
HAL Id: hal-00702771
https://hal.science/hal-00702771v1

Submitted on 31 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosting Nearest Neighbors for the Efficient Estimation
of Posteriors

Roberto d’Ambrosio, Richard Nock, Wafa Bel Haj Ali, Frank Nielsen, Michel
Barlaud

To cite this version:
Roberto d’Ambrosio, Richard Nock, Wafa Bel Haj Ali, Frank Nielsen, Michel Barlaud. Boosting
Nearest Neighbors for the Efficient Estimation of Posteriors. ECML-PKDD 2012, Sep 2012, Bristol,
United Kingdom. pp.16. �hal-00702771�

https://hal.science/hal-00702771v1
https://hal.archives-ouvertes.fr

Boosting Nearest Neighbors for the Efficient

Estimation of Posteriors

Roberto D’Ambrosio1,3, Richard Nock2, Wafa Bel Haj Ali3, Frank Nielsen4,
and Michel Barlaud3,5

1 University Campus Bio-Medico of Rome, Rome, Italy
r.dambrosio@unicampus.it

2 CEREGMIA - Université Antilles-Guyane, Martinique, France
rnock@martinique.univ-ag.fr

3 CNRS - U. Nice, France
{belhajal,barlaud}@i3s.unice.fr

4 Sony Computer Science Laboratories, Inc., Tokyo, Japan
Frank.Nielsen@acm.org

5 Institut Universitaire de France

Abstract. It is an admitted fact that mainstream boosting algorithms
like AdaBoost do not perform well to estimate class conditional probabil-
ities. In this paper, we analyze, in the light of this problem, a recent algo-
rithm, unn, which leverages nearest neighbors while minimizing a convex
loss. Our contribution is threefold. First, we show that there exists a sub-
class of surrogate losses, elsewhere called balanced, whose minimization
brings simple and statistically efficient estimators for Bayes posteriors.
Second, we show explicit convergence rates towards these estimators for
unn, for any such surrogate loss, under a Weak Learning Assumption
which parallels that of classical boosting results. Third and last, we pro-
vide experiments and comparisons on synthetic and real datasets, in-
cluding the challenging SUN computer vision database. Results clearly
display that boosting nearest neighbors may provide highly accurate esti-
mators, sometimes more than a hundred times more accurate than those
of other contenders like support vector machines.

1 Introduction

Boosting refers to the iterative combination of classifiers which produces a clas-
sifier with reduced true risk (with high probability), while the base classifiers
may be weakly accurate [?]. The final, strong classifier h, satisfies im(h) ⊆ R.
Such an output carries out two levels of information. The simplest one is the
sign of the output. This discrete value is sufficient to classify an unknown ob-
servation x: h(x) predicts that x belongs to a class of interest iff it is positive.
The most popular boosting results typically rely on this sole information [?,?,?]
(and many others). The second level is the real value itself, which carries out as
additional information a magnitude which can be interpreted as a “confidence”
in the classification. This continuous information may be fit into a link function

f : R → [0, 1] to estimate conditional class probabilities, thus lifting the scope
of boosting to that of Bayes decision rule [?]:

P̂r[y = 1|x] = f(h(x)) . (1)

To date, estimating posteriors with boosting has not met the same success as
predicting (discrete) labels. It is widely believed that boosting and conditional
class probability estimation are, up to a large extent, in conflict with each other,
as boosting iteratively improves classification at the price of progressively over-
fitting posteriors [?,?]. Experimentally, limiting overfitting is usually obtained
by tuning the algorithms towards early stopping [?].

Very recently, a new algorithm was proposed to leverage the famed nearest
neighbor (nn) rules [?]. This algorithm, unn, fits real-valued coefficients for
examples in order to minimize a surrogate risk [?,?]. These leveraging coefficients
are used to balance the votes in the final k-nn rule. It is proven that, as the
number of iterations T → ∞, unn achieves the global optimum of the surrogate
risk at hand for a wide class of surrogates called strictly convex surrogates [?,?].
An explicit convergence rate is obtained for the specific case of the exponential
loss, under a so-called “weak index assumption” [?].

Our contribution is threefold. First, we show that there exists a subclass
of surrogate losses, elsewhere called balanced, whose minimization brings sim-
ple and efficient estimators for Bayes posteriors (1). Second, we show explicit
convergence rates for unn for any such surrogate loss under a Weak Learning
Assumption which parallels that of classical boosting results [?]. Third and last,
we provide experiments on simulated and real domains, displaying that boosting
nearest neighbors brings very good results from the conditional class probabili-
ties estimation standpoint, without the overfitting problem of classical boosting
approaches. A serious challenger to the popular logistic estimator for posteriors
estimation also emerges, beating it by orders of magnitude on simulated data.
We end up with the conclusion that learning posteriors with boosting nearest
neighbors benefits from two advantages. First, the weak classifiers being simple
examples, they naturally limit the risk of overfitting compared to more com-
plex weak learners. Second, we end up learning posteriors using a natural, fixed
topology of data, and not an ad hoc topology relying on an induced classifier.

The remaining of the paper is structured as follows: the next Section presents
definitions, followed by a Section on convex losses and the estimation of posteri-
ors. Then, a Section presents algorithms and results on boosting nearest neigh-
bors. The two last Sections present experiments with discussions, and conclude.

2 Definitions

2.1 Estimation

Our setting is that of multiclass multilabel classification (See e.g. [?]). We have
access to an input set of m examples, also called prototypes, S

.
= {(xi,yi), i =

1, 2, ...,m}. Vector yi ∈ {−1, 1}C encodes class memberships, assuming yic = 1

means that observation xi belongs to class c. S is sampled i.i.d. according to an
unknown distribution D. Given an observation x ∈ O, we wish to estimate the
conditional class probabilities for each class c, also called (estimated) posteriors:

p̂c(x)
.
= P̂r[yc = 1|x] . (2)

We note pc(x)
.
= PrD[yc = 1|x] the corresponding Bayes (true) posteriors.

2.2 Surrogates, losses and risks

Perhaps the simplest road towards computing these estimators consists in first
crafting C separate classification problems, each of which leads to estimators for
one class (2). Normalizing estimators to 1 over the C classes yields the values in
(2). Each of these C problems is a one-versus-all classification task, say for class
c, with corresponding sample S(c) = {(xi, yic), i = 1, 2, ...,m}. For each of these
problems, we learn from S a classifier h : O → R out of which we may accurately
compute (2), typically with p̂c(x) = f(h(x)) for some relevant function f . More
sophisticated approaches exist that reduce the number of classifiers by folding
classes in observation variables [?,?]. Each of them equivalently learn on a sample
of Ω(mC) examples, and it is an easy task to craft from their output a set of C
classifiers that fit into the framework we consider.

There exists a convenient approach to carry out this path as a whole, for
each class c = 1, 2, ..., C: learn h by minimizing a surrogate risk over S [?,?,?].
A surrogate risk has general expression:

εψ
S
(h, c)

.
=

1

m

m
∑

i=1

ψ(yich(x)) , (3)

for some function ψ that we call a surrogate loss. Quantity yich(x) ∈ R is called
the edge of classifier h on example (xi,yi) for class c. The surrogate risk is an
estimator of the true surrogate risk computed over D:

εψ
D
(h, c)

.
= ED[ψ(yich(x))] . (4)

Any surrogate loss relevant to classification [?] has to meet sign(hopt(x
∗)) =

sign(2PrD[yc = 1|x = x∗] − 1), where hopt minimizes ED[ψ(ych(x))|x = x⋆].
Hence, the sign of the optimal classifier hopt is as accurate to predict class
membership as Bayes decision rule. This Fisher consistency requirement for ψ
is called classification calibration [?]. We focus in this paper on the subclass of
classification calibrated surrogates that are strictly convex and differentiable.

Definition 1. [?] A strictly convex loss is a strictly convex function ψ dif-
ferentiable on int(dom(ψ)) satisfying (i) im(ψ) ⊆ R

+, (ii) dom(ψ) symmetric
around 0, (iii) ∇ψ(0) < 0.

Definition 1 is extremely general: should we have removed conditions (i) and (ii),
Theorem 6 in [?] brings that it would have encompassed the intersection between

strictly convex differentiable functions and classification calibrated functions.
Conditions (i) and (ii) are mainly conveniences for classification: in particular,
it is not hard to see that modulo scaling by a positive constant, the surrogate
risk (3) is an upperbound of the empirical risk for any strictly convex loss.
Minimizing the surrogate risk amounts thus to minimize the empirical risk up
to some extent. We define the Legendre conjugate of any strictly convex loss ψ
as ψ⋆(x)

.
= x∇−1

ψ (x) − ψ(∇−1
ψ (x)). There exists a particular subset of strictly

convex losses of independent interest [?]. A function φ : [0, 1] → R
+ is called

permissible iff it is differentiable on (0, 1), strictly concave and symmetric around
x = 1/2 [?,?]. We adopt the notation φ = −φ [?].

Definition 2. [?] Given some permissible φ, we let ψφ denote the balanced

convex loss with signature φ as:

ψφ(x)
.
=
φ
⋆
(−x)− φ(0)

φ (1/2)− φ(0)
. (5)

Balanced convex losses have an important rationale: up to differentiability con-
straints, they match the set of symmetric lower-bounded losses defining proper
scoring rules [?], that is, basically, the set of losses that fit to classification prob-
lems without class-dependent misclassification costs. Table 1 provides examples
of surrogate losses, most of which are strictly convex surrogates, some of which
are balanced convex surrogates. We have derived Amari’s α-loss from Amari’s
famed α divergences [?] (proof omitted). The linear Hinge loss is not a balanced
convex loss, yet it figures the limit behavior of balanced convex losses [?]. Remark
that all signatures φ are well-known in the domain of decision-tree induction :
from the top-most to the bottom-most, one may recognize Gini criterion, the
entropy (two expressions), Matsushita’s criterion and the empirical risk [?,?].

2.3 One dimensional exponential families and posteriors estimation

A (regular) one dimensional exponential family [?] is a set of probability density
functions whose elements admit the following canonical form:

p[x|θ]
.
= exp (xθ − ψ(θ)) p0(x) , (6)

where p0(x) normalizes the density, ψ is a strictly convex differentiable function
that we call the signature of the family, and θ is the density’s natural parame-
ter. It was shown in [?] that the efficient minimization of any balanced convex
surrogate risk — i.e. a surrogate risk with a balanced convex loss — amounts to
a maximum likelihood estimation θ̂ = H(x) at some x for an exponential family
whose signature depends solely on the permissible function φ. [?] suggest to use
the corresponding expected parameter of the exponential family as the posterior:

P̂r[y = 1|x] = P̂rφ[y = 1|x;H]
.
= ∇−1

φ
(H(x)) ∈ [0, 1] . (7)

∇−1

φ
plays the role of the link function (1). The quality of such an estimator

shall be addressed in the following Section.

ψ p̂c(x) φ

A (1− x)2 1
2
(1 + x) x(1− x)

B log2(1 + exp(−x)) [1 + exp(−x)]−1 −x lnx
−(1− x) ln(1− x)

C log2(1 + 2−x)
[

1 + 2−x
]−1 −x log2 x

−(1− x) log2(1− x)
D −x+

√
1 + x2 1

2

(

1 + x√
1+x2

)

√

x(1− x)

E 1
2
x(sign(x)− 1)

{

1 if x > 0

0 if x < 0
2min{x, 1− x}

F exp(−x) [1 + exp(−2x)]−1 N/A

G
(

1 + 1−α2

4
x
)− 1+α

1−α

[

1 +
(

4−(1−α2)x

4+(1−α2)x

)
2

1−α

]−1

N/A

Table 1: Examples of surrogates ψ (Throughout the paper, we let ln denote the
base-e logarithm, and logz(x)

.
= ln(x)/ ln(z) denote the base-z logarithm). From

top to bottom, the losses are known as: squared loss, (normalized) logistic loss,
binary logistic loss, Matsushita loss [?,?], linear Hinge loss, exponential loss,
Amari’s α-loss, for α ∈ (−1, 1) [?]. Strictly convex losses are A, B, C, D, F, G.
Balanced convex losses are A, B, C, D (E corresponds to a limit behavior of
balanced convex losses [?]). For each ψ, we give the corresponding estimators
p̂c(x) (Theorem 1 and Eqs (9, 11) below: replace x by hopt(x)), and if they
are balanced convex losses, the corresponding concave signature φ (See text for
details).

3 Strictly convex losses and the efficient estimation of

posteriors

There is a rationale to use (7) as the posterior: the duality between natural
and expectation parameters of exponential families, via Legendre duality [?,?],
and the fact that the domain of the expectation parameter of one dimensional
exponential families whose signature is (minus) a permissible function is the
interval [0, 1] [?]. We improve below this rationale, with the proof that Bayes
posteriors satisfy (7) for the classifier which is the population minimizer of (7).

Theorem 1. Suppose ψ strictly convex differentiable. The true surrogate risk
ED[ψ(yich(x))] is minimized at the unique hopt(x) satisfying:

∇ψ(−hopt(x))

∇ψ(hopt(x))
=

pc(x)

1− pc(x)
. (8)

Furthermore, is ψ is a balanced convex loss, then the population minimizer hopt
of ED[ψφ(yich(x))] satisfies:

pc(x) = ∇−1

φ
(hopt(x)) , (9)

for which

ED[ψφ(yichopt(x))] =
φ(pc(x))− φ(0)

φ(1/2)− φ(0)
. (10)

(Proof omitted) Table 1 provides examples of expressions for pc(x) as in (9). Eq.
(8) in Theorem (1) brings that we may compute an estimator p̂c(x) as:

p̂c(x) =
∇ψ(−h(x))

∇ψ(h(x)) +∇ψ(−h(x))
. (11)

This simple expression is folklore, at least for the logistic and exponential losses
[?,?]. The essential contribution of Theorem 1 relies on bringing a strong ra-
tionale to the use of (7), as the estimators converge to Bayes posteriors in the
infinite sample case. Let us give some finite sample properties for the estimation
(7). We show that the sample-wise estimators of (9) are efficient estimators of
(9); this is not a surprise, but comes from properties of exponential families [?].
What is perhaps more surprising is that the corresponding aggregation of clas-
sifiers is not a linear combination of all estimating classifiers, but a generalized
∇−1

φ
-mean.

Theorem 2. Suppose we sample n datasets S
(c)
j , j = 1, 2, ..., n. Denote ĥopt,j the

population minimizer for E
S
(c)
j

[ψφ(yich(x))]. Then each p̂c,j(x)
.
= ∇−1

φ
(ĥopt,j(x))

is the only efficient estimator for pc(x). The corresponding classifier ĥopt aggre-

gating all ĥopt,j, is: ĥopt(x)
.
= ∇φ

(

1
nx

∑

j:(x,.)∈S
(c)
j

∇−1

φ
(ĥopt,j(x))

)

, ∀x ∈ ∪jSj,

where 1 ≤ nx ≤ n is the number of subsets containing x.

Proof. Let us pick ψ = φ
⋆
in (6) and condition p[x|θ]

.
= p[x|θ;x∗] for each x∗ ∈

O. We let µ
.
= pc(x

∗) (remark that µ ∈ dom(φ) = [0, 1] because φ is permissible)
the expectation parameter of the exponential family, and thus θ = ∇φ(µ). Using

the fact that ∇φ
⋆ = ∇−1

φ
, we get the score:

s(x|θ)
.
=
∂ ln p[x|θ]

∂θ
= x−∇φ

⋆(θ) ,

and so x is an efficient estimator for ∇φ
⋆(θ) = µ; in fact, it is the only efficient

estimator [?]. Thus, p̂c(x
∗) is an efficient estimator for pc(x

∗). There remains to
use (9) to complete the proof of Theorem 2.

4 Leveraging and boosting Nearest Neighbors

The nearest neighbor rule belongs to the oldest, simplest and most widely studied
classification algorithms [?,?]. We denote by NNk(x) the set of the k-nearest
neighbors (with integer constant k > 0) of an example (x,y) in set S with respect
to a non-negative real-valued “distance” function. This function is defined on

Algorithm 1 Algorithm Universal Nearest Neighbors, unn(S, ψ, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ O, yi ∈ {−1, 1}C}, ψ strictly convex loss
(Definition 1), k ∈ N∗;

Let αj ← 0, ∀j = 1, 2, ...,m;
for c = 1, 2, ..., C do

Let w ← −∇ψ(0)1;
for t = 1, 2, ..., T do

[I.0] Let j ←Wic(S,w);
[I.1] Let δj ∈ R solution of:

∑

i:j∼ki

yicyjc∇ψ
(

δjyicyjc +∇−1
ψ

(−wi)
)

= 0 ; (12)

[I.2] ∀i : j ∼k i, let

wi ← −∇ψ
(

δjyicyjc +∇−1
ψ

(−wi)
)

, (13)

[I.3] Let αjc ← αjc + δj ;

Output: H(x)
.
=
∑

j∼kx
αj ◦ yj

domain O and measures how much two observations differ from each other. This
dissimilarity function thus may not necessarily satisfy the triangle inequality of
metrics. For the sake of readability, we let j ∼k x denote the assertion that
example (xj ,yj) belongs to NNk(x). We shall abbreviate j ∼k xi by j ∼k i. To
classify an observation x ∈ O, the k-nn rule H over S computes the sum of class
vectors of its nearest neighbors, that is: H(x) =

∑

j∼kx
1 ◦ yj , where ◦ is the

Hadamard product. H predicts that x belongs to each class whose corresponding
coordinate in the final vector is positive. A leveraged k-nn rule is a generalization
of this to:

H(x) =
∑

j∼kx

αj ◦ yj , (14)

where αj ∈ R
C is a leveraging vector for the classes in yj . Leveraging approaches

to nearest neighbors are not new [?,?], yet to the best of our knowledge no
convergence results or rates were known, at least until the algorithm unn [?].
Algorithm 1 gives a simplified version of the unn algorithm of [?] which learns
a leveraged k-nn. Oracle Wic(S,w) is the analogous for nn of the classical
weak learners for boosting: it takes learning sample S and weights w over S,
and returns the index of some example in S which is to be leveraged. [?] prove
that for any strictly convex loss ψ, unn converges to the global optimum of
the surrogate risk at hand. However, they prove boosting-compliant convergence
rates only for the exponential loss. For all other strictly convex losses, there is no
insight on the rates with which unn may converge towards the optimum of the
surrogate risk at hand. We now provide such explicit convergence rates under
the following Weak Learning Assumption:

WLA: There exist some ϑ > 0, ̺ > 0 such that, given any k ∈ N∗, c = 1, 2, ..., C
and any distribution w over S, the weak index chooser oracle Wic returns
an index j such that the following two statements hold:

(i) Prw[j ∼k i] ≥ ̺;

(ii) Prw[yjc 6= yic|j ∼k i] ≤ 1/2 − ϑ or Prw[yjc 6= yic|j ∼k i] ≥ 1/2 + ϑ.

Requirement (i) is a weak coverage requirement, which “encourages” Wic to
choose indexes in dense regions of S. Before studying the boosting abilities of
unn, we focus again on surrogate risks. So far, the surrogate risk (3) has been
evaluated with respect to a single class. In a multiclass multilabel setting, we
may compute the total surrogate risk over all classes as:

εψ
S
(H)

.
=

1

C

C
∑

c=1

εψ
S
(hc, c) , (15)

where H is the set of all C classifiers h1, h2, ..., hC that have been trained to
minimize each εψ

S
(., c), c = 1, 2, ..., C. We split classifiers just for convenience

in the analysis: if one trains a single classifier H : O × {1, 2, ..., C} → R like
for example [?], then we define hc to be H in which the second input coordi-
nate is fixed to be c. Minimizing the total surrogate risk is not only efficient to
estimate posteriors (Section 3): it is also useful to reduce the error in label pre-
diction, as the total surrogate risk is an upperbound for the Hamming risk [?]:

εH
S
(H)

.
= (1/(mC))

∑C
c=1

∑m
i=1 I[yichc(xi) < 0], where I[.] denotes the indicator

variable. It is indeed not hard to check that for any strictly convex surrogate loss
ψ, we have εH

S
(H) ≤ (1/ψ(0))× εψ

S
(H). We are left with the following question

about unn:

“are there sufficient conditions on the surrogate loss ψ that guarantee, under the
sole WLA, a convergence rate towards the optimum of (15) with unn ?”

We give a positive answer to this question when the surrogate loss meets the
following smoothness requirement.

Definition 3. [?] ψ is said to be ω strongly smooth iff there exists some ω > 0
such that, for all x, x′ ∈ int(dom(ψ)), Dψ(x

′‖x) ≤ ω
2 (x

′ − x)2, where

Dψ(x
′‖x)

.
= ψ(x′)− ψ(x)− (x′ − x)∇ψ(x) (16)

denotes the Bregman divergence with generator ψ [?].

Denote nj
.
= |{i : j ∼k i}| the number of examples in S of which (xj ,yj) is a

nearest neighbor, and n∗

.
= maxj nj . Denote also Hopt the leveraged k-nn which

minimizes εψ
S
(H); it corresponds to the set of classifiers ĥopt of Section 3 that

would minimize (3) over each class. We are now ready to state our main result

(remark that εψ
S
(Hopt) ≤ ψ(0)).

Theorem 3. Suppose (WLA) holds and choose as ψ is any ω strongly smooth,

strictly convex loss. Then for any fixed τ ∈ [εψ
S
(Hopt), ψ(0)], unn has fit a lever-

aged k-nn classifier H satisfying εψ
S
(H) ≤ τ provided the number of boosting

iterations T in the inner loop satisfies:

T ≥
(ψ(0)− τ)ωmn∗

2ϑ2̺2
. (17)

Proof sketch: To fit unn to the notations of (15), we let hc represent the

leveraged k-nn in which each αj is restricted to αjc. We first analyze εψ
S
(hc, c)

for some fixed c in the outer loop of Algorithm 1, after all αjc have been computed
in the inner loop. We adopt the following notations in this proof: we plug in the

weight notation the iteration t and class c, so that w
(c)
ti denotes the weight of

example xi at the beginning of the “for c” loop of Algorithm 1.
ψ is ω strongly smooth is equivalent to ψ̃ being strongly convex with param-

eter ω−1 [?], that is,

ψ̃(w)−
1

2ω
w2 is convex, (18)

where we use notation ψ̃(x)
.
= ψ⋆(−x). Any convex function h satisfies h(w′) ≥

h(w)+∇h(w)(w
′−w). We apply this inequality taking as h the function in (18).

We obtain, ∀t = 1, 2, ..., T, ∀i = 1, 2, ...,m, ∀c = 1, 2, ..., C:

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥
1

2ω

(

w
(c)
(t+1)i − w

(c)
ti

)2

. (19)

On the other hand, Cauchy-Schwartz inequality and (12) yield:

∀j ∈ S,
∑

i:j∼ki

(

r
(c)
ij

)2 ∑

i:j∼ki

(w
(c)
(t+1)i − w

(c)
ti)2 ≥

∑

i:j∼ki

r
(c)
ij w

(c)
ti

2

. (20)

Lemma 1. Under the WLA, index j returned by Wic at iteration t satisfies
∣

∣

∣

∑

i:j∼ki
w

(c)
ti r

(c)
ij

∣

∣

∣ ≥ 2ϑ̺.

(proof omitted) Letting e(t) ∈ {1, 2, ...,m} denote the index of the example
returned at iteration t by Wic in Algorithm 1, we obtain:

1

m

m
∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥
1

2ωm

∑

i:e(t)∼ki

(

w
(c)
(t+1)i − w

(c)
ti

)2

(21)

≥
1

2ωm

(

∑

i:e(t)∼ki
r
(c)
ie(t)w

(c)
ti

)2

∑

i:e(t)∼ki

(

r
(c)
ie(t)

)2 (22)

≥
2ϑ2̺2

ωm
×

1
∑

i:e(t)∼ki

(

r
(c)
ie(t)

)2 (23)

=
2ϑ2̺2

ωmne(t)
≥

2ϑ2̺2

ωmn∗
. (24)

Here, (21) follows from (19), (22) follows from (20), (23) follows from Lemma 1,

and (24) follows from the fact that r
(c)
ie(t) = ±1 when e(t) ∼k i. Summing these

inequalities for t = 1, 2, ..., T yields:

T
∑

t=1

1

m

m
∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥
2Tϑ2̺2

ωmn∗
. (25)

Now, unn meets the following property ([?], A.2):

εψ
S
(h(t+1)c, c)− εψ

S
(htc, c) = −

1

m

m
∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

, (26)

where h(t+1)c denotes hc after the t
th iteration in the inner loop of Algorithm 1.

We unravel (26), using the fact that all α are initialized to the null vector, and
obtain that at the end of the inner loop, hc satisfies:

εψ
S
(hc, c) = ψ(0)−

T
∑

t=1

1

m

m
∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≤ ψ(0)−
2Tϑ2̺2

ωmn∗
, (27)

from (25). There remains to compute the minimal value of T for which the right
hand side of (27) becomes no greater than some user-fixed τ ∈ [0, 1] to obtain

that εψ
S
(hc, c) ≤ τ .

The aggregation of the bounds for each c = 1, 2, ..., C in εψ
S
(H) is immediate

as it is an average of εψ
S
(hc, c) over all classes. Hence, this minimal value of T ,

used for each c = 1, 2, ..., C, also yields εψ
S
(H) ≤ τ . This ends the proof of The-

orem 3.
Section 3 has underlined the importance of balanced convex losses in obtaining
simple efficient estimators for conditional class probabilities. Coupled with The-
orem 3, we now show that unn may be a fast approach to obtain such estimators.

Corollary 1. Consider any permissible φ that has been scaled without loss of
generality so that φ(1/2) = 1, φ(0) = φ(1) = 0. Then for the corresponding
balanced convex loss ψ = ψφ and under the WLA, picking

T >
mn∗

2ϑ2̺2 minx∈(0,1)

∣

∣

∣

∂2φ
∂x2

∣

∣

∣

(28)

in the inner loop of unn, for each c = 1, 2, ..., C, guarantees to yield an optimal
leveraged k-nn H, satisfying εψ

S
(H) = εψ

S
(Hopt). This leveraged k-nn yields effi-

cient estimators for conditional class probabilities, for each class, by computing:

p̂c(x) = ∇−1

φ
(hc(x)) . (29)

(Proof omitted) For the most popular permissible functions (Table 1), quan-

tity minx∈(0,1)

∣

∣

∣

∂2φ
∂x2

∣

∣

∣ does not take too small value: its values are respectively 8,

4/ ln 2, 4 for the permissible functions corresponding to the squared loss, logis-
tic loss, Matsushita loss. Hence, in these cases, the bound for T in (28) is not
significantly affected by this term.

δjc, see (30) g : wi ← g(wi)
A 2Wjc − 1 wi − 2δjcyicyjc

B ln
Wjc

1−Wjc

wi
wi ln 2+(1−wi ln 2)×exp(δjcyicyjc)

C log2
Wjc

1−Wjc

wi

wi+(1−wi)×2
δjcyicyjc

D
2Wjc−1

2
√
Wjc(1−Wjc)

1− 1−wi+
√
wi(2−wi)δjcyicyjc

√

1+δ2
jc
wi(2−wi)+2(1−wi)

√
wi(2−wi)δjcyicyjc

E N/A N/A

F 1
2
ln

Wjc

1−Wjc
exp(−δjcyicyjc)

G 4
1−α2

(

(Wjc)
2

1−α −(1−Wjc)
2

1−α

(Wjc)
2

1−α +(1−Wjc)
2

1−α

)

4
1−α2 ×

(

1−α2

4
δjcyicyjc +

(

1+α
2
√
wi

)1−α
)− 2

1−α

Table 2: Computation of δjc and the weight update rule of our implementation
of unn, for the strictly convex losses of Table 1. unn leverages example j for
class c, and the weight update is that of example i (See text for details and
notations).

5 Experiments

5.1 Computing leveraging coefficients and weights update

Fix for short S
(c)
jb

.
= {i : j ∼k i ∧ yic = byjc} for b ∈ {+,−}. (12) may be sim-

plified as
∑

i∈S
(c)
j+

∇ψ

(

δ +∇−1
ψ (−wi)

)

=
∑

i∈S
(c)
j−

∇ψ

(

−δ +∇−1
ψ (−wi)

)

. There

is no closed form solution to this equation in the general case. While it can
be simply approximated with dichotomic search, it buys significant computa-
tion time, as this approximation has to be performed for each couple (c, t). We
tested a much faster alternative which produces results that are in general ex-
perimentally quite competitive, consisting in solving instead:

∑

i∈S
(c)
j+
wi∇ψ (δ) =

∑

i∈S
(c)
j−

wi∇ψ (−δ). We get equivalently that δ satisfies:

∇ψ(−δ)

∇ψ(δ)
=

Wjc

1−Wjc

, (30)

with Wjc
.
= (

∑

i∈S
(c)
j+
wi)/(

∑

i∈S
(c)
j+
wi +

∑

i∈S
(c)
j−

wi). Remark the similarity with

(8). Table 2 gives the corresponding expressions for δ and the weight updates.

5.2 General experimental settings

We have tested three flavors of unn: with the exponential loss (F in Table 1),
the logistic loss (B in Table 1) and Matsushita’s loss (D in Table 1). All three
a respectively referred to as unn(exp), unn(log) and unn(Mat). It is the first
time this last flavor is tested, even from the classification standpoint. We chose
support vector machines (SVM) as the contender against which to compare unn:

−4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2

−2

−1

0

1

2

−1

0

1

2

3

−2

−1

0

1

2

−2−1.5−1−0.500.511.52

0

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2
−2

−1

0

1

2

−0.5

0

0.5

1

1.5

S unn(exp) unn(Mat)

Fig. 1: From left to right: example of simulated dataset with σ = 1.1; the esti-
mated posterior for class 1 obtained by unn(exp); the corresponding gridwise kl
divergence for class 1; the estimated posterior for class 1 obtained by unn(Mat);
the corresponding gridwise kl divergence for class 1 (see (32) and text for de-
tails).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.5

1

1.5

2

2.5

σ value

K
u
llb

a
c
k
−

L
e
ib

le
r

D
iv

e
rg

e
n
c
e

UNN(exp)

UNN(log)

UNN(Mat)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

5

10

15

20

25

30

35

40

45

σ value

K
u
llb

a
c
k
−

L
e
ib

le
r

d
iv

e
rg

e
n
c
e

SVM linear
SVM RBF

Fig. 2: Average kl-divergence as a function of σ on simulated datasets, for
unn(exp), unn(log), unn(Mat) (left, k = 10) and SVM (right). Notice the dif-
ferences in y-scales.

SVM are large margin classifiers with convenient methods to obtain estimators
for the posteriors [?]. For all these algorithms, we compute the estimation of
posteriors as follows: we use (11) for unn(exp), (29) for unn(log) and unn(Mat).
For SVM, we use the method of [?], which, given a SVM f for class c, forms the
posterior:

p̂c(x)
.
=

1

1 + exp(af(x) + b)
, (31)

where a and b are estimated by maximizing the log-likelihood of the training
sample with a five-fold cross validation. We use two metrics to evaluate the
algorithms. On simulated data, we compute an estimate of the Kullback-Leibler
(kl) divergence between the true and estimated posterior which is a class-wise
average of the divergence:

DKL(p̂‖p)
.
=

∑

c

Pr[c]

∫

Pr[x]p̂c(x) ln
p̂c(x)

pc(x)
dµ . (32)

Our estimate, D̂KL(p̂‖p) relies on a simple fine-grained grid approximation of
the integral over the subsets of O of sufficient mass according to µ. On real

k unn(exp) unn(log) unn(Mat) SVMl SVMr

D̂KL(p̂‖p)
10 1.649 0.862 0.052

4.303 4.379
20 0.721 0.651 0.038
30 0.589 0.534 0.034
40 0.523 0.492 0.033

F-measure

10 90.32 89.59 90.58

91.02 90.9020 90.62 89.53 90.81
30 90.70 89.26 90.84
40 90.72 88.82 90.88

Table 3: Average results over simulated data, for unn(exp), unn(log),
unn(Mat) with four different values of k, and for support vector machines with
linear (SVMl) or radial basis functions (SVMr) kernel.

data, we compute a couple of metrics. First, we compute the F-measure of the
classifiers (the harmonic average of precision and recall), based on thresholding
the probabilistic output and deciding that x belong to class c iff p̂c(x) ≥ κ,
for varying κ ∈ (1/2, 1). Second, we compute the rejection rate, that is, the
proportion of observations for which p̂c(x) < κ. Either we plot couples of curves
for the F-measure and rejection rates, or we summarize both metrics by their
average values as κ ranges through (1/2, 1), which amounts to compute the area
under the corresponding curves.

5.3 Results on simulated data

We evaluated the goodness-of-fit of the estimates on simulated datasets with
the following experiments. We crafted a general domain consisting of C = 3
equiprobable classes, each of which follows a Gaussian N(µ, σI), for σ ∈ [0.1, 1.1]
with steps of 0.005, and µ remains the same. For each value of σ, we compute
the average over ten simulations, each of which consists of 1500 training exam-
ples and 4500 testing examples. We get overall several thousands datasets, on
which all algorithms are tested. Figure 1 presents an example of such datasets,
along with results obtained by unn(exp) and unn(Mat) from the standpoints
of the posterior estimates and kl-divergence on the same class. The estimators
are rather good, with the largest mismatches (kl-divergence) located near the
frontiers of classes. Also, unn(Mat) tends to outperform unn(exp).

Figure 2 synthesizes the results from the kl-divergence standpoints. Two
clear conclusions can be drawn from these results. First, unn is the clear winner
over SVM for the posteriors estimation task. The results of each flavor of unn is
indeed better than those of SVM, with linear or radial basis functions kernel, by
orders of magnitude. This is all the more important as the kernels we used are the
theoretical kernels of choice given the way we have simulated data. The second
conclusion is that unn(Mat) is the best of all flavors of unn, a fact also confirmed
by the synthetic results of Table 3. The kl divergences of unn(Mat) are in
general of minute order with respect to the others. Its behavior (Figure 2) is also
monotonous: it is predictable that it increases with the degree of overlap between
classes, that is, with σ. From the classification standpoint, the average F-measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.5

1

1.5

2

2.5

σ value

K
u

llb
a

c
k
−

L
e

ib
le

r
d

iv
e

rg
e

n
c
e

m

2m

5m

10m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.5

1

1.5

2

2.5

σ value

K
u

llb
a

c
k
−

L
e

ib
le

r
d

iv
e

rg
e

n
c
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

σ value

K
u

llb
a

c
k
−

L
e

ib
le

r
d

iv
e

rg
e

n
c
e

Fig. 3: Average kl-divergence as a function of σ on simulated datasets, for
unn(exp) (left), unn(log) (center), unn(Mat) (right), when the number of boost-
ing iterations T varies in {m, 2m, 5m, 10m}. The color code in the same on each
plot. Notice the differences in the y-scale for unn(Mat) (see text for details).

metrics display a very slight advantage to SVM, and in particular to linear SVM.
The results of SVM with radial basis functions kernel are approximately the same
as those of unn(Mat).

The most important conclusion that can be drawn from the simulated data
is shown in Figure 3: as the number of boosting iterations T increase, unn does
not overfit posteriors in general. The only hitch — not statistically significant
— is the case σ > 0.7 for unn(Mat), but the differences are of very small order
compared to the standard deviations of the kl-divergence.

5.4 Results on the SUN database domains

unn(exp) unn(log) unn(Mat) SVMl

F R F R F R F R

SUN 10 89.91 21.35 84.46 5.18 72.47 3.39 87.99 22.32
SUN 20 82.82 36.64 72.34 8.51 55.46 2.51 74.60 33.25
SUN 30 73.39 49.92 61.02 14.99 40.83 5.99 62.81 39.95

Table 4: Area under the (F)-measure (in percentage) and (R)ejection rate on the
SUN databases. For each database, the best F and R are written in bold faces.

We have crafted, out of the challenging SUN computer vision database [?],
three datasets, consisting in taking all pictures from the first ten (SUN 10),
twenty (SUN 20) or thirty (SUN 30) classes. We have compared unn(exp),
unn(log), unn(Mat) and SVM on each dataset, by computing the average values,
over the threshold κ, of the F-measure and the rejection rate. Table 4 summa-
rizes the results obtained. This table somehow confirms that classification and
posterior estimation may be conflicting goals when it comes to boosting [?,?],
as unn(Mat) achieves very poor results compared to the other algorithms. Fur-
thermore, unn(exp) appears to the clear winner over all algorithms for this
classification task. These results have to be appreciated in the light of the re-
jection rates: in comparison with the other algorithms, unn(Mat) rejects a very

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability Threshold

F
−

m
e

a
s
u

re

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

F
−

m
e

a
s
u

re

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

F
−

m
e

a
s
u

re

SVM linear

UNN(Mat)

UNN(exp)

UNN(log)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
e
je

c
ti
o
n
 R

a
te

UNN(log)

UNN(exp)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
e
je

c
ti
o
n
 R

a
te

UNN(exp)

UNN(log)

UNN(Mat)

SVM linear

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability Threshold

R
e

je
c
ti
o

n
 R

a
te

UNN(Mat)

SVM linear

UNN(exp)

UNN(log)

Fig. 4: F-measure (top row) and rejection rates (bottom row) on the SUN do-
mains, with C = 10 (left), C = 20 (center) and C = 30 (right, see Table 3 for
notations).

small proportion of the examples, this indicating a high recall for the algorithm.
Figure 4 completes the picture by detailing F-measure and rejection rates plots.
The F-measure plots clearly display the better performances of unn(exp) com-
pared to the other algorithms, and the fact that unn(Mat) displays very stable
performances. The rejection rates plots show that unn(Mat) indeed rejects a
very small proportion of examples, even for large values of κ.

6 Conclusion

Boosting algorithms are remarkably simple and efficient from the classification
standpoint, and are being used in a rapidly increasing number of domains and
problems [?]. In some sense, it would be too bad that such successes be impeded
when it comes to posterior estimation [?]. Experimental results display that this
estimation is possible, but it necessitates a very fine tuning of the algorithms [?].
The point of our paper is that estimating class conditional probabilities may be
possible, without such tedious tunings, and sometimes even without overfitting,
if we boost topological approaches to learning like nearest neighbors. There is a
simple explanation to this fact. For any classifier, the conditional class probabil-
ity estimation for some x in (7) is be the same as for any other observation in the
vicinity of x, where the “vicinity” is to be understood from the classifier stand-
point. When boosting decision trees, the vicinity of x corresponds to observations
classified by the same leaf as x. As the number of leaves of the tree increases, the
vicinity gets narrowed, which weakens the estimation in (7) and thus overfits the
corresponding estimated density. Ultimately, linear combinations of such trees,
such as those performed in AdaBoost, make such a fine-grained approximation
of the local topology of data that the estimators get irreparably confined to the

borders of the interval [0, 1] [?]. Nearest neighbors do not have such a drawback,
as the set of k-nearest neighbors in S of some observation x spans a region of O
which does not change throughout the iterations. Furthermore, nearest neighbor
rules exploit a topology of data which, under regularity conditions about the
true posteriors, also carries out information about these posteriors. For these
reasons, nearest neighbors might be a key entry for a reliable estimation of pos-
teriors with boosting. Because of the wealth of “good” surrogates, this opens
avenues of research to learn the most accurate surrogate on a data-dependent
way, such as when it is parameterized (Amari’s α-loss, see Table 1).

7 Acknowledgments

R. Nock acknowledges a visiting grant from Institut Universitaire de France /
Université de Nice.

