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Abstract. Whereas the embedding distortion, the payload and the ro-
bustness of digital watermarking schemes are well understood, the notion
of security is still not completely well defined. The approach proposed in
the last five years is too theoretical and solely considers the embedding
process, which is half of the watermarking scheme. This paper proposes
a new measurement of watermarking security, called the effective key
length, which captures the difficulty for the adversary to get access to
the watermarking channel. This new methodology is applied to the Dis-
tortion Compensated Dither Modulation Quantized Index Modulation
(DC-DM QIM) watermarking scheme where the dither vector plays the
role of the secret key. This paper presents theoretical and practical com-
putations of the effective key length. It shows that this scheme is not
secure as soon as the adversary gets observations in the Known Message
Attack context.

Keywords: watermarking, security, Quantized Index Modulation

1 Introduction

The problem: This paper deals with the evaluation of the security level of a
digital watermarking scheme. The problem is that the previous methodology
on this topic [1], although applied on Spread Spectrum [2] and Dither Modu-
lated Distortion Compensated Quantized Index Modulation (DM-DC QIM) [3]
watermarking schemes, is not so successful. As detailed in Sect. 2, it does not
fully capture the whole watermarking scheme as it only considers the embedding
process. Its assessment is mostly theoretical and difficult to apply on real-life wa-
termarking schemes. One has important difficulties in interpreting the quantity
measuring the security level by relying only on information theory.

Example: Let us take the following scenario: consider a DC-DM QIM with a
cubic lattice (a.k.a. SCS, Scalar Costa Scheme [4]) for embedding bits in a signal
x, at a given DWR (Document to Watermark power Ratio) and a given expected
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WNR (Watermark to Noise power Ratio). Denote ∆ the quantization step and
α the compensation parameter. Now, the security level when measured by the
equivocation equals log((1−α)∆) nats [3]. Suppose now that we watermark the
scaled signal 2 ∗ x with the same technique and setup (DWR, WNR). Then, the
quantization step is now 2∆ while α remains the same. The security level is now
higher by 0.69 nats. It is counterintuitive that by doubling the amplitude of the
host signal, we succeed to increase the security level. Moreover this amount is
indeed hard to understand: Does 0.69 nats represent a big increase in term of
security?

Our contributions: This paper proposes a new way of defining the security level
of a digital watermarking scheme in Sect. 3. Sect. 4 applies this methodology
to QIM watermarking schemes from a theoretical point of view, while Sect. 5
presents an experimental framework to evaluate the security level. Our contri-
butions are the following:

– A framework for security assessment in line with the cryptographic approach,
– A theoretical derivation of the security levels for watermarking schemes

based on Quantized Index Modulation (QIM) with self-similar lattices,
– Theoretical bounds of the security levels when the lattices are not self-

similar,
– An experimental setup for estimating the security levels for QIM.

2 The Problem with Previous Security Measures

From the beginning, watermarking has been characterized by a trade-off be-
tween the embedding distortion and the capacity. The capacity is the theoretical
amount of hidden data that can be reliably transmitted when facing an attack of
a given strength. In practice, the operating point of a watermarking technique
is defined by the embedding distortion (measured by a DWR for instance), a
payload (measured in bits per host samples for instance) and the robustness (for
instance, measured by a Symbol Error Rate SER after an attack - compression,
rotation etc).

Security came as a fourth feature stemming from applications where there
exist attackers willing to circumvent watermarking such as copy and/or copyright
protection. The efforts of the pioneering works introducing this new concept first
focused on stressing the distinction between security and robustness. An early
definition was coined by Ton Kalker as the inability by unauthorized users to
have access to the raw watermarking channel [5].

The problem we see lies in the fact that the methodology proposed so far
poorly captures T. Kalker’s definition. In a nutshell, the methodology of [1–3] is
based on C. E. Shannon definition of security for crypto-systems. The security
level is defined as the amount of uncertainty the attacker has about the secret
key. This is measured by the equivocation which is the entropy of the key knowing
some observations, which are for instance contents watermarked with the same
technique and the same secret key. The equivocation, be it valued in nats or
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bits, can be negative (if the secret key is a continuous random variable), and as
illustrated in the example of the introduction, the results of this approach are
sometimes hard to understand.

The main pitfall is that watermarking and symmetric cryptography strongly
disagree in the following point: In symmetric cryptography, the deciphering key is
the secret key which is unique. Therefore, inferring this key from the observations
(here, say some cipher texts) is the main task of the attacker. The disclosure of
this key grants the adversary the access to the crypto-channel.

This is not the case in watermarking for the simple reason that there is no
unique key to decode the hidden messages. In many watermarking schemes, the
secret is a signal lying in the same space as the host vector: the carriers for
Spread Spectrum, the dither for DC-DM QIM. They are generated by a Pseudo-
Random Number Generator (PRNG) fed by a secret seed. Yet, the attacker
may use another generator, or use some observations to estimate these signals.
Therefore, the real secret granting access to the watermarking channel is less the
seed of the PRNG than these signals. In the sequel, the secret signal is denoted
by k and we show that a close enough signal k′ may decode the hidden messages.

Consequently, inferring the secret key k from the observations (here, say some
watermarked contents) is not the ultimate goal of the attacker. As T. Kalker
stated, it is the access to the watermarking channel that matters. The estimation
of the secret key is a possible path to this goal, but not the final destination.
The limit of the past articles on watermarking security is that they focus on
the estimation of the secret key, but very few works deal with the impact of
the estimation accuracy on the access to the watermarking channel. It is quite
symptomatic that almost none of them consider the decoding of the watermark-
ing schemes. We strongly believe that this is the reason why the outcomes of
this methodology are quite difficult to understand. C. E. Shannon was right, but
those who translated his theory to watermarking only capture half the problem.
The only exception we are aware of is [6] which intuitively sketched the idea that
is formalized in this paper.

3 Our New Approach

3.1 The Idea

The keystone of our approach is the brute force attack. In cryptanalysis, the
attacker randomly draws a test key and decrypts the ciphertexts. It is assumed
that a genie tells the attacker when he succeeds, ie. when the test key equals the
secret key. If the secret is a N -bit word, the probability of this event is P = 1/2N ,
ie. one single secret key over 2N possible keys. With some observations, the
attacker might reduce the key space which increases the probability of success
to P = 2−L, with L < N . The security level is measured by L = − log2(P ) in
bits.

We use the same approach for watermarking security. The inability by unau-
thorized users to have access to the raw watermarking channel is measured by
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− log2(P ), where P is the probability that the attacker finds a key granting the
decoding of hidden messages embedded with the secret key. Contrary to sym-
metric cryptographic, there are a plurality of such a key ; and this is mainly
due to the fact that the embedding has to be robust. We name them the equiva-
lent decoding keys. Note that we could also consider equivalent embedding keys,
ie. keys embedding messages in host content which are reliably decoded by the
secret key. Our methodology aims at resolving the following questions:

– What is an equivalent decoding key?
– How many equivalent decoding keys do exist?
– What is the probability of picking an equivalent decoding key?
– How to improve the odds thanks to the observations?

3.2 The Setup

Before producing any watermarked content, the designer draws the secret key k
in the key space K according to a given distribution pK. There is an extraction
function that computes a vector x ∈ X from a content. Usually, X = RNv . The
embedding modifies this vector into y under a distortion constraint (here, given
by a bound on the Euclidean distance ‖y − x‖2 ≤ NvD). There is an inverse
extraction function which maps y back into the content. We assume that the
extraction process is public, and that the secret key k is only used for shaping x
into y: The embedder creates a watermarked vector y ∈ X with hidden message
m using the embedding function e(.): y = e(x,m,k). At the decoding side, a
vector is computed from the received content with the same extraction function.
The message m̂ is decoded from the watermarked vector by m̂ = d(y,k).

The adversary sees No independent observations ONo = (O1, . . . ,ONo). The
nature of these observations defines the attack. In this paper, we restrict our
attention to the Known Message Attack (KMA) where an observation is a pair of
a watermarked content and the embedded message: Oi = {yi,mi}. The article [1]
gives a list of other attacks.

We define by Dm(k) ⊂ X the decoding region associated to the message m
and for the key k by:

Dm(k) , {y ∈ X : d(y,k) = m}. (1)

The topology and location of this region in X depends of the watermarking
scheme and of k.

To hide message m, the encoder pushes the host vector x deep inside Dm(k),
and this creates an embedding region Em(k) ⊆ X :

Em(k) , {y ∈ X : ∃x ∈ X s.t. y = e(x,m,k)}. (2)

Watermarking provides robustness by pushing the watermarked vectors far away
from the boundary of the decoding region. If the vector extracted from an at-
tacked content z = y + n goes out of Em(k), z might still be in Dm(k) and the
correct message is decoded.
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For QIM based watermarking schemes, we often have Em(k) ⊆ Dm(k). There-
fore, there might exist another key k′ such that Em(k) ⊆ Dm(k′), ∀m. A graph-
ical illustration of this phenomenon is depicted on Fig. 1.

Dm(k�)
Dm(k)

Em(k)

Dm(k”)

Fig. 1. Graphical representation in space X of three decoding regions Dm(k), Dm(k′)
and Dm(k′′) and the embedding region Em(k): k and k′ belong to the equivalent

decoding region K(d)
eq (k, 0), but k′′ does not.

3.3 The Equivalent Keys

We now define the equivalent keys and the associated equivalent region. We
should make the distinction between the equivalent decoding keys and the equiv-
alent embedding keys. But we restrict our attention to the decoding problem in
this paper, and we use the term equivalent keys.

The set of equivalent keys Keq(k, ε) ⊂ K with 0 ≤ ε is defined as the set
of keys that allows a decoding of the hidden messages embedded with k with a
probability bigger than 1− ε:

Keq(k, ε) = {k′ ∈ K : P [d(e(X,M,k),k′) 6= M ] ≤ ε}. (3)

Due to a lack of space, this paper focuses on ε = 0 giving birth to an equivalent
definition:

Keq(k, 0) = {k′ ∈ K : Em(k) ⊆ Dm(k′)}. (4)

This set is usually not empty for QIM: if Em(k) ⊆ Dm(k), k is then an element
of Keq(k, 0).

3.4 The Effective Key Length

We introduce the notion of effective key length as a way to measure security.
The adversary picks a key k′ ∈ K taking into account the set of observations
ONo with an estimator: K′ = g(ONo). The estimator g(·) is either deterministic
or stochastic such that K′ ∼ p(k′|ONo) for instance. A graphical example of the
key space K is depicted in Fig. 2.
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Keq(k, �)

K
g(ONo)

k

Fig. 2. Graphical representation of the key space K and the equivalent region Keq(k, ε).
The dotted boundary represents the support of the estimator g(ONo) used to draw new
test keys when the adversary has No observations.

The probability P (ε,No) that the adversary picks up a key belonging to the
equivalent region is:

P (d)(ε,No) = EK[EONo [EK′ [K
′ ∈ Keq(K, ε)|ONo ]]]. (5)

Finally, to obtain an analogy with cryptography, the effective key length `(ε,No)
translates this probability into bits as follows:

`(ε,No) , − log2(P (ε,No)) bits. (6)

The bigger the effective key length, the less likely is the attacker to find keys
granting the access to the watermarking channel, and therefore, the more secure
is the watermarking scheme. This measurement of the security is in line with
Kalker’s definition. It is easily interpretable. It doesn’t rely on information the-
oretical element, and it takes into account the embedding and the decoding of
the watermarking scheme.

4 Technical Details: Part I - Theoretical Analysis

This section applies the above methodology to DC-DM QIM watermarking. We
give close form expressions for self-similar lattices and upper and lower bounds
in the general case.

4.1 A Primer on DC-DM QIM Watermarking

Let us model the host signal by a vector x ∈ RNv . Consider a coarse Euclidean
lattice Λc ⊂ RNv . The origin 0 ∈ RNv is an element of Λc and the Voronoi cell
is defined as the set of vectors of RNv closer to 0 than to any other element of
Λc: V(Λc) , {v ∈ RNv |QΛc(v) = 0} where QΛc(·) is the Euclidean quantizer on
Λc. The Voronoi cell of a lattice is a centrally symmetric, convex polytope.

For each message m ∈ M with say M = {1, 2, . . . ,M}, a coset leader dm ∈
RNv is defined such that Λf = ∪Mm=1(Λc + dm) is a finer lattice. This induces
the partition of Λf into M shifted versions of Λc, which implies that

|M| = M = vol(V(Λc))/vol(V(Λf )), (7)
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V(⇤c)

V(⇤f )

Fig. 3. 2D representation of the different elements used to compute the equivalent
region. The large stars represent elements of the coarse lattice Λc, the small and large
stars represents the fine lattice Λf , associated with the Voronoi cells V(Λc) and V(Λf ).
In this specific non-similar construction with the hexagonal lattice, M = 3. The dotted
and dashed circles represent balls with radius of R(Λ) and r(Λ) respectively. The dashed
hexagone is the scaled version of V(Λf ) used to compute the lower bound in (20).

with vol(A) the volume of subset A ⊂ X . Define r(Λ) the packing radius of
lattice Λ as the radius of the largest hyper-ball contained in V(Λ) and R(Λ)
the covering radius of Λ as the radius of the smallest hyper-ball containing
V(Λ). Denote B(x, r) the hyperball centered on x of radius r (see Fig. 3). Then,
B(0, r(Λ)) ⊂ V(Λ) ⊂ B(0, R(Λ)). Finally, define ρ(Λ) the effective radius of Λ
such that vol(B(0, ρ(Λ))) = vol(V(Λ)). Eq. (7) means that

M = (ρ(Λc)/ρ(Λf ))n. (8)

Hiding message m in x with a DC-DM QIM technique yields watermarked
vector y:

y = e(x,m,k) = x + α(QΛc(x− dm − k)− x + dm + k)

= QΛc(x− dm − k) + dm + k + (1− α)(x− dm − k−QΛc(x− dm − k))(9)

The key k ∈ RNv is called the dither applying a secret shift of the quantizer. Due
to the Λc-periodicity, the key ensemble K is the Voronoi cell V(Λc). We assume
as in [3] that k has been uniformly drawn over K = V(Λc). The last equation
shows that the watermarked signal is an element of Λ + dm + k plus the self-
inference noise (1 − α)x̃, with x̃ , [x − dm − k mod Λc] and [x mod Λ] ,
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x −QΛ(x). Parameter α with 0 < α < 1 is the distortion compensation factor.
The two lattices are scaled by a factor ∆ such that the Euclidean embedding

distortion is below the distortion budget: α2

∫
V(Λc)

‖x‖2∂x
vol(V(Λc))

≤ NvD (under the flat

host assumption, see [3]).
The message decoded from y with key k′ is given by

m̂ = d(y,k′) = arg min
m∈M

‖y − dm − k′ −QΛc(y − dm − k′)‖, (10)

which is m for y = e(x,m,k) if:

[(1− α)x̃ + k− k′ mod Λc] ∈ V(Λf ). (11)

We suppose that, in the noiseless case, the self-interference doesn’t give birth
to decoding errors when we decode with the secret key k′ = k. It implies that
(1 − α)V(Λc) ⊂ V(Λf ), or more simply (1 − α)R(Λc) ≤ r(Λf ). This holds if
α ≥ αmin with

αmin , 1− r(Λf )/R(Λc). (12)

If α = αmin, then only k can decode without error: the set of equivalent keys is
the singleton {k}.

There are several constructions of the partition (Λc, Λf ) provably good for
data hiding. Their description is out of the scope of this paper (see [3]). However,
we detail one in particular: We say that (Λc, Λf ) are self-similar lattices if Λf =
βΛc with 0 < β < 1 (ie. we exclude the case where Λf is a scaled rotation of
Λc). Eq. (8) imposes that M = β−Nv which must be an integer bigger than 1.
Decoding without error in the noiseless case implies β ≥ (1−α) so that α ≥ αss

min

(superscript ss means self-similar) with

αss
min , 1− β. (13)

4.2 No Observation - No = 0

The attacker has no observation. He randomly picks a test key k′ uniformly over
V(Λc). What is the probability that k′ is an equivalent key of k?

Self-Similar Lattices Construction. We are able to write a close form ex-
pression of this probability for this construction thanks to the following lemma.
For two sets A and B in IRNv , define aA = {x|∃a ∈ A : x = aa} and
A⊕ B = {x|∃(a,b) ∈ A× B : x = a + b}.
Lemma 1. For (a, b) two positive real numbers, aV(Λ) ⊕ bV(Λ) = (a + b)V(Λ)
for any Euclidean Lattice Λ.

Proof. Take any z ∈ (a+b)V(Λ), then x = a/(a+b)z lies in aV(Λ), y = b/(a+b)z
lies in bV(Λ) while z = x + y. Take now x ∈ aV(Λ) and y ∈ bV(Λ). Consider a
codeword c ∈ Λ with c 6= 0. Vector x is closer to codeword 0 than to any other
codeword ac of aΛ. We have ‖x‖ ≤ ‖ac− x‖ so that a‖c‖2 − 2c>x ≥ 0. In the
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same way, b‖c‖2 − 2c>y ≥ 0. Then ‖(a + b)c − (x + y)‖2 = ‖x + y‖2 + (a +
b)((a+ b)‖c‖2 − 2c>(x + y)) ≥ ‖x + y‖2. This holds for any codeword (a+ b)c
of (a+ b)Λ so that x + y ∈ V((a+ b)Λ) = (a+ b)V(Λ).

If k′ ∈ [k + (β− (1−α))V(Λc) mod Λc], then Eq. (11) is satisfied thanks to
this lemma. Because there is no aliasing since 0 ≤ β − (1 − α) ≤ 1, the volume
of Keq(0,k) is the same for any k. For the sake of simplicity, we can restrict our
attention to the case k = 0 which makes the modulo Λc useless. In the end, the
probability of picking an equivalent key is the ratio:

P (d)(0, 0) =
vol(Keq(0,k))

vol(K)
= (β − (1− α))Nv (14)

=
1

M

(
1− 1− α

1− αss
min

)Nv
, (15)

with αss
min given in (13). This expression does not depend on factor ∆.

Bounds For a General Construction. For α = 1, (11) states thatKeq(0,k) =
k + V(Λf ) and P (d)(0, 0) = 1/M . For α < 1, we cannot determine Keq(0,k).

Upper Bound. We upper bound Keq(0,k) with an hyperball. Since x̃ ∈ V(Λc),
then (1 − α)‖x̃‖ ≤ (1 − α)R(Λc). If ‖k − k′‖ ≤ r(Λf ) − (1 − α)R(Λc), then
‖(1 − α)x̃ + k − k′‖ ≤ r(Λf ), which implies that (11) is satisfied. This means
that B(k, r(Λf )− (1− α)R(Λc)) ⊂ Keq(0,k). Therefore,

P (d)(0, 0) ≥ vol(B(0, r(Λf )− (1− α)R(Λc)))

vol(V(Λc))
(16)

≥
(
r(Λf )− (1− α)R(Λc)

ρ(Λc)

)Nv
(17)

≥ 1

M
r̄(Λf )Nv

(
1− 1− α

1− αmin

)Nv
, (18)

where r̄(Λ) , r(Λ)/ρ(Λ) ≤ 1 is the packing efficiency of the lattice Λ and αmin

is given in (12). Equality holds however if V(Λf ) and V(Λc) are both spherical:

R̄(Λf ) = r̄(Λf ) = R̄(Λc) = r̄(Λc) = 1. (19)

This is only the case for Nv = 1 where the Voronoi cell are intervals of R, and
we find back the expression for self similar lattices.

Lower Bound. We lower bound Keq(0,k) with a scaled Voronoi cell of Λf (see
Fig. 3). Suppose k′ ∈ Keq(0,k), then k′ = k + xf + (1− α)xc with xf ∈ V(Λf )
and xc belonging to:

V(Λc) ⊂ B(0, R(Λc)) = B
(

0,
R(Λc)

r(Λf )
r(Λf )

)
⊂ R(Λc)

r(Λf )
V(Λf ).
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Therefore, Keq(0,k) ⊂ k +
(

1 + (1− α)R(Λc)
r(Λf )

)
V(Λf ) and

P (d)(0, 0) ≤ 1

M

(
1− 1− α

1− αmin

)Nv
, (20)

which is the same expression as for self-similar lattices, but with the αmin of (12).
Equality holds if the lattices are self-similar.

It may surprise the reader that no figure of merit about the coarse lattice Λc
appears in these bounds. This is not true because αmin indeed depends on its
covering efficiency. These bounds depend on the distortion compensation factor
α but not on the scale ∆ of (Λc, Λf ). These bounds may not be tight in general.
For instance, for α = 1, P (d)(0, 0) = M−1 ∀(Λc, Λf ), whereas the lower bound
adds a scaling factor r̄(Λf )Nv . In the end, we obtain upper and lower bounds for
the effective key length with a gap between the two of Nv log2 r̄(Λf ) bits.

4.3 Some Observations - No > 0

In the KMA setup, the attacker observes No watermarked vectors together with
their hidden message: oi = {yi,mi} with 1 ≤ i ≤ No. We only detail the calculus
for SCS: Nv = 1 and Λc = ∆Z, which can be used for self similar cubic lattices.
We drop the boldface font since the host, the watermarked content and the key
are now scalars. In other words, the embedding (9) simply gives:

y ∈ l∆+ dm + k + (1− α)V(∆Z) (21)

with l ∈ Z, dm = (m − 1)∆/M and k ∈ V(∆Z) = ∆/2.(−1, 1]. We also assume
that α > 1/2 and that the adversary knows dm under KMA. The observations
are:

oi , yi − dmi ∈ li∆+ k + (1− α)∆/2.(−1, 1].

If we take these observations modulo ∆, the results may lie in a non convex
set. However, there exist some r for which [oi − r mod ∆] are all in a convex
interval of length (1−α)∆/2.(−1, 1] (see [3, Prop. 2]). In other words, õi , [oi−r
mod ∆]+r = k+(1−α)x̃i, and we get rid off the modulo operation. This implies
in return that k ∈ õi + (1− α)∆/2[−1, 1). This holds for all the observations so
that k must lie in the intersection of these intervals and we have:

k ∈ [max õi − (1− α)∆/2,min õi + (1− α)∆/2). (22)

This interval is called the feasible set in [3] and we denote it by K(oNo). In words,
thanks to the observations, the attacker knows that the secret key lies into the
feasible set. Therefore, he randomly picks a key k′ in this set, and the probability
that k′ is an equivalent key is given by the ratio:

P (d)(0, No) =
vol(K(d)

eq (k, 0) ∩ K(oNo))

vol(K(oNo))
. (23)

Fig. 4 shows that K(d)
eq (k, 0) has a volume equalling ∆(1/M − (1− α)).
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Dm(k)

k + dm + `∆

∆/M

Em(k)
(1− α)∆

Dm(k′min)
k′min + dm + `∆

∆/M

Dm(k′max)
k′max + dm + `∆

∆/M

K(d)
eq (k, 0)

∆(1/M − 1 + α)

Fig. 4. Computation of vol(K(d)
eq (k, 0)) for DC-QIM.

First Study: No = 1. Denote leq = vol(K(d)
eq (k, 0))/∆ = 1/M − (1 − α) and

lfs = vol(K(O1))/∆ = (1−α) (see (22) with max õi = min õi for No = 1). There
are three cases depending on the values of leq and lfs.

1. For 1− 1/M ≤ α ≤ 1− 1/2M , we have leq ≤ lfs.
The probability P (d)(0, 1) is given by

∫
P [k′ ∈ Keq(k, 0)|õ1] f(õ1)∂õ1, with

f(õ1) = (∆lfs)
−1 and P [k′ ∈ Keq(k, 0)|õ1] given in Fig. 5 (left). We find:

P (d)(0, 1) =
leq
lfs

(
1− leq

4lfs

)
= 1− (1− d)2, (24)

with d , 1
2M(1−α) − 1

2 ≤ 1.

2. For 1− 1/2M ≤ α ≤ 1− 1/3M , we have lfs ≤ leq.
Although P [k′ ∈ Keq(k, 0)|õ1] has a different expression as shown in Fig. 5
(right), after integration, we find the same expression as (24).

3. For 1− 1/3M ≤ α ≤ 1, we have leq ≤ 2lfs and P (d)(0, 1) = 1.

k

leq/lfs

k − lfs/2

leq/2lfs

k − lfs/2 + leq/2

lfs
leq

P
[
k′ ∈ Keq(k, 0)|õ1

]

k

1

k − lfs/2

leq/2lfs

k + lfs/2 − leq/2

lfs

leq

P
[
k′ ∈ Keq(k, 0)|õ1

]

Fig. 5. SCS with 1−1/2M ≤ α ≤ 1−1/3M (left) or 1−1/M ≤ α ≤ 1−1/2M (right).
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Second Study: No > 1: We introduce two random variables: O = min Õi and
Ō = max Õi which are defined on the following interval: −(1 − α)∆/2 ≤ O ≤
(1− α)∆/2 and O ≤ Ō ≤ (1− α)∆/2. The pdf of (O, Ō) is given by:

pO,Ō(o, ō) =
No(No − 1)

((1− α)∆)No
(ō− o)No−2. (25)

For a given couple (o, ō), the probability of picking an equivalent key is as follows:

A(o, ō) = 1− |o+ (1− α− 1/2M)∆|+ + |(1− α− 1/2M)∆− ō|+
(1− α)∆+ o− ō ,

with |x|+ , max(x, 0). Note that if α ≥ 1 − 1/3M , then A(o, ō) = 1, ∀(o, ō)
in the definition set, so that P (d)(0, No) = 1, which is consistent with the first
study. Note also that if α = 1 − 1/M , then A(o, ō) = 0 and the attacker never
succeeds. Finally,

P (d)(0, No) =

∫ (1−α)∆/2

−(1−α)∆/2

∫ (1−α)∆/2

o

pO,Ō(o, ō) ·A(o, ō)∂o∂ō. (26)

After some cumbersome manipulations, we have for 1− 1/M ≤ α ≤ 1− 1/3M :

P (d)(0, No) = 1− (1− d)No

+ dNo(No − 1)

(
d ln(d) + 1− d−

No−2∑
`=1

(1− d)`+1

`(`+ 1)

)
. (27)

This shows that when α increases from 1− 1/M to 1− 1/3M , P (d)(0, No) goes
from 0 to 1.

It is easy to extend these results to self similar cubic lattices: Λc = ∆ZNv .
The probability to find an equivalent key over the block of size Nv is the product
of the Nv probabilities per component. Therefore, one just has to take Eq. (24)
and (27) to the power Nv, and the effective key length is Nv times the key length
per component.

5 Technical Details: Part II - Experimental Setup

This section presents an experimental framework to numerically evaluate the ef-
fective key length. We assume that there exist efficient quantizers for the chosen
lattices (Λc, Λf ). This means that we know how to embed, decode and make
modulo Λc operation. The subsections below explain how we overcome two dif-
ficulties.

5.1 Indicator Function of Keq(0, k)

Consider the case No = 0. A naive experimental protocol based on a Monte
Carlo simulations would be to generate one secret key k, and then N test keys
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{k′i}Ni=1 and to count the number of times k′i is an equivalent decoding key of k.
The problem is that, if the partition is not based on self similar lattices, we do
not know the shape of Keq(0,k) and there is no indicator function of this set.
The only thing we have is that Eq. (11) holds for any x̃ ∈ V(Λc) if k′i ∈ Keq(0,k).

A first possibility is to generate Nt vectors {x̃i}Nti=1 uniformly distributed over
V(Λc). Thanks to the convexity of the Voronoi cells, we know that if Eq. (11)
holds for the Nt elements, then it holds for any point in their convex hull of
which is a subset of V(Λc). Therefore, this method is only an approximation of
the indicator function, which becomes inaccurate if Nt is too small. This in turn
raises a problem of complexity since we need to check (11) Nt times per test key.

A second possibility benefits from the convexity property. Since V(Λc) is
convex, setting {x̃i}Nti=1 as its vertices is sufficient. However, the dimension of the
space strikes us again. For instance, there are 2Nv such vertices for Λc = ∆ZNv
and 19, 440 for Λc = E8. For the latter case, we only consider the 2, 160 deep
holes of E8, i.e. the most far away from 0 vertices [7].

5.2 Rare Event Probability Estimator

Since the probabilities to be estimated can be low, the complexity of Monte
Carlo simulations is another difficulty. The number of test keys N must be in the
order of 1/P (d)(0, No) to achieve a reasonably low relative variance of estimation.
This is the reason why we also use a rare event probability estimator3. Three
ingredients are needed:

– A generator of test keys. The test keys are to be drawn uniformly over a
convex set (e.g. K = V(Λc) for No = 0). This is done by the rejection
method: We randomly draw a vector v in the hypercube R(Λc)[−1, 1]Nv and
we accept it as an occurence of K′ ∼ U(V(Λc)) if QΛc(v) = 0 indicating
that v ∈ V(Λc). If not, we reject it and redraw a vector v until the condition
is checked.

– A modification process. It randomly modifies a key K′ into K′′ so that the
latter is exactly distributed like the former. One says that the process is
distribution invariant. Since the law is indeed the uniform distribution over
a convex set, we use the “Hit and Run” algorithm [8]. In a nutshell, from a
point K′ in the set, one uniformly draws a direction Θ is the space. Then,
one seeks the 2 points A and B of this line (K′, Θ) that intersect with the
frontier of the set. At the end, one draws a point uniformly over [A,B]. The
process is repeated several times and the output K′′ is the last point.

– A score function s(·) : K → R. It is designed such that s(k′) = 1 implies
that k′ ∈ Keq(0,k). However, it must be a soft function: s(k′) graciously
tends to 1 when k′ gets closer to Keq(0,k) in some sense. We propose the
following trick: We compute the difference di = ‖(1−α)x̃i+k−k′ mod Λc‖−
r(Λf ). Therefore, di > 0 for the vectors violating (11). We set s(k′) =
1 −max({|di|+}). If (11) holds for the Nt vectors defined in Sub. 5.1, then
s(k′) = 1.

3 available as a Matlab Toolbox at www.irisa.fr/texmex/people/furon/src.html
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With this setting, the algorithm described in [9] estimates P [s(K′) = 1] with
K′ uniformly distributed over a convex set K. Its properties in term of bias,
relative variance and confidence interval are given in [9]. Its complexity is in
O(log(1/P (d)(0, No))). In practice, if P (d)(0, No) is lower than 10−3, this algo-
rithm runs faster than the Monte Carlo simulations.

6 Discussions

6.1 Scalar Costa Scheme

We first analyze the security of the Scalar Costa Scheme whereNv = 1, Λc = ∆Z,
Λf = M−1∆Z, and αss

min = 1 −M−1. This is the only case where we have a
complete picture for any value of No. Fig. 6 shows the effective key length in
bits per component .

The embedding distortion increases with ∆ and with α, and so is the robust-
ness. However, the effective key length decreases with α and does not depend on
∆. This stems in a trade-off between robustness and security. For a given ∆, α
closer to 1 provides more robustness but less security.

There is a big discrepancy w.r.t. the value of No. When No = 0, the effective
key length is always bigger log2M bits per component, which is the rate of the
watermarking scheme. Hiding symbols at a higher rate does increase the security,
but the robustness would be much smaller.

When No > 0, the effective key length vanishes to 0 bit as α → 1 − 1/3M .
Fig. 6 (right) shows that the effective key length quickly vanishes as No increases.
Note the big loss between No = 0 and No = 1.
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Fig. 6. Key length in bits for the SCS scheme, (left) vs. the distortion compensation
factor α. (right) vs. the number of observations No for α = 0.8. Stars mark experimental
estimations as described in Sect. 5.1.

6.2 Lattice Embedding

The only setup where we have a full analysis is the cubic self-similar lattices:
the effective key length for a block of size Nv is the effective key length of SCS
times Nv. Therefore, the effective key length per component remains the same.
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For any other construction, we only have results for No = 0. As above, when
α = 1, the effective key length per component equals the rate of the water-
marking scheme: log2(M)/Nv bits. Surprisingly, two self-similar constructions
operating with the same β and at the same rate, share the same effective key
length per component. For instance, SCS with M = 2 and the construction 1
detailed below share the same plot for No = 0 (Fig. 6 (left) and Fig. 7 (left)).
In the same way, two non-similar constructions operating with the same αmin

and at the same rate share the same lower bound on the effective key length per
component. In general, αmin has an impact on the decay rate of the effective key
length, whereas the rate of message hiding shifts the plot.

We apply the experimental benchmark detailed in Sect. 5 to two construc-
tions for Nv = 8 (RE8 denotes a rotated version of lattice E8 [7]):

1. Self similar: Λc = E8, Λf = βE8, β = 0.5, M = 256, αss
min = 0.5.

2. Non similar: Λc = RE8, Λf = E8, r̄(Λf ) = 0.842, M = 16, αmin = 0.5.

Fig. 7 validates the experimental evaluation of the effective key length: for
the self-similar lattices, the estimation is in line with the close form expression
since it lies in the confidence interval except for the smallest value of α (see Fig. 7
(left)). This is due to the approximation of the equivalent region (see Sect. 5.1).
For non similar lattices, the bounds are so close that the experimental evaluation
does not bring much information. It seems that the key length is closer to the
upper bound for weak α, and closer to the lower bound for strong α. The rare
event estimator (see Sect. 5.2) is useful because the probabilities to be evaluated
are as low as 10−16 for the smallest value of α. This algorithm succeeds to
estimate such order of probability within two minutes on a regular computer.
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Fig. 7. Key length in bits for constructions 1 (left) and 2 (right) vs. the distortion
compensation factor α. Stars mark experimental estimations as described in Sect. 5.2;
the intervals are the 95% confidence intervals of these estimations.
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7 Conclusion and Future Works

This paper introduces a new approach to gauge the security of watermarking
schemes. The keystone is the notion of equivalent keys: there exist a plurality of
keys granting access to the watermarking channel. The scheme is more secure if
the attacker has greater difficulty in finding an equivalent key.

This approach is then applied to DC-DM QIM watermarking schemes. The
lesson is that, as soon as the attacker observes some watermarked contents and
their hidden message, the scheme is then broken if it is designed to be robust.

The paper lacks a part of the study: for lattice embedding, the computation
of the effective key length is missing when the attacker has some observations.
This will be done in a future work. The experimental evaluation should not
be difficult: we will use Set Member Estimation technique to approximate the
feasible set yielded by the observations by a bounding ellipsoid as done in [3].
Then, the attacker has to randomly pick a key inside this region. The theoretical
part however seems much more difficult. Another point is that we work with
ε = 0 (perfect access to the watermarking channel), it is interesting to see how
the effective key length evolves when we relax this strong constraint.
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