Joris Van Der Hoeven
email: vdhoeven@lix.polytechnique.fr

Overview of the Mathemagix type system *

Keywords: Mathemagix, type system, overloading, parametric polymorphism, language design, computer algebra

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Motivation for a new language

Until the mid nineties, the development of computer algebra systems tended to exploit advances in the area of programming languages, and sometimes even influenced the design of new languages. The Formac system [START_REF] Bond | FORMAC an experimental formula manipulation compiler[END_REF] was developed shortly after the introduction of Fortran. Symbolic algebra was an important branch of the artificial intelligence project at Mit during the sixties. During a while, the Macsyma system [START_REF]The Maxima computer algebra system (free version[END_REF][START_REF] Martin | The MACSYMA system[END_REF][START_REF] Moses | Macsyma: A personal history[END_REF] was the largest program written in Lisp, and motivated the development of better Lisp compilers.

The Scratchpad system [START_REF] Jenks | The SCRATCHPAD language[END_REF][START_REF] Griesmer | SCRATCHPAD User's Manual[END_REF] was at the origin of yet another interesting family of computer algebra systems, especially after the introduction of domains and categories as function values and dependent types in Modlisp and Scratchpad II [START_REF] Jenks | A language for computational algebra[END_REF][START_REF] Sutor | The type inference and coercion facilities in the scratchpad ii interpreter[END_REF][START_REF] Jenks | Modlisp -an introduction (invited)[END_REF]. These developments were at the forefront of language design and type theory [START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination de coupures dans l'analyse et la théorie des types[END_REF][START_REF] Milner | A theory of type polymorphism in programming[END_REF][START_REF] Martin-Löf | Constructive mathematics and computer programming[END_REF]. Scratchpad later evolved into the Axiom system [START_REF]The Axiom computer algebra system[END_REF][START_REF] Jenks | AXIOM: the scientific computation system[END_REF]. In the A# project [START_REF] Watt | Aldor programming language[END_REF][START_REF] Watt | A first report on the A# compiler[END_REF], later renamed into Aldor, the language and compiler were redesigned from scratch and further purified.

After this initial period, computer algebra systems have been less keen on exploiting new ideas in language design. One important reason is that a good language for computer algebra is more important for developers than for end users. Indeed, typical end users tend to use computer algebra systems as enhanced pocket calculators, and rarely write programs of substantial complexity themselves. Another reason is specific to the family of systems that grew out of Scratchpad: after IBM's decision to no longer support the development, there has been a long period of uncertainty for developers and users on how the system would evolve. This has discouraged many of the programmers who did care about the novel programming language concepts in these systems.

In our opinion, this has lead to an unpleasant current situation in computer algebra: there is a dramatic lack of a modern, sound and fast general purpose programming language. The major systems Mathematica [START_REF]Mathematica[END_REF] and Maple [START_REF] Geddes | Maple[END_REF] are both interpreted, weakly typed (even the classical concept of a closure has been introduced only recently in Maple!), besides being proprietary and very expensive. The Sage system [START_REF] Stein | Sage Mathematics Software[END_REF] relies on Python and merely contents itself to glue together various existing libraries and other software components.

The absence of modern languages for computer algebra is even more critical whenever performance is required. Nowadays, many important computer algebra libraries (such as Gmp [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF], Mpfr [START_REF] Hanrot | MPFR, a C library for multiple-precision floating-point computations with exact rounding[END_REF], Flint [START_REF] Hart | An introduction to Flint[END_REF], FGb [START_REF] Faugère | FGb: A Library for Computing Gröbner Bases[END_REF], etc.) are directly written in C or C++. Performance issues are also important whenever computer algebra is used in combination with numerical algorithms. We would like to emphasize that high level ideas can be important even for traditionally low level applications. For instance, in a suitable high level language it should be easy to operate on SIMD vectors of, say, 256 bit floating point numbers. Unfortunately, Mpfr would have to be completely redesigned in order to make such a thing possible.

For these reasons, we have started the design of a new software, Mathemagix [18,[START_REF] Van Der Hoeven | Mathemagix, the quest of modularity and efficiency for symbolic and certified numeric computation[END_REF], based on a compiled and strongly typed language, featuring signatures, dependent types, and overloading. Mathemagix is intended as a general purpose language, which supports both functional and imperative programming styles. Although the design has greatly been influenced by Scratchpad II and its successors Axiom and Aldor, there are several important differences, as we will see.

Mathemagix is also a free software, which can be downloaded from www.mathemagix.org.

In this paper, we will focus on the underlying type system. We present an informal overview of this system and highlight in which respect it differs from existing systems. We plan to provide a more detailed formal description of the type system in a future paper.

Main philosophy behind the type system

The central idea behind the design of the Mathemagix language is that the declaration of a function is analogous to the statement of a mathematical theorem, whereas the implementation of the function is analogous to giving a proof. Of course, this idea is also central in the area of automated proof assistants, such as Coq [START_REF] Coquand | The Coq proof assistant[END_REF][START_REF] Coquand | The calculus of constructions[END_REF] or Isabelle/Hol [START_REF] Nipkow | Isabelle/Hol[END_REF]. However, Mathemagix is intended to be a general purpose programming language rather than an automated theorem prover. Therefore, we only insist on very detailed declarations, whereas the actual implementations do not need to be formally proven.

One consequence of this design philosophy is that program interfaces admit very detailed specifications: although the actual implementations are not formally proven, the combination of various components is sound as long as each of the components fulfills its specification. By contrast, Maple, Mathematica or Sage functions can only be specified in quite vague manners, thereby introducing a big risk of errors when combining several libraries.

Another consequence of the Mathemagix design is that it allows for massively overloaded notations. This point is crucial for computer algebra and also the main reason why mainstream strongly typed functional programming languages, such as Haskell [START_REF] Jones | The Haskell 98 language and libraries: the revised report[END_REF][START_REF] Hudak | A history of haskell: being lazy with class[END_REF] or OCaml [26], are not fully suitable for our applications. To go short, we insist on very detailed and unambiguous function declarations, but provide a lot of flexibility at the level of function applications. On the contrary, languages such as Ocaml require unambiguous function applications, but excel at assigning types to function declarations in which no types are specified for the arguments.

The Mathemagix type system also allows for a very flat design of large libraries: every function comes with the hypotheses under which it is correct, and can almost be regarded as a module on its own. This is a major difference with respect to Axiom and Aldor, where functionality is usually part of a class or a module. In such more hierarchical systems, it is not always clear where to put a given function. For instance, should a converter between lists and vectors be part of the list or the vector class?

Overview of this paper

In order to make the above discussion about the main design philosophy more concrete, we will consider the very simple example of computing the square of an element x in a monoid. In section 2, we will show how such a function would typically be written in various existing languages, and compare with what we would do in Mathemagix. For a somewhat older, but more detailed comparison from a similar perspective, we refer to [START_REF] Garcia | A comparative study of language support for generic programming[END_REF].

In section 3, we will continue with a more complete description of the primitives of the type system which have currently been implemented in the compiler. We will also discuss various difficulties that we have encountered and some plans for extensions.

As stated before, we have chosen to remain quite informal in this paper. Nevertheless, in section 4, we will outline the formal semantics of the type system. The main difficulty is to carefully explain what are the possible meanings of expressions based on heavily overloaded notations, and to design a compiler which can determine these meanings automatically.

Given the declarative power of the language, it should be noticed that the compiler will not always be able to find all possible meanings of a program. However, this is not necessarily a problem as long as the compiler never assigns a wrong meaning to an expression. Indeed, given an expression whose meanings are particularly hard to detect, it is not absurd to raise an error, or even to loop forever. Indeed, in such cases, it will always be possible to make the expression easier to understand by adding some explicit casts. Fortunately, most natural mathematical notations also have a semantics which is usually easy to determine: otherwise, mathematicians would have a hard job to understand each other at the first place!

Comparison on an example

We will consider a very simple example in order to illustrate the most essential differences between Mathemagix and various existing programming languages: the computation of the square of an element x of a monoid. Here we recall that a monoid is simply a set M together with an associative multiplication •: M 2 → M . Although our example may seem trivial, we will see that the programming languages that we have investigated fail to treat this example in a completely satisfactory way from our perspective.

Mathemagix

In Mathemagix, we would start by a formal declaration of the concept of a monoid. As in the case of Aldor, this is done by introducing the monoid category:

category Monoid == { infix *: (This, This) -> This; }
The built-in type This stands for the carrier of the monoid. In other words, it will be possible to regard any type T with a function infix *: (T, T) -> T as a monoid. We may now define the square of an element x of a monoid by forall (M: Monoid) square (x: M): M == x * x;

Given an instance x of any type T with a multiplication infix *: (T, T) -> T, we may thus compute the square of x using square x. For instance, after inclusion of the standard library file integer.mmx, the literal constant 111 has type Integer and a multiplication infix *: (Integer, Integer) -> Integer is provided. Hence, square 111 will yield the square of the integer 111.

In our definition of a monoid, we notice that we did not specify the multiplication to be associative. For instance, we might consider an extension of the current language with a keyword assert, which would allow us to define associative: This -> Void; } At least, this allows the user to indicate that the multiplication on a type T is associative, by implementing the "dummy" function associative for T.

Of course, one might consider adding an assert primitive to Mathemagix which would really behave as an annotation similar to the associative function. However, if we want to take advantage of the mathematical semantics of associativity, then we should also be able to automatically prove associativity during type conversions. We regard this as an issue for automatic theorem provers which is beyond the current design goals of Mathemagix. Notice nevertheless that it would be quite natural to extend the language in this direction in the further future.

Aldor

As stated in the introduction, a lot of the inspiration for Mathemagix comes from the Aldor system and its predecessors. In Aldor, the category Monoid would be defined using define Monoid: Category == with { *: (%, %) -> %; } However, the forall primitive inside Mathemagix for the definition of templates does not have an analogue inside Aldor. In Aldor, one would rather define a parameterized class which exports the template. For instance:

Squarer (M: Monoid): with { square: M -> M; } == add { square (x: M): M == x * x; }
In order to use the template for a particular class, say Integer, one has to explicitly import the instantiation of the template for that particular class: import from Squarer (Integer);

The necessity to encapsulate templates inside classes makes the class hierarchy in Aldor rather rigid. It also forces the user to think more than necessary about where to put various functions and templates. This is in particular the case for routines which involve various types in a natural way. For instance, where should we put a converter from vectors to lists? Together with other routines on vectors? With other routines on lists? Or in an entirely separate module?

C++

The C++ language [START_REF] Stroustrup | The C++ programming language[END_REF] does provide support for the definition of templates: template<typename M> square (const M& x) { return x * x; } However, as we see on this example, the current language does not provide a means for requiring M to be a monoid, at least in the weak sense from section 2.1 that there exists a multiplication M operator * (const M&, const M&). Several C++ extensions with "signatures" [START_REF] Baumgartner | Implementing signatures for C++[END_REF] or "concepts" [START_REF] Reis | Specifying C++ concepts[END_REF] have been proposed in order to add such requirements. C++ also imposes a lot of restrictions on how templates can be used. Most importantly, the template arguments should be known statically, at compile time. Also, instances of user defined types (such as an explicit matrix) cannot be used as template arguments.

In the above piece of code, we also notice that the argument x is of type const M& instead of M. This kind of interference of low level details with the type system is at the source of many problems when writing large computer algebras libraries in C++. Although Mathemagix also gives access to various low level details, we decided to follow a quite different strategy in order to achieve this goal. However, these considerations fall outside the main scope of this paper.

Ocaml

Mainstream strongly typed functional programming languages, such as Ocaml and Haskell, do not provide direct support for operator overloading. Let us first examine the consequences of this point of our view in the case of Ocaml. In order to make the types which are associated to expressions by the compiler explicit, the examples in this section will be presented in the form of an interactive session.

First of all, multiplication does not carry the same name for different numeric types. For instance:

let square x = x * x;; val square: int -> int = <fun> # let float_square x = x *. x;; val float_square: float -> float = <fun> At any rate, this means that we somehow have to specify the monoid in which we want to take a square when applying the square function of our example. Nevertheless, modulo acceptance of this additional disambiguation constraint, it is possible to define the analogue of the Monoid category and the routine square: In our definition of Int_Monoid, it should be noticed that we need to specify the multiplication on int explicitly. On the one hand, this gives a greater flexibility: for instance, it is straightforward to construct another integer monoid where the addition is used as the monoid multiplication. However, we think that this kind flexibility is rarely useful in the area of computer algebra. In fact, mathematicians rather tend to use a unique notation for multiplication, so mathematical programming languages should rather focus on transposing this habit directly into the language. If one really wants to use addition as a multiplication, then it is not hard to define a wrapper class which does precisely this.

Haskell

In many regards, Haskell is similar in spirit to Ocaml, but Haskell type classes come closer to overloading than Ocaml modules. For instance, the square function can be defined in a quite compact way as follows:

class Monoid a where (*) :: a -> a -> a square x = x * x

In order to enable the square function for a particular type, one has to create an instance of the monoid for this particular type. For instance, we may endow String with the structure of a monoid by using concatenation as our multiplication:

instance Monoid [Char] where x * y = x ++ y

After this instantiation, we may square the string "hello" using square "hello" (in practice, the example needs to be slightly tweeked since the operator * is already reserved for standard multiplication of numbers; one also has to use the -XFlexibleInstances compilation option in order to allow for the instantiation of the string type). The nice thing of the above mechanism is that we may instantiate other types as monoids as well and share the name * of the multiplication operator among all these instantiations. Haskell style polymorphism thereby features several of the advantages of operator overloading. However, there are some important differences. First of all, it is not allowed to use the same name * inside another type class, such as Ring, except when the other type class is explicitly derived from Monoid. Secondly, the user still has to explicitly instantiate the type classes for specific types: in Mathemagix, the type String can automatically be regarded as a Monoid as soon as the operator * is defined on strings.

Discussion

Essentially, the difference between Mathemagix and classical strongly typed functional languages such as Ocaml and Haskell is explained by the following observation: if we want to be able to declare the square function simply by writing square x = x * x and without specifying the type of x, then the symbol * should not be too heavily overloaded in order to allow the type system to determine the type of square. In other words, no sound strongly typed system can be designed which allows both for highly ambiguous function declarations and highly ambiguous function applications.

Whether the user prefers a type system which allows for more freedom at the level of function declarations or function applications is a matter of personal taste. We may regard Ocaml and Haskell as prominent members of the family of strongly typed languages which accomodate a large amount of flexibility at the declaration side. But if we are rather looking for high expressiveness at the function application side, and insist on the possibility to heavily overload notations, then we hope that the Mathemagix type system will be a convenient choice.

We finally notice that signatures are now implemented under various names in a variety of languages. For instance, in Java, one may use the concept of an interface. Nevertheless, to the best of our knowledge, the current section describes the main lines along which signatures are conceived in current languages.

3 Overview of the language

Ordinary variables and functions

There are three main kinds of objects inside the Mathemagix type system: ordinary variables (including functions), classes and categories. Ordinary variables are defined using the following syntax:

test?: Boolean == pred? x; // constant flag?: Boolean := false; // mutable In this example, test? is a constant, whereas flag? is a mutable variable which can be given new values using the assignment operator :=. The actual type of the mutable variable flag? is Alias Boolean. Functions can be declared using a similar syntax:

foo (x: Int): Int == x * x;
Mathemagix is a fully functional language, so that functions can both be used as arguments and as return values:

shift (x: Int) (y: Int): Int == x + y; iterate (foo: Int -> Int, n: Int) (x: Int): Int == if n = 0 then x else iterate (foo, n-1) (foo x);
The return type and the types of part of the function arguments are allowed to depend on the arguments themselves. For instance: square (x: M, M: Monoid): M == x * x;

Mathemagix does not allow for mutually dependent arguments, but dependent arguments can be specified in an arbitrary order. For instance, in the above example, we were allowed to introduce M: Monoid after the declaration x: M. However, the following declaration with mutually dependent arguments is incorrect: nonsense (x: Foo y, y: Bar x): Void == {}

Classes

New classes are defined using the class primitive, as in the following example:

class

Categories

Categories are the central concept for achieving genericity. We have already seen an example of the definition of a category in section 2.1. Again, categories may take parameters, with possible dependencies among them. Given an ordinary type T, we write x: T if x is an instance of T. In the case of a category Cat, we write T: Cat if a type T satisfies the category, that is, if all category fields are defined in the current context, when replacing This by T. Contrary to Ocaml or Haskell, it follows that Mathemagix is very name sensitive: if we want a type T to be a monoid, then we need a multiplication on T with the exact name infix *. Of course, wrappers can easily be defined if we want different names, but one of the design goals of Mathemagix is that it should be particularly easy to consistently use standard names.

The natural analogues of categories in Ocaml and Haskell are modules and type classes. In the case of Mathemagix, there is only one carrier This, but the above examples show that it easy to mimick multiple carriers (or "multi-sorted signatures") using parameterized categories. Apart from this difference, Mathemagix categories, Ocaml modules and and Haskell type classes provide a similar degree of expressivity.

Discrete overloading

The main strength of the Mathemagix type system is that it allows for heavy though fully type safe overloading. Similarly as in C++ or Aldor, discrete overloading of a symbol is achieved by declaring it several times with different types: Then the expression foo bar will be assigned the type And (Int, String). An example of a truly ambiguous expression would be bar = bar, since it is unclear whether we want to compare the integers 11111 or the strings "Hello". True ambiguities will provoke compile time errors.

Parametric overloading

The second kind of parametric overloading relies on the forall keyword. The syntax is similar to template declarations in C++, with the difference that all template parameters should be rigourously typed:

forall (M: Monoid) fourth_power (x: M): M == x * x * x * x;
Internally, the Mathemagix type system associates a special universally quantified type Forall (M: Monoid, M -> M) to the overloaded function fourth_power. In a similar way, values themselves can be parametrically overloaded. The main challenge for the Mathemagix type system is to compute consistently with intersection types and universally quantified types. For instance, we may define the notation [1, 2, 3] for vectors using forall (T: Type) operator [] (t: Tuple T): Vector T == vector t;

This notation in particular defines the empty vector [] which admits the universally quantified type Forall (T: Type, Vector T). In particular, and contrary to what would have been the case in C++, it is not necessary to make the type of [] explicit as soon as we perform the template instantiation. Thus, writing v: Vector Int == []; w: Vector Int == [] >< []; // concatenation would typically be all right. On the other hand, the expression #[] (size of the empty vector) is an example of a genuine and parametric ambiguity.

In comparison with C++, it should be noticed in addition that parametric overloading is fully dynamic and that there are no restrictions on the use of ordinary variables as template parameters. Again, there may be dependencies between template arguments. Mathemagix also implements the mechanism of partial specialization. For instance, if we have a fast routine square for double precision numbers, then we may define fourth_power (x: Double): Double == square square x;

Contrary to C++, partial specialization of a function takes into account both the argument types and the return type. This make it more natural to use the partial specialization mechanism for functions for which not all template parameters occur in the argument types:

forall (R: Number_Type) pi (): R == ...; pi (): Double == ...;

Implicit conversions

One major difference between Aldor and Axiom is that Aldor does not contain any mechanism for implicit conversions. Indeed, in Axiom, the mechanism of implicit conversions [START_REF] Sutor | The type inference and coercion facilities in the scratchpad ii interpreter[END_REF] partially depends on heuristics, which makes its behaviour quite unpredictable in non trivial situations. We have done a lot of experimentation with the introduction of implicit conversions in the Mathemagix type system, and decided to ban them from the core language. Indeed, systematic implicit conversions introduce too many kinds of ambiguities, which are sometimes of a very subtle nature. Nevertheless, the parametric overloading facility makes it easy to emulate implicit conversions, with the additional benefit that it can be made precise when exactly implicit conversions are permitted. Indeed, we have already introduced the To T category, defined by Here c :> M stands for the application of convert to c and retaining only the results of type M (recall that c might have several meanings due to overloading). This kind of emulated "implicit" conversions are so common that Mathemagix defines a special notation for them:

forall (M: Monoid) infix * (c :> M, v: Vector M): Vector M == [c * x | x: M in v];
In particular, this mechanism can be used in order to define converters with various kinds of transitivity:

convert (x :> Integer): Rational == x / 1; convert (cp: Colored_Point) :> Point == cp.p;

The first example is also called an upgrader and provides a simple way for the construction of instances of more complex types from instances of simpler types. The second example is called a downgrader and can be used in order to customize type inheritance, in a way which is unrelated to the actual representation types in memory.

The elimination of genuine implicit converters also allows for several optimizations in the compiler. Indeed, certain operations such as multiplication can be overloaded hundreds of times in non trivial applications. In the above example of scalar multiplication, the Mathemagix compiler takes advantage of the fact that at least one of the two arguments must really be a vector. This is done using a special table lookup mechanism for retaining only those few overloaded values which really have a chance of succeeding when applying a function to concrete arguments.

Union types, structures and symbolic expressions

In Ocaml and Haskell, the type and data keywords allow for the definition of unions and more general data types whose instances are freely built up from a finite number of explicitly given constructors. These languages also provide a powerful system of pattern matching in order to efficiently process instances of such types. In Mathemagix, structures offer a similar functionality. For instance, we may define lists using structure List (T: Type) == { null (); cons (head: T, tail: List T); } This declaration automatically introduces corresponding predicates null? and cons?, as well as accessors .head and .tail. For instance, the length of a list can be computing using forall (T: Type) prefix # (l: List T): Int == if null? l then 0 else #l.tail + 1;

Alternatively, one may use pattern matching as in Ocaml:

forall (T: Type) prefix # (l: List T): Int == match l with { case null () do return 0; case cons (_, t: List T) do return #t + 1; } The fact that this code is slightly more verbose than its Ocaml analogue stems from the fact that, in accordance with the general design of Mathemagix, all implicit declarations occurring in the patterns (such as t: List T) should be explicitly typed by the user. Mathemagix also supports the following Haskell style of pattern matching: forall (T: Type) { prefix # (l: List T): Int := 0; prefix # (cons (_, t: List T)): Int := #t + 1; } Mathemagix structures are in particular very useful for the definition of symbolic expressions. Indeed, such expressions are typically finite unions of special types of expressions, such as literal names, compound expressions, scalar expressions (integers, rationals, etc.), sums, products, polynomials, matrices, etc. For this reason, Mathemagix provides a few useful extensions of the above mechanisms with respect to Ocaml and Haskell:

1. The possibility to define open structures, whose set of basic constructors can be extended a posteriori . This typically allows the user to enrich the Symbolic type with a user defined kind of "symbolic skew polynomials".

2. The possibility to add new user defined patterns, besides the patterns which directly correspond to the constructors of the structure.

3. Some syntactic sugar for efficient dispatching of routines based on the kind of structure we are dealing with (e.g. there are two kinds of lists: null lists and cons lists).

We plan to give a full description of these features and how to exploit them in another paper.

Syntactic sugar

Functions with several arguments use a classical tuple notation. It would have been possible to follow the Ocaml and Haskell conventions, which rely on currying, and rather regard a binary function f : T 2 → T as a function of type T → (T → T). Although this convention is more systematic and eases the implementation of a compiler, it is also non standard in mainstream mathematics; in Mathemagix, we have chosen to keep syntax as close as possible to classical mathematics. Furthermore, currying may be a source of ambiguities in combination with overloading. For instance, the expression -1 might be interpreted as the unary negation applied to 1, or as the operator x 1x.

In order to accomodate for functions with an arbitrary number of arguments and lazy streams of arguments, Mathemagix uses a limited amount of syntactic sugar. Given a type T, the type Tuple T stands for an arbitrary tuple of arguments of type T, and Generator T stands for a lazy stream of arguments of type T. For instance, (1, 2) would be a typical tuple of type Tuple Int and 0..10 a typical generator of type Generator Int. For instance, the prototype of a function which evaluates a multivariate polynomial at a tuple of points might be forall (R: Ring) eval (P: MVPol R, p: Tuple R): R == ...;

Given a polynomial P: MVPol Int, this would allow us to write eval (p, 1, 2, 3). If we had used vectors or lists instead of tuples, then eval would always take exactly two arguments, and we would be forced to write eval (p, cons (1, cons (2, cons (3, null ())))). The syntactic sugar takes care of the necessary conversions between tuples and generators. For instance, given a polynomial P: MVPol Int, the following would be valid evaluations:

Future extensions

There are various natural and planned extensions of the current type system.

One of the most annoying problems that we are currently working on concerns literal integers: the expression 1 can naturally be interpreted as a machine Int or as a long Integer. Consequently, it is natural to consider 1 to be of type And (Int, Integer). For efficiency reasons, it is also natural to implement each of the following operations: This makes an expression such as 1 = 1 highly ambiguous. Our current solution permits the user to prefer certain operations or types over others. For instance, we would typically prefer the type Integer over Int, since Int arithmetic might overflow. However, we still might prefer infix =: (Int, Int) -> Boolean over infix =: (Int, Integer) -> Boolean. Indeed, given i: Int, we would like the test i = 0 to be executed fast.

One rather straightforward extension of the type system is to consider other "logical types". Logical implication is already implemented using the assume primitive: forall (R: Ring) { ... assume (R: Ordered) sign (P: Polynomial R): Int == if P = 0 then 0 else sign P[deg P]; ... } Equivalently, we might have used a quantification forall (R: Ordered_Ring) for the declaration of sign, where Ordered_Ring is the "join" of the categories Ring and Ordered.

Similarly, the implementation of existentially quantified types will allow us to write routines such as forall (K: Field) exists (L: Algebraic_Extension K) roots (p: Polynomial K): Vector L == ...;

Internally, an instance x of a type of the form exists (C: Cat) F(C) would be represented by a pair (C: Cat, x: F(C)).

We also plan to extend the syntactic sugar. For instance, given two aliases i, j: Alias Int, we would like to be able to write (i, j) := (j, i) or (i, j) += [START_REF]The Axiom computer algebra system[END_REF][START_REF]The Axiom computer algebra system[END_REF]. A macro facility should also be included, comparable to the one that can be found in Scheme. Some further syntactic features might be added for specific areas. For instance, in the Macaulay2 system [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF][START_REF] Eisenbud | Computations in algebraic geometry with Macaulay 2[END_REF], one may use the declaration

R = ZZ[x,y]
for the simultaneous introduction of the polynomial ring Z[x, y] and the two coordinate functions x, y: Z[x, y].

In the longer future, we would like to be able to formally describe mathematical properties of categories and algorithms, and provide suitable language constructs for supplying partial or complete correctness proofs.

Semantics and compilation

In this section we will briefly sketch the semantics of the Mathemagix language. For this purpose it is convenient to schematize the language constructs from the previous section by remaining as close as possible to more conventional typed l-calculus, but with special notations for categories and overloading. Actually, Mathemagix involves two main typed languages:

1. The source language contains constructs for building ambiguous expressions and their types.

Such overloaded source programs always carry explicit types.

2. The target language extends the source language with notations for the explicit disambiguation of overloaded expressions. All valid target programs are unambiguous.

The job of the compiler is to transform source programs into target programs. The programs in the target language can be interpreted quite naturally in the language of untyped l-calculus. Hence, in order to describe the semantics of Mathemagix, it suffices to specify how the compiler transforms source program into target programs, and how target programs should be interpreted in classical untyped l-calculus.

We will use a few notational conventions. For the sake of brevity, we will now use superscripts for specifying types. For instance, lx Integer .(x × x) Integer denotes the function x ∈ Z x 2 . For the sake of readability, we will also denote types T, Int, etc. using capitalized identifiers and categories C, Ring, etc. using bold capitalized identifiers. Similarly, we will use the terms "type expressions" and "category expressions" whenever an expression should be considered as a type or category. Notice however that this terminology is not formally enforced by the language itself.

Source language

The source language contains three main components:

Typed lambda expressions. The first component consists of ordinary typed l-expressions, and notations for their types:

1. Given expressions f and x, we denote function application by f (x), (f) x, or fx.

2. Given a variable x, an expression y and type expressions T and U, we denote by lx T .y U the lambda expression which sends x of type T to y of type U.

3. We will denote by T → U the type of the above l-expression. In the case when U depends on x, we will rather write T → U x for this type.

Hence, all lambda expressions are typed and there are no syntactic constraints on the types T and U. However, "badly typed" expressions such as lx Int .x Boolean will have no correct interpretation in the section below.

Declarations. The second part of the language concerns declarations of recursive functions, classes and categories.

1. Given variables x 1 , , x n , type expressions T 1 , , T n and expressions y 1 , , y n , z, we may form the expression x 1 T1 ≡ y 1 , , x n Tn ≡ y n . z. The informal meaning is: the expression z, with mutually recursive bindings x 1 T1 ≡ y 1 , , x n Tn ≡ y n .

2. Given variables x 1 , , x n and type expressions T 1 , , T n , we may form the data type class x 1

T1

, , x n Tn . For instance, a list of integers might be declared using (List ≡ class nil List , cons Int→List→List). z. We also introduce a special variable Class which will be the type of class x 1

T1

, , x n Tn .

3. Given variables x 1 , , x n , y and type expressions T 1 , , T n , U, we may form the category y U x 1 T1 , , x n Tn . For instance, we might introduce the Monoid category using (Monoid ≡ This Class × This→This→This). z.

Overloaded expressions. The last part of the language includes explicit constructs for overloaded expressions and their types:

1. Given two expressions x and y, we may form the overloaded expression x ∧ y.

2. Given type expressions T and U, we may form the intersection type T ∩ U.

3. Given a variable x, a type expression T and an expression y, we may form the parametrically overloaded expression x T y.

4. Given a variable x, a type expression T and a type expression U, we may form the universally quantified type expression x T U.

In the last two cases, the variable x is often (but not necessarily) a type variable A and its type T a category C.

Target language

The source language allows us to define an overloaded function such as

foo Int→Int∩String→String ≡ (lx Int .(x × x) Int) ∧ (lx String .(x @ x) String) (1)
In a context where 1 is of type Int, it is the job of the compiler to recognize that foo should be interpreted as a function of type Int → Int in the expression foo [START_REF]The Axiom computer algebra system[END_REF].

In order to do so, we first extend the source language with a few additional constructs in order to disambiguate overloaded expressions. The extended language will be called the target language. In a given context C, we next specify when a source expression x can be interpreted as a non ambiguous expression x ˆin the target language. In that case, we will write C x x ˆand the expression x ˆwill always admit a unique type.

For instance, for foo as above, we introduce operators π 1 and π 2 for accessing the two possible meanings, so that {foo Int→Int∩String→String , 1 Int } foo(1) π 1 (foo) [START_REF]The Axiom computer algebra system[END_REF].

For increased clarity, we will freely annotate target expressions by their types when appropriate.

For instance, we might have written π 1 (foo) Int→Int (1 Int) Int instead of π 1 (foo) [START_REF]The Axiom computer algebra system[END_REF].

Disambiguation operators. In the target language, the following notations will be used for disambiguating overloaded expressions:

1. Given an expression x, we may form the expressions π 1 (x) and π 2 (x).

Given expressions

x and y, we may form the expression x[y]. Here x should be regarded as a template and x[y] as its specialization at y.

There are many rules for specifying how to interpret expressions. We list a few of them:

C x x ˆT∩U C x π 1 (x ˆ)T (C x x ˆT) ∧ (C y y ˆU) C (x ∧ y) (x ˆ∧ y ˆ)T∩U C x x ˆ y T U ∧ (C z z ˆT) C x x ˆ[z ˆ]U[z ˆ/y] C T T ˆ ∧ (C ∪ {x T ˆ} y y ˆ) ∧ C U U ˆ C (lx T .y U) (lx T ˆ.y ˆU ˆ)T ˆ→U ˆx
Here U[z ˆ/y] stands for the substitution of z ˆfor y in U.

Category matching. The second kind of extensions in the target language concern notations for specifying how types match categories:

1. Given expressions T, f 1 , , f n and C, we may form the expression T f 1 , , f n ⇑C. The informal meaning of this expression is "the type T considered as an instance of C, through specification of the structure f 1 , , f n ".

2. Given an expression T, we may form T⇓, meaning "forget the category of T".

Given expressions

x and T, we may form the expression x↑T, which allows us to cast to a type T of the form T = U f 1 , , f n ⇑C.

4. Given an expression x, we may form x↓.

In order to cast a given type T B to a given category C = This B x 1

X1

, , x n Xn , all fields of the category should admit an interpretation in the current context:

∀i, C X i [T/This] X ˆi ∧ (C x i x ˆi X ˆi) C T T x ˆ1, , x ˆn ⇑C .
Assuming in addition that C y y ˆT, we also have C y y ˆ↑(T x ˆ1, , x ˆn ⇑C). There are further rules for casting down.

Compilation

Schematic behaviour

A target expression x T is said to be reduced if its type T is not of the form U ∩ V, y Y U, or U⇑C or U⇓. The task of the compiler is to recursively determine all reduced interpretations of all subexpressions of a source program. Since each subexpression x may have several interpretations, we systematically try to represent the set of all possible reduced interpretations by a conjunction x õf universally quantified expressions. In case of success, this target expression x ˜will be the result of the compilation in the relevant context C, and we will write C x * x ˜. Let us illustrate this idea on two examples. With foo as in (1) and c String∩Int , there are two reduced interpretations of foo(c):

{foo Int→Int∩String→String , c String∩Int } foo(c) π 1 (foo)(π 2 (c)) Int , {foo Int→Int∩String→String , c String∩Int } foo(c) π 2 (foo)(π 1 (c)) String .
Hence, the result of the compilation of foo(c) is given by

{foo Int→Int∩String→String , c String∩Int } foo(c) * (π 1 (foo)(π 2 (c)) ∧ π 2 (foo)(π 1 (c))) Int∩String .
In a similar way, the result of compilation may be a parametrically overloaded expression:

{bar T C Int→List T , 1 Int } bar(1) * T C bar[T](1) List T .

Resolution of ambiguities

Sometimes, the result x ˜of the compilation of x is a conjunction which contains at least two expressions of the same type. In that case, x is truly ambiguous, so the compiler should return an error message, unless we can somehow resolve the ambiguity. In order to do this, the idea is to define a partial preference relation on target expressions and to keep only those expressions in the conjunction x ˜which are maximal for this relation.

For instance, assume that we have a function square of type (M Monoid M → M) ∩ Int → Int and the constant 2012 of type Int. In section 3.5, we have seen that Mathemagix supports partial specialization. Now π 2 (square) is a partial specialization of π 1 (square), but not the inverse. Consequently, we should strictly prefer π 2 (square) over π 1 (square), and π 2 (square)(2012) over π 2 (square)[I](2012↑I)↓, where I = Int × Int→Int→Int ⇑Monoid.

As indicated in section 3.9, we are currently investigating further extensions of the preference relation via user provided preference rules.

Implementation issues

In absence of universal quantification, the search process for all reduced interpretations can in principle be designed to be finite and complete. The most important implementation challenge for Mathemagix compilers therefore concerns universal quantification.

The main idea behind the current implementation is that all pattern matching is done in two stages: at the first stage, we propose possible matches for free variables introduced during unification of quantified expressions. At a second stage, we verify that the proposed matches satisfy the necessary categorical constraints, and we rerun the pattern matching routines for the actual matches. When proceeding this way, it is guaranteed that casts of a type to a category never involve free variables.

Let us illustrate the idea on the simple example of computing a square. So assume that we have the function square of type M Monoid M → M in our context, as well as a multiplication ×: Int → Int → Int. In order to compile the expression square(2012 Int), the algorithm will attempt to match Int → F 1 with M Monoid M → M for some free variable In practice the above idea works very well. Apart from more pathological theoretical problems that will be discussed below, the only practically important problem that we do not treat currently, is finding a "smallest common supertype" with respect to type conversions (see also [START_REF] Sutor | The type inference and coercion facilities in the scratchpad ii interpreter[END_REF]).

For instance, let f be a function of type

R Class T Into R T → T → R.
What should be the type of fxy, where x X Class and y Y Class are such that X and Y are different? Theoretically speaking, this should be the type R C R, where C is the category T Class convert X→T , convert Y→T . However, the current pattern matching mechanism in the Mathemagix compiler will not find this type.

Theoretical problems

It is easy to write programs which make the compiler fail or loop forever. For instance, given a context with the category In(T) ≡ This Class convert This→T and functions convert and f of types T Class F(T) → T and T In(I nt) T → T, the compilation of f(x String) will loop. Indeed, the compiler will successively search for converters String → Int, F(String) → Int, F(F(String)) → Int, etc. Currently, some safeguards have been integrated which will make the compiler abort with an error message when entering this kind of loops.

The expressiveness of the type system actually makes it possible to encode any first order theory directly in the system. For instance, given a binary predicate P and function symbols f , g, the statement ∀x, P (f (x), g(x)) ⇒ P (g(g(x)), f (x)) might be encoded by the declaration of a function P ¯of type x ¯C g ¯(g ¯(x ¯)) → f ¯(x ¯) → Boolean, where C = T Class P ¯f¯(T)→ g ¯(T)→Boolean . These negative remarks are counterbalanced by the fact that the type system is not intended to prove mathematical theorems, but rather to make sense out of commonly used overloaded mathematical notations. It relies upon the shoulders of the user to use the type system in order to define such common notations and not misuse it in order to prove general first order statements. Since notations are intended to be easily understandable at the first place, they can usually be given a sense by following simple formal procedures. We believe that our type system is powerful enough to cover most standard notations in this sense.

The above discussion shows that we do not aim completeness for the Mathemagix system. So what about soundness? The rules for interpretation are designed in such a way that all interpretations are necessarily correct. The only possible problems which can therefore occur are that the compiler loops forever or that it is not powerful enough to automatically find certain non trivial interpretations.

We also notice that failure of the compiler to find the intended meaning does not necessarily mean that we will get an error message or that the compiler does not terminate. Indeed, theoretically speaking, we might obtain a correct interpretation, even though the intended interpretation should be preferred. In particular, it is important to use the overloading facility in such a way that all possible interpretations are always correct, even though some of them may be preferred.

Finally, an interesting research question is to investigate which sublanguages of Mathemagix do admit a complete type system. For instance, if we exclude parametric overloading, then the type system becomes complete. Similarly, if parameteric overloading is subject to additional constraints, then the type system might still be complete. For instance, what if the category only contains functions of the type T 1 → → T n → U, where at least one of the types T i involves This, and where each of the types T 1 , , T n , U is either equal to This or free from This? Another natural kind of requirement in the case of upgraders would be to insist on always upgrading "simpler" types (such as R) into more "complex" types (such as Polynomial(R)), and never the other way around. Similarly, downgraders should always downgrade more complex types into simpler types.

Execution

Given an expression x on which the compilation process succeeds, we finally have to show what it means to evaluate x. So let x ˜with ∅

x * x ˜be the expression in the target language which is produced by the compiler. The target language has the property that it is quite easy to "downgrade" x ˜into an expression of classical untyped l-calculus. This reduces the evaluation semantics of Mathemagix to the one of this calculus. Some of the most prominent rules for rewriting x ˜into a term of classical untyped l-calculus are the following:

1. Overloaded expressions x ∧ y are rewritten as pairs lf .fxy.

2. The projections π 1 and π 2 are simply true: lx.ly.x and false: lx.ly.y.

Template expressions

x T y are rewritten as l-expressions lx.y. For instance, consider the template M Monoid lx M .(x × x) M . After compilation, this template is transformed into the expression lM.lx.(π 1 1 M) xx, where π i n = lx 1 . .lx n .x i . One of the aims of the actual Mathemagix compiler is to be compatible with existing C libraries and C++ template libraries. For this reason, the backend of Mathematics really transforms expressions in the target language into C++ programs instead of terms of untyped lcalculus.

Ongoing work and perspectives

The current Mathemagix compiler available from www.mathemagix.org implements the type system described in this paper. In addition, the language contains features for using C++ template libraries in a generic way. Until recently, we only relied on C++ for the development of our libraries, so the Mathemagix system provides a range of C++ template libraries for mathematical computations [START_REF] Lecerf | Mathemagix: towards large scale programming for symbolic and certified numeric computations[END_REF][START_REF] Van Der Hoeven | Mathemagix, the quest of modularity and efficiency for symbolic and certified numeric computation[END_REF]. Now that we have completed the implementation of a basic version of the compiler, our first major challenge is to rewrite the most important C++ template libraries directly in Mathemagix. This process will involve further finetuning of the language and various extensions which will control how to optimize things. As soon as we have gained more practical experience, we plan to give a more detailed account on the advantages of the Mathemagix language for the implementation of computer algebra libraries.

Concerning efficiency and code optimization, we aim to give the user access to very low level details, such as SIMD instructions or the layout of long integers in memory, while providing powerful mechanisms for abstraction. The language will also provide fine grained control over when a template will be instantiated for particular parameters and when to execute the generic code. One of our aims is that the compiler will be able to generate code of a quality comparable to the "codelets" in FFTW3 [START_REF] Frigo | A fast Fourier transform compiler[END_REF][START_REF] Frigo | The design and implementation of FFTW3[END_REF], but for a wide range of problems, and without the need to switch between various languages (we recall that FFTW3 is a C library which relies on Ocaml for the generation of codelets).

Plans for the longer future include support for various types of parallellism and interoperability with other general purpose languages and computer algebra systems. We also hope to interface Mathemagix with one or more automatic theorem provers, which would allow us to specify the semantics of programs in an even more detailed way.

category

 Monoid == { infix *: (This, This) -> This; assert (forall (x: This, y: This, z: This) x*(y*z) = (x*y)*z); } Nevertheless, nothing withholds the user from replacing the definition by category Monoid == { infix *: (This, This) -> This;

#

 module type Monoid = sig type t val mul : t -> t -> t end;; # module Squarer = functor (El: Monoid) -> struct let square x = El.mul x x end;; As in the case of Aldor, we need to encapsulate the square function in a special module Squarer. Moreover, additional efforts are required in order to instantiate this module for a specific type, such as int: # module Int_Monoid = struct type t = int let mul x y = x * y end;; # module Int_Squarer = Squarer (Int_Monoid);; # Int_Squarer.square 11111;; -: int = 123454321

 For instance: category Module (R: Ring) == { This: Abelian_Group; infix *: (R, This) -> This; } The This type can occur in the category fields in many ways. In the above example, the line This: Abelian_Group means that Module R in particular includes all fields of Abelian_Group. More generally, This can be part of function argument types, of return types, or part of the declaration of an ordinary variable. For instance, the category To T below formalizes the concept of a type with an implicit converter to T. category Type == {} category To (T: Type) == { convert: This -> T; }

 infix * (c: Double, p: Point): Point == point (c * p.x, c * p.y); infix * (p: Point, c: Double): Point == point (p.x * c, p.y * c); Contrary to C++, non function variables and return values of functions can also be overloaded: bar: Int == 11111; bar: String == "Hello"; mmout << bar * bar << lf; mmout << bar >< " John!" << lf; Internally, the Mathemagix type system associates a special intersection type And (Int, String) to the overloaded variable bar. During function applications, Mathemagix consistently takes into account all possible meanings of the arguments and returns a possibly overloaded value which corresponds to all possible meanings of the function application. For instance, consider the overloaded function foo (x: Int): Int == x + x; foo (s: String): String == reverse s;

 category To (T: Type) == { convert: This -> T; } Here convert is the standard operator for type conversions in Mathemagix. Using this category, we may define scalar multiplication for vectors by forall (M: Monoid, C: To M) infix * (c: C, v: Vector M): Vector M == [(c :> M) * x | x: M in v];

 eval (P, 1, 2..8, (9, 10), 11..20); eval (P, (i^2 | i: Int in 0..100)); Notice that the notation of function application (or evaluation) can be overloaded itself: postfix .() (fs: Vector (Int -> Int), x: Int): Vector Int == [f x | f: Int -> Int in fs];

 infix =: (Int, Int) -> Boolean; infix =: (Integer, Integer) -> Boolean; infix =: (Int, Integer) -> Boolean; infix =: (Integer, Int) -> Boolean;

F 1 . 2 Monoid 7 2 Monoid 7 2 Monoid 7 I

 1272727 At a first stage, we introduce a new free variable F 2 Monoid and match F 2 Monoid → F 2 Monoid against Int → F 1 . This check succeeds with the bindings F Int and F 1 7 Int, but without performing any type checking for these bindings. At a second stage, we have to resolve the innermost binding F Int and cast Int to Monoid. This results in the correct proposal F for the free variable, where I ≡ Int × Int→Int→Int ⇑Monoid. We finally rematch I → I with Int → F 1 and find the return type F 1 7 I.

4 .

 4 Template instantiation x[y] is rewritten into function application x(y).

5. Instances T x 1 U1,

 1 , x n Un ⇑C of categories are implemented as n-tuples lf .T x 1 x n .

 We usually use similar names for constructors as for the class itself, but the user is free to pick other names. The mutable keyword specifies that we have both read and read-write accessors postfix .x and postfix .y for the fields x and y. Contrary to C++, new accessors can be defined outside the class itself:As in the case of functions, classes are allowed to depend on parameters, which may be either type parameters or ordinary values. Again, there may be dependencies among the parameters. One simple example of a class definition with parameters is:

	postfix .length (p: Point): Double ==
	sqrt (p.x * p.x + p.y * p.y);
	class Num_Vec (n: Int) == {
	mutable v: Vector Double;
	constructor num_vec (c: Double) == {
	v == [c | i: Int in 0..n];
	}
	}
	Point == {
	mutable {
	x: Double;
	y: Double;
	}
	constructor point (x2: Int, y2: Int) == {
	x == x2;
	y == y2;
	}
	}

Overview of the language

Bibliography

* . This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as the Digiteo 2009-36HD grant and Région Ile-de-France.