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Introduction

Man-made objects that present folds and corrugations may be more interesting than smooth ones: corrugations add a tactile dimension and increase the three-dimensional perception. The morphogenetic processes in nature form folds and corrugation, for either structural or functional reasons, sometimes resulting in expressive shapes [START_REF] Delarue | Figuration graphique et recherche structurale[END_REF]. In design disciplines, the manipulation of a folded sheet allows to experience directly the relation between geometry and rigidity, and, as recognized at the Bauhaus in the 20's, the fold is also a powerful design method. In contemporary architecture, the fold is described in different ways: as a morphogenetic process, as a structural rib, and as a mean to realize deployable envelops, Figure 1. We will consider this third case, as foldable / unfoldable structural systems are of importance, in civil engineering and architecture, to design temporary structures or convertible roofing. Other technologies allow as well such abilities, for instance:

• Tensegrity structures (with cables and bars) [START_REF] Smaili | Foldable / unfoldable curved tensegrity systems by finite mechanism activation[END_REF],

• Textile and / or inflatable structures [START_REF] Otto | Tensile structures; design, structure, and calculation of buildings of cables, nets, and membranes[END_REF],

• Panels and hinges as particular mechanisms [START_REF] Hoberman | Curved pleated sheet structures[END_REF][START_REF] Tachi | Generalization of rigid-foldable quadrilateral-mesh origami[END_REF] or possible hybrid structures, associating two or several of the previous solutions.

This article focuses on the case of panel and hinge mechanisms, inspired with paperfolding techniques (origami), and we restrict ourselves to thin planar panels assumed to be kept planar during the folding / unfolding movement. The case of mechanisms with one degree of mobility is particularly under concern.

The aim of this study is first to propose a classification and description of such systems, potentially not fully developable to exhibit potential stiffness, for design choice purposes rather than merely for analysis of existing solutions. Second, we propose geometrical models for non-developable foldable / unfoldable surfaces: The detailed designed surface is not prescribed to be planar, and the average surface of the overall unfolded structure may exhibit curvature. The resulting structures will be called foldable corrugated meshes. In order to help the fabrication process, the surfaces are composed as much as possible of identical units and plates. Therefore, the increase in complexity for designing these surfaces only lies in a larger number of types of planar elementary plates to be produced (typically 2 types of plates, compared to only one for classical Miura-Ori). 

Geometrical surfacic description

Since the targeted surfaces are only piecewise differentiable, they are not smooth surfaces and tangential planes cannot be defined everywhere. By analogy with 'rigid folding' in origami and 'rigid theory' [START_REF] Demaine | Geometric Folding Algorithms: Linkages, Origami, Polyhedra[END_REF] in mechanism analysis [START_REF] Shigley | Theory of Machines and Mechanisms[END_REF][START_REF] Dureisseix | An overview of mechanisms and patterns with origami[END_REF], we neglect the thickness of the plates which are one-to-one connected with perfect hinges. The plates themselves are delimited either with the total structure edges, or by their hinges. All plates are assumed to be kept planar and the edges are straight segments, [START_REF] Stotz | Iterative Geometric Design for Architecture[END_REF]. Note that more generally, the plates could be considered as developable surfaces [START_REF] Demaine | Non)existence of pleated folds: How paper folds between creases[END_REF][START_REF] Duncan | Folding without distortion: Curved-line folding of sheet metal[END_REF], if one models the bending of these surfaces (that can store bending elastic energy as a possible energy for actuation) ; such bendings are unavoidable if one uses curved creases to obtain a foldable / deployable system [START_REF] Dacorogna | Lipschitzcontinuous local isometric immersions: Rigid maps and origami[END_REF][START_REF] Dacorogna | Origami and partial differential equations[END_REF][START_REF] Kilian | Curved folding[END_REF][START_REF] Koschitz | Curved crease origami[END_REF]. This aspect is nevertheless not under the scope of the present study, for which the 'folds' are straight edge segments.

Orientation

A corrugated mesh is defined as a simply connected surface composed of planar polygonal faces. The neighboring relations are established between adjacent faces along folding edges, i.e. the shared edges of two faces. We assumed that such a surface is orientable, i.e. a continuous orientation can be defined for each face F i , i = 1, . . . n, by assigning its normal unitary vector n i . Each face F i is composed of k i vertices V j i , j = 1, . . . k i , and k i edges E j i that can be numbered counterclockwise with respect to the normal vector n i , see Figure 2. In such a case,

E j i = V (j mod ki)+1 i -V j i .
Figure 2: Definition of a configuration and orientation of its surface Additionally, the k i sector angles between two adjacent edges are defined for each face F i with angles θ j i = (E j i , E

(j mod ki)+1 i

), for j = 1, . . . k i . 0 ≤ θ j i ≤ 2π, since edges are oriented.

With an orientable overall plate assembly Ω = ∪ n i=1 F i , if the edge j of face F i is shared with the edge k of a neighboring face F l , then (Figure 2):

E j i = -E k l .
We finally assume that two faces share at most one straight folded edge; when two neighboring faces share one edge, their common edge is denoted with e il = E j i = -E k l .

Folding angles

The angle between two normals of adjacent faces is a il = arccos(n i • n l ), and 0 ≤ a il ≤ π. These angles, as well as their corresponding edges e il are split into two groups: If we denote the external side of the overall surface as the side toward which all the normals are pointing to (see Figures 3 and4), the neighboring faces which form a convex (respectively concave) dihedral, with respect to the external side, share a common edge called mountain (respectively valley) fold. The global foldability along an entire path, i.e. a set of successive states of the corrugated mesh Ω when changing continuously the folding angles but preserving planarity of each face, edge connections, and avoiding face interpenetration, is still an open question. Nevertheless, the so-called local foldability condition (a necessary condition) can be stated close to each fold intersection O (or corner node), Figure 5 (left), i.e. at each end point common to several common edges as [START_REF] Demaine | Geometric Folding Algorithms: Linkages, Origami, Polyhedra[END_REF]:

p is even, and

p m=1 (-1) m θ m ∈ {0, 2π, -2π} (1) 
if, without loss in generality, we number consecutively the faces according to the global orientation as m = 1, . . . p and concerned sector angles as θ m around the point O. The sum is therefore performed on the faces that share the fold intersection O. If a flat configuration is possible, i.e. if p m=1 θ m = 2π (developed state for which ∀ij, a ij = 0) this condition is equivalent to: p is even and p m=1 (-1) m θ m = 0; but it is also valid for cases where the overall sum is greater or smaller that 2π [START_REF] Demaine | Geometric Folding Algorithms: Linkages, Origami, Polyhedra[END_REF], Figure 5. In such cases, no fully developed state exist. The local foldability condition is a necessary, but not a sufficient condition to the existence of a flat folded state (∀ij, a ij = π). Indeed, for the assembly of rigid plates and perfect hinges to exhibit a finite mechanism, persistent compatibility of rotation rates ȧij and global non penetrability conditions are additionally required. If it is the case (i.e. if the corrugated mesh is foldable), the configuration Ω may evolve with an external null energy driving. Eventually, during this motion, mountain folds may transform into valley folds, and reverse (when an a ij is close to 0, but not close to π due to non penetration condition). The set of these continuously successive configurations is called the folding path.

It should be noted that the foldability requirement is a strong constraint on the design of the plate assembly.

Folded and unfolded states

To describe the possible variations of the folding angles, and the admissible path of the corresponding configurations during a folding or unfolding operation, we propose a global descriptor G Ω for an admissible state Ω as

G Ω = 1 q ij a ij π ( 2 
)
where q is the number of common edges e ij and of folding angles a ij . Since 0 ≤ a ij ≤ π, one gets 0 ≤ G Ω ≤ 1. G Ω = 0 corresponds to have all faces coplanar (∀ij, a ij = 0, this is the developed state); G Ω = 1 corresponds to have all faces overlapping (∀ij, a ij = π, this is the flat-folded state). This global descriptor allows to define the unfolded state Ω as the state that minimizes the value of G Ω over the set of all the admissible states (the total folding path): ∀Ω, G Ω ≤ G Ω ; the state Ω that maximizes this value will be called the folded state: ∀Ω, G Ω ≥ G Ω . If there exist only one continuous path between an unfolded and a folded state, the foldable corrugated mesh has a unique folding path, Figure 6, otherwise, it has multiple folding paths. 

Folding path and classification

The description of the folding path is quite explicit when using the evolution of the configuration along with the values of G Ω . Extremal reachable values allow to define:

• A developable corrugated mesh: the unfolded state is planar, G Ω = 0;

• A non-developable corrugated mesh: G Ω > 0;

• A flat-foldable corrugated mesh: the folded state is planar, G Ω = 1;

• A non flat-foldable corrugated mesh:

G Ω < 1;
and four different combinations of these cases are possible. Moreover, the case where G Ω = G Ω corresponds to an unfoldable (or rigid) corrugated mesh. G Ω is a useful intrinsic characteristic of a configuration Ω that leads to smooth evolutions of folding angles. Nevertheless, it may be difficult from a control point of view to command the folding / unfolding movement with G Ω (t): It would correspond to exert an identical torque on every hinge simultaneously. A small modification of the definition of G Ω consists in using the squared values (a ij /π) 2 , that corresponds to elastic rotational springs at each hinge. In such a case, these elastic springs would store the actuation energy, useful for deployment. The fact that the use of G Ω (present, or with squared values) as a folding path parameter leads to smooth curves for the evolution of folding angles explains why systems with such elastic springs to store actuation energy may easily deploy themselves with a low probability of locking [START_REF] Cantarella | An energy-driven approach to linkage unfolding[END_REF]. An other command would focus on one or few rotation angles a ij . To check commandability, one can plot the evolution of the corresponding rotation angles with respect to G Ω , as in Figure 8. With a non-univoque relationship (as for curve 1 in Figure 8) the deployment cannot be entirely controlled. Indeed the dead center (the velocity inversion point) separates the path into two sub-paths. Unless an additional actuator (even for a mechanism with one mobility) is added to a rotation angle that does not posses a dead center at the same location (or using dynamical effects to pass through the dead center, which is not a reliable command), the two sub-paths are separated. We propose herein a geometrical model of a foldable corrugated mesh which is a generalization of the Muira-Ori origami surface [START_REF] Miura | Structural concepts and their theoretical foundations[END_REF][START_REF] Miura | The science of Miura-ori: A review[END_REF], a developable and flat-foldable corrugated mesh, whose unfolded state can tessellate a plane. It has a unique folding path with a great packaging efficiency that makes it useful for deployable planar structures. However, for the design of foldable / unfoldable architecture envelops (structures that demands both packaging efficiency and stiffness), it lacks of structural rigidity, since the unfolded state is a plane (developable corrugated mesh), a surface with no out-of-plane stiffness. The proposal is therefore to modify geometrically the Miura-Ori fold in order to prevent its unfoldability to a plane, and additionally to approximate non-planar average surfaces.

There exist many generalizations of Miura-Ori fold approximating three-dimensional non planar surfaces, [START_REF] Hoberman | Curved pleated sheet structures[END_REF][START_REF] Tachi | Generalization of rigid-foldable quadrilateral-mesh origami[END_REF] for instance, see Figure 9. Though interesting from a geometrical standpoint, these surfaces do not achieve structural efficiency, since they keep being developable corrugated meshes: the non-planar surface is approximated in an intermediate (geometrically changing due to mechanisms) state during the folding path, and do not exhibit stiffness. Some non-developable units nevertheless exists [START_REF] Trautz | Deployable folded plate structures folding patterns based on 4-fold-mechanism using stiff plates[END_REF] but cannot be assembled into larger one-degree-of-mobility corrugated meshes unlike the developments presented herein. [START_REF] Hoberman | Curved pleated sheet structures[END_REF]; bottom: Generalization of quadrilateral mesh origami [START_REF] Tachi | Generalization of rigid-foldable quadrilateral-mesh origami[END_REF] The aim of our generalization is to modify the geometry of the Miura-Ori fold in order to prevents its developability while keeping its kinematic efficiency (i.e. to preserve its ability to easily unfold from a very compact folded state to a wide area coverage unfolded state), to get a non-developable and flat-foldable corrugated mesh. The unfolded state then tessellates a 'thick' plane, so we can define its thickness, and its folding path spreads from this thick plane state to a completely flat-folded state. With further geometrical modifications, this corrugated mesh can approximate single-curved surfaces, thus tessellating thick cylinders, increasing stiffness and keeping flat-foldability.

Miura-Ori

This wide-known developable and flat-foldable corrugated mesh is composed of repetitive rhombuses that tessellate a plane Figure 9 (top). The rhombuses are defined by an angular parameter α and the edge length l. Its analysis can be derived from a single basic unit, Figure 10, on which the sector angles surrounding every fold intersection are: θ 1 = θ 4 = α, θ 2 = θ 3 = π -α, therefore satisfying the local foldability condition (1), and the developability condition (the sector angles sum to 2π). If we apply a kinematic constraint (for example when decreasing the distance between vertices A and C), Figure 11, a finite mechanism is activated, and, according to [START_REF] Hull | Project Origami[END_REF][START_REF] Huffman | Curvature and creases: a primer on paper[END_REF], there exists a one-toone map between the folding angles: a 41 = a 23 and a 12 = a 34 . Therefore, the folding path of the basic unit can be completely described with a single parameter once the design parameter α has been chosen. This path is depicted on Figure 12. Several characteristics of the basic unit may be drawn. For instance, the evolution of the folding angles with G Ω , but also the expansion coefficients [START_REF] Miura | Structural concepts and their theoretical foundations[END_REF]: If the unit is confined between two external tangent planes, parallel to CA and DB, as in Figure 11, the unit deployment happens simultaneously in two orthogonal directions (lying in the tangent planes and respecting symmetries) x and y; the expansion coefficient e x (respectively e y ) is the ratio of the length of segment CA (respectively DB) and their respective The modified basic unit we propose hereafter should preserve these properties, while leading to a non-developable corrugated mesh in order to exhibit stiffness for the unfolded state.

Generalized unit and folding path

In a basic unit of the Miura-Ori surface, the four sector angles sum up to 2π; we propose to modify two of them to sum to more than 2π, Figure 13. These four sector angles are now: θ 1 = θ 4 = α + β, θ 2 = θ 3 = π -α. They still satisfy the local foldability condition (1), but no more the developability condition since their sum is m θ m = 2π + 2β. On such a simple fold, the local non penetration condition during folding process can be derived: θ 1 ≥ θ 2 , resulting in restriction range for β: β ≤ π -2α.

If we scale up the model to l = 1 to simplify the expressions, without loss in generality in all of the following, and choose a coordinate orthonormal basis (x , y , z ) such that x = CO, y lies in F 2 and is close to OB as for a Gram-Schmidt orthonormalization of (CO, OB), Figure 13(d), the vector OA is obtained by rotation of an angle a 12 of vector cos β -sin β 0

T along OB = cos α sin α 0 T . After trigonometric developments, this leads to its coordinates as functions of a 12 :

x A = cos a 12 sin α sin(α + β) + cos α cos(α + β) (3) y A = -cos a 12 cos α sin(α + β) + sin α cos(α + β) (4)

z A = -sin a 12 sin(α + β) (5) 
A compatible state satisfies to A = A . Due to the symmetry plane of normal vector n = 0 cos(a 23 /2) sin(a 23 /2) T , this condition also means that A lies in the symmetry plane, i.e. OA•n = 0. This relation links the two kinematic parameters a 12 and a 23 as a 

tan(a 23 /2) = -y A /z A (6) 
Finally, a 41 can be obtained with a 41 = arccos(n 4 • n 1 ). An other assembly process consists in noting that the generalized unit can be assembled along edges OD and OC, Figure 13 (c). In such a way, one gets for the assembled admissible state (CG, CF ) = (OD, OB) = (AH, AE) which leads to the following expression:

cos a 41 = cos 2 (α + β) -cos 2 α + (sin 2 α) cos a 23 sin 2 (α + β) (7) 
For feasible ranges of design parameters α and β, expression (6) is a monotone relationship, and for a 23 ∈ [0, π], one gets a 12 ∈ [a 12 , π] where the minimal value a 12 is obtained from (6): cos a 12 = tan α/tan(α + β). The unfolded state therefore corresponds to a 12 = a 12 and a 23 = 0.

The folding motion is therefore described with a unique parameter, and the unit has a unique folding path, depicted on Figure 14 (for α = π/3 and β = π/10). This is therefore the proof that the proposed unit is a mechanism with a single degree of mobility.

Generalized unit characteristics

As for the Miura-Ori basic unit and assembly, the expansion coefficients on the two orthogonal directions x and y can be defined. Their evolutions along the folding path now depend on the two design parameters α and β. An interesting angle is ξ = (OC, OA) with cos ξ = OC • OA = -x A . For the unfolded state this value is The evolutions of these two expansion coefficients from folded to unfolded state are plotted in Figure 15 for different values of α and β. Increasing α allows a larger variation of the e x coefficient. For α → π/2, these co-evolution curves tend to two orthogonal segments, i.e. two decoupled movements, with difficulties in the command control.

cos ξ = -cos(α + β)/cos α (8)

Figure 15: Expansion coefficients for different design parameters

Another characteristic is the 'thickness' of the average surface of the unfolded state, Figure 16: t = (1 + cos α) cos(ξ /2). This thickness describes the non-planarity of the unfolded state, and is related to structural efficiency: increasing the thickness also increases the quadratic moments of the average surface (the coeffi-cients in the strength and in the stiffness expressions of a 'thick' surface that arise from geometry and not from material characteristics), and consequently its load-bearing capacity.

Figure 16: Thickness of the unfolded state of the non-developable unit (left) and of the Miura-Ori unit (right, with zero thickness) Figure 17 (left) shows a plot of the values of this thickness. Although for α = π/4 and β = π/2 the thickness is maximum, for those design values, the surface covered (projected to (x, y) plane) is relatively small, Figure 17 (right). This projected surface is given with: A = 4 sin(ξ /2). Depending on the application, a compromise should be made; for instance, Figure 18 shows plots of the product of the thickness with the covered area t(α, β) × A(α, β). It allows for instance, to maximize this equivalent volume on design parameters. 

Unit assembly

As already stated, all along the folding path, two opposite sides of the unit have the same folding angle. Moreover, considering again the assembly process of Figure 13 (c), the edges of the plates are parallel and stay parallel all along the folding path. Therefore, the corner nodes of two opposite sides of the unit deduce themselves with a translation (of vector CA for one side, and DB for the other one). Thanks to these properties, the basic units can be assembled in two directions, either x or y, in a modular array. With periodic translations along these directions, the whole thick plane can be tessellated, and the unit characteristics pertain to the assembly: a unique folding path, a mechanism with a unique degree of freedom, non-developability, flat-foldability, evolutions of expansion coefficients and thickness. The deployment still happens simultaneously in two orthogonal directions and is allowed from a compact flat-folded state (packing efficiency) to an extended predetermined service state (unfolded state), and back-forth (folding), following the same path. Figure 19 illustrates the folding path for a 3-by-3 array that was geometrically constructed in Grasshopper®, a graphical algorithm editor integrated with Rhino3D® modeling tools, allowing to draw parametrically-driven 3D geometries. The planes into which are located the boundary nodes of the basic units are kept plane all along the folding path. For this model, the input parameters are the angles α, β, the edge dimension l (scale of the model), and for describing the unique folding path, a kinematic parameter.

Single curved surface assemblies

To modify the geometry of the basic unit, and to lead to assemblies that approximate single-curved surfaces, we introduce an additional angular parameter, Figure 20. Since for the planar assembly we defined two sets of folding planes that remain parallel and mutually orthogonal during the folding path, for the single-curved assemblies, the sets of folding planes are now parallel for one set and radial for the other one, Figure 21. The new parameter may be either:

• γ for obtaining an y-direction single curved surface, with a curvature radius R y and a circle sector angle κ y ;

• or δ for obtaining an x-direction single curved surface, with a curvature radius R x and a circle sector angle κ x .

The resulting surfaces, depending on the sign of γ or δ, approximate concave or convex sectors of cylinder, Figure 21. They are still non-developable and flat-foldable corrugated meshes.

The design process for these surfaces is the following. Consider the juxtaposition of two identical units (with the same folding state) along one of the direction x or y. Consider that each unit is assembled with infinite strips as faces, and rotate one of the unit of a global angle κ along the other characteristic direction.

For the first type of surfaces (with x-curvature), the assembly of two units (with subscripts 0 and 1) initially by translation along (ii) the angle δ is directly obtained from the given unit folding state and the global angle κ x , with the second assembly condition of the units: ā23 = a 23 (same local folded state). If one reverses the process, i.e. if considering a given folding state for the units, and a given design parameter δ, the global angle κ x can be computed as well. Therefore, for a given value δ, making the folding state of the units continuously changing renders the global angle κ x continuously changing as well (within an admissible range). As a consequence, the assembly is also a mechanism with one degree of mobility. An interesting state is the unfolded state Ω for which a 23 = 0 = ā23 . With the expression (8) for the modified unit, cos ξ = -cos( ᾱ + β)/cos ᾱ, the corresponding sector angle κ x can be obtained, together with the curvature radius R x , Figure 23: κ x = ξ -ξ and R x = sin(ξ /2)/ sin(κ x /2). For 0 < δ < α/2, one gets a convex surface (with respect to the external face), and for δ < 0, subjected to sin(α -δ) < sin α/ sin(α + β), the surface is concave.

Similar arguments can be used for the y-curved surfaces, with a permutation of assembling directions: The units are assembled with a rotation of angle κ y along CA. For the unfolded state Ω with a 23 = 0, DB = 2 sin α, and (Figure 24): R y = sin α/ sin(κ y /2). The relation between γ and κ y can be obtained as previously: z is the normal to both faces F 2 and F 3 , Figure 13, for state Ω ; therefore if z is obtained from z with a rotation of angle κ y along the direction of CA, i.e. cos(ξ /2) 0 -sin(ξ /2)

T , then

tan γ = -z • x/z • y = -cos(ξ /2)(1 -cos κ y )/ sin κ y (10)
For 0 < γ < α/2, one gets a convex surface, and for γ > 0, the surface is concave. Additionally, the angle γ and the fact that this mechanism has 1 degree of mobility can be established from the assembling condi- 

Reversing the previous analytical relations between angular parameters and curvature radius, we can find, from a given basic unit with α and β design values and from the desired curvature radius R y or R x , the remaining design parameters γ or δ. With admissible values of curvature radius, we can tessellate four different thick cylinders. They are non-developable and flat-foldable corrugated meshes, with one degree of freedom folding motion. Several folding steps for three of the four different scenarios are presented in Figures 25 to 27. Nevertheless, the case of x-curvature cylinders are only locally foldable, since some faces self-intersect during the folding path. This illustrates that the local foldability conditions are not sufficient to ensure the global foldability or the non-penetration. Analytical developments are therefore useful for design and optimization purposes, and simulation can be used to check features such as global foldability with non-penetration requirements. Several ways to express necessary global foldability constraints may be found in [START_REF] Wu | Modelling rigid origami with quaternions and dual quaternions[END_REF] for instance, but up to now, only numerical approaches are available to check in a general and practical way the global non-penetration of non-adjacent plates.

The y-curvature cylinders do not exhibit such an interference, and Figure 28 illustrates a physical model of such a single curved assembly of 9 units, that has been built at the model laboratory of the École Nationale Supérieure d'Architecture de Montpellier, thanks to Dr. Arch. V. Raducanu, F. Gioia and N. Céleste, with piano hinges and 1.5 mm thick CNC-laser-cut plates (5800 alu- The comparison of the model and physical realization features, for kinematics and stiffness point of view, are not under the scope of this article, but works are in progress [START_REF] Dureisseix | Conception d'une enveloppe plissée pliable-dépliable[END_REF]. If the design angles δ or γ are allowed to change at each raw of units, one can design free-form single curved corrugated surfaces still foldable and unfoldable, as in Figure 29. This is performed with the additional complexity of non-repetitive units. It is possible to design, from any given bidimensional curve, a single-curved foldable / unfoldable surface that posses kinematic and structural features. In our classification those surfaces are called non-developable and flat-foldable corrugated surfaces. For these characteristics, they are suitable for application in civil engineering and architecture, for instance for the construction of tem-porary structures or convertible roofs, if we substitute the plates with thick panels, linear hinges with waterproof mechanical articulations, and by using actuators to drive the one-degree-of-freedom folding movement. From a geometrical point of view we observed the phenomenon of interpenetration of plates in the folding motion of two curved configurations, confirming that the local conditions of foldability do not necessarily lead to the global foldability, that requires both the existence of folding movement and no interpenetration of plates. Assessing the corrugated surface stiffness, from a simulation point of view with finite elements, as well as experimentally on a mockup of such a structure are currently under work.
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 1 Figure 1: Using folds in architecture. Top left: kinematic aspect of a foldable gallery (T. Tachi [26]); top right: morphogenetic aspect of the Art Tower Mito (A. Isozaki, image by Korall, Creative Commons 2006); bottom: static aspect for the Saint Loup Chaptel (Localarchitecture / H. Buri, Y. Weinand / D. Mondada, 2008 [1])
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 34 Figure 3: Mountain fold (upper left, denoted with straight lines) and valley fold (upper right, denotes with dotted lines)

Figure 5 :

 5 Figure 5: Illustration of local flat foldability, for the flat unfolded state (left), and two non-flat states (center and right)

Figure 6 :

 6 Figure 6: Global descriptor G Ω as the parameter of a unique folding path (G Ω ≤ G Ω ≤ G Ω )

Figure 7

 7 recalls and compares the different possibilities, with examples of corrugated meshes.

Figure 7 :

 7 Figure 7: Classification and examples of foldable corrugated meshes; (a) developable and flat-foldable, (b) developable and non flat-foldable, (c) non developable and flat-foldable, (d) non developable and non flat-foldable, (e) unfoldable (rigid)

Figure 8 :

 8 Figure 8: Controlability of folding path: typical evolution of two degrees of freedom versus G Ω

Figure 9 :

 9 Figure 9: Examples of Miura-Ori generalizations; top: genuine Miura-Ori fold; middle: Curved pleated sheet structure[START_REF] Hoberman | Curved pleated sheet structures[END_REF]; bottom: Generalization of quadrilateral mesh origami[START_REF] Tachi | Generalization of rigid-foldable quadrilateral-mesh origami[END_REF] 

Figure 10 :

 10 Figure 10: Foldability properties of the Miura-Ori tessellation (straight lines are mountain folds, dotted lines are valley folds)

Figure 11 :

 11 Figure 11: Characteristics of the Miura-Ori basic unit: Expansion coefficients along x and y directions: e x and e y

Figure 12 :

 12 Figure 12: Folding path for the Miura-Ori basic unit

Figure 13 :

 13 Figure 13: Modification of the Miura-Ori basic unit to a nondevelopable corrugated unit (straight lines are mountain folds, dotted lines are valley folds); (a) original Miura-Ori unit, (b) modified unit, (c) another assembly process of the same modified unit, (d) dedicated coordinate basis for the analysis

Figure 14 :

 14 Figure 14: Folding path for the non-developable unit

Figure 17 :Figure 18 :

 1718 Figure 17: Evolution of the thickness with design parameters (left, lighter color: not admissible states), folded state for the maximal thickness (right)

Figure 19 :

 19 Figure 19: Folding path of a 3-by-3 unit assembly. Two arrays of orthogonal planes are conserved along the path

Figure 20 :

 20 Figure 20: Modification of the Miura-Ori basic unit to a nondevelopable corrugated units with single curvature (straight lines are mountain folds, dotted lines are valley folds); (a) original Miura-Ori unit, (b) modified unit of first type (x-curved surface), (c) modified unit of second type (y-curved surface)

Figure 21 :

 21 Figure 21: Four different 3-by-3 unit assemblies to get singlecurved flat-foldable corrugated meshes. From left to right and top to bottom: concave x-curvature, convex x-curvature, concave ycurvature, convex y-curvature. Two arrays of orthogonal planes are conserved along the path; one being a radial array.
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 222324 Figure 22: Design process for modifying the generalized unit to engender a curved global surface
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 25 Figure 25: Convex y-curvature folding path

Figure 26 :

 26 Figure 26: Concave y-curvature folding path

Figure 28 :

 28 Figure 28: Physical model of a single curvature design (unfolded state, and the almost flat-folded state at the same scale)

Figure 29 :

 29 Figure 29: Free-form single curved foldable corrugated surface
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