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May 30, 2012ABSTRACT
The goal of the Mathemagix project is to develop a new
and free software for computer algebra and computer anal-
ysis, based on a strongly typed and compiled language.
In this paper, we focus on the underlying type system of
this language, which allows for heavy overloading, including
parameterized overloading with parameters in so called “cat-
egories”. The exposition is informal and aims at giving the
reader an overview of the main concepts, ideas and differ-
ences with existing languages. In a forthcoming paper, we
intend to describe the formal semantics of the type system
in more details.Keywords
Mathemagix, type system, overloading, parametric poly-
morphism, language design, computer algebra1. INTRODUCTIONMotivationforanewlanguage
Until the mid nineties, the development of computer algebra
systems tended to exploit advances in the area of pro-
gramming languages, and sometimes even influenced the
design of new languages. The Formac system [3] was devel-
oped shortly after the introduction of Fortran. Symbolic
algebra was an important branch of the artificial intelligence
project at Mit during the sixties. During a while, the Mac-
syma system [27, 23, 26] was the largest program written
in Lisp, and motivated the development of better Lisp com-
pilers.

The Scratchpad system [18, 12] was at the origin of
yet another interesting family of computer algebra sys-
tems, especially after the introduction of domains and
categories as function values and dependent types in
Scratchpad II [20, 33, 19]. These developments were at
the forefront of language design and type theory [9, 25, 24].
Scratchpad later evolved into the Axiom system [1, 21].
In the A# project [36, 35], later renamed into Aldor, the
language and compiler were redesigned from scratch and
further purified.

After this initial period, computer algebra systems have
been less keen on exploiting new ideas in language design.
One important reason is that a good language for computer
algebra is more important for developers than for end users.
Indeed, typical end users tend to use computer algebra
systems as enhanced pocket calculators, and rarely write
programs of substantial complexity themselves. Another
reason is specific to the family of systems that grew out
of Scratchpad: after IBM’s decision to no longer support
the development, there has been a long period of uncer-
tainty for developers and users on how the system would
evolve. This has discouraged many of the programmers who
did care about the novel programming language concepts
in these systems.

In our opinion, this has lead to an unpleasant current sit-
uation in computer algebra: there is a dramatic lack of a
modern, sound and fast programming language. The major
systems Mathematica [37] and Maple [8] are both inter-
preted, weakly typed (even the classical concept of a closure
has been introduced only recently in Maple!), besides being
proprietary and very expensive. The Sage system [32] relies
on Python and merely contents itself to glue together var-
ious existing libraries and other software components.

The absence of modern languages for computer algebra is
even more critical whenever performance is required. Nowa-
days, many important computer algebra libraries (such as
Gmp [10], Mpfr [13], Flint [14], FGb [7], etc.) are directly
written in C or C++. Performance issues are also impor-
tant whenever computer algebra is used in combination with
numerical algorithms. We would like to emphasize that high
level ideas can be important even for traditionally low level
applications. For instance, in a suitable high level language
it should be easy to operate on SIMD vectors of, say, 256 bit
floating point numbers. Unfortunately, Mpfr would have
to be completely redesigned in order to make such a thing
possible.

For these reasons, we have started the design of a new
and free software, Mathemagix [15, 16], based on a com-
piled and strongly typed language, featuring signatures,
dependent types, and overloading. Although the design has
greatly been influenced by Scratchpad II and its suc-
cessors Axiom and Aldor, there are several important
differences, as we will see.

∗. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as the Digiteo 2009-36HD grant and Région Ile-de-France.
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In this paper, we will focus on the underlying type system.
We present an informal overview of this system and high-
light in which respect it differs from existing systems. We
plan to provide a more detailed formal description of the
type system in a future paper.Mainphilosophybehindthe type system
The central idea behind the design of the Mathemagix lan-
guage is that the declaration of a function is analogous to the
statement of a mathematical theorem, whereas the imple-
mentation of the function is analogous to giving a proof.
Of course, this idea is also central in the area of automated
proof assistants, such as Coq [5, 4] or Isabelle/Hol [28].
However, Mathemagix only insists on very detailed decla-
rations, whereas the actual implementations do need not to
be formally proven.

One consequence of this design philosophy is that program
interfaces admit very detailed specifications: although the
actual implementations are not formally proven, the combi-
nation of various components is sound as long as each of the
components fulfills its specification. By contrast, Maple,
Mathematica or Sage functions can only be specified in
quite vague manners, thereby introducing a big risk of errors
when combining several libraries.

Another consequence of the Mathemagix design is that
it allows for massively overloaded notations. This point is
crucial for computer algebra and also the main reason why
mainstream strongly typed functional programming lan-
guages, such as Haskell [29, 17] or OCaml [22], are not
fully suitable for our applications. To go short, we insist on
very detailed and unambiguous function declarations, but
provide a lot of flexibility at the level of function appli-
cations. On the contrary, languages such as Ocaml require
unambiguous function applications, but excel at assigning
types to function declarations in which no types are spec-
ified for the arguments.

The Mathemagix type system also allows for a very flat
design of large libraries: every function comes with the
hypotheses under which it is correct, and can almost be
regarded as a module on its own. This is a major differ-
ence with respect to Axiom and Aldor, where functionality
is usually part of a class or a module. In such more hier-
archical systems, it is not always clear where to put a given
function. For instance, should a converter between lists and
vectors be part of the list or the vector class?Overviewof this paper
In order to make the above discussion about the main
design philosophy more concrete, we will consider the very
simple example of computing the square of an element x

in a monoid. In section 2, we will show how such a func-
tion would typically be written in various existing languages,
and compare with what we would do in Mathemagix.

In section 3, we will continue with a more complete descrip-
tion of the primitives of the type system which have
currently been implemented in the compiler. We will also
discuss various difficulties that we have encountered and
some plans for extensions.

As stated before, we have chosen to remain quite informal
in this paper. Nevertheless, in section 4, we will outline the
formal semantics of the type system. The main difficulty
is to carefully explain what are the possible meanings of
expressions based on heavily overloaded notations, and to
design a compiler which can determine these meanings auto-
matically.

Given the declarative power of the language, it should be
noticed that the compiler will not always be able to find
all possible meanings of a program. However, this is not
necessarily a problem as long as the compiler never assigns
a wrong meaning to an expression. Indeed, given an expres-
sion whose meanings are particularly hard to detect, it is not
absurd to raise an error, or even to loop forever. Indeed, in
such cases, it will always be possible to make the expression
easier to understand by adding some explicit casts. For-
tunately, most natural mathematical notations also have
a semantics which is usually easy to determine: otherwise,
mathematicians would have a hard job to understand each
other at the first place!2. COMPARISONONANEXAMPLE
We will consider a very simple example in order to illustrate
the most essential differences between Mathemagix and
various existing programming languages: the computation
of the square of an element x of a monoid. Here we recall
that a monoid is simply a set M together with an associative
multiplication ·:M2→M .2.1 Mathemagix
In Mathemagix, we would start by a formal declaration of
the concept of a monoid. As in the case of Aldor, this is
done by introducing the monoid category :

category Monoid == {

infix *: (This, This) -> This;

}

We may now define the square of an element x of a monoid
by

forall (M: Monoid)

square (x: M): M == x * x;

Given an instance x of any type T with a multiplication
infix *: (T, T) -> T, we may then compute the square
of x using square x.

In our definition of a monoid, we notice that we did not

specify the multiplication to be associative. Nothing with-
holds the user from replacing the definition by

category Monoid == {

infix *: (This, This) -> This;

associative: This -> Void;

}

This allows the user to indicate that the multiplication on
a type T is associative, by implementing the “dummy” func-
tion associative for T. At this point, the type system
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provides no means for specifying the mathematical seman-
tics of associativity: if we would like to take advantage out
of this kind of semantics, then we should also be able to
automatically prove associativity during type conversions.
This is really an issue for automatic theorem provers which
is beyond the current design goals of Mathemagix. Notice
nevertheless that it would be quite natural to extend the
language in this direction in the further future.2.2 Aldor
As stated in the introduction, a lot of the inspiration for
Mathemagix comes from the Aldor system and its pre-
decessors. In Aldor, the category Monoid would be defined
using

define Monoid: Category == with {

*: (%, %) -> %;

}

However, the forall primitive inside Mathemagix for the
definition of templates does not have an analogue inside
Aldor. In Aldor, one would rather define a parameterized
class which exports the template. For instance:

Squarer (M: Monoid): with {

square: M -> M;

} == add {

square (x: M): M == x * x;

}

In order to use the template for a particular class, say
Integer, one has to explicitly import the instantiation of
the template for that particular class:

import from Squarer (Integer);

The necessity to encapsulate templates inside classes makes
the class hierarchy in Aldor rather rigid. It also forces
the user to think more than necessary about where to put
various functions and templates. This is in particular the
case for routines which involve various types in a natural
way. For instance, where should we put a converter from
vectors to lists? Together with other routines on vectors?
With other routines on lists? Or in an entirely separate
module?2.3 C++
The C++ language [34] does provide support for the defini-
tion of templates:

template<typename M>

square (const M& x) {

return x * x;

}

However, as we see on this example, the current lan-
guage does not provide a means for requiring M to be
a monoid. Several C++ extensions with “signatures” [2]
or “concepts” [30] have been proposed in order to add such
requirements. C++ also imposes a lot of restrictions on

how templates can be used. Most importantly, the template
arguments should be known statically, at compile time.
Also, instances of user defined types cannot be used as tem-
plate arguments.

In the above piece of code, we also notice that the argument
x is of type const M& instead of M. This kind of interference
of low level details with the type system is at the source
of many problems when writing large computer algebras
libraries in C++. Although Mathemagix also gives access
to various low level details, we decided to follow a quite dif-
ferent strategy in order to achieve this goal. However, these
considerations fall outside the main scope of this paper.2.4 Ocaml
Mainstream strongly typed functional programming lan-
guages, such as Ocaml and Haskell, do not provide direct
support for operator overloading. Let us first examine the
consequences of this point of our view in the case of Ocaml.
First of all, multiplication does not carry the same name
for different numeric types. For instance:

# let square x = x * x;;

val square: int -> int = <fun>

# let float_square x = x *. x;;

val float_square: float -> float = <fun>

At any rate, this means that we somehow have to specify the
monoid in which we want to take a square when applying
the square function of our example. Nevertheless, modulo
acceptance of this additional disambiguation constraint, it is
possible to define the analogue of the Monoid category and
the routine square:

# module type Monoid =

sig

type t

val mul : t -> t -> t

end;;

# module Squarer =

functor (El: Monoid) ->

struct

let square x = El.mul x x

end;;

As in the case of Aldor, we need to encapsulate the square
function in a special module Squarer. Moreover, additional
efforts are required in order to instantiate this module for a
specific type, such as int:

# module int_Monoid =

struct

type t = int

let mul x y = x * y

end;;

# module int_Squarer = Squarer (int_Monoid);;

# int_Squarer.square 11111;;

- : int = 123454321
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2.5 Haskell
Haskell is similar in spirit to Ocaml, but Haskell type
classes allow for a more compact formulation. The square
function would be defined as follows:

class Monoid a where

(*) :: a -> a -> a

square x = x * x

In order to enable the square function for a particular type,
one has to create an instance of the monoid for this par-
ticular type. For instance, we may endow String with the
structure of a monoid by using concatenation as our multi-
plication:

instance Monoid [Char] a where

x * y :: x ++ y

After this instantiation, we may square the string "hello"

using square "hello". In order to run this example in prac-
tice, we notice that there are a few minor problems: the
operator * is already reserved for standard multiplication
of numbers, and one has to use the -XFlexibleInstances

option in order to allow for the instantiation of the string
type.

The nice thing of the above mechanism is that we may
instantiate other types as monoids as well and share the
name * of the multiplication operator among all these
instantiations. Haskell style polymorphism thereby comes
very close to operator overloading. However, there are some
important differences. First of all, it is not allowed to use
the same name * inside another type class, such as Ring,
except when the other type class is explicitly derived from
Monoid. Secondly, the user still has to explicitly instantiate
the type classes for specific types: in Mathemagix, the type
String can automatically be regarded as a Monoid as soon
as the operator * is defined on strings.2.6 Coq
Although the automated proof assistant Coq is not really a
programming language, it implements an interesting facility
for implicit conversions [31]. This facility is not present in
Ocaml, on which Coq is based. Besides elementary implicit
conversions, such as the inclusion of Z in Q, it is also pos-
sible to define parametric implicit conversions, such as the
inclusion of K in K[x]. Moreover, implicit conversions can
be composed into chains of implicit conversions.

One major problem with implicit conversions is that they
quickly tend to become ambiguous (and this explains why
they were entirely removed from Aldor and Mathemagix;
see section 3.6 below). For example, the implicit conversion
Z � Q[x] may typically be achieved in two different ways
as the succession of two implicit conversions; namely, as
Z� Q� Q[x] or as Z� Z[x]� Q[x].

In Coq, such ambiguities are resolved by privileging the
implicit conversions which are declared first. It is interesting
to notice that this makes sense in an automated proof assis-

tant: the correctness of the final proof does not really depend
on the way how we performed implicit conversions. However,
such ambiguities are more problematic for general purpose
programming languages: the conversion Z � Q � Q[x] is
usually more efficient than Z� Z[x]� Q[x], so we really
want to enforce the most efficient solution. Currently, Coq
does not provide genuine support for overloading. If such
support existed, then a similar discussion would probably
apply.2.7 Discussion
Essentially, the difference between Mathemagix and clas-
sical strongly typed functional languages such as Ocaml
and Haskell is explained by the following observation: if
we want to be able to declare the square function simply by
writing

square x = x * x

and without specifying the type of x, then the symbol *

should not be too heavily overloaded in order to allow the
type system to determine the type of square. In other
words, no sound strongly typed system can be designed
which allows both for highly ambiguous function declara-
tions and highly ambiguous function applications.

Whether the user prefers a type system which allows for
more freedom at the level of function declarations or func-
tion applications is a matter of personal taste. We may
regard Ocaml and Haskell as prominent members of the
family of strongly typed languages which accomodate a large
amount of flexibility at the declaration side. But if we are
rather looking for high expressiveness at the function appli-
cation side, and insist on the possibility to heavily overload
notations, then we hope that the Mathemagix type system
will be a convenient choice.

We finally notice that signatures are now implemented
under various names in a variety of languages. For instance,
in Java, one may use the concept of an interface. Never-
theless, to the best of our knowledge, the current section
describes the main lines along which signatures are con-
ceived in current languages.3. OVERVIEWOFTHELANGUAGE3.1 Ordinaryvariables andfunctions
There are three main kinds of objects inside the Math-
emagix type system: ordinary variables (including func-
tions), classes and categories. Ordinary variables are defined
using the following syntax:

test?: Boolean == pred? x; // constant

flag?: Boolean := false; // mutable

In this example, test? is a constant, whereas flag? is a
mutable variable which can be given new values using the
assignment operator :=. The actual type of the mutable
variable flag? is Alias Boolean. Functions can be declared
using a similar syntax:
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foo (x: Int): Int == x * x;

Mathemagix is a fully functional language, so that func-
tions can both be used as arguments and as return values:

shift (x: Int) (y: Int): Int == x + y;

iterate (foo: Int -> Int, n: Int)

(x: Int): Int ==

if n = 0 then x

else iterate (foo, n-1) (foo x);

The return type and the types of part of the function argu-
ments are allowed to depend on the arguments themselves.
For instance:

square (x: M, M: Monoid): M == x * x;

Mathemagix does not allow for mutually dependent argu-
ments, but dependent arguments can be specified in an arbi-
trary order.3.2 Classes
New classes are defined using the class primitive, as in the
following example:

class Point == {

mutable {

x: Double;

y: Double;

}

constructor point (x2: Int, y2: Int) == {

x == x2;

y == y2;

}

}

We usually use similar names for constructors as for the class
itself, but the user is free to pick other names. The mutable
keyword specifies that we have both read and read-write
accessors postfix .x and postfix .y for the fields x and y.
Contrary to C++, new accessors can be defined outside the
class itself:

postfix .length (p: Point): Double ==

sqrt (p.x * p.x + p.y * p.y);

As in the case of functions, classes are allowed to depend on
parameters, which may be either type parameters or ordi-
nary values. Again, there may be dependencies among the
parameters. One simple example of a class definition with
parameters is:

class Num_Vec (n: Int) == {

mutable v: Vector Double;

constructor num_vec (c: Double) == {

v == [ c | i: Int in 0..n ];

}

}

3.3 Categories
Categories are the central concept for achieving genericity.
We have already seen an example of the definition of a cate-
gory in section 2.1. Again, categories may take parameters,
with possible dependencies among them. For instance:

category Module (R: Ring) == {

This: Abelian_Group;

infix *: (R, This) -> This;

}

As in Ocaml or Haskell, the This type can occur in the
category fields in many ways. In the above example, the line
This: Abelian_Group means that Module R in particular
includes all fields of Abelian_Group. More generally, This
can be part of function argument types, of return types, or
part of the declaration of an ordinary variable. For instance,
the category To T below formalizes the concept of a type
with an implicit converter to T.

category Type {}

category To (T: Type) == {

convert: This -> T;

}

Given an ordinary type T, we write x: T if x is an instance
of T. In the case of a category Cat, we write T: Cat if a type T
satisfies the category, that is, if all category fields are defined
in the current context, when replacing This by T. Contrary
to Ocaml or Haskell, it follows that Mathemagix is very
name sensitive: if we want a type T to be a monoid, then we
need a multiplication on T with the exact name infix *. Of
course, wrappers can easily be defined if we want different
names, but one of the design goals of Mathemagix is that
it should be particularly easy to consistently use standard
names.3.4 Discreteoverloading
The main strength of the Mathemagix type system is that
it allows for heavy though fully type safe overloading. Simi-
larly as in C++ or Aldor, discrete overloading of a symbol
is achieved by declaring it several times with different types:

infix * (c: Double, p: Point): Point ==

point (c * p.x, c * p.y);

infix * (p: Point, c: Double): Point ==

point (p.x * c, p.y * c);

Contrary to C++, non function variables and return values
of functions can also be overloaded:

bar: Int == 11111;

bar: String == "Hello";

mmout << bar * bar << lf;

mmout << bar >< " John!" << lf;

Internally, the Mathemagix type system associates a spe-
cial intersection type And (Int, String) to the overloaded
variable bar. During function applications, Mathemagix
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consistently takes into account all possible meanings of the
arguments and returns a possibly overloaded value which
corresponds to all possible meanings of the function appli-
cation. For instance, consider the overloaded function

foo (x: Int): Int == x + x;

foo (s: String): String == reverse s;

Then the expression foo bar will be assigned the type
And (Int, String). An example of a truly ambiguous
expression would be bar = bar, since it is unclear whether
we want to compare the integers 11111 or the strings
"Hello". True ambiguities will provoke compile time errors.3.5 Parametricoverloading
The second kind of parametric overloading relies on the
forall keyword. The syntax is similar to template dec-
larations in C++, with the difference that all template
parameters should be rigourously typed:

forall (M: Monoid)

fourth_power (x: M): M == x * x * x * x;

Internally, the Mathemagix type system associates a spe-
cial universally quantified type Forall (M: Monoid, M ->

M) to the overloaded function fourth_power. In a similar
way, values themselves can be parametrically overloaded.
The main challenge for the Mathemagix type system is to
compute consistently with intersection types and universally
quantified types. For instance, we may define the notation
[ 1, 2, 3 ] for vectors using

forall (T: Type)

operator [] (t: Tuple T): Vector T == vector t;

This notation in particular defines the empty vector []

which admits the universally quantified type Forall (T:

Type, Vector T). In particular, and contrary to what
would have been the case in C++, it is not necessary to
make the type of [] explicit as soon as we perform the
template instantiation. Thus, writing

v: Vector Int == [];

w: Vector Int == [] >< []; // concatenation

would typically be all right. On the other hand, the expres-
sion #[] (size of the empty vector) is an example of a genuine
and parametric ambiguity.

In comparison with C++, it should be noticed in addi-
tion that parametric overloading is fully dynamic and that
there are no restrictions on the use of ordinary variables
as template parameters. Again, there may be dependen-
cies between template arguments. Mathemagix also imple-
ments the mechanism of partial specialization. For instance,
if we have a fast routine square for double precision num-
bers, then we may define

fourth_power (x: Double): Double ==

square square x;

Contrary to C++, partial specialization of a function takes
into account both the argument types and the return type.
This make it more natural to use the partial specialization
mechanism for functions for which not all template param-
eters occur in the argument types:

forall (R: Number_Type) pi (): R == ...;

pi (): Double == ...;3.6 Implicit conversions
One major difference between Aldor and Axiom is that
Aldor does not contain any mechanism for implicit con-
versions. Indeed, in Axiom, the mechanism of implicit con-
versions [33] partially depends on heuristics, which makes
its behaviour quite unpredictable in non trivial situations.
We have done a lot of experimentation with the introduction
of implicit conversions in the Mathemagix type system,
and decided to ban them from the core language. Indeed,
systematic implicit conversions introduce too many kinds
of ambiguities, which are sometimes of a very subtle nature.

Nevertheless, the parametric overloading facility makes it
easy to emulate implicit conversions, with the additional
benefit that it can be made precise when exactly implicit
conversions are permitted. Indeed, we have already intro-
duced the To T category, defined by

category To (T: Type) == {

convert: This -> T;

}

Here convert is the standard operator for type conversions
in Mathemagix. Using this category, we may define scalar
multiplication for vectors by

forall (M: Monoid, C: To M)

infix * (c: C, v: Vector M): Vector M ==

[ (c :> M) * x | x: M in v ];

Here c :> M stands for the application of convert to c and
retaining only the results of type M (recall that c might
have several meanings due to overloading). This kind of
emulated “implicit” conversions are so common that Math-
emagix defines a special notation for them:

forall (M: Monoid)

infix * (c :> M, v: Vector M): Vector M ==

[ c * x | x: M in v ];

In particular, this mechanism can be used in order to define
converters with various kinds of transitivity:

convert (x :> Integer): Rational == x / 1;

convert (cp: Colored_Point) :> Point == cp.p;

The first example is also called an upgrader and provides
a simple way for the construction of instances of more com-
plex types from instances of simpler types. The second
example is called a downgrader and can be used in order
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to customize type inheritance, in a way which is unrelated
to the actual representation types in memory.

The elimination of genuine implicit converters also allows for
several optimizations in the compiler. Indeed, certain oper-
ations such as multiplication can be overloaded hundreds
of times in non trivial applications. In the above example
of scalar multiplication, the Mathemagix compiler takes
advantage of the fact that at least one of the two argu-
ments must really be a vector. This is done using a special
table lookup mechanism for retaining only those few over-
loaded values which really have a chance of succeeding when
applying a function to concrete arguments.3.7 Syntactic sugar
Functions with several arguments use a classical tuple nota-
tion. It would have been possible to follow the Ocaml and
Haskell conventions, which rely on currying, and rather
regard a binary function f : T 2 → T as a function of type
T → (T →T ). Although this convention is more systematic
and eases the implementation of a compiler, it is also non
standard in mainstream mathematics; in Mathemagix, we
have chosen to keep syntax as close as possible to classical
mathematics. Furthermore, currying may be a source of
ambiguities in combination with overloading. For instance,
the expression - 1 might be interpreted as the unary nega-
tion applied to 1, or as the operator x� 1− x.

In order to accomodate for functions with an arbitrary
number of arguments and lazy streams of arguments,Math-
emagix uses a limited amount of syntactic sugar. Given
a type T, the type Tuple T stands for an arbitrary tuple
of arguments of type T, and Generator T stands for a lazy
stream of arguments of type T. For instance, (1, 2) would
be a typical tuple of type Tuple Int and 0..10 a typical
generator of type Generator Int. For instance, the proto-
type of a function which evaluates a multivariate polynomial
at a tuple of points might be

forall (R: Ring)

eval (P: MVPol R, p: Tuple R): R == ...;

The syntactic sugar takes care of the necessary conver-
sions between tuples and generators. For instance, given
a polynomial P: MVPol Int, the following would be valid
evaluations:

eval (P, 1, 2..8, (9, 10), 11..20);

eval (P, (i^2 | i: Int in 0..100));

Notice that the notation of function application (or evalua-
tion) can be overloaded itself:

postfix .() (fs: Vector (Int -> Int),

x: Int): Vector Int ==

[ f x | f: Int -> Int in fs ];3.8 Futureextensions
There are various natural and planned extensions of the
current type system.

One of the most annoying problems that we are currently
working on concerns literal integers: the expression 1 can
naturally be interpreted as a machine Int or as a long
Integer. Consequently, it is natural to consider 1 to be
of type And (Int, Integer). For efficiency reasons, it is
also natural to implement each of the following operations:

infix =: (Int, Int) -> Boolean;

infix =: (Integer, Integer) -> Boolean;

infix =: (Int, Integer) -> Boolean;

infix =: (Integer, Int) -> Boolean;

This makes an expression such as 1 = 1 highly ambiguous.
Our current solution permits the user to prefer certain
operations or types over others. For instance, we would
typically prefer the type Integer over Int, since Int

arithmetic might overflow. However, we still might prefer
infix =: (Int, Int) -> Boolean over infix =: (Int,

Integer) -> Boolean. Indeed, given i: Int, we would like
the test i = 0 to be executed fast.

One rather straightforward extension of the type system
is to consider other “logical types”. Logical implication is
already implemented using the assume primitive:

forall (R: Ring) {

...

assume (R: Ordered)

sign (P: Polynomial R): Int ==

if P = 0 then 0 else sign P[deg P];

...

}

The implementation of existentially quantified types will
allow us to write routines such as

forall (K: Field)

exists (L: Algebraic_Extension K)

roots (p: Polynomial K): Vector L == ...;

Similarly, we plan the implementation of union types and
abstract data types, together with various pattern matching
utilities similar to those found in Ocaml and Haskell.

We also plan to extend the syntactic sugar. For instance,
given two aliases i, j: Alias Int, we would like to be able
to write (i, j) := (j, i) or (i, j) += (1, 1). A macro
facility should also be included, comparable to the one
that can be found in Scheme. Some further syntactic fea-
tures might be added for specific areas. For instance, in
the Macaulay2 system [11, 6], one may use the declaration

R = ZZ[x,y]

for the simultaneous introduction of the polynomial ring
Z[x, y] and the two coordinate functions x, y:Z[x, y].

In the longer future, we would like to be able to for-
mally describe mathematical properties of categories and
algorithms, and provide suitable language constructs for
supplying partial or complete correctness proofs.
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4. SEMANTICSANDCOMPILATION4.1 Source language
In order to specify the semantics of the Mathemagix lan-
guage, it is useful to forget about all syntactic sugar and
schematize the language by remaining as close as possible
to more conventional typed l-calculus. Source programs can
be represented in a suitable variant of typed l-calculus,
extended with special notations for categories and over-
loading.

We will use a few notational conventions. For the sake of
brevity, we will now use superscripts for specifying types.

For instance, lxInteger.(x×x)Integer denotes the function x ∈
Z� x2.

For the sake of readability, we will also denote types T,
Int, etc. using capitalized identifiers and categories C, Ring,
etc. using bold capitalized identifiers. Similarly, we will
use the terms “type expressions” and “category expressions”
whenever an expression should be considered as a type or
category. Notice however that this terminology is not for-
mally enforced by the language itself.

The source language contains three main components:

Typed lambda expressions. The first component consists of
ordinary typed l-expressions, and notations for their types:

1. Given expressions f and x, we denote function applica-
tion by f(x), (f) x, or fx.

2. Given a variable x, an expression y and type expressions
T and U, we denote by lxT.yU the lambda expression
which sends x of type T to y of type U.

3. We will denote by T→U the type of the above l-expres-
sion. In the case when U depends on x, we will rather
write T→Ux for this type.

Hence, all lambda expressions are typed and there are no
syntactic constraints on the types T and U. However, “badly

typed” expressions such as lxInt.xBoolean will have no correct
interpretation in the section below.

Declarations. The second part of the language concerns dec-
larations of recursive functions, classes and categories.

1. Given variables x1, 	 , xn, type expressions T1, 	 , Tn

and expressions y1,	 , yn, z, we may form the expression

(x1
T1 ≡ y1, 	 , xn

Tn ≡ yn). z. The informal meaning is:

the expression z, with mutually recursive bindings x1
T1≡

y1,	 , xn
Tn≡ yn.

2. Given variables x1, 	 , xn and type expressions T1, 	 ,

Tn, we may form the data type class〈x1
T1, 	 , xn

Tn〉. For
instance, a list of integers might be declared using (List≡
class〈nilList,consInt→List→List〉).z. We also introduce a spe-

cial variable Class which will be the type of class〈x1
T1,	 ,

xn
Tn〉.

3. Given variables x1,	 , xn, y and type expressions T1,	 ,

Tn, U, we may form the category yU〈x1
T1, 	 , xn

Tn〉. For
instance, we might introduce the Monoid category using

(Monoid≡ThisClass〈×This→This→This〉). z.

Overloaded expressions. The last part of the language
includes explicit constructs for overloaded expressions and
their types:

1. Given two expressions x and y, we may form the over-
loaded expression x∧ y.

2. Given type expressions T and U, we may form the inter-
section type T∩U.

3. Given a variable x, a type expression T and an expression
y, we may form the parametrically overloaded expression
∧

xT
y.

4. Given a variable x, a type expression T and a type
expression U, we may form the universally quantified
type expression

∧

xT
U.

In the last two cases, the variable x is often (but not neces-
sarily) a type variable A and its type T a category C.4.2 Target language
The source language allows us to define an overloaded func-
tion such as

fooInt→Int∩String→String

≡ (lxInt.(x× x)Int)∧ (lxString.(x @ x)String) (1)

In a context where 1 is of type Int, it is the job of the
compiler to recognize that foo should be interpreted as a
function of type Int→ Int in the expression foo(1).

In order to do so, we first extend the source language with
a few additional constructs in order to disambiguate over-
loaded expressions. The extended language will be called the
target language . In a given context C, we next specify when
a source expression x can be interpreted as a non ambiguous
expression x̂ in the target language. In that case, we will
write C � x x̂ and the expression x̂ will always admit a
unique type.

For instance, for foo as above, we introduce operators π1 and
π2 for accessing the two possible meanings, so that

{fooInt→Int∩String→String, 1Int} � foo(1) π1(foo)(1).

For increased clarity, we will freely annotate target expres-
sions by their types when appropriate. For instance,
we might have written π1(foo)Int→Int(1Int)Int instead of
π1(foo)(1).

Disambiguation operators. In the target language, the fol-
lowing notations will be used for disambiguating overloaded
expressions:

1. Given an expression x, we may form the expressions
π1(x) and π2(x).

2. Given expressions x and y, we may form the expression
x[y]. Here x should be regarded as a template and x[y]
as its specialization at y.
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There are many rules for specifying how to interpret expres-
sions. We list a few of them:

C � x x̂T∩U

C � x π1(x̂)
T

(C � x x̂T)∧ (C � y ŷU)

C � (x∧ y) (x̂ ∧ ŷ)T∩U

(

C � x x̂
⋂

yT
U
)

∧ (C � z ẑT)

C � x x̂[ẑ ]U[ẑ/y]

(

C �T T̂
)

∧ (C ∪ {xT̂}� y ŷ)∧
(

C �U Û
)

C � (lxT.yU) (lxT̂.ŷ Û)T̂→Ûx

Here U[ẑ/y] stands for the substitution of ẑ for y in U.

Category matching. The second kind of extensions in the
target language concern notations for specifying how types
match categories:

1. Given expressions T, f1, 	 , fn and C, we may form the
expression T〈f1,	 , fn〉⇑C. The informal meaning of this
expression is “the type T considered as an instance of C,
through specification of the structure f1,	 , fn”.

2. Given an expression T, we may form T⇓, meaning “forget
the category of T”.

3. Given expressions x and T, we may form the expression
x↑T, which allows us to cast to a type T of the form
T=U〈f1,	 , fn〉⇑C.

4. Given an expression x, we may form x↓.

In order to cast a given type TB to a given category C =
ThisB〈x1

X1,	 , xn
Xn〉, all fields of the category should admit an

interpretation in the current context:

∀i,
(

C �Xi[T/This] X̂i

)

∧ (C � xi x̂i
X̂i)

C �T T〈x̂1,	 , x̂n〉⇑C
.

Assuming in addition that C � y ŷT, we also have C � y 
ŷ↑(T〈x̂1, 	 , x̂n〉⇑C). There are further rules for casting
down.4.3 Compilation
4.3.1 Schematic behaviour

A target expression xT is said to be reduced if its type T is
not of the form U ∩ V,

⋂

yY
U, or U⇑C or U⇓. The task of

the compiler is to recursively determine all reduced inter-
pretations of all subexpressions of a source program. Since
each subexpression x may have several interpretations, we
systematically try to represent the set of all possible reduced
interpretations by a conjunction x̃ of universally quantified
expressions. In case of success, this target expression x̃ will
be the result of the compilation in the relevant context C,
and we will write C � x ∗ x̃.

Let us illustrate this idea on two examples. With foo as
in (1) and cString∩Int, there are two reduced interpretations

of foo(c):

{fooInt→Int∩String→String, cString∩Int}

� foo(c) π1(foo)(π2(c))
Int,

{fooInt→Int∩String→String, cString∩Int}

� foo(c) π2(foo)(π1(c))String.

Hence, the result of the compilation of foo(c) is given by

{fooInt→Int∩String→String, cString∩Int}

� foo(c) ∗ (π1(foo)(π2(c))∧π2(foo)(π1(c)))Int∩String.

In a similar way, the result of compilation may be a para-
metrically overloaded expression:

{bar
⋂

TC
Int→List T

, 1Int} � bar(1) ∗
∧

TC bar[T](1)List T.

4.3.2 Resolution of ambiguities

Sometimes, the result x̃ of the compilation of x is a con-
junction which contains at least two expressions of the same
type. In that case, x is truly ambiguous, so the compiler
should return an error message, unless we can somehow
resolve the ambiguity. In order to do this, the idea is to
define a partial preference relation 4 on target expressions
and to keep only those expressions in the conjunction x̃

which are maximal for this relation.

For instance, assume that we have a function square of type
(
⋂

MMonoid M → M) ∩ Int → Int and the constant 2012 of

type Int. In section 3.5, we have seen that Mathemagix
supports partial specialization. Now π2(square) is a partial
specialization of π1(square), but not the inverse. Conse-
quently, we should strictly prefer π2(square) over π1(square),
and π2(square)(2012) over π2(square)[I](2012↑I)↓, where I=

Int〈×Int→Int→Int〉⇑Monoid.

As indicated in section 3.8, we are currently investigating
further extensions of the preference relation 4 via user pro-
vided preference rules.

4.3.3 Implementation issues

In absence of universal quantification, the search process for
all reduced interpretations can in principle be designed to
be finite and complete. The most important implementation
challenge for Mathemagix compilers therefore concerns
universal quantification.

The main idea behind the current implementation is that
all pattern matching is done in two stages: at the first stage,
we propose possible matches for free variables introduced
during unification of quantified expressions. At a second
stage, we verify that the proposed matches satisfy the nec-
essary categorical constraints, and we rerun the pattern
matching routines for the actual matches. When proceeding
this way, it is guaranteed that casts of a type to a cat-
egory never involve free variables.

Let us illustrate the idea on the simple example of com-
puting a square. So assume that we have the function square
of type

⋂

MMonoid M→M in our context, as well as a multipli-

cation ×: Int→ Int→ Int. In order to compile the expression
square(2012Int), the algorithm will attempt to match Int →
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F1 with
⋂

MMonoid M → M for some free variable F1. At a

first stage, we introduce a new free variable F2
Monoid and

match F2
Monoid →F2

Monoid against Int→F1. This check suc-

ceeds with the bindings F2
Monoid 7 Int and F1 7 Int, but

without performing any type checking for these bindings.
At a second stage, we have to resolve the innermost binding
F2

Monoid 7 Int and cast Int to Monoid. This results in the
correct proposal F2

Monoid 7 I for the free variable, where
I≡ Int〈×Int→Int→Int〉⇑Monoid. We finally rematch I→ I with
Int→F1 and find the return type F17 I.

In practice the above idea works very well. Apart from
more pathological theoretical problems that will be dis-
cussed below, the only practically important problem that
we do not treat currently, is finding a “smallest common
supertype” with respect to type conversions (see also [33]).

For instance, let f be a function of type
⋂

R
Class〈〉

⋂

TInto R
T→

T→R. What should be the type of fxy, where xX
Class〈〉

and
yY

Class〈〉

are such that X and Y are different? Theoretically
speaking, this should be the type

⋂

RC R, where C is the cat-

egory TClass〈convertX→T, convertY→T〉. However, the current
pattern matching mechanism in the Mathemagix compiler
will not find this type.

4.3.4 Theoretical problems

It is easy to write programs which make the compiler fail
or loop forever. For instance, given a context with the cat-

egory In(T)≡ ThisClass〈convertThis→T〉 and functions convert
and f of types

⋂

TClass F(T) → T and
⋂

T
In(Int) T → T, the

compilation of f(xString) will loop. Indeed, the compiler will
successively search for converters String → Int, F(String) →
Int, F(F(String))→ Int, etc. Currently, some safeguards have
been integrated which will make the compiler abort with an
error message when entering this kind of loops.

The expressiveness of the type system actually makes it
possible to encode any first order theory directly in the
system. For instance, given a binary predicate P and func-
tion symbols f , g, the statement ∀x, P (f(x), g(x)) ⇒
P (g(g(x)), f(x)) might be encoded by the declaration of

a function P̄ of type
⋂

x̄C ḡ(ḡ(x̄))→ f̄ (x̄)→Boolean, where

C=TClass〈P̄ f̄ (T)→ ḡ(T)→Boolean〉.

These negative remarks are counterbalanced by the fact
that the type system is not intended to prove mathemat-
ical theorems, but rather to make sense out of commonly
used overloaded mathematical notations. It relies upon the
shoulders of the user to use the type system in order to
define such common notations and not misuse it in order
to prove general first order statements. Since notations are
intended to be easily understandable at the first place, they
can usually be given a sense by following simple formal pro-
cedures. We believe that our type system is powerful enough
to cover most standard notations in this sense.

The above discussion shows that we do not aim com-
pleteness for the Mathemagix system. So what about
soundness? The rules for interpretation are designed in such
a way that all interpretations are necessarily correct. The
only possible problems which can therefore occur are that
the compiler loops forever or that it is not powerful enough
to automatically find certain non trivial interpretations.

We also notice that failure of the compiler to find the
intended meaning does not necessarily mean that we will
get an error message or that the compiler does not ter-
minate. Indeed, theoretically speaking, we might obtain
a correct interpretation, even though the intended interpre-
tation should be preferred. In particular, it is important
to use the overloading facility in such a way that all pos-
sible interpretations are always correct, even though some
of them may be preferred.4.4 Execution
Given an expression x on which the compilation process
succeeds, we finally have to show what it means to evaluate
x. So let x̃ with ∅� x ∗ x̃ be the expression in the target
language which is produced by the compiler. The target
language has the property that it is quite easy to “down-
grade” x̃ into an expression of classical untyped l-calculus.
This reduces the evaluation semantics of Mathemagix to
the one of this calculus.

Some of the most prominent rules for rewriting x̃ into a term
of classical untyped l-calculus are the following:

1. Overloaded expressions x ∧ y are rewritten as pairs
lf .fxy.

2. The projections π1 and π2 are simply true: lx.ly.x and
false: lx.ly.y.

3. Template expressions
∧

xT
y are rewritten as l-expres-

sions lx.y.

4. Template instantiation x[y] is rewritten into function
application x(y).

5. Instances T〈x1
U1,	 ,xn

Un〉⇑C of categories are implemented
as n-tuples lf.Tx1
 xn.

For instance, consider the template
∧

MMonoid lxM.(x × x)M.

After compilation, this template is transformed into the
expression lM.lx.(π1

1
M) xx, where πi

n= lx1.	 .lxn.xi.

One of the aims of the actual Mathemagix compiler is to
be compatible with existing C libraries and C++ template
libraries. For this reason, the backend of Mathematics
really transforms expressions in the target language into
C++ programs instead of terms of untyped l-calculus.5. REFERENCES
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