoning' in AI.  We 

have a few basic models (cases) which correspond to the main conceptions of the 

domain, we select one (as in case-based reasoning), and then adapt it to fit the learner's 

behaviour.  So far, recent research on case-based reasoning has not been applied to 

learner modelling, but it is likely to become a major research direction. 

 

3.2 The bug and misconception catalogues 

 

The bug catalogue (and the misconception catalogue, if it exists) is a key feature of 

most diagnosis processes. It encapsulates the experience of teachers and psychologists 

who have observed learners’ mistakes in the domain over several years.  Its structure 

derives from the system's knowledge representation : mal-rules for production systems, 

buggy procedures for procedural networks, false declarations for declarative theories,...  

The size of the diagnosis space is determined by the size of the system's knowledge 

RS*k and the size of the bug catalogue : 

if #(RS*k)=n and #(bug catalogue)=m then #(Ψ) = 2
n+m  

This exponentially growing size emphasizes the crucial importance of heuristics in the 

search process. But the size is not really the critical point to discuss. There are more 

important factors to take into account such as how several bugs interact to produce errors 

or how the diagnosis space is explored. 

The bug catalogue characteristics also depend on how it has been acquired. We 

review several methods below. Let’s remember that if the updated bug catalogue is only 

used with the learner who showed these bugs, we have an adaptive system; if the 

discovered bugs update the bug catalogue which will be used for any learner using the 

system later on we have an evolutive system. 

 

3.2.1 Predefined bug catalogue 

 

In a predefined bug catalogue the designers have collected information (themselves, 

through protocol analysis, or from the literature) about the range of usual bugs or 

misconceptions that learners show in a domain. The main drawback is the cost of this 

work: it is very time-consuming and may not be reused for ITSs in other topics. Another 

drawback is that the range of possible diagnoses is restricted to those anticipated by the 
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designer (but we will see that this drawback also exists for other approaches, even if it is 

better hidden). 

 EXAMPLE : LISP TUTOR (Anderson and Skwarecki, 1986) 

The LISP TUTOR has a bug catalogue of some 1200 rules which are buggy variants of the ideal 

model's rules.  These have been accumulated after years of protocol analysis.  (The earlier BUGGY 

system had similarly built a catalogue of about 100 buggy rules for subtraction by laborious 

protocol analysis). 

 EXAMPLE : WHY (Collins and Stevens, 1982) 

By analysing tutorial protocols and asking tutors to comment on their strategies, Collins and 

Stevens identify a number of learner misconceptions (about meteorology, in this case).  Diagnosis 

involves a complex interaction (in natural language, and hence not implementable) to map from 

surface errors to misconceptions.  They also emphasise the role of multiple viewpoints (causal, 

temporal, functional, etc.). 

 

3.2.2 Generated from the system's knowledge 

 

In this approach, bugs are obtained by transforming pieces of knowledge taken from 

RS*k.  If RSbk is expressed as rules it is relatively easy to generate changes which may 

correspond to some common learners’ mistakes. A typical example is overgeneralisation 

which may be obtained by deleting a subset of the condition part of a rule.  

 EXAMPLE : ET (Fum, Giangrandi and Tasso, 1988) 

ET is an ITS for language learning which uses a standard bug catalogue.  However, if a bug is 

suspected which is not in the catalogue, it is dynamically generated.  For example, if the learner 

persistently uses tense t1 instead of t2, then the rule for t1 is generalised (by removing some and-

clauses and adding some or-clauses to the condition part) and the rule for t2 is specialised 

(conversely).  Of course, the difficulty with such syntactic transformations is the potential 

combinatorial explosion. 

The process of generating bugs may be improved when based upon a psychological 

theory, since not all transformations of RS*k are equally plausible: 

 EXAMPLE : REPAIR (Brown and VanLehn, 1980) 

The theory proposes that bugs arise from repairs (local patches) performed at impasses (where 

incomplete knowledge leaves the learner unable to proceed).  The impasses are generated by 

deleting rules from the correct procedure.  The repairs are based on psychologically-motivated 

principles: that they are small, domain-independent and impasse-independent.  Even so, the 

generated repairs have to be filtered through (domain-dependent) critics to eliminate implausible 

bugs.  REPAIR theory failed to generate most of the previously-observed bugs, but did generate 

some additional bugs observed later and predicted the phenomena of 'bug migration', whereby the 

bugs exhibited by one learner vary within the class of bugs caused by the same impasse. 
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If it is possible automatically to generate malrules and misconceptions, then it may 

also be possible to apply similar techniques to generate correct rules and conceptions.  

This provokes the idea that instead of modelling the learner entirely with respect to pre-

specified domain knowledge RS*k, the learner could be modelled with respect to 

dynamically generated knowledge.  Since the latter knowledge will be incomplete and 

partly inaccurate (given the limitations of machine learning), the system would probably 

better function as a collaborative partner, offering advice and suggestions about the 

material and the learning process, than as a tutor leading the learner to target expertise 

(Gilmore and Self, 1988; Dillenbourg and Self, 1990).  The potential benefits of such an 

approach are that it might (a) reduce the demands on the accuracy of learner modelling, 

(b) focus more on important metacognitive skills, and (c) give learners a better view of 

what the learning process should entail. 

 

3.2.3 Acquired from explicit interaction  

 

This approach consists of interacting with a learner or with an expert-teacher. The 

system may present a set of mistakes that has been empirically collected or that it 

generates. The user is invited to describe the bugs or misconceptions underlying these 

mistakes. The interaction will obviously be different for a learner and a teacher. Such a 

component of diagnosis systems is called a diagnosis space editor. A diagnosis space 

editor may be viewed as a tool for knowledge acquisition, similar to a tape recorder or 

notebook for knowledge engineers, but with a greater interactivity and with automatic 

integration of new knowledge. 

 

3.2.3.1 Explicit interaction with the learner.  The difficulties in obtaining directly from 

learners useful descriptions of bugs and misconceptions for inclusion in a bug or 

misconception catalogue have been summarised by Wenger (1987, p. 392): "Not only 

does the current state of the art set technical limitations on dialogues between systems 

and people, but people's account of their own actions and understanding can be rather 

incoherent and sometimes unreliable.  Even if they are coherent and reliable - and the 

language can be processed - there remains the issue of understanding these self-reports in 

terms of the models that learners have of the domain, of themselves, and of the system."  

Nevertheless, according to Wenger, "Sleeman has found in interviews that even fairly 

young learners are able to speak about their own knowledge of algebraic manipulations."  

We need to distinguish between off-line designer-learner interactions (which is a 

version of protocol analysis which may lead to pre-defined catalogues), off-line system-

learner interactions (where the 'system' here is a knowledge acquisition tool, not an ITS) 

and on-line system-learner interactions (where the 'system' is the diagnostic component of 
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an ITS).  The first two are evolutive approaches, the third adaptive (unless the outcomes 

are kept for other learners, in which case, it too is evolutive). 

 

3.2.3.2 Explicit interaction with an expert-teacher.  Here the interaction is necessarily off-

line, i.e. not with an ITS, but with a knowledge engineer or knowledge acquisition tool.  

We might hope that interactions with experienced teachers will lead to insights more 

quickly than does a lengthy protocol analysis by ITS designers.  

 EXAMPLE : BELLOC (Chanier, Pengelly, Self and Twidale, 1990) 

BELLOC is a tutoring system for second language learning which can also be used by teachers in a 

diagnostic mode.  A special interface presents examples (e.g. "Quel est sa adresse?") and leads the 

user to specify (if possible) various rules, conceptions, explanations, similar examples, and 

counter-examples associated with the given example.  These inputs are then integrated into a 

structured pedagogically-oriented network which is subsequently used with learners.  Other modes 

enable learners and trainee-teachers to attempt similar exercises.  These interactions provoke 

valuable reflections about the domain and also provide data which can, to some extent 

automatically, be incorporated in the system's Rs*k. 

 

3.2.4 Acquired from implicit interaction with the learner 

 

In several approaches, the system uses mechanisms which enable it to extract bugs 

through some analysis of the learners’ behaviour. These mechanisms are described in the 

following section on the search process. The important thing to note here is that in some 

systems the discovered bugs are recorded to enlarge the bug catalogue. 

If the discovered bugs are simply added to the bug catalogue, the size of the search 

space is naturally increased. However, we can imagine that when new bugs are integrated 

with old ones in a more complex process, some bugs become partially redundant, which 

reduces the increase of the search space and may even decrease it. 

 

3.3 The generic operators 

 

Previous estimates of the size of the diagnosis space were based on the assumption 

of the existence of a universal generic operator  such that any subset of RSbk may be 

associated with any subset of the bug catalogue: 

IF  ∀  ki,...,kj ∈ RSbk, ∀ bugn,...,bugm ∈ Bug catalogue,  

   { { ki,...kj} ** {bugn,...,bugm} } ∈  Ψ 

THEN ** is a universal generic operator. 

This universal operator creates very very large diagnosis spaces. It actually ignores 

the relations between pieces of RSbk and individual bugs. For instance, in general adding 



 

 

 

 

 24 

   

 

a bug may make no sense if the corresponding correct piece of knowledge is not 

suppressed from RSbk.  In a production system based on monotonic logic, we cannot have 

two contradictory rules such as P⇒Q and P⇒¬Q. If the combinations of pieces of RSbk and 

individual bugs are constrained by such logical requirements, the diagnosis space is 

highly reduced since bugs are automatically associated with pieces of RSbk to delete.  In 

the extreme, the pieces to delete are the result of bug selection and the diagnosis space is 

hence reduced to all the possible bug combinations: 

IF   ∀  bugi ∈ Bug catalogue , ∀ kj ∈  RSbk  

   IF  bugi ⇒¬kj  THEN  bugi ** kj ∉ Ψ  

THEN ** is an operator preserving logical consistency 

 EXAMPLE : LISP TUTOR (Reiser, Anderson and Farrell, 1985) 

The LISP TUTOR includes a buggy rule for the merging of two lists in which the function 'list' is 

specified instead of the 'append' which appears in the corresponding ideal rule.  If the former rule 

is included in the learner model then the latter rule would be excluded. 

This logical consistency presents the advantage of reducing the diagnosis space. 

However, it means that we cannot represent the sometimes contradictory knowledge of 

learners : a learner may sometimes behave as if both P and ¬P are apparently believed. 

We say "apparently" because in fact P and ¬P are generally believed in different contexts 

so that no contradiction is seen by the learner. These different contexts may be viewed as 

hidden conditions. Some work attempts to use beliefs systems for representing such 

inconsistencies and for performing diagnosis in general (e.g. Mizoguchi, Ikeda and 

Kakusho, 1988; Huang, McCalla and Greer, 1990). 

The ** operator implies some psychological theory describing how correct and 

incorrect knowledge may interact. The best example is again repair theory, where ** 

enables the deduction of a bug from some missing knowledge with respect to plausible 

repair mechanisms. 

 EXAMPLE : ODYSSEUS (Wilkins, Clancey and Buchanan, 1988) 

ODYSSEUS is the learner modelling component of GUIDON (Clancey, 1987) and, like repair 

theory, it generates learner models mainly by deleting and replacing components of the system's 

knowledge representations, which in this case are mainly concerned with factual, rather than 

procedural, knowledge. 

The most studied characteristic of ** is the number of bugs which may be 

combined within one RSRLbk. We touch here on the notion of a simple versus compound 

bug.  A compound bug is the interaction of several bugs.  If ** only accepts simple bugs, 

then the diagnosis space equals the size of the bug catalogue.  If ** accepts the 

interaction of several bugs, it exponentially increases the search space.  

That is only one problem resulting from accepting compound bugs. A more 

dramatic issue is that the bugs’ effects interact in a complex way on the learner's 
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behaviour. Hence, the process of inferring the bug from the behaviour becomes more 

complex. At the extreme, the combination of several bugs may sometimes produce a 

correct answer! 

 

4.  THE SEARCH PROCESS 

 

The search process aims to match data (BLP) with a  model (RSRL*k), or inversely to 

match the model to the data. Diagnosis search processes are ranged between two 

extremes :  

- purely data-driven approaches : the diagnosis is built from the learner behaviour, 

without reference to a predefined model. 

- purely model-driven : weak search methods explore the diagnosis space, generate 

models and match the model predictions to learner behaviour. 

The first method is not feasible except in very simple domains; the second raises 

combinatorial explosion problems. Both neglect the heuristic value of the other method: 

models are required for interpreting behavioural data, and behavioural data are required 

for pruning the search space of possible models. However, the heuristic value of 

behavioural data is reduced by the presence of noise.  Most search methods are 

somewhere between these two extremes - we present them from data-driven to model-

driven: 

 

4.1 Direct inference approaches 

 

A direct inference approach  (see Figure 7) is based on the postulate that the bug 

(and misconception) may be inferred directly from the error.  

The first step is to identify the difference between the learner's and system's 

behaviours ∆(RSBLP,BSP). This step is not as simple as it appears. What is for instance 

the difference between 3 and 6?  3 may be half 6, less than 6, odd, prime, etc.   The 

search space for this difference is actually infinite. Hence, this approach requires an error 

catalogue  which restricts the search space by telling the system which differences must 

be considered. By contrast with the bug catalogue, the error catalogue is often implicit : 

the considered differences are encrypted in the behaviour comparison process.  

The second step is to infer a bug from the identified error. The term "direct 

inference approach" indicates that there are some predefined links between errors and 

bugs. This may be represented by a set of pairs (errori, bugj). The bug may then be 

directly deduced from the error.  The point we want to make here is that there is no 

search during the second stage. The search is limited to identifying, among a set of errors, 

the one which best characterises the learner’s behaviour. 
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 EXAMPLE : WEST (Burton and Brown, 1976) 

WEST uses 'issue recognisers' to relate learner behaviour to a set of independent issues (e.g. failing 

to use parentheses).  WEST uses an overlay learner model and thus only represents missing, not 

incorrect, knowledge. 

 

< about here: Figure  7.  Direct inference approaches > 

 

 EXAMPLE : TAPS (Hawkes and Derry, 1989) 

TAPS compares the learner solution with the expert solution and classifies each deviation in terms 

of a bug catalogue.  (In fact, their catalogue is called an 'error classification' although it seems to 

include both errors, i.e. matters concerning behaviour, (e.g. 'hesitancy'), and bugs, i.e. matters 

concerning behavioural knowledge (e.g. 'student constructs schema that is not on the correct 

solution path')). 

 EXAMPLE : TDTDT (Daelemans, 1988) 

The links from errors (e.g. using 'dt' instead of 't' in a Dutch word) to bugs (e.g. 'using third person 

instead of second person') are the result of the system learning through progressive refinement, 

using techniques developed for learning heuristic rules in second generation expert systems. 

As we said, the error catalogue is generally not explicit. It may also be defined in a 

synthetic way, one rule defining several error-bug links: 

 EXAMPLE : GUIDON (Clancey, 1987) 

Here is for instance a diagnostic rule used by GUIDON : 

 T-rule 6.05 

IF   The learner's hypothesis does include values that can be concluded by this domain rule, 

as well as others, and 

 The hypothesis does not include values that can only be concluded by this domain rule, 

 Some other values concluded by this domain rule are missing from the hypothesis 

THEN The belief that the domain rule was considered by the learner is -0.70 

The error here defined is the incompleteness of the learner's behaviour (it is more precisely a class 

of errors). The related bug is the absence of the rule in the learner's model, i.e. this rule associates 

an "is incomplete" error with an "is incomplete" bug. The variable "rule" appearing in T-rule 6.05 

may be instantiated by many rules of Rsbk. This enables GUIDON to associate in a very synthetic 

way many errors with their respective bugs. This economy does not modify the one-to-one 

relationship between errors and bugs. 

An identical approach may be designed for the conceptual level, i.e. for linking 

errors with misconceptions. However, such links are even more difficult to determine 

than the error-bug links. 

 EXAMPLE : MENO II (Soloway, et al, 1983) 
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MENO-II associates errors (e.g. READ(X) placed at start of program) with bugs (e.g. 'put READ 

statements with the declarations') and then with misconceptions (e.g. 'READ is a kind of 

declaration') by using links from entries in a bug catalogue to nodes of a network representing 

misconceptions.  Some bugs may be linked to more than one misconception. 

The direct inference approach to learner modelling raises many criticisms because it 

is generally very difficult to associate an error with one and only one bug or 

misconception. 

 

4.2 Horizontal  extension of the behaviour 

 

The value of ¢(BLP,RLbk) is mainly affected by non-systematic factors (see section 

2.4). This kind of noise has been defined as behavioural variations between equivalent 

problems. Consequently, if one considers the common characteristics of several 

behaviours, i.e. if one abandons the variations, one reduces the noise and hence increases 

the consistency : 

¢(BLP,RLbk) < ¢({BiLPi},RLbk) | {Pi}={P1,..,Pn} and P1≈... ≈Pn  

where {BiLPi} represents this set of behaviours.  We call {BiLPi} a horizontal extension 

of BLP because each behaviour of {BiLPi} is at the same level (see Figure 8).  

 

< about here: Figure 8.  Horizontal extension of the behaviour. > 

 

4.2.1 Synthetic behaviour 

 

One may envisage applying inductive techniques to develop a synthetic behaviour 

which generalises the behaviour set {BiLPi} into a single (hypothetical) behaviour BLP. 

This synthetic behaviour is close to the concept of a mental model as a set of 

decontextualised rules of actions.  Expert-teachers are probably able to perform the 

generalisation involved in this inductive process. However, they use in this generalisation 

process an enormous amount of knowledge which is not available to the computerized 

tutor.  

 EXAMPLE : PROTO-TEG (Dillenbourg, 1990) 

PROTO-TEG attempts to learn conditions under which a didactic strategy should be applied, on 

the basis of learner model characteristics during (successful and unsuccessful) applications of the 

strategy.  Heuristic techniques are used to 'smoothe over' the exceptions in the instances, although 

it is difficult to induce behavioural similarities without explicit generalisation knowledge. 

 

4.2.2 Multiple diagnosis feedback 
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Most existing learner modelling systems have exploited {BiLPi} as a kind of 

multiple feedback : verifying RSRLbk by running it on problems P1 to Pn and matching the 

results with behaviours from {BiLPi} and eliminating diagnoses which do not predict a 

sufficient percentage of these behaviours.  (See also section 4.4 on diagnosis feedback.) 

 EXAMPLE : DEBUGGY (Burton, 1982) 

In general, a single example of behaviour (e.g. a solution of a subtraction problem) cannot be 

linked with a single simple bug or compound bug.  DEBUGGY uses a generate-and-test method 

(using simple bugs and a few common combinations) to produce an initial set of hypotheses.  These 

hypotheses can then be used to predict responses for other problems which can be compared with 

actual responses in the data set. 

  

4.2.3 Temporal issues 

 

This section raises the issue of time. Time is implicitly represented in our 

framework by the indices associated with the problems, since these problems have to be 

presented successively.  

 

4.2.3.1 Urgency of didactic choices.  The first difficulty is that collecting several 

behaviours before building a diagnosis implies that this diagnosis - and the subsequent 

didactic decisions - is postponed. Wenger (1987, p.383) expresses this issue as "... the 

contradictory requirements of being at once sensitive enough to adapt the tutor's attitude 

without delay, and stable enough not to be easily disturbed by local variations in 

performance".  The solution to this difficulty must take into account the time learners 

spend on each problem, the learner's resistance to the frustration associated with a failure, 

and the danger of installing faulty behaviours by repetition, and must balance these 

factors against the gain expected from more valid diagnoses.  This problem is not 

unsolvable: explanation-based techniques include a generalisation stage based on a single 

example - but have severe requirements with respect to the available knowledge: 

 EXAMPLE: MORE (Costa and Urbano, 1990) 

MORE represents Rsck as axioms in predicate logic and aims to interpret a single example of 

behaviour (e.g. the statement that 'Louis XIV wore a wig for fun') by using explanation-based 

learning methods to generate a decontextualised representation of the misconception.  MORE is 

one of the few systems to focus on Rsck rather than Rsbk, which is a standard theorem prover. 

 

4.2.3.2 Longitudinal consistency.  The second difficulty is that the learners are changing. 

We have described behavioural variations over time as noise, provided these behaviours 

are related to the same knowledge state. However,  in many cases, BLPi at time i and 
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BLPj at time j may result from different mental models. In other words, longitudinal 

inconsistencies may reveal knowledge changes instead of noise.  

Longitudinal consistency has generally been expressed by statistical parameters. 

The problem is precisely that statistical measures "scratch" the time dimension and ignore 

the variations in knowledge over time. For instance, imagine two hypotheses are found to 

explain ten instances of behaviour.  Let b1 denote the behaviours explained by the first 

hypothesis and b2 those explained by the second.  If the set of behaviours is "b2 b1 b2 

b1 b1 b2 b1 b1 b2 b1", we can say that the first hypothesis is more plausible (60%).  

However, with the same 60/40 distribution, we can have a behaviour sequence "b1 b1 

b1 b1 b1 b1 b2 b2 b2 b2" from which we may deduce that the second hypothesis is 

better for the learner's knowledge at the end of the sequence of exercises. 

These knowledge changes should be an important aspect of diagnosis.  Behaviour 

should not be diagnosed in isolation but in the context of an on-going teaching and 

learning process.  The current learner model and our expectations about learning 

outcomes should enable us to restrict the search space for an updated learner model. 

 EXAMPLE: WUSOR III (Goldstein, 1979) 

The Rs*k for WUSOR III includes 'genetic' links between nodes in a network.  These links are 

supposed to capture the evolutionary nature of knowledge, so that the learner model (implemented 

as an overlay on Rs*k) can guide the system's search for an updated model.  Thus the frontier of 

the learner model provides a focus for the diagnostic process. 

However, a satisfactory integration of the system's diagnostic process with the 

learner's learning process has yet to be achieved.  It demands a more valid psychological 

model of learning (as well as domain representation) than we are currently able to 

provide. 

  

4.3 Vertical extensions of the behaviour 

 

Extending the behaviour vertically means including in it a part of the solution path 

or intermediate representations. This extended behaviour is closer to RLbk since it is 

intermediate between the problem and the solution. If the distance between the model and 

the behaviour is shorter, the consistency ¢(BLP,RSRLbk) will be higher and, 

subsequently, the diagnosis error ∆(RLbk,RSRLbk) will be reduced.  The extreme case 

would be where the learner’s behaviour at the interface makes learner knowledge directly 

observable. 

 

4.3.1 Including solution paths in the behaviour 
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We first examine the case where the learner's behaviour includes part of the 

solution path, i.e. some steps of the solution path (see Figure 9). 

 

4.3.1.1 Model tracing.  The concept of granularity is used to describe the distance 

between two intermediate steps acted by the learner. This distance is the amount of 

reasoning (or the number of decisions) the learner performs between two successive 

steps. A fine-grain description of the learner's solution path requires the learner  to 

perform each single step of the solution. The model tracing approach  (Anderson, Boyle, 

Corbett and Lewis, 1990) aims to constrain the learner to adopt a behaviour whose 

granularity is as close as possible (ideally identical, according to the underlying 

psychological rationale) to the granularity of the inference process used by RSbk. This 

enables the system to match each learner step with one of its own steps, i.e. to "trace" the 

learner’s behaviour. In the systems designed by Anderson and his colleagues, the 

granularity is very fine. This approach raises many questions concerning the (arbitrary) 

definition of the intermediate steps and the educational disadvantages of increasing the 

constraints on the learner. 

 EXAMPLE: LISP TUTOR (Reiser, Anderson and Farrell, 1985) 

The LISP TUTOR uses its Rsbk to predict a set of possible next keystrokes.  If the actual keystroke 

matches one of these, the corresponding ideal rule is added to the learner model.  If none match, a 

buggy rule is identified.  The granularity is intended to enable a unique identification. 

 

< about here: Figure 9.  Vertical extension : including observed solution path > 

 

4.3.1.2 Reconstructing the solution path.  Typical examples of a behaviour extended to 

include the solution path have already been given : equations, theorem proving, medical 

or technical diagnosis, etc. In some cases, the solution path is reconstructed by the system 

from RSbk and BLP (see Figure 10). This reconstruction raises very difficult questions of 

psychological validity. 

 EXAMPLE: PIXIE (Sleeman, 1982) 

PIXIE takes a learner's solution and uses rules and mal-rules to work backwards towards the 

problem statement, thus hypothesising the learner's intermediate steps.  The search is constrained 

by a set of domain-dependent heuristics.  Moreover, when an intermediate step cannot be 

determined, PIXIE hypothesises a new mal-rule (which could be added to the bug catalogue).  

However, as with other syntactic methods mentioned earlier, there is no cognitive framework to 

prevent the generation of psychologically implausible mal-rules. 

 EXAMPLE : TDTDT (Daelemans, 1988) 

The system's solution path is extended by adding predefined buggy alternatives on each node in 

order to generate all possible behaviours.  
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Most of the work in this area has appealed to the psychological status of production 

systems as cognitive models (rather than as a means for supporting computational 

modularity, as discussed in section 3.1.1). 

 EXAMPLE : ACM (Langley and Ohlsson, 1984) 

ACM reconstructs a solution path by an exhaustive search using a set of primitive operators 

constrained by 'psychological heuristics'.  It then interprets this vertical extension as a horizontal 

one: a solution path is viewed as a sequence of operator applications. The same operator may have 

been applied several times, in various conditions. Induction on these various conditions enables 

ACM to decontextualise them and infer the conditions the learner has associated with an operator. 

 

< about here: Figure 10.  Vertical extension : including reconstructed solution path > 

 

4.3.1.3 Hybrid approaches.  The method of reconstruction can be combined with that of 

model tracing.  The intermediate steps generated by RSbk and used by the system for 

model tracing can also be used to infer missing steps in the observed behaviour. 

 EXAMPLE : IMAGE (London and Clancey, 1982) 

IMAGE uses a model tracing approach to predict the learner's likely next actions according to the 

hypothesised plan and, if this fails, attempts to reconstruct the learner's action using heuristics 

linking observed actions with known strategic concepts. 

 

4.3.2 Including intermediate representations in the behaviour 

 

Extending the behaviour with some part of the solution path may be insufficient 

because the solution path never covers the complete reasoning process. In the case of 

equation-solving, for instance, the solution path does not include the mental activities 

performed to decide what will be the next step. Identifying the learner's plans (as a part of 

RL*k) is a major difficulty in learner modelling. One approach is to constrain learners to 

extend their behaviour vertically by asking them to make their plans explicit (see Figure 

11). This extension is called an  intermediate representation.  

 

< about here:  Figure 11:  Intermediate representations > 

 

 EXAMPLE : EPIC (Twidale, 1989) 

EPIC requires learners to specify their plans before they input lines of a logical proof.  The plan is 

represented by a natural language-like template which must be instantiated to the problem at hand.  

These plans and sub-plans must then be annotated by the learner as she progresses with the proof.  

These annotations enable the system to maintain a learner model representing plans which could 

be determined from the proof itself only with great difficulty. 
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There is only a nuance between an intermediate step (in the solution path) and an 

intermediate representation. An intermediate step indicates some progression in the 

problem solving process. An intermediate representation reifies some knowledge applied 

during this process. Another difference is that intermediate steps tend to make 

behavioural knowledge concrete while intermediate representations may also reify 

conceptual knowledge.      

 EXAMPLE : BRIDGE (Bonar and Cunningham, 1988) 

BRIDGE is intended to provide a set of intermediate representations to enable novice programmers 

to articulate program designs.  Users move through three phases: building a 'natural language 

program'; transforming this into a 'plan program'; and defining a Pascal program.  Diagnosis is 

eased since instead of reconstructing intentions from code (as in PROUST) or monitoring code-

level input (as in LISP TUTOR), BRIDGE has explicit representations of the learner's goals. 

It is interesting to note that the learner's reification of reasoning processes presents 

advantages not only for the diagnosis process. This constraint appears to have positive 

educational effects since the learner has to perform the metacognitive activity to bring 

into consciousness some parts of the reasoning process which were often implicit. For 

instance, with EPIC learners said that they discovered the importance of plans in their 

proof constructions, and with BRIDGE learners must reflect on the programming 

methodology which BRIDGE imposes. 

 EXAMPLE : GEOMETRY TUTOR (Anderson, Boyle and Yost, 1985) 

The GEOMETRY TUTOR requires students to develop proofs using a proof graph (a form of 

intermediate representation).  In a related experiment, Singley (1990) showed that the activity of 

'goal-posting' generally improves problem-solving performance. 

 

4.4 Diagnosis feedback 

 

The scheduling of diagnosis feedback (that is, feedback to the system about its 

diagnosis, not 'didactic feedback' to the learner) enables a differentiation between data-

driven and model-driven approaches. In a data-driven approach, behavioural information 

is intensively used in building the hypothesis. Consequently, the feedback arrives later 

and with a higher probability of being positive.  In model-driven methods, the 

behavioural information only partially prunes the diagnosis space and hence leaves many 

concurrent hypotheses. Consequently, feedback is required sooner and has a higher 

probability of being negative, i.e. feedback is more important. 

 

4.4.1 Behavioural simulation 
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Given that RSRLbk is runnable, it can produce a  simulation of the learner's behaviour, 

which we denote by BLP'. Hence ¢(RSRLbk,BLP') = 1. If the simulation matches the 

learner's actual behaviour, the diagnosis is confirmed:  

IF  ∆(BLP',BLP) < Noise   

THEN  ∆(RLbk,RSRLbk) is acceptable. 

If not, one has to check if the difference between the behaviour and its simulation is 

not a matter of noise. There are two ways of tackling this appearance of noise: first, by 

using multiple diagnosis feedback (section 4.2.2) and secondly, by 'coercing' the learner's 

behaviour.  A coercion is an attempt to explain (away) slips in some rational way.  For 

example, the DEBUGGY system used a set of coercions representing common 

performance slips in an attempt to eliminate slips from the data.  Of course, it is 

somewhat self-contradictory to seek rational explanations for slips, as defined. 

 

4.4.2 Didactic prediction  

 

If the learner model is valid, it can be used to select a didactic action, i.e. to predict 

the efficiency of this action or to anticipate the learner's knowledge after the action. If the 

predicted changes happen, the diagnosis is confirmed. This approach is described in the 

pragmatic approach (section 2.5.1). 

We defined a didactic action DA by a triple (*kx,DA,*ky), where ∆(*kx,*ky) 

describes the expected knowledge changes associated with DA. Didactic prediction uses 

*ky for confirming the *kx diagnosis.  Using the diagnostic function ƒ (from section 1.3): 

IF ƒ(BLPi) = (RSRL*k)i  

 and ƒ(BLPi+1) = (RSRL*k)i+1 

 and ∃ (*kx,DAn,*ky) | *kx = (RSRL*k)i and *ky = (RSRL*k)i+1 

THEN  ¢(RSRL*k,BLPi) ≈ 1- noise 

 and ∆((RL*k)i,(RSRL*k)i) is acceptable. 

This approach raises two problems. First, we need to link learner models and 

didactic actions with certainty, i.e. to predict knowledge changes resulting from didactic 

actions. Secondly, the knowledge change has also to be attested through the diagnosis 

process, which makes the difficulty recurrent.  

 EXAMPLE : PROTO-TEG (Dillenbourg, 1990) 

The recursion problem has been avoided by defining only one kind of effect of didactic actions, 

their efficiency expressed as the rate of correctly identified quadrilaterals : (bkx, DAn, 80%). In 

this case bk was much closer to a class of behaviours than to a behavioural model. 

 

4.4.3 Behavioural prediction 
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Instead of behavioural simulation, we can have behavioural prediction: an 

additional problem Pj (equivalent to the initial problem Pi) is generated and the 

subsequent learner behaviour is used to confirm the diagnosis: 

IF  ƒ(BLPi) = (RSRL*k)i   

 Pi ∈ P and Pj ∈ P  and (Pi ≈ Pj) 

 ∆(BLPj',BLPj) < Noise   

THEN  ∆((RL*k)i,(RSRL*k)i) is acceptable. 

 EXAMPLE : IDEBUGGY (Burton, 1982) 

Each simple bug has an associated 'heuristic problem generator' which produces test problems for 

that bug.  If diagnosis provides more than one bug which is consistent with observed behaviour, 

then a set of test problems is generated (which give different answers for the different bugs) using 

the heuristic problem generators for those bugs and these test problems are submitted to the 

learner. 

Here, we come back to the temporal issue: the method presupposes that the learner's 

knowledge does not change between Pi and Pj.   The interest is in the interactive aspect 

of this approach : Pj may be generated by the system to permit a more precise diagnosis, 

for instance for discriminating two hypotheses.  Ideally, the discriminating problems 

should be generated by domain-independent mechanisms analysing the representations of 

the bugs, not from pre-specified problem generators associated with each bug.  Here we 

are concerned with disambiguating two (or more) hypotheses that the system has about 

the learner, but of course the learner may in fact hold two hypotheses, not one.  Therefore 

generating a test problem may help both the system and the learner.  Similarly, a test 

problem (a counter-example) might be generated to reveal (to the learner) differences 

between the learner's hypothesis and the system's 'correct' hypothesis.  

 EXAMPLE : PG (Evertsz, 1989) 

PG has a correct production system model for the domain of fraction subtraction.  Given a learner 

model in the same form, PG generates a counter-example by reasoning about the abstract 

computational behaviour of the learner model. 

 

4.4.4 Explicit interaction 

 

This approach consists of asking the learner to confirm the diagnosis - it is seldom 

applicable, but very efficient when it is: 

 EXAMPLE : ACE (Sleeman and Hendley, 1979) 

ACE reconstructs the learner's solution path from the partial one specified and then asks the 

learner to confirm this reconstruction.  ACE cannot handle erroneous partial solutions nor engage 

in any dialogue if the learner does not confirm the reconstruction. 

 EXAMPLE : MACSYMA ADVISOR (Genesereth, 1982) 
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The ADVISOR attempts to infer misconceptions (mistaken beliefs about MACSYMA's operations) 

from the user's inputs and then queries the user about these beliefs (e.g. "Did you expect COEFF to 

return the coefficient of D6?”).  Notice that the ADVISOR attempts to bypass the problem of 

identifying specific bugs by addressing deeper misconceptions directly. 

 

4.5 Inexact diagnosis 

 

At the beginning of this section we said that the aim of the search process is to 

match data with a model.  As is now apparent, this is an unreasonable aim, which perhaps 

should be recognised from the outset.  In general, the learner model will contain a 

number of components of which the system is more or less sure.  A number of techniques 

for handling this problem are implicit in the foregoing discussion.  In addition, there are a 

few systems which address this point explicitly: 

 EXAMPLE : IMPART (Elsom-Cook, 1988) 

IMPART proposes a 'bounded user model' in which the learner model is represented by a set of 

upper and lower bounds on the possible states of the learner.  The bounds specify a 'version space' 

in machine learning terminology but there is no implication that the system should aim to bring the 

bounds together: instead, it is assumed that tutorial actions will take account of such bounds. 

 EXAMPLE : TAPS (Hawkes and Derry, 1989) 

The learner model of TAPS uses fuzzy terms ('very likely', 'possibly') to indicate the extent to which 

a component is in the learner model.  The didactic procedures use similar terms.  It is not clear how 

the terms are updated. 

 EXAMPLE : SCENT (Greer, Mark and McCalla, 1989) 

SCENT makes use of the concept of the granularity (used in a somewhat different sense to that in 

section 4.3.1.1) of a knowledge representation.  The idea is that a diagnosis may be made at a 

superficial (low-grain-size) level or a deep (high-grain-size) level, or somewhere in between.  

Therefore, a set of Rs*ks (describing the same knowledge but at different levels of detail, unlike 

viewpoints (section 3.1.2.2) which are also a set of Rs*ks but which represent different knowledge) 

are provided to enable diagnosis to be carried out at the appropriate level. 

 

5.  CONCLUSIONS 

 

We have attempted to provide a computationally-oriented conceptual framework 

within which methods for learner modelling can be described.  Most if not all of the 

techniques described in the literature can be encompassed in this framework.  The aim of 

developing the framework is to help make it easier to assess the contributions that 

individual techniques make to the general problem of learner modelling, and to see where 

individual techniques 'fit' within the general schema. 
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Apart from the general outcome of providing a framework and a notation for 

thinking about learner modelling, two main conclusions follow from this review: 

1. That many approaches to learner modelling, although often presented as if they 

were in competition with one another, are in fact complementary since they address 

different parts of the framework - this is made clear in the figures, where annotations 

appear in different places. 

2. That most of the work on learner modelling has been concentrated on the lower 

half of our framework, that is, on the behaviour <-> behavioural knowledge mapping, 

with a relative neglect of the conceptual knowledge component. 

As a corollary of this report, we can anticipate a number of future activities in 

learner modelling research: 

1. To improve the framework and notation, the latter at the moment serving a 

descriptive rather than analytic function. 

2. To integrate complementary learner modelling techniques, rather than focussing on 

a single approach. 

3. To extend and develop techniques to address more conceptual issues. 

4. To consider whether and how the framework can be modified if any of the 

fundamental implicit assumptions listed in section 1.4 are withdrawn. 

5. To adopt the framework in order to situate new techniques with respect to each 

other and previous work, thus reducing reinventions and enabling quicker progress in the 

field. 

 

Acknowledgements 

 

This work has been partly funded by the European Economic Community under the 

DELTA programme and carried out within the NAT*LAB project.  We are grateful to 

Nicolas Balacheff, Thierry Chanier, Melanie Hilario, Patrick Mendelsohn, Michael 

Pengelly, Peter Reimann, Daniel Schneider and Michael Twidale for their comments on 

earlier drafts and to the reviewers for their detailed suggestions. 

 

References 

 

Anderson, J.R. (1983).  The Architecture of Cognition, Cambridge, Mass.: Harvard 

University Press. 

Anderson, J.R., Boyle, C.F., Corbett, A.T. and Lewis, M.W. (1990).  Cognitive 

modelling and intelligent tutoring, Artificial Intelligence, 42, 7-49. 

Anderson, J.R., Boyle, C.F. and Yost, G. (1985).  The geometry tutor, Proc. of Ninth 

IJCAI, Los Angeles. 



 

 

 

 

 37 

   

 

Anderson, J.R. and Skwarecki, E. (1986).  The automated tutoring of introductory 

programming, CACM, 29, 842-849. 

Baker, M.J. (1990).  Negotiated tutoring, Ph.D. thesis, Open University. 

Bonar, J. and Cunningham, R. (1988).  Intelligent tutoring with intermediate 

representations, Proc. of ITS 88, Montreal. 

Brown, J.S. and Burton, R.R. (1978).  Diagnostic models for procedural bugs in basic 

mathematical skills, Cognitive Science, 2, 155-191. 

Brown, J.S. and VanLehn, K. (1980).  Repair theory: a generative theory of bugs in 

procedural skills, Cognitive Science, 4, 379-426. 

Burton, R.R. (1982).  Diagnosing bugs in a simple procedural skill, in D.H. Sleeman and 

J.S. Brown (eds.), Intelligent Tutoring Systems, London: Academic Press. 

Burton, R.R. and Brown, J.S. (1976).  A tutoring and student modelling paradigm for 

gaming environments, ACM SIGCSE Bulletin, 8, 236-246. 

Carbonell, J.R. (1970).  AI in CAI: an artificial intelligence approach to computer-

assisted instruction, IEEE Trans. on Man-Machine, 11, 190-202. 

Carr, B. and Goldstein, I.P. (1977).  Overlays: a theory of modelling for computer-aided 

instruction, AI Memo 406, MIT, Cambridge, Mass. 

Chan, T.W. and Baskin, A.B. (1988).  Learning companion systens, in C. Frasson and G. 

Gauthier (eds.), Intelligent Tutoring Systems, Norwood: Ablex. 

Chanier, T., Pengelly, M., Self, J.A. and Twidale, M.B. (1990). BELLOC: an interface 

for characterising students' applicable rules in second language learning, to be 

presented at Cognitiva 90, Madrid. 

Clancey, W.J. (1986).  Qualitative student models, Annual Review of Computer Science, 

1, 381-450. 

Clancey, W.J. (1987).  Knowledge-Based Tutoring: the GUIDON Program, Cambridge, 

Mass.: MIT Press. 

Clancey, W.J. (1990).  The frame of reference problem in the design of intelligent 

machines, in  K. van Lehn and A. Newell (eds.), Architectures for Intelligence, 

Hillsdale, N.J.: Erlbaum. 

Collins, A. and Stevens, A.L. (1982).  Goals and strategies for inquiry teachers, in R. 

Glaser (ed.), Advances in Instructional Psychology II, Hillsdale, N.J.: Erlbaum. 

Costa, E. and Urbano, P. (1990).  Machine learning, explanation-based learning and 

intelligent tutoring systems, in E. Costa (ed.), New Directions in Intelligent Tutoring 

Systems, Amsterdam: Elsevier (to appear). 

Daelemans, W. (1988).  Learning heuristic diagnostic rules in an intelligent tutoring 

system, AI Memo 88-20, AI Lab, Vrije Universiteit, Brussels. 

Dillenbourg, P. (1990).  Designing a self-improving tutor: PROTO-TEG, Instructional 

Science, 18, 193-216. 



 

 

 

 

 38 

   

 

Dillenbourg, P. and Self, J.A. (1990).  Designing human-computer collaborative systems, 

to appear in C. O'Malley (ed.), Computer Supported Collaborative Learning, 

Amsterdam: Elsevier. 

DiSessa, A. (1986).  Models of computation, in D.A. Norman and S.W. Draper (eds.), 

User Centered System Design, Hillsdale, N.J.: Erlbaum. 

Elsom-Cook, M. (1988). Guided discovery tutoring and bounded user modelling, in J.A. 

Self (ed.), Artificial Intelligence and Human Learning, London: Chapman and Hall. 

Evertsz, R. (1989).  Refining the student's procedural knowledge through abstract 

interpretations, in D. Bierman, J. Breuker and J. Sandberg (eds.), Artificial 

Intelligence and Education, Amsterdam: IOS. 

Frederiksen, J.R. and White, B.Y. (1988).  Intelligent learning environments for science 

education, Proc. of ITS 88, Montreal. 

Fum, D., Giangrandi, P. and Tasso, C. (1988).  ET: an intelligent tutor for foreign 

language teaching, Proc. of ITS 88, Montreal. 

Genereseth, M.R. (1982).  The role of plans in intelligent teaching systems, in D.H. 

Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems, London: Academic 

Press. 

Gilmore, D.J. and Self, J.A. (1988).  The application of machine learning to intelligent 

tutoring systems, in J.A. Self (ed.), Artificial Intelligence and Human Learning, 

London: Chapman and Hall. 

Goldstein, I.P. (1979).  The genetic graph: a representation for the evolution of 

procedural knowledge, Int.J. Man-Machine Studies, 11, 51-77. 

Greer, J.E., Mark, M.A. and McCalla, G.I. (1989).  Incorporating granularity-based 

recognition into SCENT, in D. Bierman, J. Breuker and J. Sandberg (eds.), Artificial 

Intelligence and Education, Amsterdam: IOS. 

Hawkes, L.W. and Derry, S.J. (1989).  Error diagnosis and fuzzy reasoning techniques 

for intelligent tutoring systems, J. of AI in Education, 1, 43-56. 

Huang, X., McCalla, G.I. and Greer, J.E. (1990).  Student model revision: evolution and 

revolution, Proc. CSCSI/SCEIO Conference, Ottawa. 

Langley, P. and Ohlsson, S. (1984).  Automated cognitive modelling, Proc. of the 

National Conf. on AI, Austin. 

Mizoguchi, R., Ikeda, M. and Kakusho, O. (1988).  An innovative framework for 

intelligent tutoring systems, in P. Ercoli and R. Lewis (eds.), AI Tools in Education, 

Amsterdam: North-Holland. 

Reiser, B.J., Anderson, J.R. and Farrell, R.G. (1985).  Dynamic student modelling in an 

intelligent tutor for LISP, Proc. of Ninth IJCAI, Los Angeles. 

Ruth, G.R. (1976).  Intelligent program analysis, Artificial Intelligence, 7, 65-85. 



 

 

 

 

 39 

   

 

Singley, M.K. (1990).  The reification of goal structures in a calculus tutor: effects on 

problem-solving performance, Interactive Learning Environments, 1, 102-123. 

Sleeman, D.H. (1982).  Inferring (mal) rules from pupils' protocols, Proc. of the 

European Conf. on AI, Orsay. 

Sleeman, D.H. and Hendley, R.J. (1979).  ACE: a system which analyses complex 

explanations, Int. J. Man-Machine Studies, 11, 125-144. 

Soloway, E.M., Rubin, E., Woolf, B.P., Bonar, J. and Johnson, W.L. (1983).  MENO-II: 

an AI-based programming tutor, J. of Computer-Based Instruction, 10, 20-34. 

Twidale, M.B. (1989).  Intermediate representations for student error diagnosis and 

support, in D. Bierman, J. Breuker and J. Sandberg (eds.), Artificial Intelligence and 

Education, Amsterdam: IOS. 

Van de Velde, W. (1988).  Learning from experience, doctoral dissertation, AI Lab, 

VUB, Brussels. 

Wenger, E. (1987).  Artificial Intelligence and Tutoring Systems, Los Altos: Morgan 

Kaufmann. 

Wilkins, D.C., Clancey, W.J. and Buchanan, B.G. (1988).  Using and evaluating 

differential modelling in intelligent tutoring and apprenticeship learning systems, in J. 

Psotka, L.D. Massey and S.A. Mutter (eds.), Intelligent Tutoring Systems: Lessons 

Learned, Hillsdale, N.J.: Erlbaum. 

 


