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THE ROLE OF SPECTRAL ANISOTROPY IN THE RESOLUTION OF
THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

JEAN-YVES CHEMIN, ISABELLE GALLAGHER, AND CHLOE MULLAERT

ABSTRACT. We present different classes of initial data to the three-dimensional, incompress-
ible Navier-Stokes equations, which generate a global in time, unique solution though they
may be arbitrarily large in the end-point function space in which a fixed-point argument may
be used to solve the equation locally in time. The main feature of these initial data is an
anisotropic distribution of their frequencies. One of those classes is taken from [5]-[6], and
another one is new.

1. INTRODUCTION

In this article, we are interested in the construction of global smooth solutions which cannot be
obtained in the framework of small data. Let us recall what the incompressible Navier-Stokes
(with constant density) is:

du+u-Vu—Au=—-Vp in RY xR3
(NS) { divu=0
U|t:0 = Up-

In all this paper = = (x5, 23) = (1,22, 23) will denote a generic point of R® and we shall

write u = (u",u3) = (u',u? u3) for a vector field on R® = R2 x R,. We also define the

horizontal differentiation operators V" def (01, 02) and divy, def gn -, as well as Ay, def 0% +03.

First, let us recall the history of global existence results for small data. In his seminal work [15],
J. Leray proved in 1934 that if ||ug||z2||Vuol/z2 is small enough, then there exists a global
regular solution of (NS). Then in [8], H. Fujita and T. Kato proved in 1964 that if

ol ([ el ofeyae)’

is small enough, then there exists a unique global solution in the space

Cy(RY; H2) 0 LARY; HY).
After works of many authors on this question (see in particular [11], [13], [17],and [3]), the
optimal norm to express the smallness of the initial data was found on 2001 by H. Koch and
D. Tataru in [14]. This is the BMO~! norm. We are not going to define precisely this norm

here. Let us simply notice that this norm is in between two Besov norms which can be easily
defined. More precisely we have

ol gz, S lollzaro-s S lluoll o, with
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def 1A o defyia
Huo”g;{m _iglthHe uo|lp~ and HUOHB;{Q = e uoll 2+ o0y

Fisrt of all, let us mention that H 3 is continuously embedded in B;Olz. To have a more precise

idea of what these spaces mean, let us observe that the space Bo_ol,oo we shall denote by C~!
from now on, contains all the derivatives of order 1 of bounded functions. Let us give some
examples. If we consider a divergence free vector field of the type

uso(x) = % cos<%) (—020(x), 010(x),0)

for some given function ¢ in the Schwartz class of R3, then we have

_3
luzollsr, ~ usolles ~ 1 and  fuclly ~ .

Another example which will be a great interest for this paper is the case when

Uz 0(x) = go(exs) (—ad(xr), O1¢(zh),0).

As claimed by Proposition 1.1 of [5], we have, for small enough ¢,

1
(1.1) lueolle-1 2 Sldlle-1@2) doll oo @)-

In this paper, we are going to consider inital data the regularity of which will be (at least) H 3,
Our interest is focused on the size of the initial data measured in the C~! norm.

Let us define G the set of divergence free vector fields in H %(]R?‘) generating global smooth
solutions to (IV.S) and let us recall some known results about the geometry of G.

First of all, Fujita-Kato’ theorem [8] can be interpreted as follows: the set G contains a ball

-1
of positive radius. Next let us assume that G is not the whole space H2 (in other words, we
assume that an initial data exists which generates singularities in finite time). Then there
exists a critical radius p. such that if ug is an initial data such that HuOHH 1 < pe, then ug

generates a global regular solution and for any p > p., there exists an intial data of H 3 norm 0
which generates a singularity at finite time. Using the theory of profiles introduced in the
context of Navier-Stokes equations by the second author (see [9]), W. Rusin and V. Sverak

prove in [16] that the set (where G¢ denotes the complement of G in H %)
-1
G°n {un € F5 / uoll ;3 = pe)
is non empty and compact up to dilations and translations.

In collaboration with P. Zhang, the first two authors prove in [6] that any point ug of G,
is at the center of an interval I included in G and such that the length of I measured in
the C~! norm is arbitrary large. In other words for any ug in G, there exist arbitrary large
(in C’*l) perturbations of this initial data that generate global solutions. As we shall see, the
perturbations are strongly anisotropic.

Our aim is to give a new point of view about the important role played by anisotropy in the
resolution of the Cauchy problem for (N.S).

The first result we shall present shows that as soon as enough anisotropy is present in the
initial data (where the degree of anisotropy is given by the norm of the data only), then it
generates a global unique solution. A similar result can be found in [2, Theorem 1].
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Theorem 1. A constant cq exists which satisfies the following. If (uc)e>0 is a family of
divergence free vector field in H? such that HUE’OHHI < p and satisfying

(1.2) V€ € Supp Ueo, either [§] <elgs| or [&3] <elénl,

then, ife4||u€70\|Hl is less than cg, u. o belongs to G.
Let us remark that this result has little to do with the precise structure of the equations: as
will appear clearly in its proof in Section 2, it can actually easily be recast as a small data
theorem, the smallness being measured in anisotropic Sobolev spaces. It is therefore of a
different nature than the next Theorems 2 and 3, whose proofs on the contrary rely heavily
on the structure of the nonlinearity (more precisely on the fact that the two-dimensional
equations are globally well-posed).

The next theorem shows that as soon as the initial data has slow variations in one direction,
then it generates a global solution, which, roughly speaking, corresponds to the case when the
support in Fourier space of the initial data lies in the region where |£3| < ¢|£,|. Furthermore,
one can add to any initial data in G any such slowly varying data, and the superposition still
generates a global solution (provided the variation is slow enough and the profile vanishes at
zZ€ero).

Theorem 2 ([5],[6]). Let v = (v§,v2) be a horizontal, smooth divergence free vector field
on R? (i.e. v} is in L?(R3) as well as all its derivatives), belonging, as well as all its derivatives,
to L?(R,,; H~Y(R?)); let wy be a smooth divergence free vector field on R®. Then, there exists
a positive g depending on norms of vg and wq such that, if € < gg, then the following initial
data belongs to G :

def
veo(x) = (v 4 ewl, wd) (w1, x9, £23) .
If moreover vl(x1,22,0) = wi(x1,22,0) = 0 for all (v1,72) € R?, and if uy belongs to G,

then there exists a positive number ¢, depending on ug and on norms of vé‘ and wq such that
if e < g, the following initial data belongs to G :

def
Ug,) = U + Ve 0 -

One can assume that vg and wg’ have frequency supports in a given ring of R?, so that (1.2)
holds. Nevertheless Theorem 1 not apply since v, g is of the order of £73 in H3. Actually the
proof of Theorem 2 is deeper than that of Theorem 1, as it uses the structure of the quadratic
term in (NS). The proof of Theorem 2 may be found in [5] and [6], we shall not give it here.
Note that Inequality (1.1) implies that v o may be chosen arbitrarily large in c1L.

One formal way to translate the above result is that the vertical frequencies of the initial
data v are actually very small, compared with the horizontal frequencies. The following
theorem gives a statement in terms of frequency sizes, in the spirit of Theorem 1. However
as already pointed out, Theorem 1 again does not apply because the initial data is too large
in FI3. Notice also that the assumption made in the statement of Theorem 2 that the profile
should vanish at x5 = 0 is replaced here by a smallness assumption in LQ(RQ).

Theorem 3. Let (v: ). be a family of smooth divergence free vector field, uniformly bounded
in the space L®(R; H*(R?)) for all s > —1, such that (y/€ve ). is uniformly bounded in the
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space L?(R,; H*(R?)) for s > —1, and satisfying
Ve €]0,1[, V€€ Supp Vo, &3] <elénl.
Then there exists a positive number ¢ such that for all € < g¢, the data v. o belongs to G.
Moreover if ug belongs to G, then there are positive constants ¢y and ¢, such that if
[[ve,0(, 0)l| L2 m2) < co

then for all e < &, the following initial data belongs to G :

def
Ue,0 = U+ Ve, -

Let us remark that as in [5], the data v. o may be arbitrarily large in C~1. Note that Theo-
rems 2 and 3, though of similar type, are not comparable (unless one imposes the spectrum
of the initial profiles in Theorem 2 to be included in a ring of R3, in which case the result
follows from Theorem 3).

The paper is organized as follows. In the second section, we introduce anisotropic Sobolev
spaces and as a warm up, we prove Theorem 1.

The rest of the paper is devoted to the proof of Theorem 3. In the thid section, we define a
(global) approximated solution and prove estimates on this approximated solutions and prove
Theorem 3.

The last section is devoted to the proof of a propagation result for a linear transport diffusion
equation we admit in the preceeding section. Let us point out that we make the choice not to
use the technology anisotropic paradifferential calculus and to present an elementary proof.

2. PRELIMINARIES: NOTATION AND ANISOTROPIC FUNCTION SPACES

In this section we recall the definition of the various function spaces we shall be using in this
paper, namely anisotropic Lebesgue and Sobolev spaces.

We denote by L LY (vesp. LE(L?)) the space LP(R7; L9(R,)) (resp. LI(R,; LP(R})) equipped

with the norm
1
def b P
”f”LI};LZ = (/2 </ \f(xh,xg)]qu;g)q dxh>
R? v

and similarly H* is the space HS(RQ; H?(R)) with

def

e ([0l e, 0P dcna )

where f: F f is the Fourier transform of f. Note that H* is a Hilbert space as soon as s < 1
and o < 1/2. We define also

def
||f||[—']51’82753 =

</R3 €[5 €252 €522 | F (&1, £, E3) 2 d€1d$2d§3> §
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This is a Hilbert space if all s; are less than 1/2. Finally we shall often usethe spaces ILYH p=
LP(R,; H*(R2)). Let us notice that L2H; = H*? The following result, proved by D. Iftimie
in [12] is the basis of the proof of Theorem 1.

Theorem 4. There is a constant g such that the following result holds. Let (s;)1<i<3 be
such that s1 + s2 +s3 = 1/2 and —1/2 < s; < 1/2. Then any divergence free vector field of
norm smaller than gy in H®*2%3 generates a global smooth solution to (NS).

This theorem implies obviously the following corollary, since H 8375 i continuously embedded
» s s 1 . 1

in H22'27% as soon as 0 < s < 1/2. More precisely, we have that the space H>27% is the

space 3055 () F{0s:5s,

Corollary 2.1. There is a constant €y such that the following result holds. Let s be given

in ]0,1/2[ . Then any divergence free vector field of norm smaller than e in o2 generates
a global smooth solution to (NS).

Proof of Theorem 1. Let us decompose ug into two parts, namely we write ug = vg + wg, with

d f _ ~ d f — -
vo = F T (Lg <eley@0(€))  and  wo = F T (Ligy <epe, 0 (6)) -

Let 0 < s < 1/2 be given. On the one hand we have
ool = [ el @) R dg
€3] <el|&nl

hence since s < 1/2,

Jool?,.y-. <172 [l ) ag
< ug]?

Identical computations give, since s > 0,

ol , . = / € 2216312 (6) 2 de
H>= |€n|<e|&3]

<< [lelim(©P &
2s 2
< ol
To conclude we can choose s = 1/4, which gives
1
[uoll ;3.1 < e+ ljuoll ;1
Then, the result follows by the wellposedness of (N.S) in Hii given by Corollary 2.1. U

Remark 2.1. The proof of Theorem 1 does not use the special structure of the nonlinear term
in (N.S) as it reduces to checking that the initial data is small in an adequate scale-invariant
space.
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3. PROOF OF THEOREM 3

In this section we shall prove the second part of Theorem 3: we consider an initial data ug+v o
satisfying the assumptions of the theorem and we prove that for ¢ > 0 small enough, it
generates a global, unique solution to (NS). It will be clear from the proof that in the case
when ug = 0 (which amounts to the first part of Theorem 3), the assumption that v, o(zp,0) is
small in L?(R?) is not necessary. Thus the proof of the whole of Theorem 3 will be obtained.

3.1. Decomposition of the initial data. The first step of the proof consists in decomposing
the initial data as follows.

Proposition 3.1. Let v. o be a divergence free vector field satisfying
Ve €]0,1[, V€ € Suppleo, €3] <elénl.

Then there exist two divergence free vector fields (_6 0 0) and we o the spectrum of which is
included in that of v. o, and such that

Ve,0 = (6?,07 0) + We,0 with |ﬁ)\?70‘ < €|@§70‘ :

Proof. Let Py, def Id-V,A,; Ydiv}, be the Leray projector onto horizontal divergence free vector

fields and define

(3.3) oo Bty and weo © s — (87,0).

The estimate on w; o simply comes from the fact that obviously

Wlo(€) = S §h
e IEa
and therefore since v, o is divergence free and using the spectral assumption we find
[6n 020l 16502,
@l ()] < = col = el@lo ()]
€] €]
That proves the proposition. O

3.2. Construction of an approximate solution and end of the proof of Theorem 3.
The construction of the approximate solution follows closely the ideas of [5]-[6]. We write

indeed

vIPP def (v ,0) +w. and  ulPP def u—+ v2PP
where u is the global unique solution associated with ug and 5’; solves the two dimensional
Navier-Stokes equations for each given x3:

ol —i—v Vol — Al =~V in RT x R?
(NS2D),, § divp© ot =0
h h ( T )
5‘15 0= 570 sy 43)
while w, solves the linear transport-diffusion type equation
dwe + 0 - Vi, — Aw, = —Vg. in RT x R3
(T) divw, =0

We|t=0 = We,0 -
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Those vector fields satisfy the following bounds (see Paragraph 3.3 for a proof).

Lemma 3.1. Under the assumptions of Theorem 3, the family ue’” is uniformly bounded

in L2(R™; L=(R%)), and Vug?” is uniformly bounded in L*>(R™; LL?).

Now define u, the solution associated with the initial data ug+ ., which a priori has a finite
life span, depending on . Consider

def a
. pp
R, = ue — Uz,

which satisfies the following property (see Paragraph 3.4 for a proof).
Lemma 3.2. For any positive § there exists €(d) and ¢(0) such that if
c<e(d) andif [uo(-0)l < c(6),

then the vector field R® def ue — u? satisfies the equation

O R-+ R.-VR. — AR. + u?” - VR. + R. - Vu’? = F. — V.
(E¢) divR. =0
R€|t=0 =0

ey =

with |[E|
Assuming those two lemmas to be true, the end of the proof of Theorem 3 follows very easily
using the method given in [5, Section 2]: an energy estimate in H 2 (R3) on (E.), using the fact
that the forcing term is as small as needed and that the initial data is zero, gives that R. is
unique, and uniformly bounded in L®(R*; H 2 )NLA(RT; H 3 ). Since the approximate solution
is also unique and globally defined, Theorem 3 is proved. U

3.3. Proof of the estimates on the approximate solution (Lemma 3.1). As noted
in [6, Appendix B], the global solution u associated with ug € H 3 belongs to L2(RT; L=(R3)),
and Vu belongs to L*(R*; LPL?). So we just need to study ve?”, which we shall do in two
steps: first 6?, then w;.

3.3.1. Estimates on EQ. Due to the spectral assumption on 6?70, it is easy to see that
1 .
Va = (o, a3) € N> x N, 85_0‘330‘5?70 is uniformly bounded in L2H;
and 6_0‘380‘6?70 is uniformly bounded in L°Hj .

Indeed the definition of 5?70 given in (3.3), and the spectral assumption as well as the a priori
bounds on v, g, give directly the first result. To prove the second result one uses first the
Gagliardo-Nirenberg inequality:

—h —h —h
10720l oo e < 10°T2 00l 211 1080 TE 0l 2 115

and then the same arguments. The proof of [5, Lemma 3.1 and Corollary 3.1] enables us to
infer from those bounds the following result.
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Proposition 3.2. Under the assumptions of Theorem 3, for all real numbers s > —1 and
all & = (ap,3) € N2 x N there is a constant C such that the vector field " satisfies the
following bounds:

t
0°5 1), + sup / |ovhah () |2, dt
z3€R JO h
t
(10RO 5 + /0 0T (1) 2oy ) < T2

3.3.2. Estimates on w.. The definition of w, o given in (3.3), along with the spectral assump-
tion on (ve ), lead to

Ve 6]0’ 1[a V€ € Supp@E,O’ |£3| < 6|$h| and ‘we 0 )| < 6‘@3,0 (5)‘ :
The proof of the following result is technical and postponed to section 4.

Proposition 3.3. Under the assumptions of Theorem 3, w? and 6_1wh are uniformly bounded

in the space L°(R*; LL?)NL*(R*; LHY) for all s > 0. Moreover €273 9%y, is uniformly
bounded in L>°(R*; L2H?) N L*(R*; L2H;) for all s > 0 and all o = (ap,, a3) € N> x N.

The Gagliardo-Nirenberg inequality and Sobolev embeddings lead to Lemma 3.1.

3.4. Proof of the estimates on the remainder (Lemma 3.2). Substracting the equation
on ucP? from the equation on u one finds directly that

F. = (8?%6?7 331_75) + we - vapp +u- vvgpp 4 ngp -Vu,
which we decompose into F, = G, + H, with

G- T (0302, 07.) +we - Vo’ and  H. T u. ol + % V.

Lemma 3.2 follows from the two following propositions.

Proposition 3.4. There is a positive constant C such that for all € in |0, 1],

1
HG€HL2(R+,H7%(R3)) S 082 .

Proof. Let us start by splitting G. in three parts: G. = G + G? + G2 with

G! def (93T1,0), G2 def (0,057.), and G* df we - VulbP
On the one hand we have obviously

h
< || 057

1
H €||L2(R+;H7%(R3 12 R+ H2(R3))

Proposition 3.2 applied with o = (0,1), o = (0,2) and o = (ap, 1) with |ap| =1 gives
/ 057, )22t S and / 05Vt ) et S .
By interpolation, we infer that

(3.4)

=

HGEHLQ(R+;H_%(R3)) S €
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To estimate Gg we use the fact that

2
—Anp. = Y, 0,00 (v10F)
Jk=1

and since (—Ap) 19,0 is a Fourier multiplier of order 0 for each (j, k) in {1,2}? we get

2
2 —k
1G22 oy S Do IP20STEN v i 4 ey
Jik=1

[un

As L2H, * — H_%(R‘?), we get
2

”G2”L2(R+ H*j ]RS ; ijagkaLQ ]R”' LQH )
7,k=1

_1
2

4 .
Using the Sobolev embedding Lj < H, * and Hoélder’s inequality gives

2
1621 g3 ];1“”]‘0‘3 el o and)
L Y L=
so the Sobolev embedding H é — L,% gives finally
162 a3 ey S O s -

The result follows again from Proposition 3.2: choosing s = 1/4 and a = 0 we get that 5? is
L1
uniformly bounded in L>(R™; L H,!), while s = —3/4 and a = (o, 1) with |oy| = 1 gives

h < L
1657l ity S

We infer finally that

N[

2
(35) ||G€||L2(R+;H7%(R3)) rg €

To end the proof of the proposition let us estimate G2. We simply use two-dimensional
product laws, which gives

G2

= [Jwe - VO]

HL2 (RT; H_Q(R:“)) L2(RT; H_Q(RE‘))

h h
S llwell, L VR
Lo (R %L%Hh)

1
woad e Ser,
(RTLH) Lo (RT3 H)

)

oo (RF; LS H4

3
]

due to Propositions 3.2 and 3.3. Together with Inequalities (3.4) and (3.5) that proves Propo-
sition 3.4. O
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Proposition 3.5. Let 6 > 0 be given. There are positive constants €(d) and ¢(d) such that
if e <e(6) and if |jve (-, O)HL% < ¢(6), then

P |

Proof. First, we approximate H., and then we estimate this approximation.

Using [10, Theorem 2.1] we get

SO we can approximate wu in L°°(R+,H %) for all » > 0, there exists an integer N, real
numbers (t;) y and smooth, compactly supported, divergence free functions (¢;), <j<N

such that N
~ def
un(t) :e Z 1[tj_1,tj] (t) gb_]
j=1

is uniformly bounded in L=°(R+, H2) N L3R+, H2) and satisfies

(3.6) = Tl s i) oy S

0<j<

We split H. into two contributions
H. = Heyp + (il — u) - VU2 407 . V(i — )

with H, , def Uy - Vot + 0" . va,

As vZP? and @, — u are divergence free vector fields,
H. — H., = div((@; — u) @ v + 0P @ (@, — u)) .
Thanks to [6, Lemma 3.3] we get

~ h
1He = Hegll -y < My — ull 3 (V02| oo 2 + 087l oo + (050277 | H%)
h

and Proposition 3.2 along with (3.6) lead to

|H: — H&U”L2(R+,H_%(R3)) S0

It remains to estimate H. , = U, - Voe'’ + v - V,,. By Propositions 3.2 and 3.3 we have
3 app app
O s sty S I sy 1507

a3 =
Lo (R+ H2(R3))

L2(R+,H 2 (R3))

~ ‘

Since , is uniformly bounded in L>(R*, H 3 (R?)), we infer that

3 9,09PP -
hm [, Ozv¢ |’L2(R+,H_%(R3)) =0.

Lemma 3.4 of [6] claims that

”ab”H‘% < CHGHHH% l|b(-, )HL% + CH”“HLQHG?’I)”WH}L%'

So we get

h ~h h h h
g - V"ol 1<H\5Hﬂv vt (- NH+WQUMﬂ%V‘WH
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and

A e A Y [ GO PR A AL S

vt h v

Propositions 3.2 and 3.3 lead to

: happ 2 —

ti [ s O o 57Oy =0
and

. ~ 2 app 2 _

tiny | s TR Ol B0 Oy de=0.

Now we recall that @, is uniformly bounded in L>(R*, H 2) N L2(R*, H?), hence Uy is uni-
1

1 1
formly bounded in L*®(R™, L2H?) and Vi, is uniformly bounded in L*(RT,L2H?). So in
order to to conclude we just have to estimate

[P (-, 0) | oo (e, 22 (R2y) + IV 022 (-, 0| 2ot 12 2, -
This is done in the following proposition, which concludes the proof of Proposition 3.5. [

Proposition 3.6. For all 6 > 0 there are positive constants £(§) and c(d) such that for
all 0 < e <e(9), if |luco(-, O)HLi < ¢(6) then

1027 (-, )| oo e 12 (m2y) + IV 027 (-, 0| 2 v 12 7)) < 6 -

Proof. First, we estimate 5’; and w?. For all £ > 0, an energy estimate in L% gives

1 ¢ 1
(37) _Hﬁg(uao)”i? +/ ”vhﬁg(t,a70)ui2dt/ = _”7}670(70)“%2 .

2 h 0 h 2 n
Then, for all 6 > 0 there is a constant ¢(d) such that if |lvz (-, O)HL}% < ¢(6) then

[ (-, 0] oo (R+,L2 (R2)) T V"2, O)ll 22+, 12 (R2)) <6 -
Moreover, by Proposition 3.3 we have
Hw?('7O)HL°°(R+,L2) + ”Vhw?('ao)”B(RtL?) Se.

It remains to estimate w3. Accordlng to Proposition 3. 3 w, and V"w, are uniformly bounded

respectively in L®(RT, L°°H ) and L?(R¥, LﬁoH ), so we shall get the result by prov-
ing that for all § > 0 there are positive constants £(J) and c¢(d) such that if ¢ < &(9)
and HUE,O(HO)”L}% < ¢(6) then

3(. h, 3(.
020, ot HIVRRCON, oy <6

Recall that w? satisfies
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L1

Define T} def 02w2 — 93¢ . An energy estimate in Hp ? gives

i 012 / IV (10) Iy
(3.8)
o Oy +ITCOR, Ly [ o

2(Rt,H,, ?) h
Using [4, Lemma 1.1] we get for each fixed x3

@ Vw2 w?) o (ws)| S IVTL (s)l 2 IV w2 (s)]| g lwl(as)]] s
H? H} H}

In particular, using (3.7), we get

/ (o2 )y (¢,0) o

< hzh
92,0} e V20 O 10200,
S P2 (0l IV w2 (-, 0)] L w20l

L1
L2(R+, H2 Lo (RT,H?)

Then we infer that
t
[t Ty (0l S o0,
0 H?
< (IV*ug 0P

Plugging this inequality into (3.8) we obtain that there is a constant C' such that
3¢, 2 _ . h, 3 2
[wZ ( ,O)HLOO(]R+ ah t (1= Clluco( 02 IV wZ (- 0)]

“Th

S 2o 4 +IT(,0) 1
Hh L2(R+,H, 2)

< 3 (. 3 (. . . 2
S ol Ol ol Oy + TGO, oy -

F 02 ).

1
L2(R+,H}2) Lo (R, H2)

L2+ D)

As w; o is uniformly bounded in LﬁC’H L it remains to prove that

lim HT‘E("O)HL2(R+7H;%) =0.
As 92w? = —dsdivi,wh, we get
2,3 h, h h, h
. . < .
IRl O, oy S IO, oy ST

The bounds on w. given in Proposition 3.3 along with the Gagliardo-Nirenberg inequality
lead to

105w (-, 0)] .

1
L2(R+,H, 2

1 1
_y <105Vl R AR .
h L2(R+7L12)Hh, 2) L2(R+7L12)Hh 2)
<é?

Now let us turn to the pressure term. Recall that

“Ag.=divN., with N. %50 Vi, = divy (@ ® we)
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since v is divergence free. To estimate J3¢-(-,0) we use Gagliardo-Nirenberg’s inequality,
accordlng to which it suffices to estimate d3¢. in L? and in H_.

Since (—A)~!divy, div is a zero order Fourier multiplier, we have

[03¢ell = 165 (02 @ w)|

On the one hand we write

L2(Rt,H 2R+, H-31)

_ 1
5Ty S0l s 19T sy S €5
by Propositions 3.2 and 3.3, and similarly
1
[l s 5HL2 R+ L2HT < Ha?’weH 2(®+ L2H2 L [ eHLOO R+,LL?) Sez.

In the same way we find that

N

10T © W)l g ety S €

This ends the proof of Proposition 3.6. (|

4. ESTIMATES ON THE LINEAR TRANSPORT-DIFFUSION EQUATION

In this appendix we shall prove Proposition 3.3. It turns out to be convenient to rescale w..
Thus we define the vector field

def /W _
We(t,z) = (f,w?)(t,xh,s L2s)

which satisfies

AW, + VI VW, — AW — 23W. = — (VhQ., 22 05Q;)
diviW, =0
We (07 ) = €,0
where
—h def_ 1
V(t,x) = Tt xp, e tas) and Q:(t, x) lef - Yoe(t, zp, e tas).

Note that thanks to Proposition 3.2, the vector field (90“/'6 is uniformly bounded in the
space L=®(R*, L2H) N L2(RY, L2H; ™) for each o € N® and any s > —1, and hence also
in Lo(R*, LHF) N LA(RY, L H).

Similary we have defined

h
def We _
Weo(z) = ( ; L wl o) (zn, e wg)
and by construction it is bounded in H*(R?) for all s > —1.
Proposition 3.3 is a corollary of the next statement.
Proposition 4.1. Under the assumptions of Theorem 3, the following results hold.
(1) For all s > —1, and all « € N3, %W, is bounded in L™ (R™, LgHﬁ)ﬂLQ(R+,L%HfL+1);

in particular 9*Wy is bounded in L®(R*, L Hi) N L*(RY, LgOHZH).
(2) For all € N3, 9*W, is bounded in L*(R™, L?), hence in particular in L*(R*, L L?).
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Proof. Let us start by proving the first statement of the proposition. We notice that it is
enough to prove the result for s €] — 1, 1], and we shall argue by induction on a.

e Let us start by considering the case a = 0. An energy estimate in L?)H ; on the equation
satisfied by W, gives

S W2, g, + VWLl . + 20522

92 dt L2HS L2H; L2H;
_<Va 'VhW67W6>LgH;L - <VhQ67 Weh>LgH;L - <5 03Qe, W, >L2HS :
For the non-linear term we have, by [4, Lemma 1.1] and for each given ¢ and z3,
(V2 VMW, W) gy (1 23)| S VPV (8 )| 2 VWt ) | g W (8, )
< IV Wt z3)[3, + CIVATE b )2 W)
so after integration over s, we find

< w2 HVhW [ e A

L2H;

2 i = (V"Qe WE) 12 = (€2 05Qe, W2) g

Now let us study the pressure term. As W is a divergence free vector field we have
_<VhQ67 Wgh%ﬂ; - <52 I3Qe, W53>L3H; = (52 - 1)<VhQ67 Wsh>LgH; .

We claim that

(4.1) [V Qe (), WE (1)) 2 e | < HVh (O gy + COIWe@IZz 10

where C; is uniformly bounded in Ll(R+). Assuming that claim to be true, we infer (up to
changing C;) that

d
Wt M2 e + IV " We(t WZz e + € N0sWe @172 7 S Ce@OIWe (N5
Thanks to Gronwall’s lemma this gives
”W L2Hs / th L2Hs t < HWE 0”L2Hs I

and the conclusion of Proposition 4.1 (1), for « = 0 and —1 < s < 1, comes from the a priori
bounds on W, . It remains to prove the claim (4.1). For all real numbers r, we have

(VR QuE), W) 121 < IV Q8 5 WO
As W, is a divergence free vector field we can write

div (V" - VhWL) = —ApQ. — 2 82Q. .

L2HS L2HS

< CHV’LVEHLgoLgLHWeH

2dt

Then we define
MEE T W 4 oy (WETY)

. w—h . .
and using the fact that V_ is divergence free, we have

div(V" - VhWL) = divy, M
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It follows that
(4.2) Q. = (—Ay, — £%202) Ydivy, M,

and since V*(—Ay, — 2 92)~!divy, is a zero-order Fourier multiplier, we infer that for all real
numbers r,

h h
HV QeHLgH; < HMe HL%H;7

and therefore
(4.3) ‘(VhQa( t), W, ( )>L2H5’ < ”Mh( )HLgHgHWf(t)”LgH,fS*T'
We can estimate || M2 LA 8 follows, thanks to the divergence-free condition on W.:
1M gy < AV2 - T Well o e+ 105 (OVEVE) 12
< V2 VW g+ W2 05V 2 gy + V2 divi W2 oy
Thanks to two-dimensional product laws, if —1 < r < 0 then we get

V2 V" Wellggsig + Ve o2 gy SIVEN_a IVPWEL o
and
IW20sV 221y S IV N o2 W2 s -
Soif —1 < r <0, then

—h
(4.4) M2 2y SUVEN IVl iy + IVV el e W2 2
v L H; L2H,

and this leads to (4.1) for —1 < s < 1, due to the following computations.
oIf 0 < s <1, we choose r =s — 1 to get

h 14 h
1M s SUVEN 4 IV Well

—h
. 3+ IIVVeHLgoLiHWSHLgHg ;

s
h

so by (4.3) with r = s — 1, we infer that

09" Qe W2 g | S IVEN s IV Wl g IV
(4.5)
thWhHL2Hs + C”VV HLOOL2 ”W3HL2HS :
We then use the interpolation inequality
—h
HVEH .1HVhW I, sipd S|V HLooLz vV HLooLz We HLQHSHVhW HLQH}i
along with the convexity inequality ab < %a‘l/ 3+ ib‘l, to get
h Th h L on
IV WeHLgH;LHVeH b HV Well |, omy < IVl

h

+ CHVa ||L30LiHVVe ”%;”LiHWEHigH}SL .
It remains to define

(4.6) c.(n

—h
CIVVE O oz (1+ [VEO e 12)
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to obtain from (4.5) that
(V" Qe(t), W2 (1) pa | < —th cOIIZz g7y + Ce@OIWe®)1 755 -

Notice that C. belongs to L'(R™) thanks to the uniform bounds on Va derived above from
Proposition 3.2.

o If s = 0, we choose 7 = —1 and hence by (4.3) and (4.4),

(V'Qe Wl

Sl .%(HVEH .1\|VhW Iz + IV V2llgge 2 W2

).

LH

;"toh—t

By interpolation we infer that
h hy h hyh |32 T Ths
(7" Qe, WE) o] < W3 I W 2 [V 2 IV
h ~—h
+ IWell 2 IV Well 22 VV | Lo 12 -
The convexity inequality ab < §a4/ 34 %bﬂ‘ implies that

1 3/2 1==h 1 —h, L
W22, IV W ), Vel oo r2 IVVell oo

(4.7)
—HVhW 12, + CIWE 2.V HLooLzHVV HLooLz
and
—h 1 —h
(4.8) IWel| g2 | V"W | 2 | VTV lpeerz < g\IVthlliz + CWe 221V ||igoLg :

With the above choice (4.6) for C. we obtain

[(VPQ=(t), WE (1)) 12| < —HVh cOIZ2 + C-O)We (D172 -

o Finally if —1 < s < 0, we proceed slightly differently. We recall that
divy, MP = —A,Q. — €2 02Q.
and as W, is divergence free, we have
M =V W — T div, W+ W3 95V
Defining
Mt div, VoW —Whe V) and M, WV,
we can split M/ = Mfl + M h2 and estimate each term differently.
Since V*(—Ay, — £202)divy, is a zero-order Fourier multiplier,
|<VhQEa Weh>LgH;
Using two-dimensional product laws we obtain

h —h —h
IME s SIVEWell g SIVEL Wl oy
h h

v

h h h h
< ”Ma,l”L%H}SL*lHWE ”L%Hﬁﬁl + HME,Z”L%HZHWE ”L%Hfl :

and

|| 2||L2Hs S ||W VV HL2HS S ||VV HL<>°L2||W HL?HSH'
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Therefore, we get

—h
(V' Qe W) gz < IVEN HW I, fih LIV W2 2 gy
(4.9)
—h
+IVVe HLgoLQ”VhWe”LgH;LHWg”LgH; :

Then we use the interpolation inequality

3/2
I WP

hyyh
IWe || S+IIIV Wl L2 s < 1We E 12173

L2HS

along with the convexity inequalities ab < %a‘l/ 34 Zb4 and ab < %a2 + %62, to infer that again
with the choice (4.6) for C¢,

T Qult), W) | < IV Welt) 2 . + CoD I

The first result of the proposition is therefore proved in the case when o =0 and —1 < s < 1.

e To go further in the induction process, let £k € N be given and suppose the result
proved for all a € N3 such that |a| < k, still for —1 < s < 1. Now consider a € N? such
that |a| = k + 1. The vector field 9*W solves

B0°W. + 0 (V2 - VhWL) — ARO°W. — e2020°W. = —(V"0°Q., £29;0°Q.) .

An energy estimate in L2H 5 gives

—h
Ha‘”W I3, e + (Ve - VRWL), 09W5) o e + (VIO

L2H5
~(VI0°Qe, W) 13y — €7(050%Qe, 0°WE) 13y,

2 dt L3 Hj,

We split (0“ (V? VMWL), 00W;) 1 s into two contributions:

(4.10) (V- VMO We, 0°W) gy + D Cal07Ve - VO WL, 0MWL) oy
0<B<La

The first term in (4.10) satisfies, as in [4, Lemma 1.1]
T fe fe wh o o
(T2 VRO W, W)y | S VT [VHGRWe | |02 Wl
1 _
< IV WL, + CIV VL2, oo W2,
4 h h h
SO

h e le} e le}
(V. -VhooW.,d We)pag:| < —”vha 78 HLQHS + OV HLOOLQHa W HLQHS.

For the remaining terms in (4.10), as Ve is a horizontal, divergence free vector field, two-
dimensional product laws give

PV . Vhor—PW., 0 W, We)ge| = (divy (0°V" @ 0°-BW.), o We) e

N H@ﬁve ® 80{76W€”H; ”Vh@aWSHH}SL

< 198" a—B h ,
Slo VEHH;#H@ WeHHhs#IIV O Wel s
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SO

(DT - VoI, 00 >L2Hs|<—IIV"<9“WHL2Hs

—h _
+CIOPVIP a0 WL
L H, 2 L2H,

Then we get
4o 132 + _thaaw 132 s + 21050 Well 2, 0 S IV V2N 12 10°WEL
+H(VM Qe 0°WE) 1 e — (0507 Qe O°WE) Loy

+O SNV s 0P,

0<f<La Ly H,

2dt

ST
v

Now let us estimate the pressure term. We recall that
—(VROQe, O°WL) o e — (€2 030°Qe, O°W2) 1oy = (67 = 1)(VP0*Q=, O°WE) 1
and we claim that

fe’ fe’ 1 . Y.
(411) ‘(vha Q???a W€h>L%H£(t)‘ < Z”vha ( )HL2HS + Cl,€(t) + 0275( )”a ( )HLQHS

with Cy . and Ca uniformly bounded in Li(R*). By the induction assumption (noticing

that (s+1)/24+a—1 < «) we deduce that Z Haﬁvi‘u 41 10°PW.||? ... is uniformly
0<F<a L Hy L3H, ™

bounded in L*(R*) so up to changing C; . and Cs. we get

||3“ Oz e + VMO WD), 7 < Cre(t) + Coc (DO We ()17, 5, -

Using Gronwall s lemma in turn this implies that

10°We )17z 0 /Ilvhao‘ )52y S N0 Weoll 7z

and the bounds on W, o conclude the proof if —1 < s < 1. It remains to prove the esti-
mate (4.11) on the pressure term. We shall adapt the computations of the case a« = 0. We
define

Neop & OVE . Vo= BWE 4 0407 PW3PTVY)
and recalling (4.2) we get, since V(—Aj, — £202)~1div}, is a Fourier multiplier of order 0,
(V"0 Qe, 0WE) oy S D 1Nz, 8l 2 o lo“WZ (2, )|
0<p<a

L2 HQS g

where 73 is any real number. Then we define

(¥)a,p = HN&a,BHL%H;B||aaWeh(t,')H

L2H2s g -

The term (%)q,0 can be treated as was done for a = 0, changing Wah into aawgh. So we have,
as in the proof of (4.1),

lo% le% at atrh
(412)  [(*)aol < —tha WellZa o + ClOWel| 2, 5 IV OV 2 (L 107V p2) -

L2H; L2H; |

For the others terms we have the following estimates.
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o If 0 < s <1 we choose rg = s — 1 like in the case o = 0, and as in (4.5) we obtain

. s—

> 1a ,B|<_thaaW Iais +C D 107V 7., %thaa—ﬁwsng

0<B<a 0<B<a v
+C Z Hvaﬁv HLOOLQHaa BW3”L2H3 .
0<B<a

Then we define, recalling (4.12),

df o — o —
Cre O 3OV IVIIWR, g +C 3 VOV gl W

s— HL2HS
0<pB<a h 0<B<La

NJI»—A

and

def
Cba -

—h —h
C”vhaav;”%fLim”+Haav;”%fL%)
to get

> [(Ma] < —thaaw 132555 + Cre + CocllO*Well 7, 5.
0<p<a

Note that the famillies (C ¢)c>0 and (Cac)<>0 are bounded in LY(R*) thanks to the induction
assumption and Proposition 3.2.

o If s = 0 then following the steps leading to (4.7)-(4.8) we choose rg = —1/2 and write

—h _ —h

(Gl SNWE g (VL1970 Wl 90T e W21 y)

so, by interpolation, we get
1 1
1 1 —h
|(as| S NOWEIZ: 197V WENZ 107Vl thaa PWel 2
+||<9°‘Wh\|Lz Hao‘VhWhHLz ||V35V ||L°°L2Haa BW?’H

When 8 > 0, the convexity inequality abe < %a‘l + %bﬂ‘ + 50 leads to

1
D [Easl < SIVIOWeZ2 +C Y 10°WEIZ. (10°V ”i | +IVOVL 17 eer2)

0<B<a 0<B<a v h
+O 3 (VMO PWelfe + V902 PWEIE_y).
0<B<a h
We define
Cr. ¥ Y (VPO IWL L + [V ﬂW3||2 )
0<f<a h
and
d f Qv (6%
Cae € IV Vel (14 10Velips) +C 30 (107N g +IVO Vel )
0<B<a
to get when s = 0 and recalling (4.12)
S [$as| < = yvhaaw 72 + C1e + Cocl|0°Wel[72

0<B<a
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Again note that the famillies (C:):>0 and (Ca.)c>0 are bounded in L*(RT) thanks to the
induction assumption and Proposition 3.2.

o If —1 < s < 0 then following the computations leading to (4.9), we write
—h _ h
(Dol 1P g1 Wl oy [0

vTh
—h _ h
HIVO V1012V O* P Well e 10 WE | gy
SO
2
0<p<a B<a vith
+y_|vo've HLW||vaa—ﬁWeHLgH;||8“W£HL5H; :

B<a

e h o BY7 12 a—/f3 2
> ()l < HV OWe ||L2Hs +> |9 v H %Ha W€||L2H5+1

In this case, we define

def o
.0 Y |9°VE H2 Ha Pw. ||2

e
0<B<a H,

and
d f [0} (63 o —
Coe € OV OV gy (L4 10VE ) +C Y VO Vo2 VO PWe o
0<fB<La
which as before are bounded in L'(RT), and we obtain, recalling (4.12),
> (Hap < —HVh@aW 12 s + Cre + Cocl O Wellf, -
0<p<a

The first part of the proposition is proved.

Now let us turn to the second part. As noted above, for all o € N3, 9*W. satisfies
BO°W. + 0% (V2 - VW) — AR0°W. — €2 820°W. = —0*(V"Q., % 85Q.).
Defining
g: VL VW, + (V'Qu,e2 03Q0)

an energy estimate in L2H n o gives

[

SOy + [ 10 W00 < LWl

+/ | (0%9e, 0°We) pa 1 (t)| it
0

We define K.(t) def sup ||[O%W(t )HH 1, so that
0<t'<t

(4.13)

1 1 t
SR < 510 WeollZy oo + 1) [ 1079
v 0 v
This implies that

1 1
(414) TEE0) < 5102y + 100612 g oy
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But according to (4.13) we know that

t
/ [0 W32 e < 510" WellEy ot + Kelt) [ 107000 '

so with (4.14) we infer that

10 WA S 10°We s+ 100 s

. . —h . .
It remains to estimate ||0“g.|| LR L2 As V' is a divergence free vector field, we have

(4.15)

o o h
10V - VW)l ez < 10 (V2 © Woll o e 1)

< Z ‘86‘/ HL2 (RF; L2H1/2 Ha - W ”LQ(R+ L°°H1/2)
0<p<a

which gives the expected bound due to Proposition 4.1 (1) proved above. On the other hand,
we recall that as computed in (4.2),

. —h —h
ApQe — €2 93Q. = divy, (V- V"W + 95(W3TVY)) .

so since (A —€293) "1V, divy, and (A, —e2 93)~Ledsdivy, are zero-order Fourier multipliers, the
same estimates give the expected a priori bound on (V*Q., €2 93Q.), and the result follows. [
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